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A B S T R A C T

Due to the high-order accuracy and essentially non-oscillatory (ENO) property, the weighted ENO (WENO)
schemes have a wide range of successful applications. The component-wise reconstruction WENO (CP WENO)
scheme for fluxes or variables has simple formulations but it may produce numerical oscillations near
discontinuities when solving the Euler equations. Although the characteristic-wise reconstruction WENO (CH
WENO) scheme can reduce such oscillations, it involves too many characteristic projection operations. In this
paper, first, we introduced a sharing function to indicate the discontinuities in the Euler equations and then
constructed new adaptive characteristic-wise WENO (Ada-WENO) scheme and common-weights WENO (Co-
WENO) scheme with this function. Several one and two dimensional problems are used to test the performances
of Ada-WENO and Co-WENO. Numerical results show that, Ada-WENO can reduce the computational cost of
CH WENO while maintaining its oscillation-free property since it only switches from CP WENO to CH WENO
near discontinuities, and Co-WENO can reduce the cost and oscillations of CP WENO, but it may still generate
few oscillations.
1. Introduction

Due to the high-order accuracy and the essentially non-oscillatory
(ENO) property, the WENO schemes have been widely applied in many
areas [1]. The WENO schemes’ concept was firstly proposed by Liu
et al. [2], and then greatly simplified and improved by Jiang and
Shu [3] (WENO-JS). Many high order WENO schemes were constructed
in the general framework of WENO-JS [4,5]. Henrick et al. [6] found
that WENO-JS will lose its accuracy near critical points and proposed
a mapping function to fix that. Later, Borges et al. [7] proposed a
new weighting function (WENO-Z) to improve the accuracy with a
lower computational cost. The WENO-Z scheme provides a straight and
efficient formulation for calculating the weights, hence many improved
WENO-Z-type schemes were proposed [8–18].

Although these WENO schemes perform well for scalar problems,
they may produce numerical oscillations near discontinuities when
solving Euler equations with the component-wise reconstruction proce-
dure (denoted as CP WENO) for the fluxes or variables. The
characteristic-wise reconstruction procedure (denoted as CH WENO)
is often used to eliminate such oscillations, while CH WENO involves
a lot of characteristic projection operations and hence is too costly.
To reduce the computational cost of CH WENO, Jiang and Shu [3]
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tried to replace the weights which should be computed from projected
values with those weights calculated directly from the entropy and
pressure, while the resulting scheme (WENO-LF-5-PS) cannot handle
problems containing strong shock and reflective waves. Later, based on
a characteristic-wise hybridization, Hu et al. [19] proposed a simple
hybrid WENO scheme, which can save the computational cost of the
non-linear weights of the WENO scheme in smooth regions. While
the discontinuity-detector used in this hybrid WENO scheme [19] is
based on the characteristic-variables and hence still involves a lot
of characteristic projection operations. Since the CP method is more
computational efficient than the CH method, Puppo [20] proposed
a indicators to switch from CP method to CH method, the resulting
adaptive method showed good performance and efficiency. While this
method requires the computation of the smoothness indicators for each
flux component, and hence still needs more computational time than
the CP method [21]. Peng et al. [21] proposed a set of sharing functions
to indicate the discontinuities of the fluxes, and then constructed the
adaptive characteristic-wise WENO (Ada-WENO) scheme, which only
switches from CP WENO to CH WENO near discontinuities. The analysis
and results [21] showed that Ada-WENO could achieve the oscillation-
free property same as CH WENO while reducing its computational cost
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a lot. Although, Ada-WENO showed good performance and efficiency,
we noticed that the sharing functions [21] derived from Lax–Friedrichs
(LF) flux vector splitting (FVS) method have different dimension units.
As is known, all equations must be dimensionally consistent (dimen-
sional homogeneity), otherwise, some spurious phenomena will be
generated (See [22] for an example), therefore the applications of this
Ada-WENO scheme is limited.

To avoid the characteristic projection operations and reduce os-
cillations, He et al. [23] proposed to combine a global FVS with a
consistent discretization between different equations. In [23], a con-
sistent discretization method that uses one set of common weights is
proposed for nonlinear WENO schemes. Shen et al. [24] call this kind of
WENO schemes common-weights WENO (Co-WENO) schemes. Analysis
and numerical results [23] showed that Co-WENO could reduce the
oscillations of CP WENO. For Co-WENO, the key is how to calculate
the common-weights. He et al. [23] calculated the common-weights
from the smooth factors of mass and energy equations. Recently, Peng
et al. [21] proposed to calculate the common-weights directly through a
set of carefully designed sharing functions. Since only one set of smooth
factors based on the sharing functions is needed, the new Co-WENO
scheme [21] is more efficient than CP WENO. Although, as mentioned
above, the sharing functions [21] have different units, lately, Shen
et al. [24] derived new dimensionless sharing functions based on the
Steger–Warming [25] FVS method, and the resulting Co-WENO scheme
performs well.

Although both Ada-WENO and Co-WENO mentioned above can
reduce the oscillations and computational cost of high-order WENO
schemes when solving Euler equations, they [21,23,24] are all derived
from the FVS methods, and not suitable for the high-resolution finite-
difference splitting (FDS) method (or approximate Riemann Solvers,
Roe [26], HLL [27], et al.). In this paper, we want to focus on the
efficient implementation of high-order WENO schemes for the FDS
methods. First, we designed a new simple sharing function independent
of the FVS and FDS methods and then constructed new highly efficient
Ada-WENO and Co-WENO schemes based on the classical fifth-order
WENO-Z scheme [7] with the new sharing function.

This paper is organized as follows: the implementation of CP WENO
and CH WENO with the FVS and FDS methods are introduced in
Section 2; Ada-WENO and Co-WENO for the FVS methods proposed
by Peng et al. [21] and Shen et al. [24] are introduced in Section 3.
Section 4 introduced our new sharing function and the new Ada-WENO
and Co-WENO schemes for the FDS method. Various numerical exam-
ples are presented in Section 5 to demonstrate the good performance
of these new schemes. Concluding remarks are given in Section 6.

2. Solving the Euler equations with the WENO scheme

In this section, we briefly introduce the implementation of CP
WENO and CH WENO with FVS and FDS methods to solve the one-
dimensional Euler equations. Although, for simplicity, the fifth-order
WENO-Z [7] is used in this paper, the implementation of other high-
order WENO schemes is similar.

2.1. The WENO-Z scheme

For convenience, we review the WENO-Z scheme [7] by using the
scalar conservative law equation [3],
𝜕𝑢
𝜕𝑡

+
𝜕𝑓
𝜕𝑥

= 0. (1)

y defining the points 𝑥𝑖 = 𝑖𝛥𝑥, (𝑖 = 0,… , 𝑁), where 𝛥𝑥 is the uniform
rid spacing, the Eq. (1) can be approximated by a conservative finite
ifference formula,

𝑑𝑢𝑖
𝑑𝑡

= −
𝑓𝑖+1∕2 − 𝑓𝑖−1∕2

𝛥𝑥
, (2)

where 𝑓 is the numerical flux.
2

𝑖±1∕2
Generally, the numerical flux 𝑓𝑖+1∕2 of a fifth-order WENO-Z [7]
scheme is calculated on a five-points stencil 𝑆𝑖+1∕2 = (𝑓𝑖−2, 𝑓𝑖−1, 𝑓𝑖,
𝑓𝑖+1, 𝑓𝑖+2),

𝑓𝑖+1∕2 = 𝑃𝑊𝐸𝑁𝑂−𝑍 (𝑆𝑖+1∕2) =
2
∑

𝑘=0
𝜔𝑘𝑞𝑘, (3)

where 𝑞𝑘 are the third-order fluxes given by,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑞0 =
1
3
𝑓𝑖−2 −

7
6
𝑓𝑖−1 +

11
6
𝑓𝑖,

𝑞1 = −1
6
𝑓𝑖−1 +

5
6
𝑓𝑖 +

1
3
𝑓𝑖+1,

𝑞2 =
1
3
𝑓𝑖 +

5
6
𝑓𝑖+1 −

1
6
𝑓𝑖+2.

(4)

The non-linear weights are calculated as follows,

𝜔𝑘 =
𝛼𝑘

𝛼0 + 𝛼1 + 𝛼2
, 𝛼𝑘 = 𝑐𝑘

(

1 +
𝜏5

𝐼𝑆𝑘 + 𝜖

)

, 𝜖 = 10−40, (5)

where, 𝑐0 = 0.1, 𝑐1 = 0.6, 𝑐2 = 0.3 are the optimal weights and 𝜏5 is the
global smoothness indicator,

𝜏5 = |

|

𝐼𝑆2 − 𝐼𝑆0
|

|

, (6)

and 𝐼𝑆𝑘 are the local smoothness indicators,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐼𝑆0 =
13
12

(𝑓𝑖−2 − 2𝑓𝑖−1 + 𝑓𝑖)2 +
1
4
(𝑓𝑖−2 − 4𝑓𝑖−1 + 3𝑓𝑖)2,

𝐼𝑆1 =
13
12

(𝑓𝑖−1 − 2𝑓𝑖 + 𝑓𝑖+1)2 +
1
4
(−𝑓𝑖−1 + 𝑓𝑖+1)2,

𝐼𝑆2 =
13
12

(𝑓𝑖 − 2𝑓𝑖+1 + 𝑓𝑖+2)2 +
1
4
(−3𝑓𝑖 + 4𝑓𝑖+1 − 𝑓𝑖+2)2.

(7)

2.2. The Euler equations

The one-dimensional Euler equations of the inviscid ideal gas are
given by,
𝜕𝑼
𝜕𝑡

+ 𝜕𝑭
𝜕𝑥

= 0, (8)

in which 𝑼 and 𝑭 are the conserved variable and the convective flux,

𝑼 =
⎡

⎢

⎢

⎣

𝜌
𝜌𝑢
𝐸

⎤

⎥

⎥

⎦

, and 𝑭 =
⎡

⎢

⎢

⎣

𝜌𝑢
𝜌𝑢2 + 𝑝
𝑢(𝐸 + 𝑝)

⎤

⎥

⎥

⎦

(9)

where, 𝜌, 𝑢, 𝐸 and 𝑝 are density, velocity, total energy and pressure. The
equation of state is given by 𝐸 =

𝑝
𝛾 − 1

+ 1
2
𝜌𝑢2 with 𝛾 = 1.4.

For the convective flux 𝑭 , its Jacobian matrix 𝑨 is defined as,
𝜕𝑭 (𝑼 )
𝜕𝑥

= 𝑨 ⋅
𝜕𝑼
𝜕𝑥

. (10)

where, 𝑨 = 𝑹 ⋅𝜦 ⋅𝑳. And 𝑳 and 𝑹 are the left and right eigenvectors,

𝑳 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛾 − 1
4

𝑢2

𝑐2
+ 1

2
𝑢
𝑐
, −

𝛾 − 1
2

𝑢
𝑐2

− 1
2
1
𝑐
,

𝛾 − 1
2

1
𝑐2

1 −
𝛾 − 1
2

𝑢2

𝑐2
,

𝛾 − 1
2

𝑢
𝑐2

, −
𝛾 − 1
2

1
𝑐2

𝛾 − 1
4

𝑢2

𝑐2
− 1

2
𝑢
𝑐
, −

𝛾 − 1
2

𝑢
𝑐2

+ 1
2
1
𝑐
,

𝛾 − 1
2

1
𝑐2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

𝑹 =

⎡

⎢

⎢

⎢

⎣

1, 1, 1
𝑢 − 𝑐, 𝑢, 𝑢 + 𝑐

𝑢2

2
+ 𝑐2

𝛾 − 1
− 𝑢𝑐, 𝑢2

2
, 𝑢2

2
+ 𝑐2

𝛾 − 1
+ 𝑢𝑐

⎤

⎥

⎥

⎥

⎦

.

(11)

where, 𝑐 =
√

𝛾𝑝∕𝜌 is the sound speed.

2.3. Implementation with flux vector splitting method

With a FVS method (LF [3], Steger–Warming [25], and so on), we
can split the nodal flux 𝑭𝑖 into the positive and negative parts,

𝑭 = 𝑭 + + 𝑭 −. (12)
𝑖 𝑖 𝑖
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And then calculate the positive and negative numerical fluxes via the
WENO-Z scheme to obtain the numerical flux,

𝑭 𝑖+1∕2 = 𝑭 +
𝑖+1∕2 + 𝑭 −

𝑖+1∕2. (13)

For CP WENO-Z, we can implement Eq. (3) directly on stencil
𝑆+
𝑖+1∕2 = (𝑭 +

𝑖−2,𝑭
+
𝑖−1,𝑭

+
𝑖 ,𝑭 +

𝑖+1,𝑭
+
𝑖+2) (i.e., implement the WENO recon-

truction procedure for each component in 𝑭 +
𝑖 one by one) to obtain

the positive numerical flux,

𝑭 𝐶𝑃+
𝑖+1∕2 = 𝑃𝑊𝐸𝑁𝑂−𝑍 (𝑆+

𝑖+1∕2), (14)

For CH WENO-Z, we should first calculate the left and right eigen-
vectors (𝑳 and 𝑹) on 𝑥𝑖+1∕2 from the Roe-averaged primitive variables
(See [21,28] for details), and then project the positive nodal fluxes on
stencil 𝑆+

𝑖+1∕2 to the characteristic field,

𝑮+
𝑗 = 𝑳 ⋅ 𝑭 +

𝑗 , 𝑗 = 𝑖 − 2,… , 𝑖 + 2. (15)

Thus, we can implement Eq. (3) on the projected stencil �̂�+
𝑖+1∕2 =

(𝑮+
𝑖−2,𝑮

+
𝑖−1,𝑮

+
𝑖 ,𝑮

+
𝑖+1,𝑮

+
𝑖+2) to compute the projected positive numerical

flux,

𝑮+
𝑖+1∕2 = 𝑃𝑊𝐸𝑁𝑂−𝑍 (�̂�+

𝑖+1∕2), (16)

Finally, we need to transform this back to the physical space to obtain
the positive numerical flux,

𝑭 𝐶𝐻+
𝑖+1∕2 = 𝑹 ⋅𝑮+

𝑖+1∕2. (17)

The negative numerical fluxes 𝑭 𝐶𝑃−
𝑖+1∕2 and 𝑭 𝐶𝐻−

𝑖+1∕2 on stencil 𝑆−
𝑖+1∕2 =

(𝑭 −
𝑖+3,𝑭

−
𝑖+2,𝑭

−
𝑖+1,𝑭

−
𝑖 ,𝑭 −

𝑖−1) can be calculated with the same equations
similarly.

2.4. Implementation with finite-difference splitting method

Given the left-side value 𝑼𝐿
𝑖+1∕2 and right-side value 𝑼𝑅

𝑖+1∕2 from

the conserved variable 𝑼𝑖, we can use a FDS method to calculate the
numerical flux, for example, the Roe solver [26],

𝑭𝑖+1∕2 = 𝑭 (𝑼𝐿
𝑖+1∕2,𝑼

𝑅
𝑖+1∕2) =

1
2

(

𝑭 (𝑼𝐿
𝑖+1∕2) + 𝑭 (𝑼𝑅

𝑖+1∕2)
)

−
|𝜦|𝑖+1∕2

2

(

𝑼𝑅
𝑖+1∕2 − 𝑼𝐿

𝑖+1∕2

)

. (18)

For CP WENO-Z, 𝑼𝐿
𝑖+1∕2 is calculated by Eq. (3) on stencil 𝑆𝐿

𝑖+1∕2 =
(𝑼𝑖−2,𝑼𝑖−1,𝑼𝑖,𝑼𝑖+1,𝑼𝑖+2),

𝑼𝐶𝑃𝐿
𝑖+1∕2 = 𝑃𝑊𝐸𝑁𝑂−𝑍 (𝑆𝐿

𝑖+1∕2), (19)

and 𝑼𝑅
𝑖−1∕2 is calculated by Eq. (3) on stencil 𝑆𝑅

𝑖−1∕2 = (𝑼𝑖+2,𝑼𝑖+1,
𝑼𝑖,𝑼𝑖−1,𝑼𝑖−2). We noticed that stencils 𝑆𝐿

𝑖+1∕2 and 𝑆𝑅
𝑖−1∕2 share the same

nodal values, and the local smoothness indicators in Eq. (7) is symmet-
ric with respect to node 𝑥𝑖, hence the indicators (𝐼𝑆0, 𝐼𝑆1, 𝐼𝑆2, 𝜏5) cal-
culated on 𝑆𝐿

𝑖+1∕2 for 𝑼𝐿
𝑖+1∕2 will be equal to the ones (𝐼𝑆2, 𝐼𝑆1, 𝐼𝑆0, 𝜏5)

calculated on 𝑆𝑅
𝑖−1∕2 for 𝑼𝑅

𝑖−1∕2, that means,

⎡

⎢

⎢

⎢

⎢

⎣

𝐼𝑆0
𝐼𝑆1
𝐼𝑆2
𝜏5

⎤

⎥

⎥

⎥

⎥

⎦𝑼𝑅
𝑖−1∕2

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐼𝑆2
𝐼𝑆1
𝐼𝑆0
𝜏5

⎤

⎥

⎥

⎥

⎥

⎦𝑼𝐿
𝑖+1∕2

, (20)

and hence CP WENO-Z with the FDS method can save a lot of compu-
tational cost when computing the right-side value 𝑼𝐶𝑃𝑅

𝑖+1∕2.

For CH WENO-Z, we transform the conserved variables 𝑼𝑖 on stencil
𝑆𝐿
𝑖+1∕2 to the local characteristic field,
3

𝑽𝑗 = 𝑳 ⋅ 𝑼𝑗 , 𝑗 = 𝑖 − 2,… , 𝑖 + 2, (21) W
and then implement Eq. (3) on the projected stencil �̂�𝐿
𝑖+1∕2 = (𝑽𝑖−2,

𝑽𝑖−1,𝑽𝑖,𝑽𝑖+1,𝑽𝑖+2),

𝑽 𝐿
𝑖+1∕2 = 𝑃𝑊𝐸𝑁𝑂−𝑍 (�̂�𝐿

𝑖+1∕2). (22)

Finally, we project this back to obtain the left-side value,

𝑼𝐶𝐻𝐿
𝑖+1∕2 = 𝑹 ⋅ 𝑽 𝐿

𝑖+1∕2. (23)

The right-side value 𝑼𝐶𝐻𝑅
𝑖+1∕2 on stencil 𝑆𝑅

𝑖+1∕2 = (𝑼𝑖+3,𝑼𝑖+2,𝑼𝑖+1,
𝑼𝑖,𝑼𝑖−1) is computed with the same equations in a similar way.

3. Ada-WENO and Co-WENO for the FVS method

In this section, we briefly introduce the sharing functions and
the Ada-WENO and Co-WENO schemes derived for the FVS method
in [21,24].

3.1. The sharing functions

To indicate the discontinuities of all the components of the positive
and negative fluxes in Eq. (12), Peng et al. designed the sharing
functions,

𝐻± = 𝜌 + (𝜌𝑢2 + 𝑝 ± 𝛼𝜌𝑢), (24)

where, 𝛼 is a parameter computed by the LF FVS method, ± represents
for the positive and negative functions, respectively (See [21] for more
information). It can be found that these sharing functions do not meet
the principle of dimensional homogeneity (𝜌 and 𝜌𝑢2 have different
units), and hence the Co-WENO scheme and Ada-WENO schemes based
on these functions may encounter severe problems in applications [22].
Lately, Shen et al. [24] derived a set of new dimensionless sharing
functions for the Steger–Warming FVS method.

𝐻± = 𝜌 ⋅ 𝑝 ⋅ 𝑓±
𝐸 , (25)

where, 𝑓±
𝐸 is the split energy fluxes obtained by the Steger–Warming

FVS method (Refer [24] for more details).

3.2. The Ada-WENO scheme

To construct the Ada-WENO scheme, a discontinuity-detecting
method is needed to detect the discontinuities of the positive and
negative sharing functions, respectively. In [21], the switch function
derived in [29] is used,

𝜃± = 1
1 + (

∑2
𝑘=0 𝛼

±
𝑘 ,−1)

𝑧
, (26)

where, 𝛼±𝑘 are the non-linear weighting functions calculated directly
from the sharing functions on the five-points stencils 𝑆𝐻+

𝑖+1∕2 =
(𝐻+

𝑖−2,𝐻
+
𝑖−1,𝐻

+
𝑖 ,𝐻

+
𝑖+1,𝐻

+
𝑖+2) and 𝑆𝐻−

𝑖+1∕2 = (𝐻−
𝑖+3,𝐻

−
𝑖+2,𝐻

−
𝑖+1,𝐻

−
𝑖 ,𝐻

−
𝑖−1)

y Eq. (5) (Refer [21,29] for the details). With this detector, we can
irectly implement CP WENO, Co-WENO [21] or a linear scheme (for
implicity, we use the fifth-order upwind scheme here) in the smooth
egions, and CH WENO-Z near discontinuities to reduce the oscillations,

±
𝑖+1∕2 =

{

𝑭𝑈𝑃±
𝑖+1∕2, if 𝜃± > 0.5, smooth, upwind scheme,

𝑭 𝐶𝐻±
𝑖+1∕2 , otherwise, discontinuities, CH WENO-Z.

(27)

ince Ada-WENO only switches to CH WENO near discontinuities, it
an significantly decrease the computational cost. As the analysis and
umerical results shown in [21], Ada-WENO performs as well as CH

ENO near discontinuities, but with a lower computational cost.
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3.3. The Co-WENO scheme

As shown in [21], the weights (�̂�±
𝑘 ) computed directly from the

haring functions on stencils 𝑆𝐻±
𝑖+1∕2 by Eq. (5) can be used as the

ommon-weights to construct the Co-WENO scheme. Replacing all the
eights of CP WENO-Z in Eq. (14), we can obtain the numerical flux
f Co-WENO-Z,
𝐶𝑜±
𝑖+1∕2 = 𝑃𝑊𝐸𝑁𝑂−𝑍 (𝑆±

𝑖+1∕2), with 𝜔𝑘 = �̂�±
𝑘 . (28)

ince Co-WENO can maintain consistent discretization between differ-
nt equations, it produces fewer oscillations than CP WENO. Moreover,
onsidering that only one set of common-weights is calculated in Co-
ENO, it can greatly reduce the computational cost of CP WENO when

olving the Euler equations.

. The new method

As the numerical results shown in [21,23,24], constructing the Ada-
ENO and Co-WENO schemes with the sharing functions is a good way

o reduce the oscillations of high-order WENO schemes while main-
ain high efficiency. However, the sharing functions designed by Peng
t al. [21] and Shen et al. [24] are both derived from the FVS methods,
ence the applications of the Ada-WENO and Co-WENO schemes are
imited. In this paper, we want to focus on implementing the WENO
chemes with high-resolution FDS methods, hence, we need to design
new sharing function which is independent of the FVS methods, and

hen construct high-efficient Ada-WENO and Co-WENO schemes with
his sharing function for the FDS methods.

.1. The new sharing function

For a FVS method, two sharing functions (positive and negative)
re needed to detect the discontinuities of the positive and negative
luxes 𝑭 ±, respectively. While for a FDS method, we only need one
ingle sharing function to indicate the discontinuities of the conserved
ariables 𝑼 .

Obviously, this sharing function must indicate all the jump discon-
inuities in 𝑼 , which means it should contain the discontinuities in
ensity, pressure and velocity (𝜌, 𝑝, 𝑢). After extensive searching and
rial, we get,

= 𝜌 ⋅ 𝑝 ⋅ 𝐸. (29)

or convenience, near the interface 𝑥𝑖+1∕2, we use the symbols L and
to denote the left-side and right-side values, respectively. It is easy

o know that, if only one of the variables (𝜌, 𝑝 and 𝑢) is discontinuous
ear the interface, 𝑄 will be discontinuous. For example, given 𝜌𝐿 ≪
𝑅(discontinuity), 𝑝𝐿 ∼ 𝑝𝑅(smooth) and 𝑢𝐿 ∼ 𝑢𝑅(smooth), we have
𝐿 ≪ 𝑄𝑅. Moreover, near shock regions, although 𝜌, 𝑝, 𝑢 are all
iscontinuous, we still have 𝜌𝐿 ≪ 𝜌𝑅, 𝑝𝐿 ≪ 𝑝𝑅, 𝐸𝐿 ≪ 𝐸𝑅(L for pre-
hock) according to shock theory, and hence 𝑄𝐿 ≪ 𝑄𝑅. Therefore all
f those discontinuities in the density, pressure and velocity can be
ndicated by this single sharing function.

.2. The Ada-WENO-Z scheme

In this paper, the discontinuity-detecting method proposed by Shen
nd Zha [30] is used to detect the discontinuities of the new shar-
ng function and then construct the Ada-WENO scheme. As analyses
howed in [30], this detector is derived from the indicators of the
ENO-Z scheme, and has similar behavior with the WENO-Z scheme

ear discontinuities. Therefore, it is beneficial to reduce the influences
f detectors in the comparisons between the Ada-WENO scheme and
ENO-Z scheme. It should be pointed out that, those discontinuity-

etecting methods mentioned in [19,29,31,32] can be implemented in
4

similar way to construct the Ada-WENO scheme.
First, we calculate the global/local smoothness indicators in Eqs. (6)
nd (7) via the sharing function on stencil 𝑆𝑄𝐿

𝑖+1∕2 = (𝑄𝑖−2, 𝑄𝑖−1, 𝑄𝑖, 𝑄𝑖+1,
𝑄𝑖+2), then we can distinguish the stencil 𝑆𝑄𝐿

𝑖+1∕2 as a smooth stencil or
a non-smooth stencil as shown in [30],

𝜏𝐿𝑖+1∕2 =

{

1, if 𝜏5 > min(𝐼𝑆0, 𝐼𝑆2),non-smooth
0, otherwise, smooth.

(30)

o save the computational cost, the local smoothness indicator 𝐼𝑆1
s not used in this detector, and we found that the influence of this
ndicator can be negligible for all the cases tested in this paper. With
his detector, we can compute the left-side value,

𝐿
𝑖+1∕2 =

{

𝑼𝑈𝑃𝐿
𝑖+1∕2, if 𝜏𝐿𝑖+1∕2 = 0, smooth, upwind scheme,

𝑼𝐶𝐻𝐿
𝑖+1∕2 , otherwise, non-smooth, CH WENO-Z.

(31)

Similar as CP WENO-Z for a FDS method (see Eq. (20)), the indicator
𝑅
𝑖+1∕2 on stencil 𝑆𝑄𝑅

𝑖+1∕2 = (𝑄𝑖+3, 𝑄𝑖+2, 𝑄𝑖+1, 𝑄𝑖, 𝑄𝑖−1) is equal to 𝜏𝐿𝑖+3∕2 on
stencil 𝑆𝑄𝐿

𝑖+3∕2, hence we can save some computation when calculating
the right-side value 𝑼𝑅

𝑖+1∕2.

4.3. The Co-WENO-Z scheme

First, we calculate one set of common-weights (�̂�𝐿
𝑘 ) on stencil 𝑆𝑄𝐿

𝑖+1∕2

with Eq. (5) (i.e., replace all the 𝑓𝑖 in Eq. (7) with the scalar value 𝑄𝑖
in Eq. (29) to calculate the indicators 𝐼𝑆𝑘 and then the weights 𝜔𝑘 in
Eq. (5), here, 𝜔𝑘 are the common-weights �̂�𝐿

𝑘 ), and then replace the
weights in Eq. (19) with this common-weights to obtain the left-side
value,

𝑼𝐶𝑜𝐿
𝑖+1∕2 = 𝑃𝑊𝐸𝑁𝑂−𝑍 (𝑆𝐿

𝑖+1∕2), with 𝜔𝑘 = �̂�𝐿
𝑘 . (32)

The right-side value 𝑼𝐶𝑜𝑅
𝑖+1∕2 can be obtained on stencil 𝑆𝑄𝑅

𝑖+1∕2, and

same as CP WENO-Z for the FDS method, we can save a lot of compu-
tation when computing 𝑼𝐶𝑜𝑅

𝑖+1∕2, too.

5. Numerical results

In this section, several Euler problems are presented to test the per-
formance of these new schemes. For convenience, we list the schemes
as follows:

1. CP WENO-Z: the component-wise WENO-Z scheme (19);
2. CH WENO-Z: the characteristic-wise WENO-Z scheme (23);
3. Ada-WENO-Z: the new adaptive characteristic-wise WENO-Z

scheme (31);
4. Co-WENO-Z: the new common-weights WENO-Z scheme (32);
First, three one-dimensional shock-tube problems [6,21] and two

two-dimensional Riemann problems [33,34] are used to study the shock
capturing ability of these WENO schemes, and then the Double-Mach
problem [3,21] to test their behavior near strong shock and reflective
waves. Finally, the two dimensional Rayleigh–Taylor problem [9,35]
is used to show the good efficiency of these new WENO schemes. The
high resolution Roe [26] solver is used in all the problems except the
Double-Mach problem, and the HLLR solver is used in this problem to
prevent the Carbuncle problem [36]. In this paper, time advancement
is performed with the third-order Runge–Kutta method [37].

5.1. One-dimensional shock-tube problems

The first shock-tube problem is the Sod problem, its initial condition
is,

(𝜌, 𝑢, 𝑝) =

{

(1, 0, 1), 0 ≤ 𝑥 < 0.5,
(0.125, 0, 0.1), 0.5 ≤ 𝑥 ≤ 1.

(33)

The second one is the Shu–Osher problem with the initial condition,

(𝜌, 𝑢, 𝑝) =

{

(3.857143, 2.629369, 31∕3), −5 ≤ 𝑥 < −4,
(34)
(1 + 0.2sin(5𝑥), 0, 1), −4 ≤ 𝑥 ≤ 5.
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Fig. 1. Density distribution of Sod computed by CP WENO-Z and CH WENO-Z at 𝑡 = 0.14.
Fig. 2. Density distribution of Sod computed by CH WENO-Z, Co-WENO-Z and Ada-WENO-Z at 𝑡 = 0.14.
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The last one is the Lax problem with the initial condition,

(𝜌, 𝑢, 𝑝) =

{

(0.445, 0.698, 3.528), −5 ≤ 𝑥 < 0,
(0.5, 0, 0.571), 0 ≤ 𝑥 ≤ 5.

(35)

The solutions with the grid of 𝑁 = 400 are given in Figs. 1–6. It can be
seen that, (a) CP WENO-Z generates overshoots (Fig. 3) and oscillations
(Fig. 5); (b) Co-WENO can reduce the oscillations (Figs. 5 and 6) and
overshoots (Figs. 3 and 4) of CP WENO-Z, but it may still generates
few oscillations; (c) Ada-WENO-Z is oscillation-free and its results are
comparable with those of CH WENO-Z.

5.2. Two-dimensional Riemann problems

Two two-dimensional Riemann problems [33,34] are presented to
show the performance of these WENO schemes. The first Riemann
problem (denoted as RM1) has the following initial condition,

(𝜌, 𝑢, 𝑣, 𝑝) =

⎧

⎪

⎪

⎨

⎪

⎪

(1.1, 0, 0, 1.1) 0.5 ≤ 𝑥 ≤ 1, 0.5 ≤ 𝑦 ≤ 1,
(0.5065, 0.8939, 0, 0.35) 0 ≤ 𝑥 < 0.5, 0.5 ≤ 𝑦 ≤ 1,
(1.1, 0.8939, 0.8939, 1.1) 0 ≤ 𝑥 < 0.5, 0 ≤ 𝑦 < 0.5,

(36)
5

⎩

(0.5065, 0, 0.8939, 0.35) 0.5 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 < 0.5. W
And the second one’s (denoted as RM2) initial condition is,

(𝜌, 𝑢, 𝑣, 𝑝) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(1, 0.1, 0, 1) 0.5 ≤ 𝑥 ≤ 1, 0.5 ≤ 𝑦 ≤ 1,
(0.5313, 0.8276, 0, 0.4) 0 ≤ 𝑥 < 0.5, 0.5 ≤ 𝑦 ≤ 1,
(0.8, 0.1, 0, 0.4) 0 ≤ 𝑥 < 0.5, 0 ≤ 𝑦 < 0.5,
(0.5313, 0.1, 0.7276, 0.4) 0.5 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 < 0.5.

(37)

he RM1 case describes the interaction of two backward shocks and
wo forward shocks, and the RM2 case is the interaction of two back-
ard shocks and two contact discontinuities (Refer Section 3.1 Con-

iguration 4 and Section 3.2 Configuration E in [33] for more details).
he solutions of RM1 and RM2 are shown in Figs. 7–10. As we can see,
he results of Ada-WENO-Z are similar to those of CH WENO-Z, and
o-WENO-Z obtains smoother solutions than CP WENO-Z.

.3. Two-dimensional Double-Mach case

As mentioned above, the simplified WENO-LF-5-PS scheme with
ressure and entropy by Jiang and Shu [3] does not work for the
ouble-Mach problem which containing strong shock and reflective
aves, hence this case is used to further test the behavior of these
ENO schemes. Since the Roe solver will encounter the carbuncle
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Fig. 3. Density distribution of Shu–Osher computed by CP WENO-Z and CH WENO-Z at 𝑡 = 1.8.

Fig. 4. Density distribution of Shu–Osher computed by CH WENO-Z, Co-WENO-Z and Ada-WENO-Z at 𝑡 = 1.8.

Fig. 5. Density distribution of Lax computed by CP WENO-Z and CH WENO-Z at 𝑡 = 1.3.
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Fig. 6. Density distribution of Lax computed by CH WENO-Z, Co-WENO-Z and Ada-WENO-Z at 𝑡 = 1.3.
Fig. 7. Density contours of RM1 with 200 × 200 at 𝑡 = 0.25.

Fig. 8. Density contours of RM1 with 400 × 400 at 𝑡 = 0.25.

phenomenon [36] in this problem, the carbuncle-free HLLR solver[36]
is used here. The computational conditions can be found in [21]. The
density contours are plotted in Figs. 11 and 12. As we can see, both
Co-WENO-Z and Ada-WENO-Z resolve this problem well.
7

Fig. 9. Density contours of RM2 with 200 × 200 at 𝑡 = 0.3.

Fig. 10. Density contours of RM2 with 400 × 400 at 𝑡 = 0.3.

5.4. Two-dimensional Rayleigh–Taylor problem

The Rayleigh–Taylor problem (denoted as RT) is used to test the
dissipation and efficiency of these WENO schemes. The computational
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Fig. 11. Density contours of Double-Mach with 200 × 50 at 𝑡 = 0.2.

Fig. 12. Density contours of Double-Mach with 400 × 100 at 𝑡 = 0.2.

Table 1
CPU_TIME of the WENO schemes for RT with 50 × 200.

Total (rate) Weno (rate)

CP WENO-Z 158.783 (1.00) 120.691 (1.00)
CH WENO-Z 367.244 (2.31) 328.691 (2.72)
Co-WENO-Z 125.213 (0.79) 87.255 (0.72)
Ada-WENO-Z 94.205 (0.59) 56.100 (0.46)

conditions for RT can be found in [9]. The density contours are plotted
in Figs. 13 and 14. The CPU_TIME of these WENO schemes are pre-
sented in Table 1, where ‘‘total’’ means the total computational time for
solving the RT problem, and ‘‘weno’’ indicate the computational time
for the WENO reconstruction procedure (i.e., the total computational
time for computing the left/right-side values 𝑼𝐿∕𝑅

𝑖+1∕2, and for conve-

nience, our Fortran code is available via https://gitee.com/liusp1988/
co-weno.git).

As shown in Figs. 13 and 14, the result of Ada-WENO-Z is similar
to the one of CH WENO-Z. That means, their dissipations are com-
parable. And among all of these schemes, CP WENO-Z produced the
most complex structures, then is Co-WENO-Z. Although Co-WENO-Z
and Ada-WENO-Z may be a little more dissipative than CP WENO-
Z, they need much less computation than CP WENO-Z. As we can
see in Table 1, both Co-WENO-Z and Ada-WENO-Z can save a lot of
‘‘weno’’ time of CP WENO-Z and CH WENO-Z. Since there are only a
8

Fig. 13. Density contours of RT with 50 × 200 at 𝑡 = 1.95.

Fig. 14. Density contours of RT with 100 × 400 at 𝑡 = 1.95.

Fig. 15. Distribution of discontinuous stencils (Red) at the last step of Ada-WENO with
50 × 200 at 𝑡 = 1.95.

small percentage of discontinuous stencils in the whole computational
domain (See Fig. 15), Ada-WENO-Z is even much more efficient than
CP WENO-Z.

https://gitee.com/liusp1988/co-weno.git
https://gitee.com/liusp1988/co-weno.git
https://gitee.com/liusp1988/co-weno.git
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6. Concluding remarks

In this paper, we propose a new sharing function independent
of both the FVS and FDS methods, and then construct high-efficient
adaptive characteristic-wise WENO (Ada-WENO) and common-weights
WENO (Co-WENO) schemes with this function for the FDS methods:

1. The Ada-WENO scheme behaves similarly as the characteristic-
wise WENO (CH WENO) scheme, it can keep the oscillation-free prop-
erty near discontinuities with a much lower computational cost.

2. The Co-WENO scheme can reduce the oscillations and computa-
tional cost of the component-wise WENO (CP WENO) scheme, but it
still generates few oscillations.

3. Based on the frameworks of the Ada-WENO and Co-WENO
schemes, it is easy to combine other discontinuity-detecting methods
with the new sharing function to develop high efficient and high
resolution WENO schemes.
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