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A B S T R A C T

In this paper, the projectile penetrating fiber-reinforced concrete (FRC) is modeled and simu-
lated by the continuum discontinuum element method (CDEM) and a fiber-block interpolation
coupling algorithm. The Mohr–Coulomb constitutive model is applied to the blocks to calculate
the block forces, and the Mohr–Coulomb criterion and the maximum tensile criterion are applied
to estimate the failure of contact surfaces. Numerical simulations of projectiles penetrating plain
concrete and FRC with 1 to 3 vol% are performed. We verify the validity of the model by
predicting the crack morphology and penetration depth for plain concrete and FRC, which are
in agreement with experimental results. Detailed images of crack surfaces in the concrete blocks
caused by projectile penetration are included. The effects of fiber content on crack width are
analyzed. The results indicate that the normalized widths of the cracks approximately satisfy the
Weibull distribution. Compared with plain concrete, the addition of fibers results in a reduction
in both the expectation and variance of crack widths. However, the degree of reduction weakens
as fiber content increased.

. Introduction

Concrete is an important multifunctional composite material composed of aggregates, mortar, and interfacial transition zones
ITZ). It is mainly used to withstand compression because of its excellent compressive performance. However, the tensile performance
f concrete is comparatively weak. Therefore, improving the tensile performance of concrete to achieve a better overall performance
s a highly relevant research area. One way to achieve this is through a mixture called fiber-reinforced concrete (FRC) [1,2], which
s obtained by combining concrete with short and discrete fibers. FRC generally possesses better tensile and shear strength than
lain concrete. At present, a variety of fibers have been used to prepare FRC, such as steel fibers [3], carbon fibers [4], and glass
ibers [5]. Steel fibers have the most extensive applications owing to their lower cost and relatively good performance.

Numerous tests have proven that, under various loading conditions, the initiation and propagation of local cracks can be
ffectively inhibited by adding fibers to concrete [6]. Thus, FRC maintains its integrity more easily and exhibits better mechanical
roperties than plain concrete. The role of fibers in inhibiting the initiation and propagation of cracks can be explained by their
ridging effect of fibers [7]; fibers occupy the space around the aggregates and connect the ITZ with the mortars by forming a
patial web-like structure, which hinders the widening of micro-cracks in the ITZ and its propagation to mortars. Stress transfer is
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Fig. 1. (a) Geometric model of a continuum, (b) blocks and surfaces.

also improved by fibers bridging cracked sections, and therefore the mechanical properties of FRC after cracking are enhanced [8–
10]. Fiber content also has a significant effect on the static and dynamic mechanical properties of FRC, for example, the tensile
strength of FRC increases with fiber content [11,12]. FRC is regarded as a favorable shelter material against extreme loadings
such as explosions and impacts because it is difficult to generate cracks in FRC. Numerous penetration tests have been conducted
to study the response of FRC under impact loading and most of them focused mainly on the effect of fibers on the failure mode
of FRC [13–15]. O’Neil et al. [13] and Anderson et al. [14] reported that fiber content has little effect on the penetration depth
of FRC, whereas the incorporation of fibers contributes to arresting the propagation of cracks, thus leading to craters of smaller
volume. Máca et al. [15] indicated that the increase of fiber content has no significant effect on crater dimension when the content
is larger than 2%. However, researches on the effect of fiber on the crack width are scarce. Moreover, these researches only include
analysis of the maximum crack width on the impacted surface. For example, Wu et al. [16] studied the maximum crack width and
the number of cracks on the impacted surface of polyvinyl alcohol fiber-reinforced concrete penetrated by projectiles.

Numerical simulations on FRC penetration have also been conducted. The methods most widely used are the finite element
method [17], the discrete element method [18], and the smooth particle method [19]. In recent years, the continuum discontinuum
element method (CDEM), which was applied in landslides [20] and hydraulic fracturing simulations [21,22], has also been gradually
used to simulate dynamic problems such as penetration and explosion. For example, Feng et al. [23] simulated the entire process
of penetration and blast of earth-penetrating weapons, and Wang et al. [24] described the fracture, fragmentation, and landing of
a warhead after explosion.

In this study, we establish a model of the projectile penetrating FRC based on the CDEM. The process of projectile penetration
into FRC is numerically simulated to investigate the effect of adding fibers on penetration-induced crack width.

The rest of this paper is organized as follows: Some basic concepts and the governing equations of the CDEM and its constitutive
models adopted in this paper are introduced in Section 2. In Section 3, the parameters of the projectile, concrete, and fibers are
provided, the geometric modeling method of the fibers is described, the crack surface and its associated parameters are defined, and
a semi-discrete fiber-block coupling method, which is adopted in FRC modeling, is described. The numerical results of the projectile
penetrating blocks, including plain concrete and FRC with 1 vol% and 3 vol% steel fibers, are analyzed and compared in Section 4.
Finally, Section 5 presents a summary of the study.

2. The continuum discontinuum element method

The CDEM is a dynamic explicit numerical method that uses separable elements for the Lagrangian system. In this method, the
dynamic relaxation algorithm is used to obtain an explicit iterative solution [25].

2.1. Blocks and contact surfaces

The geometric model of a continuum can be discretized with finite elements, where adjacent elements share common nodes
and surfaces, as shown in Fig. 1(a). By inserting new nodes to separate the original common surfaces, the geometric model can be
divided into several blocks, each consisting of one or more finite elements. As shown in Fig. 1(b), a pentagonal continuum is divided
into four blocks, of which the block 4 consists of two elements and the others all consisting of one element.

In this study, we define two types of contact surfaces. One is the two new surfaces formed by inserting new nodes into a common
surface between elements, called the virtual surfaces. The other is the external surfaces of the geometric model, called the real
surfaces. Both types of surface are collectively referred to as contact surfaces.

The forces between the blocks is transmitted by introducing a semi-spring model on the contact surfaces [26]. The semi-spring
2

model also contains two modes corresponding to the cases of virtual and real surfaces, respectively. Between two corresponding
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Fig. 2. The semi-spring model on contact surfaces: (a) virtual surface, (b) real surface.

virtual surfaces, each node is connected by two ‘‘springs’’ in parallel, as shown in Fig. 2(a). The transmission of forces is calculated
through the deformation of the ‘‘springs’’. When the spring force exceeds the maximum load that the spring can carry, the spring
will break and remain unable to longer transmit forces. When all springs on a virtual surface break, the virtual surface transforms
into a real surface, which means that a local fracture occurs in the continuum from the perspective of the whole continuum. The
semi-spring model between the real surfaces of two blocks is often used to describe the contact between the blocks as shown in
Fig. 2(b). The vertex of block 1 is a spring node and a face on block 2 is used as a target face when the distance between the spring
node and the face is less than a searching tolerance. By using the normal direction of the target face as its own normal direction,
the spring finds an interpolation node on the target face to describe the contact behavior.

2.2. Governing equation

The governing equation of the CDEM is established based on the Lagrangian energy system [27]

𝜕
𝑑𝑡

( 𝜕𝐿
𝜕�̇�

) − 𝜕𝐿
𝜕𝑢

= 𝑄, (1)

where 𝑄 is the conservative force of the system, 𝐿 is the Lagrangian function, which can be written as

𝐿 = 𝛱𝑚 +𝛱𝑒 +𝛱𝑓 , (2)

where 𝛱𝑚, 𝛱𝑒, and 𝛱𝑓 are the kinetic, elastic, and potential energies of the system, respectively.
In the CDEM, the energy of an element is written as

𝐿 = ∫𝑉
1
2
𝜌�̇�2𝑑𝑉 + ∫𝑉

1
2
𝜎𝜀𝑑𝑉 − ∫𝑉

𝑓𝑢𝑑𝑉 , (3)

here 𝜌 is the density, 𝑢 is the displacement, �̇� is the velocity, 𝜎 is the stress tensor, 𝜀 is the strain tensor, 𝑓 is the body force applied
o the element and 𝑉 is the volume of the element.

The non-conservative force 𝑄 on the element includes the damping force 𝑄𝜇 and the external boundary force 𝑄𝑇 , which can be
written as

𝑄𝜇 = ∫𝑉
𝜇�̇�𝑑𝑉 , 𝑄𝑇 = −∫𝑆

𝑇𝑑𝑆, (4)

where 𝜇 is the damping coefficient and 𝑇 is the boundary traction. By treating 𝑢 and �̇� as two independent values, and substituting
qs. (3) and (4) into Eq. (1), we get

∫𝑉
𝜌�̈�𝑑𝑉 − ∫𝑉

𝜇�̇�𝑑𝑉 − 𝜕
𝜕𝑢 ∫𝑉

1
2
𝜎𝜀𝑑𝑉 = −(∫𝑉

𝑓𝑑𝑉 + ∫𝑆
𝑇𝑑𝑆). (5)

Based on Eq. (5) and introducing the displacement, velocity and acceleration of the element nodes, the discrete form of the
lement equilibrium equation can be written as

𝑴�̈� + 𝑪�̇� +𝑲𝒖 = 𝑭 , (6)

here �̈�, �̇�, and 𝒖 are the acceleration, velocity, and displacement of the nodes in the element, respectively; and 𝑴 , 𝑪 , 𝑲 are the
3

ass matrix, damping matrix, and stiffness matrix of the element, respectively. 𝑭 is the external loading vector.
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2.3. Calculation of block forces

Incremental form of block constitutive model
The stress increment of an element at the current time step 𝛥𝜎𝑖𝑗 (𝑡) is written as

𝛥𝜎𝑖𝑗 (𝑡) = 2𝐺𝛥𝜀𝑖𝑗 (𝑡) + (𝐾 − 2
3
𝐺)𝛥𝜃(𝑡)𝛿𝑖𝑗 , (7)

where 𝐺 and 𝐾 are the shear and bulk modulus of the element, respectively; 𝛥𝜀𝑖𝑗 (𝑡) and 𝛥𝜃(𝑡), which can be obtained from the
increment of node displacements at the current time step, are the strain and bulk strain increment of the element at the current
time step, respectively and 𝛿𝑖𝑗 is the Kronecker symbol.

Failure criterion
The failure criterion of the elements is established using the Mohr–Coulomb criterion and the maximum tensile criterion. First,

three constants 𝑁𝜑, 𝛼𝑃 , and 𝜎𝑃 are defined as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑁𝜑 = 1+sin𝜑
1−sin𝜑 ,

𝛼𝑃 =
√

1 +𝑁2
𝜑 +𝑁𝜑,

𝜎𝑃 = 𝑇 (𝑡)𝑁𝜑 − 2𝐶(𝑡)
√

𝑁𝜑,

(8)

where 𝐶(𝑡) and 𝑇 (𝑡) are the cohesion and tensile strength of the element at the current time step, respectively, and 𝜑 is the friction
angle of the element.

Based on the stress increment of the element at the current time step obtained using Eq. (7) and the element’s stress at the
previous time step, the trial stress of the element at the current time step, 𝜎′𝑖𝑗 (𝑡), can be written as

𝜎′𝑖𝑗 (𝑡) = 𝜎𝑖𝑗 (𝑡 − 𝛥𝑡) + 𝛥𝜎𝑖𝑗 (𝑡). (9)

The trial principal stresses 𝜎′1(𝑡), 𝜎
′
2(𝑡), and 𝜎′3(𝑡) (sorted from largest to smallest) are calculated based on 𝜎′𝑖𝑗 (𝑡). Then, some indices

can be calculated to determine whether the plasticity has occurred:

⎧

⎪

⎨

⎪

⎩

𝑓𝑠 = 𝜎′1(𝑡) − 𝜎
′
3(𝑡)𝑁𝜑 + 2𝐶(𝑡)

√

𝑁𝜑,

𝑓𝑡 = 𝜎′3(𝑡) − 𝑇 (𝑡),

ℎ = 𝑓𝑡 + 𝛼𝑃 [𝜎′1(𝑡) − 𝜎𝑃 ],

(10)

where 𝑓𝑠 and 𝑓𝑡 are the shear and tensile plastic deformation indices, respectively, and ℎ is an index that determines the current
stress zone of the element. If 𝑓𝑠 ⩾ 0 and ℎ ⩽ 0, the element undergoes shear plastic deformation; if 𝑓𝑡 ⩾ 0 and ℎ ⩾ 0, the element
undergoes tensile plastic deformation; otherwise, the element does not undergo a plastic deformation.

Modification of element stress
First, four constants, 𝜆𝑠, 𝛼1, 𝛼2 and 𝑁𝜓 are defined. They can be written as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜆𝑠 = 𝑓𝑠
(𝛼1−𝛼2𝑁𝜓 )−(−𝛼1𝑁𝜓+𝛼2)𝑁𝜓

,

𝛼1 = 𝐾 + 4
3𝐺,

𝛼2 = 𝐾 − 2
3𝐺,

𝑁𝜓 = 1+sin𝜓
1−sin𝜓 ,

(11)

where 𝜓 is the dilation angle of the element.
If the element undergoes shear plastic deformation, the trial principal stress is modified as follows

⎧

⎪

⎨

⎪

⎩

𝜎1(𝑡) = 𝜎′1(𝑡) − 𝜆
𝑠(𝛼1 − 𝛼2𝑁𝜓 ),

𝜎2(𝑡) = 𝜎′2(𝑡) − 𝜆
𝑠𝛼2(1 −𝑁𝜓 ),

𝜎3(𝑡) = 𝜎′3(𝑡) − 𝜆
𝑠(−𝛼1𝑁𝜓 + 𝛼2).

(12)

If the element undergoes tensile plastic deformation, the trial principal stress is modified as follows

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎1(𝑡) = 𝜎′1(𝑡) −
[

𝜎′3(𝑡) − 𝑇 (𝑡)
] 𝛼2
𝛼1
,

𝜎2(𝑡) = 𝜎′2(𝑡) −
[

𝜎′3(𝑡) − 𝑇 (𝑡)
] 𝛼2
𝛼1
,

𝜎3(𝑡) = 𝑇 (𝑡).

(13)

If no plastic deformation occurs, the trial principal stress is the principal stress of the element at the current time step.
Subsequently, the modified principal stress is converted to the global coordinate system to obtain the stress tensor 𝜎𝑖𝑗 (𝑡) of the
4

lement at the current time step, and then the nodal forces contributed by the element stress are calculated.
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Modification of cohesion and tensile strength
The cohesion and tensile strength of the element decrease with the plastic deformation. The effective plastic shear strain and

ffective plastic bulk strain of the element are calculated using the nodal displacement at the current time step to obtain the cohesion
nd tensile strength of the element at the next time step, which can be written as

⎧

⎪

⎨

⎪

⎩

𝐶(𝑡 + 𝛥𝑡) = 𝐶0(1 −
𝛾𝑝(𝑡)
𝛾𝑓

),

𝑇 (𝑡 + 𝛥𝑡) = 𝑇0(1 −
𝜀𝑝(𝑡)
𝜀𝑓

),
(14)

where 𝐶0 and 𝑇0 are the cohesion and tensile strength of the element at the initial time step, respectively; 𝛾𝑓 and 𝜀𝑓 are the shear
fracture strain and volume tensile fracture strain of the element, respectively; and 𝛾𝑝(𝑡) and 𝜀𝑝(𝑡) are the effective plastic shear strain
and effective plastic bulk strain of the element at the current time step, respectively.

2.4. Calculation of contact forces

Constitutive model of contact surfaces
The difference between the displacement increments of the spring node and the interpolation node is used as the increment of

the spring deformation. Thus the normal and tangent contact forces can be written as [26]
{

𝐹𝑛(𝑡 + 𝛥𝑡) = 𝐹𝑛(𝑡) − �̂�𝑛𝛥𝑑𝑛(𝑡),

𝐹𝑠(𝑡 + 𝛥𝑡) = 𝐹𝑠(𝑡) − �̂�𝑠𝛥𝑑𝑠(𝑡),
(15)

where 𝐹𝑛(𝑡) and 𝐹𝑠(𝑡) are the normal and tangent contact forces of the spring at the current time step, respectively; �̂�𝑛 and �̂�𝑠 are
the normal and tangent contact stiffnesses of the spring, respectively; and 𝛥𝑑𝑛 and 𝛥𝑑𝑠 are the normal and tangent increments of
the spring deformation, respectively.

Failure criterion and modification of spring forces
The failure criterion of the contact surfaces is established using the Mohr–Coulomb criterion and the maximum tensile criterion.

This failure criterion can be written as [26]

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(1)𝐼𝑓 − 𝐹𝑛(𝑡) ⩾ �̂� (𝑡) ⋅ �̂�,

𝐹𝑛(𝑡) = 𝐹𝑠(𝑡) = 0,

𝑛𝑒𝑥𝑡 𝑠𝑡𝑒𝑝 �̂�(𝑡 + 𝛥𝑡) = 0, �̂� (𝑡 + 𝛥𝑡) = 0,

(2)𝐼𝑓 𝐹𝑠(𝑡) ⩾ 𝐹𝑛(𝑡) tan �̂� + �̂�(𝑡) ⋅ �̂�,

𝐹𝑠(𝑡) = 𝐹𝑛(𝑡) tan �̂� + �̂�(𝑡) ⋅ �̂�,

𝑛𝑒𝑥𝑡 𝑠𝑡𝑒𝑝 �̂�(𝑡 + 𝛥𝑡) = 0, �̂� (𝑡 + 𝛥𝑡) = 0,

(16)

where �̂� (𝑡), �̂�(𝑡) and �̂� are the tensile strength, cohesion and the friction angle of the spring at the current time step, respectively;
and �̂� is the contact area of the spring.

Then, the modified spring forces are assigned to the element nodes to obtain the nodal forces contributed by the contact forces.

2.5. Flowchart of algorithm

In this study, the dynamic relaxation method is used to solve Eq. (6) explicitly. The flowchart of the algorithm is shown in Fig. 3.
The nodal acceleration �̈�(𝑡) at the current time step is obtained from the nodal velocity �̇�(𝑡−𝛥𝑡) and the nodal displacement 𝑢(𝑡−𝛥𝑡)
at the previous time step.

�̈�(𝑡) = 𝑴−1[𝑭 (𝑡 − 𝛥𝑡) − 𝑪�̇�(𝑡 − 𝛥𝑡) −𝑲𝒖(𝑡 − 𝛥𝑡)]. (17)

Note that the nodal forces contributed by the contact surfaces are included in the external force 𝑭 (𝑡 − 𝛥𝑡). The damping matrix 𝑪
can be written as [28]

𝑪 = 𝛼𝑴 + 𝛽𝑲 , (18)

where 𝛼 and 𝛽 are the mass damping coefficients and stiffness damping coefficient, respectively. In this study, 𝛼 = 0 and 𝛽 = 2×10−7.
Then the nodal velocity and nodal displacement at the current time step can then be written as

{

�̇�(𝑡) = �̇�(𝑡 − 𝛥𝑡) + �̈�(𝑡)𝛥𝑡,
𝒖(𝑡) = 𝒖(𝑡 − 𝛥𝑡) + �̇�(𝑡)𝛥𝑡. (19)
5
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Fig. 3. Calculation flowchart of the CDEM.

Fig. 4. Dimension of the projectile (unit: mm).

3. Geometric models, material parameters, and correlation algorithm

3.1. Projectile and concrete target

The dimensions of the projectile are shown in Fig. 4, and its material is 30CrMnSiA, which satisfies the linear elasticity here.
Relevant material parameters of the projectile are shown in Table 1. The initial velocity of the projectile is 1080 m/s.

The dimensions of the concrete target are 300 mm × 300 mm × 300 mm, and the Mohr–Coulomb model and the maximum
tensile stress model are used (see Section 2.3 for details). Relevant material parameters of the target are also listed in Table 1. The
geometric parameters, as well as some of the material parameters, of the projectile and concrete block are referenced from our
previous work [29], and the cohesion of the concrete is

𝐶 =
𝜎𝑐

2𝑡𝑎𝑛(45 + 𝜑∕2)
, (20)

where 𝜎𝑐 and 𝜑 are the compression strength and friction angle of the concrete, respectively.
To reduce computational costs, a quarter of the total geometry is isolated for modeling, and the mesh is subdivided around the

impact point. The model (including the projectile) is divided into four-node tetrahedral elements, as shown in Fig. 5, for a total of
3686 nodes and 15 206 elements.

All element surfaces in the concrete target are treated as contact surfaces and the constitutive model is described in Section 2.4.
The normal and tangent contact stiffnesses �̂� and �̂� of the contact surfaces are inherited from the concrete elements.
6
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Fig. 5. A quarter of geometric model and the tetrahedral elements (unit: mm).

Table 1
Parameters of projectile and concrete.
Parameter Unit Projectile Concrete

Density g/m3 7850 2500
Young’s modulus GPa 196 33.1
Possion’s ratio – 0.3 0.2
Cohesion MPa – 12.1
Tensile strength MPa 1080 1.0
Compression strength MPa 1080 51.9
Friction angle ◦ 0 40
Dilation angle ◦ 0 10

3.2. Crack surface and crack width

The condition for fracture at a contact surface is that all springs on the virtual surface have failed, i.e., the springs are no longer
used to calculate the forces, but are still used to calculate the deformation. The two corresponding virtual surfaces on which the
springs have completely failed are called crack surfaces, and the width of each crack surface 𝑑 is defined as

𝑑 = 1
2𝑛

2𝑛
∑

𝑖=1
𝑑𝑖, (21)

where 𝑛 is the number of nodes on each crack surface (𝑛 = 3 for four-node tetrahedral elements) and 𝑑𝑖 is the deformation of the
𝑖th (𝑖 = 1, 2,… , 2𝑛) spring.

3.3. Random short fibers

In this study, short and discrete fibers are modeled in the concrete. The parameters listed in Table 2 are used to model these
fibers. According to data of pullout test in [12], the cohesion and axial stiffness are determined by bond strength and the ratio
of the bond strength to pullout slip, respectively. To generate discrete short fibers more efficiently, the following simplification is
adopted based on the fact that the diameter of a fiber is much smaller than the size of the concrete: each fiber is considered as a
line segment in space and the volume occupied by the intersecting part is ignored. We employed the following method from our
previous work [30] to generate random fibers consisting of 𝑛 line segments with length 𝑙:

(1) Within the volume 𝛺 occupied by the concrete, a seed is randomly generated as the starting point of a fiber based on a
uniform distribution. The angles between the fiber axis and the positive direction of the 𝑥 and 𝑧 axes satisfy a uniform distribution
in [0, 2𝜋];

(2) Generate a node at a distance 𝑙 from the starting point along the direction of the fiber axis. Subsequent nodes are generated
in the same way; if any generated node falls outside 𝛺, then we delete all nodes of this fiber from the starting point and return to
step 1 until 𝑛 + 1 nodes are generated. These 𝑛 + 1 nodes are sequentially connected to form 𝑛 line segments, which constitute a
fiber.

(3) step (2) is repeated until all fibers are generated (the number of fibers is determined by the geometric parameters and volume
fraction of the fibers).

Fig. 6 shows concrete with 1 vol% fiber content.
7
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Table 2
Parameters of fiber.
Parameter Unit Value

Diameter mm 0.5
Length mm 20
Young’s modulus GPa 100
Density g/m3 7800
Possion’s ratio – 0.25
Tensile strength MPa 808
Cohesion MPa 10
Axial stiffness Pa/m 2 × 1010

Fig. 6. Schematic diagram of discrete fibers.

Fig. 7. Schematic diagram of fiber-block correlation algorithm: the right subfigure is a local refinement of the left subfigure.

3.4. Fiber-block correlation algorithm

To study the influence of fibers on the penetration, the fibers are treated as rod elements and the correlation between fibers with
the block is calculated by means of insertion. A schematic diagram of the correlation algorithm is shown in Fig. 7.
8
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Determination of insertion element
First, we find a fiber node and its corresponding insertion element, that is, the element in which the fiber node is located. Taking

he triangular element shown in Fig. 7 as an example, the insertion element needs to satisfy the following conditions:

⎧

⎪

⎨

⎪

⎩

𝐽𝑖 =
𝑪 𝑖−𝑿
|𝑪 𝑖−𝑿|

⋅𝑵 𝑖,

𝐽𝑖 ⩾ 0, ∀ 𝑖 = 1, 2,… , 𝑛 ,
(22)

where 𝑿 is the position vector of the fiber node and 𝑪 𝑖 and 𝑵 𝑖 are the position vector and external normal unit vector of the
midpoint of the 𝑖th edge (with 𝑛 = 3 edges for a triangular element), respectively.

Calculation of spring forces
The correlation between a fiber node and an element is established by introducing springs S𝑛 and S𝑠 at the fiber node. The spring

𝑛 along the fiber axial direction is used to describe the pullout behavior, and the spring S𝑠 perpendicular to the fiber axial direction
is used to describe the extrusion behavior. At the current time step, the displacement increment of the fiber node along the fiber
axis, 𝛥�̄�𝑛(𝑡), and the displacement increment of the fiber node perpendicular to the fiber axis, 𝛥�̄�𝑠(𝑡), are obtained by solving Eq. (6).
ubsequently, the deformation increments of S𝑛 and S𝑠, 𝛥𝑑𝑛(𝑡) and 𝛥𝑑𝑠(𝑡), are obtained as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛥𝑑𝑛(𝑡) = 𝛥�̄�𝑛(𝑡) −
𝑛
∑

𝑖=1
𝑤𝑖𝛥𝑢𝑖𝑛(𝑡),

𝛥𝑑𝑠(𝑡) = 𝛥�̄�𝑠(𝑡) −
𝑛
∑

𝑖=1
𝑤𝑖𝛥𝑢𝑖𝑠(𝑡),

(23)

here 𝛥𝑢𝑖𝑛(𝑡) and 𝛥𝑢𝑖𝑠(𝑡) are the displacement increment components of the 𝑖th node of the insertion element along and perpendicular
o the fiber axis at the current time step, respectively, and 𝑤𝑖 is the weighting coefficient of the 𝑖th node of the insertion element.

The axial and lateral forces at the next time step are calculated from the deformation increments of S𝑛 and S𝑠 at the current time
step and can be written as

{

𝐹𝑛(𝑡 + 𝛥𝑡) = 𝐹𝑛(𝑡) − �̄�𝑛𝛥𝑑𝑛(𝑡),

𝐹𝑠(𝑡 + 𝛥𝑡) = 𝐹𝑠(𝑡) − �̄�𝑠𝛥𝑑𝑠(𝑡),
(24)

where 𝐹𝑛 and �̄�𝑛 are the axial force and axial stiffness of S𝑠, respectively, and 𝐹𝑠 and �̄�𝑠 are the lateral force and lateral stiffness
of S𝑠, respectively.

Failure criterion and modification
The breakage and pullout failure of fibers are two failure modes considered. In this study, fiber breakage failure occurs when

the elongation of a fiber is larger than a critical value, thus the two elements connected by the fiber no longer interact with each
other. This failure is introduced briefly since it only occurs in some special cases when the cohesion between the fibers and the
concrete is stronger than the tensile strength of the fibers, such as the crimped fibers and twin-cone fibers in ultra-high strength
concrete [31]. For the straight fibers considered in this paper, the pullout failure is the primary failure mode since the cohesion is
weaker than the tensile strength of the fibers. Therefore, a criterion that determines the pullout failure is introduced in detail.

A constant 𝑓𝑝 is introduced to determine the pullout failure and can be written as

𝑓𝑝 = 𝐹𝑛(𝑡) − [�̄�(𝑡) + �̄�𝜎𝑚(𝑡)]�̄�, (25)

where �̄�(𝑡) and �̄� are the cohesion and friction coefficient between the fiber and the element at the current time step, respectively;
𝜎𝑚(𝑡) is the bulk stress of the element node at the current time step; �̄� is the common area between the fiber node and the element,
which can be written as

�̄� = 𝜋�̄��̄�, (26)

where �̄� is the diameter of the fiber and �̄� is half of the sum of the lengths of the elements associated with the fiber node.
When 𝑓𝑝 ⩾ 0, pullout failure occurs and 𝐹𝑛(𝑡) and �̄�(𝑡) are modified to

{

𝐹𝑛(𝑡) = �̄�𝜎𝑚(𝑡)�̄�,
�̄�(𝑡) = 0.

(27)

When 𝑓𝑝 ⩽ 0, the pullout failure does not occur and no modification is performed on 𝐹𝑛(𝑡) and �̄�(𝑡).
Finally, the spring forces on S𝑛 and S𝑠 are assigned to the element nodes to obtain the nodal forces contributed by the fibers.

4. Results and discussion

4.1. Penetration experiment using a plain concrete target

An experiment [29] involving a projectile penetrating a plain concrete target perpendicularly is conducted. Relevant parameters
are listed in Section 3.1. In this experiment, two orthogonal cracks and a tiny crack along the 45◦ direction are observed on the
impacted surface, as shown in Fig. 8. The silicone casting method is used to reconstruct the trajectory of the projectile. The measured
9

penetration depth is 169.03 mm, as shown in Fig. 9.
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Fig. 8. Cracks on impacted surface.

Fig. 9. The trajectory in the plain concrete target.

4.2. Penetration depth and cracks on the impacted surface

Simulation of the plain concrete
The numerical results using the proposed model show three main cracks on the impacted surface along the 0◦, 45◦, and 90◦

direction, respectively, as shown in Fig. 10. The morphology of the cracks obtained by the numerical simulation is consistent with
the experimental observations.

In addition, we perform two similar numerical simulations by replacing the plain concrete in the above numerical example
with 1 vol% and 3 vol% FRC (abbreviated as 1%FRC and 3%FRC respectively). All other numerical conditions remain unchanged.
Fig. 11 shows their penetration depth–time curves. Whereas in which the magnitude of the penetration depth increases with time
and the curves slowly tend to be horizontal. This phenomenon corresponds to the penetration process, in which the magnitude of
the projectile’s velocity gradually decreases and finally equals zero. The difference between the three curves is small when the time
is less than 5 × 10−4s, which indicates that the addition of fibers does not significantly enhance the resistance of concrete against the
projectile during penetration. More specifically, the experimental data and numerical results for penetration depth of plain concrete
are 169.03 mm and 169.24 mm, respectively, yielding a relative error of 0.12%. As for the 1%FRC and 3%FRC cases, the numerical
results of penetration depth match those of plain concrete very closely. This implies that the addition of fibers has little effect on
the penetration depth, and these predictions are consistent with the conclusions of [13,14].
10
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Fig. 10. Numerical result of plain concrete.

Fig. 11. Penetration depth–time curve of three kinds of concrete.

Simulation of the FRC
To further validate the correctness of the proposed model, we perform a numerical simulation for a penetration experiment [32].

The concrete target is a cylinder with radius 200 mm and projectile penetration velocity is 970 m/s. The same constitutive models
in Section 3.1 are used in the simulation. The material parameters of the projectile and the concrete are listed in Table 3. The steel
fiber content is 2%vol and the diameter and length of the fiber are 0.22 mm and 20 mm, respectively. The material parameters of
the fibers are also listed in Table 3.

A quarter of the total model (including projectile) is divided into four-node tetrahedral elements for a total of 2243 nodes and
8556 elements. Fig. 12(a) is the experimental result of the crater and cracks on the impacted surface. Fig. 12(b) is the numerical result
11
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Table 3
Parameters of concrete, projectile and fibers.
Parameter Unit Concrete Projectile Fibers

Young’s modulus GPa 40 196 200
Density g/m3 2500 7850 7850
Possion’s ratio – 0.2 0.3 0.3
Tensile strength MPa 1.0 1080 1200
Compression strength MPa 115.66 1080 1200
Cohesion MPa 26.95 – –
Axial stiffness Pa/m – – 2 × 1010

Fig. 12. Craters and cracks on impacted surface: (a) penetration experiment [32], (b) numerical simulation.

that shows several radial cracks on the impacted surface. These cracks do not extend to the lateral boundary of the target, which is
consistent with the experimental observation. In addition, Fig. 13 shows the penetration depth–time curve. The experimental data
and numerical result of penetration depth are 184 mm and 175 mm, respectively, yielding a relative error of −4.89%.

The penetration depth and the morphology of cracks obtained in all numerical simulations are consistent with the experimental
results, which validates the correctness of the proposed method.

4.3. Crack surfaces

Large and continuous cracks, known as the main cracks, have the greatest influence on the mechanical properties of concrete.
To study the influence of fiber content on the fracture of concrete, we define that the main crack surface of the concrete as the
combination of all continuously distributed crack surfaces. This so-called continuous distribution refers to the existence of at least
one common edge between any one crack surface contained in a main-crack surface and one or more other crack surfaces contained
in the same main crack surface. Fig. 14 shows the main crack surfaces of three types of concrete introduced in Section 4.1. Each
triangular patch in the subfigures represents a crack surface, and many patches are spliced at common edges to compose the main-
crack surfaces. The color of the patches indicates the magnitude of the crack surface width 𝑑. From this figure, we can draw that
the following conclusions:

(1) Overall, the number of patches in Fig. 14(a) is slightly greater than Fig. 14(b), and significantly higher than Fig. 14(c). That
is, the number of crack surfaces in the plain concrete is slightly greater than that in the 1%FRC, and significantly more than that
in the 3%FRC, which indicates that the addition of fibers can inhibit the propagation of cracks. This inhibitory effect can also be
illustrated by comparing the areas of the main-crack surfaces (the total area of the patches in each subfigure): 0.3173 m2 for plain
concrete, 0.2897 m2 for 1%FRC, and 0.2643 m2 for 3%FRC. The areas of the main crack surfaces of 1%FRC and 3%FRC are 8.7%
and 16.7% lower than that of plain concrete, respectively. Moreover, from Fig. 14(a) to (c), we can see that the color of the patches
tends to be bluer with the increase of the fiber content. This indicates that the crack surface width decreases as the fiber content
increases.

(2) From a local perspective, in Fig. 14(a–c), a crack surface zone with a lateral distribution (perpendicular to the direction of
projectile’s motion) is formed below the impacted surface. Each crack surface zone is comprised of many laterally distributed crack
surfaces with relatively large widths. This means that the impact of the projectile tends to strip the impacted surface. As can be seen
from Fig. 14, the width of these lateral crack surfaces gradually decreases with the increase of fiber content, which indicates that
the addition of fibers can inhibit the stripping trend of the impact surface. It is worth mentioning that the fiber content also has
effects on the size of crater. The displacement along penetrating direction at the last time step is presented, as shown in Fig. 15. A
larger crater is shown in Fig. 15(a) and smaller craters of similar area are shown in Fig. 15(b) and (c), which is consistent with [15].
12
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Fig. 13. Penetration depth–time curve.

Fig. 14. Main crack surface: (a) plain concrete, (b) 1%FRC, (c) 3%FRC.

4.4. Statistics of normalized crack surface width

First, we define a value 𝛥𝑑 as the minimum fineness to distinguish different crack surface widths. That is, the widths of two
crack surfaces are considered to be identical when the absolute value of the width difference between the two crack surfaces is less
than 𝛥𝑑. In this study, we set 𝛥𝑑 equal to the displacement of the projectile within the last time step, which is the instant in which
the projectile stops. However, because of the dynamic relaxation method used in the simulations, oscillations occur before the end
of the penetration (when the velocity of the projectile is low). Therefore, the average displacement of each time step within the last
1000 time steps (accounting for 0.5% of the total time steps), 𝑑 , is used as 𝛥𝑑 approximately.
13

𝑎𝑣𝑒



Engineering Fracture Mechanics 276 (2022) 108887B. Sun et al.
Fig. 15. Craters of (a) plain concrete, (b) 1%FRC and (c) 3%FRC.

A dimensionless number 𝑍 is defined as

𝑍 = ⌈𝑑𝑚∕𝛥𝑑⌉, (28)

where 𝑑𝑚 is the maximum value of all crack surface widths and ⌈∙⌉ is the greatest integer function. 𝑍 denotes the number of
subintervals obtained by dividing the interval [0, 𝑑𝑚] by the approximate length 𝛥𝑑. For convenience, we further modify 𝛥𝑑 = 𝑑𝑚∕𝑍
after 𝑍 is obtained. The same values for the maximum crack surface width 𝑑𝑚 and minimum fineness 𝛥𝑑 are selected for all samples
to allow for a direct comparison of the numerical results. According to the numerical results, the maximum widths in all samples
are less than or close to a value 1 × 10−4 m; thus, 𝑑𝑚 is uniformly taken as 1 × 10−4 m. According to the data shown in Fig. 11, the
maximum value of the average displacement 𝑑𝑎𝑣𝑒 is 1.951 × 10−8 m, and we take 𝛥𝑑 = 2 × 10−8 m. Based on 𝑑𝑚, 𝛥𝑑, and Eq. (28),
we can be calculated that 𝑍 = 5000.

When 𝑍 = 5000, the interval [0, 𝑑𝑚] is divided into 5000 subintervals with the same length 𝛥𝑑 = 2 × 10−8 m. The 𝑖th subinterval
𝐷𝑖 is defined as

𝐷𝑖 = {𝑑|(𝑖 − 1)𝛥𝑑 < 𝑑 ⩽ 𝑖𝛥𝑑, 𝑖 = 1, 2,… , 𝑍}. (29)

All crack surfaces with width 𝑑 satisfying 𝑑 ∈ 𝐷𝑖 form a crack surface set 𝐺𝑖:

𝐺𝑖 = {𝐹 |𝑑(𝐹 ) ∈ 𝐷𝑖, 𝑖 = 1, 2,… , 𝑍}, (30)

where 𝑑(𝐹 ) is the width of crack surface 𝐹 . Because the length of the subinterval 𝐷𝑖 is 𝛥𝑑, and the absolute value of the width
difference between any two crack surfaces in the set 𝐺𝑖 is less than 𝛥𝑑, the widths of all crack surfaces in this set should be the
same according to the definition of 𝛥𝑑. Then, we can take 𝑖𝛥𝑑 as the unified width 𝑑𝑖 of set 𝐺𝑖 (the width of any crack surface in
𝐺𝑖 is denoted as 𝑑𝑖),

𝑑𝑖 = 𝑖𝛥𝑑. (31)

Furthermore, we define 𝑑𝑖 = 𝑑𝑖∕𝑑𝑚 = 𝑖∕𝑍, 𝑖 = 1, 2, 3..., 𝑍, as the normalized crack surface width (abbreviated hereafter as
normalized width). Based on Eq. (31), the unified normalized width of the set 𝐺𝑖 is 𝑑𝑖 = 𝑖∕𝑍 (the normalized width of any crack
surface in 𝐺𝑖 is denoted as 𝑑𝑖).

Let the number of crack surfaces in set 𝐺𝑖 be 𝑁𝑖 and the area of the 𝑗th(𝑗 = 1, 2,… , 𝑁𝑖) crack surface 𝐹 𝑗𝑖 be 𝐴𝑗𝑖 (the subscript 𝑖
indicates that it is contained in set 𝐺𝑖, and the superscript 𝑗 indicates its serial in 𝐺𝑖). We define the crack surface area 𝐴𝑖 of set 𝐺𝑖
as the sum of the areas of all crack surfaces in the set:

𝐴𝑖 =
𝑁𝑖
∑

𝑗=1
𝐴𝑗𝑖 , 𝑖 = 1, 2,… , 𝑍, (32)

The normalized crack surface area (abbreviated hereafter as the normalized area) of the set 𝐺𝑖 is defined as the ratio of the crack
surface area of 𝐺𝑖 to the sum of the areas of all the crack surfaces:

�̃�𝑖 =
𝐴𝑖
𝐴𝑡𝑜𝑡

, (33)

where 𝐴𝑡𝑜𝑡 is the sum of the areas of all the crack surfaces, which can be written as

𝐴𝑡𝑜𝑡 =
𝑍
∑

𝑖=1
𝐴𝑖 =

𝑍
∑

𝑖=1

𝑁𝑖
∑

𝑗=1
𝐴𝑗𝑖 . (34)

The values of 𝑑𝑖 and �̃�𝑖 are taken as 𝑥 and 𝑦 axes, respectively, to draw scatter diagrams. The curves fitted by these scatter
diagrams are used to study the relationship between 𝑑 and �̃� . The distribution of fibers affect the shape of the fitting curves.
14
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Fig. 16. 𝑑 − �̃� fitting curves: (a) plain concrete, (b) 1%FRC, (c) 3%FRC.

Table 4
Expectations and variances (𝐸 = �̃�𝑑𝑚 with 𝑑𝑚 = 1 × 10−4 m).

Plain concrete 1%FRC 3%FRC

�̃� 3.80 × 10−2 3.59 × 10−2 3.02 × 10−2

�̃�2 1.11 × 10−3 9.35 × 10−4 5.85 × 10−4

𝐸 3.80 × 10−6 m 3.59 × 10−6 m 3.02 × 10−6 m

To minimize the influence of randomness and obtain more accurate fitting curves, we simulated ten 1%FRC and 3%FRC samples
containing randomly distributed fibers using the same finite element mesh. Then, the 10 normalized areas corresponding to each
normalized widths are added and averaged, and three scatter diagrams of 𝑑𝑖−�̃�𝑖 considering statistics are obtained. Finally, according
to the probability density function of the Weibull distribution, three 𝑑𝑖 − �̃�𝑖 curves are obtained by nonlinear least square fitting.
The fitted curves are shown in Fig. 16, and the expectation �̃� and variance �̃�2 are listed in Table 4.

From Fig. 16, we can see that these three curves have similar shapes; all have peaks close to the 𝑦 axis and drop rapidly on the
right side of the peak, gradually tending toward the 𝑥 axis. In addition, the area between the curve and the 𝑥 axis is concentrated in
the left part of the curve. These results indicate that regardless of the addition of fibers, crack surfaces with smaller widths always
account for the majority of all crack surfaces. With an increase in the fiber content, the scattered points become more concentrated,
and the width of the band region formed by the scattered points gradually decreases. We can therefore conclude that the addition
of fibers can make the crack surface widths more concentrate near the expectation. From the data shown in Table 4, we can see
that both the expectation �̃� and variance 𝜎2 of the normalized width exhibits a downward trend as fiber content increases. This
implies that the expectation of the crack surface width 𝐸 = �̃�𝑑𝑚 decreases as fiber content increases. That is, an increase in fiber
content causes the crack surface widths to be more concentrated around a smaller value.

Let us define 𝑅(𝑧) as the sum of the normalized areas 𝐴𝑖 of all sets 𝐺𝑖 satisfying 𝑖 ⩽ 𝑧, 𝑖 = 1, 2,… , 𝑍,

𝑅(𝑧) =
𝑧
∑

𝑖=1
�̃�𝑖. (35)

When 𝛥𝑑 → 0, 𝑅(𝑧) also indicates the area enclosed by the 𝑑 − �̃� curve, the 𝑥 axis, the 𝑦 axis, and a straight line 𝑥 = 𝑑𝑧. According
to Fig. 16, the cumulative distribution function (CDF) curve of the normalized width can be obtained by taking the normalized
width 𝑑𝑖 as the 𝑥 axis and the accumulated normalized area 𝑅 as the 𝑦 axis. These three CDF curves are shown in Fig. 17. When
𝑅 = 0.9, the normalized widths of the plain concrete, 1%FRC, and 3%FRC are 0.1658, 0.1020, and 0.0750, respectively. In other
words, for plain concrete, the sum of the areas of the crack surfaces with normalized width less than 0.1658 (the width is less than
1.658 × 10−5 m) accounts for 90% of the total crack surface area. Meanwhile, for 1%FRC and 3%FRC, this value is reduced to
0.1020 (1.020 × 10−5 m) and 0.0750 (7.500 × 10−6 m), respectively. For 1%FRC, this value is 38.5% smaller compared with that
of plain concrete; for 3%FRC, this value is 26.5% smaller compared with that of 1%FRC. Taken together, these results indicate that
when the fiber content reaches a certain level, the inhibitory effect of fibers on crack initiation and opening will not be significantly
enhanced by further increasing fiber content.

5. Conclusion

In this study, a model of projectile penetrating fiber-reinforced concrete is developed based on the continuum discontinuum
element method and the fiber-block correlation algorithm. The numerical simulations on the projectile penetrating the plain concrete
and the FRC with 1vol% and 3vol% fiber are implemented.

The main conclusions of this study are as follows:
1. The validity of the proposed model is verified by comparing numerical results with experimental data.
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Fig. 17. Cumulative distribution curve of normalized crack surface width.

2. The width-area curve of the crack surface (𝑑−�̃� curve) is consistent with the probability density function curve of the Weibull
distribution. In other words, the crack width satisfies the Weibull distribution;

3. Regardless of whether the fibers are added, the crack surfaces with smaller widths are always the majority of all crack surfaces.
The addition of fibers reduce the expectation and variance of crack width.

4. Fibers can inhibit the initiation and opening of cracks in concrete; however, this inhibitory effect saturates once fiber content
reaches a certain level.
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