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Abstract: Two-dimensional electron back-scattered diffraction (2D-EBSD) mapping has been widely
used for indicating the polycrystalline plasticity through intragranular misorientation parameters
KAM and GROD, based on the empirically linear relationship between their average values and the
mesoscopic plastic strain, in both stretched and cyclically deformed metals. However, whether the
intragranular misorientation measured on the 2D-EBSD observational plane objectively reflects the
3D polycrystalline plasticity or not is a rarely reported issue. In this research, we firstly compared the
KAM and GROD values measured on 2D-EBSD observational planes with different angles to loading
axis of a specimen in both undeformed clamp sections and deformed gauge section, to verify whether
their average values increase isotropically or not with mesoscopic plastic strain. Then, we proposed
six fundamental assumptions and developed a modified 3D polycrystalline plasticity model based
on the 2D polycrystalline plasticity model in our previous work. This 3D polycrystalline plasticity
model can explain the isotropic linear evolution of intragranular misorientation in deformed low
alloy steel with uniform equiaxial grains.

Keywords: 2D-EBSD mapping; intragranular misorientation; KAM and GROD; isotropic linear
evolution; mesoscopic plastic strain; 3D polycrystalline plasticity model

1. Introduction

Two-dimensional (2D) electron back-scattered diffraction (EBSD) mapping is now a
standard analysis on intragranular misorientation in both stretched and cyclically deformed
metals, whose contrast can further indicate the mesoscopic plastic strain distribution [1]
through intragranular misorientation parameters such as Kernel Averaged Misorientation
(KAM) and Grain Reference Orientation Deviation (GROD) firstly proposed by Wright,
S.I. et al. [2,3]. KAM is typically defined as the averaged misorientation between a kernel
point and its surrounding points excluding those out of grain boundary, which is also
called “Local Misorientation (ML)” by Kamaya, M. [4]. GROD is typically defined as
the misorientation between an individual point and the intragranular reference point,
whose average value is also called “Crystal Deformation (Cd)” or “Modified Crystal
Deformation (MCD)” by Kamaya, M. [5,6]. Their capability of indicating mesoscopic
plastic strain is based on the following experimental phenomenon: both KAM (Mave) and
GROD (Cd, MCD) averaged over multiple grains always linearly increase with the tensile
strain εT or cyclic strain upper εC

max applied in specimens according to abundant EBSD
observation results reported in Refs. [4–9], as shown in Figure 1. To this end, average
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KAM and GROD have been widely used for identifying the fracture modes [10–14],
evaluating the fatigue [15–17] and creep [18–20] damage degree, analyzing the grain
boundary induced micro-cracking [21] or fretting contact-induced micro-cracking [22], and
predicting the fatigue crack tip growth rate da/dN [23] or driving force ∆K [9] as two
important mesoscopic plasticity indicators.

Figure 1. Linear evolution of average KAM and GROD with mesoscopic plastic strain in metals.

The linear evolution of average KAM and GROD with mesoscopic plastic strain
was only reported by the above literature [4–9] as a common phenomenon in polycrys-
talline metals without providing any physical model explanations, which weakens its
reliability in the industry application. According to the mainstream view represented by
Wilkinson, A.J. [24–29], Kysar, J.W. [30–35], Pantleon, W. [36] and Raabe, D. [37,38] et al.,
KAM is regarded as an EBSD-based metric approximately measuring a special cate-
gory of intragranular dislocations termed “geometrically necessary dislocation” [39,40],
which can be derived from the continuum dislocation theory established by Nye, J.F. [41],
Bilby, B.A. [42] and Kroner, E. [43]. However, the local geometrically necessary dislocation
density cannot be linearly linked to the mesoscopic plastic strain, although it has a positive
correlation with the plastic deformation in most cases. Harte, A. et al. [44] compared intra-
granular misorientation and plastic strain on the surface of a deformed Ni-based superalloy
and revealed that the above linear relationship only works between the average misorienta-
tion and mean grain distortion in a statistical sense, while the local misorientation is the
result of the number, strength and spatial distribution of intragranular slip modes and their
interactions with microstructural features such as grain boundaries.

At the same time, the selection of a 2D-EBSD observational plane relative to the
three-dimensional (3D) mesoscopic stress/strain principal axes is also a potential factor
which may influence the KAM and GROD values. In other words, whether the linear
evolution of average KAM and GROD with plastic strain reported in the above literature
has the nature of isotropy or not is also an important issue to be clarified for polycrystalline
metals with uniform equiaxial grains, which was rarely investigated currently. In our
previous work [45], a 2D polycrystalline plasticity model considering the grain boundaries’
constraint effect on intragranular lattice rotation was established. However, the above 2D
polycrystalline plasticity model has not yet been generalized to the 3D case. To address the
above issues, both experimental and theoretical work was carried out in this research.

On one hand, mechanical tests on low alloy steel with uniform equiaxial grains were
carried out by standard round bar specimens in this research at first, and then followed
by 2D-EBSD observations on those deformed or undeformed sections. Since the linear
evolution law of average KAM and GROD has been confirmed by many studies [4–9],
we mainly focused on comparing the KAM and GROD values measured on 2D-EBSD
observational planes with different angles to loading axis in the same specimen, to verify
whether they increase isotropically or not with the mesoscopic plastic strain. The isotropic
evolution law is very important for averaged KAM and GROD because these parameters
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can serve as the objective plasticity indicators in actual applications only if their values are
independent of the observation, including the selection of 2D-EBSD observational planes.

On the other hand, a 3D polycrystalline plasticity model was established based on
six fundamental assumptions to explain the linear evolution law of averaged KAM and
GROD reported by other studies [4–9], as well as their isotropic evolution law observed in
this research. The polycrystalline plasticity model contains two scale levels: mesoscopic
scale and microscopic scale. It is assumed that the Representative Volume Element (RVE,
contains multiple grains) in the mesoscopic scale is homogeneous isotropic and follows
the classical J2 finite strain plasticity theory [46], while each grain in the microscopic scale
follows the crystal plasticity theory. Several necessary simplifications, such as spherical
grain hypothesis and minimum activated slip factors number hypothesis, were made
in the above assumptions to make the mathematical derivation of KAM and GROD
evolution easier.

2. Materials and Methods
2.1. Material and Mechanical Tests

The material used in this research is type 40Cr low alloy steel in Chinese Brand,
whose chemical elements and mechanical properties are shown in Table 1. The samples
for tensile mechanical tests were cut from a hot rolled plate. For higher resolution under
EBSD observation, it was annealed at 850 ◦C for about 120 min, and followed by furnace
cooling. The microstructures after heat treatment are uniform equiaxial grains made up of
Body-Centered Cubic (BCC) ferrite and pearlite phases, and no initial texture exists before
the plastic deformation. The metallographic figure and Inverse Pole Figure (IPF) can be
referred to Ref. [9], belonging to our previous work using the same material.

Table 1. Chemical elements and mechanical properties of type 40Cr low alloy steel.

Chemical Elements
(wt.%)

C Cr Si Mn

0.36% 1.56% 0.41% 1.27%

Mechanical Properties
Yield Strength (YS) Ultimate Tensile Strength (UTS)

293.6 MPa 671.9 MPa

The mechanical tests were carried out by two round bar specimens in type WDW-100®

machine (Instron Inc., Norwood, MA, USA) at room temperature based on ASTM E8-08 [47]
standard as shown in Figure 2a, and the loading speed for tension was set as 0.5 mm/min
(statically loading). The diameters of gauge section and clamp section of round bar spec-
imen are 7 and 14 mm, respectively, while the initial gauge length and clamp length are
25 mm and 38 mm respectively. Specimen B was continually elongated until rupture to
give the full nominal stress–clamp stroke curve, while Specimen A was interrupted at
nominal stress of 664.6 MPa before the obvious necking behavior appears for the following
EBSD observation and analysis, as shown in Figure 2b,c. Due to the lack of extensometer,
the gauge length cannot be tracked in real time, which has little effect on discussing re-
lated issues because we only care about the final gauge length in this research. The final
gauge lengths of interrupted Specimen A and ruptured Specimen B are 28 and 29.3 mm,
respectively, corresponding to the elongations of 12% and 17.2%.

2.2. 2D-EBSD Observations

Two-dimensional electron back-scattered diffraction observations (2D-EBSD) were
carried out on five planes 1©– 5©with different angles to loading axis in both clamp sections
and gauge section of interrupted Specimen A, whose exact locations are shown in Figure 3.
Therein, two planes 1© and 5© are located in clamp sections at two ends with angles of 0◦

and 90◦ to loading axis, respectively, which are undeformed during the tensile mechanical
test. Meanwhile, three other planes 2©, 3© and 4© are located in gauge section in the
middle with angles of 0◦, 45◦and 90◦ to loading axis, respectively, which are uniformly
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elongated to 12% during the tensile mechanical test. The comparison between 1© and 5© is
aimed at confirming the isotropic distribution of initial intragranular misorientation before
deformation, while the comparison among 2©, 3© and 4© is aimed at revealing the isotropic
evolution law of intragranular misorientation during deformation.

Figure 2. (a) Tensile mechanical tests, (b) interrupted Specimen A and ruptured Specimen B, as well
as (c) nominal stress–clamp stroke curve obtained from tensile mechanical tests.

Figure 3. EBSD observational plane with various angles to loading axis in interrupted Sample A.

All the samples for the following 2D-EBSD observations were removed from the
interrupted Specimen A by electro discharge cutting method. After the typical grinding
procedure, these samples were firstly polished by specified cloth adhered with 3.5, 2.5, 1.5
and 0.5 µm diamond particles for 10–15 min every step and then attached in an aluminum
platform and followed by 2–3 h vibratory polishing in Buehler VibroMet 2® machine
(Buehler Group Inc., Lake Bluff, IL, USA) to release the sample surface residual stress. The
specified polishing liquid used in Buehler VibroMet 2® machine contains tiny (~100 nm)
SiO2 particles and acid solution, which can help remove the slight deformation layer in
the polished sample surface through coupled mechanical–chemical effects to ensure the
Kikuchi patterns quality.

The 2D-EBSD observational region size is set as 200 µm × 200 µm, and the scanning
step size is a = 0.8 µm. Then, 2D-EBSD scanning records the orientation information in
the observational plane as three Euler angles (φ1, φ, φ2) point by point through Hough
transformation of Kikuchi patterns as shown in Figure 4a,b. The type of field emission
scanning electron microscope (SEM) used in this research is TESCAN MIRA 3 LMH®
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(TESCAN ORSAY HOLDING a.s., Kohoutovice, Czech Republic). The EBSD camera
equipped in SEM platform is Nordly II® (Oxford Instruments plc., Oxford, UK), and the
matched EBSD data collection software is Aztec® (Oxford Instruments plc., Oxford, UK).
All the data were saved in square structure as shown in Figure 4b,c, and then analyzed by
OIM Analysis 6.2® (EDAX Inc., Pleasanton, CA, USA).

Figure 4. (a) Selection of 2D-EBSD observational plane, (b) 2D-EBSD scanning and data collection, as
well as (c) definitions of intragranular misorientation parameters KAM and GROD.

For the convenience of calculating misorientation, the Euler angles (φ1, φ, φ2), which
represent three relative rotations between local lattice coordinate ([100], [010], [001]) and
global sample coordinate (RD, TD, ND) and are usually converted into the orientation
matrix g as shown in Equation (1):

g =

 cos φ2 sin φ2 0
− sin φ2 cos φ2 0

0 0 1

1 0 0
0 cos φ sin φ
0 − sin φ cos φ

 cos φ1 sin φ1 0
− sin φ1 cos φ1 0

0 0 1

 (1)

The misorientation ∆θB
A between two different points A and B can then be calculated as

shown in Equation (2), where gA and gB represent the orientation matrixes of points A and
B, respectively. Sk|k=1∼24 indicate the 24 symmetry operators of BCC lattice, which can be
referred to in Refs. [22,48]. The minimum lattice rotation angle of the above 24 equivalent
lattice rotation operations converting orientation of point A into orientation of point B is
then set as the misorientation ∆θB

A between them.

∆θB
A = min

i,j=1∼24

arccos

 trace
[
(Si·gB)·

(
Sj·gA

)−1
]
− 1

2

 (2)

The parameters for quantifying intragranular misorientation in this research are KAM
and GROD. KAM (i, j) is defined as the average misorientation between the kernel point
(i, j) and its nearest neighboring points (i−1, j), (i, j−1), (i, j+1), (i+1, j) in the same grain as
shown in Figure 4c and Equation (3):

KAM(i, j) def
=

1
4

(
∆θ

(i−1,j)
(i,j) + ∆θ

(i,j−1)
(i,j) + ∆θ

(i,j+1)
(i,j) + ∆θ

(i+1,j)
(i,j)

)
(3)

where any neighboring points outside the grain boundary will be ignored. Another misori-
entation parameter GROD (m, n) is defined as the misorientation between the individual
point (m, n) and the reference point r in the same grain representing its average orienta-
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tion, where the detailed calculation method of average orientation can be referred to in
Refs. [49,50], as shown in the Figure 4c and Equation (4):

GROD(m, n) def
= ∆θ

(m,n)
r (4)

After the KAM and GROD values in each EBSD scanning point were calculated, the
KAM and GROD distribution maps can be drawn by the software OIM Analysis 6.2®

automatically. Instead of KAM (i, j) and GROD (m, n) sensitive to the local microstruc-
tural features, KAM and GROD averaged over the whole 2D-EBSD observational region
(P × Q scanning points) containing multiple grains, as shown in Equation (5), are widely
used for measuring the mesoscopic plastic strain in the corresponding 2D-EBSD observa-
tional position because they are independent of the local microstructural features.

KAM
GROD

=
1

P×Q

P·a
∑

i,m=a

Q·a

∑
j,n=a

KAM(i, j)
GROD(m, n)

(5)

3. Experimental Results

The IPF, KAM and GROD maps given by 2D-EBSD observations on different planes
with angles of 0◦, 45◦ and 90◦ to loading axis, respectively, in the gauge section and two
clamp sections of interrupted Specimen A are shown in Figure 5. Fe3C layers distributed in
the pearlite phase were not recognized as an independent phase separately by the EBSD
data collection software; thus, both ferrite and pearlite phases were identified as the single
BCC phase. From the IPF maps, we can see the cross profile of each grain enclosed by grain
boundary (GB) on the 2D-EBSD observational plane. Most cross profiles present irregular
but equiaxial shapes, and their sizes d range from several to dozens of microns. If the
equiaxial grain is regarded as a sphere with diameter of DGrain, the difference among those
cross profile sizes d shown in the IPF maps should be attributed to not only the different
grain sizes DGrain, but also to the different distances H between 2D-EBSD observational
plane and grain center (GC), as shown in both Figure 6 (illustration explaining the geometric
relationship between 3D grain size DGrain and cross profile size d) and Equation (6). On one
hand, the larger the grain size DGrain is, the larger the cross profile size d presents on the
2D-EBSD observational plane when its distance H away from GC is constant. On the other
hand, the closer the distance away from GC, the larger the cross profile size d presents on
the 2D-EBSD observational plane when the grain size DGrain is constant.

d =
√

D2
Grain − 4H2 (6)

From the KAM and GROD maps, we can see that intragranular misorientation levels
are relatively low in two underformed clamp sections but high in deformed gauge section.
The intragranular misorientation values averaged over the whole 2D-EBSD observational
region containing multiple grains are drawn in Figure 7. The subscript “0” stands for
average KAM and GROD values measured from undeformed clamp sections, different
from those from deformed gauge section. For two undeformed clamp sections, the average
KAM and GROD values measured on 2D-EBSD observational planes with angles of 0◦

and 90◦ to loading axis, respectively, are almost the same. This reveals the isotropic
distribution law of initial intragranular misorientation. For the deformed gauge section,
the average KAM and GROD values repeatedly measured on 2D-EBSD observational
planes with angles of 0◦, 45◦ and 90◦ to loading axis are also almost the same. This
reveals the isotropic evolution law of intragranular misorientation during the tensile
deformation. In previous works, the linear evolution law of intragranular misorientation
during the tensile deformation has been widely confirmed by Refs. [4–8], which laid the
foundation for indicating the mesoscopic plastic strain by average KAM and GROD values.
Furthermore, the isotropic evolution law of intragranular misorientation confirmed by this
research ensures that average KAM and GROD values are independent of the 2D-EBSD
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observational planes selection. This is quite an important property because KAM and
GROD can only serve as objective plasticity indicators if their values are determined by
mesoscopic plastic strain while not affected by observational plane selection.

Figure 5. IPF, KAM and GROD maps given by 2D-EBSD observations on planes with different
angles to loading axis in both undeformed clamp sections and deformed gauge section.
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Figure 6. (a) The distance H between 2D-EBSD observational plane and GC, as well as (b) the cross
profile sizes d shown on the 2D-EBSD observational plane.

Figure 7. The average KAM and GROD values measured on 2D-EBSD observational planes with
different angles to loading axis in both undeformed clamp sections and deformed gauge section.

4. Theoretical Discussions

The isotropic linear evolution law of intragranular misorientation (quantified by KAM
and GROD) in deformed polycrystalline metals with uniform equiaxial grains has been
confirmed by this research as well as by other studies [4–8] as an important experimental
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phenomenon. To explain the linear evolution law of intragranular misorientation reported
by other studies [4–8], our previous work [45] has established a preliminary theoretical
model based on several fundamental assumptions in the 2D case. However, this 2D
polycrystalline plasticity model has not yet been generalized to the 3D case and thus
cannot explain the isotropic evolution law of intragranular misorientation observed in
our experimental results here. To address the above issue, a modified 3D polycrystalline
plasticity model explaining isotropic linear evolution law of intragranular misorientation
was then developed.

4.1. Fundamental Assumptions

To establish the 3D polycrystalline plasticity model for explaining isotropic linear
evolution of intragranular misorientation, six fundamental assumptions listed below should
be made in advance to simplify the mathematical derivation process of KAM and GROD
evolution law, as shown in Figure 8.

Figure 8. Several necessary simplifications for establishing the 3D polycrystalline plasticity model.
(a) the macroscale plastic deformation applied in the specimen, (b) the mesoscale plastic strain and
material rotation of a RVE containing multiple grains, as well as the microscale distortion in (c) an
equiaxial grain and (d) a simplified spherical grain.

(1) The intragranular plastic distortion βp follows the crystal plasticity theory. No more

than five independent slip factors (
→
s

1
,
→
n

1
)~(
→
s

5
,
→
n

5
) are activated to undertake the

intragranular plastic distortion, which are selected from those potential slip factors
of specific lattice at a given temperature with the highest five resolved shear stresses
τ1~τ5 under the mesoscopic stress σ applied in RVE. The plastic strain is small enough
to ensure that the additive decomposition is applicable to the distortion tensor βp

and the activated slip factors (
→
s

α
,
→
n

α
) can be regarded as approximately fixed during

the deformation.
(2) The RVE containing multiple grains can be regarded as homogeneous and isotropic,

while its mesoscopic plastic strain εp and mesoscopic stress σ follow the classical J2
finite strain plasticity theory: εp‖σ′, which requires that three principal directions of
deviatoric stress tensor σ′ and the ratio among three principal stresses of stress tensor
σ are fixed during the whole deformation history.
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(3) The residual material distortion β̃GC at the GC made up of microscopic plastic distor-

tion βp(0) and residual lattice rotation
~
Ωlattice(0) is equal to the mesoscopic plastic

distortion β
p

of RVE, which is the same as that in Taylor’s polycrystalline model.
(4) Each equaxial grain can be simplified as a sphere with the same diameter of DGrain,

while the distance between its GC and the 2D-EBSD observational plane is H. For
each spherical grain cut by the 2D-EBSD observational plane, the ratio 2H/DGrain is a
random variable ranging from 0 to 1.

(5) The residual lattice rotation
~
Ω

GB

lattice near the GB is close to the mesoscopic material

rotation
¯
Ωmaterial of RVE due to the restraint from the fixed orientation relationship

between the two sides of GB, as explained by Figure 9. The lattice rotation inside
each grain is induced by two parts: one is induced by the overall grain rotation syn-
chronized with the mesoscopic material rotation, and another is induced by the grain
distortion accompanied with dislocations slip. Therein, the lattice rotation induced
by the grain distortion must be zero near the GB; otherwise, the fixed orientation
relationship between the two sides of GB will be broken (e.g., the GB misorientation
angle will be changed). Taking this into account, the residual lattice rotation at the
GB should be the same as the mesoscopic material rotation, since the other part must
be equal to zero. A deeper physical reason is that the interior dislocations cannot be
absorbed or released by those GBs at the room temperature.

(6) The intragranular residual lattice rotation
~
Ωlattice decreases from GC to GB along the

grain radius r linearly and isotropically in spherical grains:
~
Ωlattice =

~
Ωlattice(r) and

∂2
~
Ωlattice/∂r2 = 0.

Figure 9. The explanation for the fixed orientation relationship between two sides of GB.

4.2. Establishment of 3D Polycrystalline Plasticity Model

The intragranular residual material distortion β̃ after unloading is made up of two
parts: the intragranular plastic distortion βp and the intragranular residual lattice rotation
~
Ωlattice. Further, the intragranular plastic distortion βp is undertaken by the crystallographic
slip γm in no more than five independent slip factors (

→
s

m
,
→
n

m
) according to Assumption (1),

where the unit vector
→
s

m
represents slip direction, the unit vector

→
n

m
represents normal

direction of slip plane, and m = 1–5, as shown in Equation (7). In this equation, eight
quantities γ1~γ5 and θ1~θ3 are unknown, while eight independent sub-equations are given.
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Therefore, a unique solution can be determined only if the five activated slip factors (
→
s

1
,

→
n

1
)~(
→
s

5
,
→
n

5
) and the intragranular residual material distortion β̃ are known in advance.

β̃︷ ︸︸ ︷ −ε
p
1 γ

p
3 + ω3 γ

p
2 −ω2

γ
p
3 −ω3 −ε

p
2 γ

p
1 + ω1

γ
p
2 + ω2 γ

p
1 −ω1 ε

p
1 + ε

p
2

=
βp︷ ︸︸ ︷(

γ1
→
s

1→
n

1
+ γ2

→
s

2→
n

2
+ γ3

→
s

3→
n

3
+ γ4

→
s

4→
n

4
+ γ5

→
s

5→
n

5
)
+

~
Ωlattice︷ ︸︸ ︷ 0 θ3 −θ2

−θ3 0 θ1
θ2 −θ1 0

 (7)

A coordinate system should be established in advance to help describe the evolution
of various intragranular physical fields during the grain distortion, and the origin of the
coordinate system is naturally located at the GC of each grain. To simplify the expression
of mesoscopic plastic distortion β

p
of RVE, three axes x, y and z of the coordinate system

are parallel to three principal directions of mesoscopic plastic strain εp, where the shear
plastic strain components γ

p
1 ~γ

p
3 will be equal to zero in that case. At the same time, the

mesoscopic stress σ applied in RVE is made up of the deviatoric part σ′ and the hydrostatic
part, while the deviatoric part σ′ should meet the requirement of εp‖σ′ according to J2

finite strain plasticity theory in Assumption (2). The detailed components of β
p

and σ are
shown in Equation (8), where εp is the maximum principal plastic strain along z axis and
0 ≤ k ≤ 1 is the variable controlling the ratio between another two principal plastic strains
along the x and y axes. In particular, k is equal to 1/2 in the uniaxial tension case.

β
p
=

εp︷ ︸︸ ︷−(1− k)εp 0 0
0 −kεp 0
0 0 εp

+

¯
Ωmaterial︷ ︸︸ ︷ 0 ω3 −ω2

−ω3 0 ω1
ω2 −ω1 0

, σ =

σ′︷ ︸︸ ︷−(1− k)σ 0 0
0 −kσ 0
0 0 σ

+

η 0 0
0 η 0
0 0 η

 (8)

According to Assumption (3), the residual material distortion β̃GC at the GC made up

of microscopic plastic distortion βp(0) and residual lattice rotation
~
Ωlattice(0) is equal to

the mesoscopic plastic distortion β
p

of RVE. Then, Equation (7) can be applied to the GC
and generates to Equation (9).

β
p
= εp +

¯
Ωmaterial = β̃GC =

βp(0)︷ ︸︸ ︷(
γ1
→
s

1→
n

1
+ γ2

→
s

2→
n

2
+ γ3

→
s

3→
n

3
+ γ4

→
s

4→
n

4
+ γ5

→
s

5→
n

5
)
+

~
Ωlattice(0)︷ ︸︸ ︷ 0 θ3(0) −θ2(0)

−θ3(0) 0 θ1(0)
θ2(0) −θ1(0) 0

 (9)

According to Assumptions (4) and (5), the residual lattice rotation
~
Ω

GB

lattice =
~
Ωlattice(DGrain/2) near the GB of each spherical grain is close to the mesoscopic

material rotation
¯
Ωmaterial of RVE. Then, Equation (10) connecting the mesoscopic plastic

strain εp of RVE to the intragranular misorientation
~
Ωlattice(0)−

~
Ωlattice(DGrain/2) between

GC and GB of each grain can be established based on Equation (9). From this equation, we
can see that the intragranular misorientation will be mainly determined by mesoscopic

plastic strain εp rather than
¯
Ωmaterial of RVE if Assumption (5) is correct.

εp︷ ︸︸ ︷−(1− k)εp 0 0
0 −kεp 0
0 0 εp

 =

βp(0)︷ ︸︸ ︷(
γ1
→
s

1→
n

1
+ γ2

→
s

2→
n

2
+ γ3

→
s

3→
n

3
+ γ4

→
s

4→
n

4
+ γ5

→
s

5→
n

5
)
+

[
~
Ωlattice(0)−

~
Ωlattice(DGrain/2)

]
(10)

To calculate the intragranular misorientation
~
Ωlattice(0)−

~
Ωlattice(DGrain/2) between

GC and GB determined by the mesoscopic plastic strain εp, the five activated slip factors
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(
→
s

1
,
→
n

1
)~(
→
s

5
,
→
n

5
) should be determined first. For the type 40Cr low alloy steel made up of

ferrite and pearlite phases used in this research, the potential slip system of BCC lattice
at room temperature is mainly the {110}<111> including twelve equivalent slip factors
(hα kα lα)[uα vα wα] as shown in Table 2.

Table 2. Twelve equivalent slip factors of BCC lattice at room temperature.

α 1 2 3 4 5 6 7 8 9 10 11 12

(hα kα lα) (110) (110) (1
−
10) (1

−
10) (101) (101) (10

−
1) (10

−
1) (011) (011) (01

−
1) (01

−
1)

[uα vα wα] [1
−
11] [

−
111] [111] [11

−
1 ] [11

−
1 ] [

−
111] [1

−
11] [111] [1

−
11] [11

−
1 ] [

−
111] [111]

The resolved shear stresses τα of twelve potential equivalent slip factors
(hα kα lα)[uα vα wα] in one grain with the orientation of g(φ1, φ, φ2) under mesoscopic stress
σ applied in RVE can be calculated as shown in Equation (11). The five activated slip factors(→

s
m

,
→
n

m)∣∣∣
m=1∼5

for undertaking the intragranular plastic distortion βp are selected from

the twelve potential slip factors
(→

s
α
,
→
n

α)∣∣∣
α=1∼12

with the highest five resolved shear

stresses among τ1~τ12 according to Assumption (1).

→
s

α
= gT ·

uα

vα

wα

,
→
n

α
= gT ·

hα

kα

lα

, τα = σ′ :
(→

s
α→

n
α)

,
(→

s
m

,
→
n

m)
|m=1∼5 =

(→
s

α
,
→
n

α)
|τα ∈ highest five {τ1∼τ12} (11)

Once the intragranular misorientation
~
Ωlattice(0) −

~
Ωlattice(DGrain/2) between GC

and GB of each grain under the mesoscopic plastic strain εp is determined, the relative

lattice rotation vector
→
R(r) can be then introduced to describe the distribution of intra-

granular misorientation
~
Ωlattice(r)−

~
Ωlattice(DGrain/2) along the grain radius r according

to Assumption (6), as shown in Equation (12)

→
R(r) =

R1(r)︷ ︸︸ ︷
[θ1(r)− θ1(DGrain/2)]

→
e 1 +

R2(r)︷ ︸︸ ︷
[θ2(r)− θ2(DGrain/2)]

→
e 2 +

R3(r)︷ ︸︸ ︷
[θ3(r)− θ3(DGrain/2)]

→
e 3 =

(
1− 2r

DGrain

)→
R(0) (12)

4.3. Linear Evolution Law of Intragranular Misorientation

After establishing the 3D polycrystalline plasticity model, the next issue is to clarify the
linear evolution law of intragranular misorientation with the mesoscopic plastic strain εp of
RVE based on Equations (10) and (11), while the intragranular misorientation distribution
→
R(r) is controlled by

→
R(0) at the GC completely according to Equation (12). Therein,

Equation (10) is a system of linear equations; thus, both the crystallographic slip amounts
γ1~γ5 and relative lattice rotation components R1(0)~R3(0) at the GC will be proportional
to the maximum principal plastic strain εp of RVE. However, the change rates of lattice
rotation components with the maximum principal plastic strain C1∼3 = dR1∼3(0) /dεp

will be influenced by the variable k controlling the ratio between another two principal
plastic strains, as well as the lattice orientation φ1, φ, φ2 controlling the grain activated slip
factors

(→
s

m
,
→
n

m)∣∣∣
m=1∼5

.

The analytical expression of R1∼3(0) = C1∼3·εp is too complex to be derived from
Equation (10) directly. Therefore, the numerical solutions to Equation (10) were achieved
by MATLAB, instead of analytical approach. Figure 10 displayed the numerical solutions
to Equation (10) under four special cases: (a) φ1 = φ = φ2 = π/4; (b) φ1 = φ = π/4,
φ2 = π/5; (c) φ1 = π/5, φ = φ2 = π/4; (d) φ = π/5, φ1 = φ2 = π/4. For each case, k
value was set as 0.0, 0.5 and 1.0, respectively. The calculation results shown in Figure 10
help us confirm that the lattice rotation components R1∼3(0) at the GC are proportional
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to the maximum principal plastic strain εp of RVE, while the lattice rotation change rates
dR1∼3(0)/dεp are functions of both variable k and Euler angles: C1∼3 = C1∼3(k, φ1, φ, φ2).

Figure 10. Linear relationship between relative lattice rotation components R1(0)~R3(0) and maxi-
mum principal plastic strain εp in cases of: (a) φ1 = φ = φ2 = π/4; (b) φ1 = φ = π/4, φ2 = π/5;
(c) φ1 = π/5, φ = φ2 = π/4; (d) φ = π/5, φ1 = φ2 = π/4 (k = 0.0, 0.5, 1.0).

After confirming the linear relationship between relative lattice rotation components
R1∼3(0) at the GC and the maximum principal plastic strain εp of RVE, the linear evolution

law of relative lattice rotation vector
→
R(0) at the GC can be then determined as shown

in Equation (13). The ratio among C1, C2 and C3 is fixed once the variable k and Euler
angles φ1, φ, φ2 are fixed (the fixed k corresponds to the proportional loading case of RVE),

which means that the direction of relative lattice rotation vector
→
R(0) at the GC is fixed in

the proportional loading case of RVE. At the same time, the relative lattice rotation angle∣∣∣∣→R(0)
∣∣∣∣ is proportional to the maximum principal plastic strain εp of RVE:

∣∣∣∣→R(0)
∣∣∣∣ = C·εp,

and the resultant lattice rotation change rate C is the square root of the quadratic sum of

three component lattice rotation change rates C1, C2 and C3: C =
√

C2
1 + C2

2 + C2
3 . As a

natural result, the resultant C also depends on the variable k and Euler angles φ1, φ, φ2:
C = C(k, φ1, φ, φ2).

→
R(0) =

R1(0)︷ ︸︸ ︷
C1(k, φ1, φ, φ2)ε

p→e 1 +

R2(0)︷ ︸︸ ︷
C2(k, φ1, φ, φ2)ε

p→e 2 +

R3(0)︷ ︸︸ ︷
C3(k, φ1, φ, φ2)ε

p→e 3,
∣∣∣∣→R(0)

∣∣∣∣ =
=
√

C2
1+C2

2+C2
3︷ ︸︸ ︷

C(k, φ1, φ, φ2)ε
p (13)

Furthermore, the influence of variable k and Euler angles φ1, φ, φ2 on lattice rotation
change rates C1∼3(k, φ1, φ, φ2) was investigated through numerical calculation of another
five special cases. For each case, variable k and two of the Euler angles φ, φ2 are fixed:
(a) k = 0.25, φ = φ2 = π/4; (b) k = 0.75, φ = φ2 = π/4; (c) k = 0.50, φ = φ2 = π/4;
(d) k = 0.50, φ = π/5, φ2 = π/4; (e) k = 0.50, φ = π/4, φ2 = π/5, and another Euler



Metals 2022, 12, 2159 14 of 21

angle φ1 ranges from 0◦ to 360◦, which describes the spatial rotation of crystallographic lat-
tice and potential slip factors

(→
s

α
,
→
n

α)∣∣∣
α=1∼12

along the z axis (the direction of maximum
principal plastic strain εp). The calculation results are shown in Figure 11, from which we
can see not only the dependence of C1∼3 on both variable k and Euler angles φ1, φ, φ2, but
also an interesting phenomenon in C1∼3 evolution with the change of Euler angle φ1.

Figure 11. Influence of variable k and Euler angles φ1, φ, φ2 on lattice rotation change rates C1∼3 in
cases of: (a) k = 0.25, φ = φ2 = π/4; (b) k = 0.75, φ = φ2 = π/4; (c) k = 0.50, φ = φ2 = π/4;
(d) k = 0.50, φ = π/5, φ2 = π/4; (e) k = 0.50, φ = π/4, φ2 = π/5 (φ1 ranges from 0◦ to 360◦).
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The interesting phenomenon mentioned above is as follows. The C1∼3 values will
suddenly “jump” with the change of Euler angle φ1 if the variable k 6= 0.5 as shown in
Figure 11a,b, while the C1∼2 values will smoothly change in a sinusoidal way and the C3
value will keep constant with the change of Euler angle φ1 if the variable k = 0.5 as shown
in Figure 11c–e. This is because the two principal deviatoric stresses −(1− k)σ along the x
axis and −kσ along the y axis of mesoscopic stress σ are unequal if k 6= 0.5, in which case
the activated slip factors will naturally vary with the spatial rotation of crystallographic
lattice along the z axis. On the contrary, if the mesoscopic stress σ is transversely isotropic
in the x-O-y plane when k = 0.5, then the activated slip factors will be fixed during the

spatial rotation of crystallographic lattice along the z axis, and the corresponding
→
R(0)

obtained from Equations (10) and (11) under the same mesoscopic plastic strain εp will
rotate along the z axis synchronously with the change of Euler angle φ1. Therefore, the C1∼2
values smoothly change in a sinusoidal way and the C3 value keeps constant according to

their roles in
→
R(0) as shown in Equation (13).

4.4. Isotropic Evolution Law of Average KAM and GROD

After clarifying the linear evolution law of intragranular misorientation
→
R(0) at the

GC as well as its distribution
→
R(r) associated with the mesoscopic plastic strain εp of

RVE, the intragranular geometrically necessary dislocation ρGND(ψ) and its evolution with
maximum principal plastic strain εp can then be determined by the continuum dislocation
theory [41–43] as shown in Equation (14) and Figure 12a. The detailed derivation of
Equation (14) can be referred to in Appendix A.

ρGND(ψ) =
~
Ωlattice(r)×∇ =

2
∣∣∣∣→R(0)

∣∣∣∣
bDGrain

(→
b n
→
e ψ − cos ψ

→
b t
→
e t

)
=

ρGND︷ ︸︸ ︷
2C(k, φ1, φ, φ2)·εp

bDGrain


longitude︷ ︸︸ ︷
→
b n
→
e ψ −

latitude︷ ︸︸ ︷
cos ψ

→
b t
→
e t

 (14)

Figure 12. (a) Intragranular misorientation
→
R(r) and geometrically necessary dislocation ρGND(ψ),

as well as (b) KAM and GROD values measured on arbitrary 2D-EBSD observational plane.

In the above expression, ρGND reflects the intragranular geometrically necessary
dislocation density proportional to the maximum principal plastic strain εp but is inversely
proportional to the grain diameter DGrain [51], where the dependence of its change rate
C(k, φ1, φ, φ2) on the grain orientation has been confirmed by Ref. [52]. ψ is the angle

between the radius vector
→
r and the relative lattice rotation vector

→
R(0) at the GC. At

the same time,
→
b t is the Burgers vector perpendicular to both

→
R(0) and

→
r , and

→
b n is the
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Burgers vector perpendicular to both
→
R(0) and

→
b t, where

∣∣∣∣→b t

∣∣∣∣ = ∣∣∣∣→b n

∣∣∣∣ = b. In addition,
→
e t

is the unit vector parallel to
→
b t, and

→
e ψ is the unit vector perpendicular to both

→
b t and

→
r .

From Equation (14) and Figure 12a, we can see that the structure of intragranular geo-
metrically necessary dislocation ρGND(ψ) given by this 3D polycrystalline plasticity model

is similar with the “longitude” and “latitude” mesh of the Earth, while the
→
R(0) is like the

rotation axis of the Earth. Therein,
→
b n
→
e ψ represents the “longitude” dislocation, cos ψ

→
b t
→
e t

represents the “latitude” dislocation, and the distribution of intragranular geometrically
necessary dislocation density is uniform along the radius.

Once arbitrary 2D-EBSD observational plane with distance H away from the GC was
determined as shown in Figure 12b, the 2D-EBSD scanning coordinate system (x1, x2)
located on this plane can then be established. x1 axis is along the scanning direction, x2
axis is along the normal direction, and the origin R of this coordinate system is located at
the center of grain cross profile. For each point P on this 2D-EBSD observational plane,

the radial distance between GC and point P is r =
√

H2 + l2, where l =
√

x2
1 + x2

2 is the
distance between origin R and point P on the 2D-EBSD observational plane, and ϕ is
the angle between RP and x1 axis. The intragranular misorientation parameters KAM
and GROD measured on the above 2D-EBSD observational plane can be calculated from

intragranular misorientation distribution
→
R(r) according to their definitions shown in

Equations (3) and (4).

KAM is defined as the average absolute value of the
→
R(r) change within the EBSD

scanning step size a along x1 and x1 axes, whose expression in partial derivation format is
shown in Equation (15).

KAM(l, ϕ) =
a
2

∣∣∣∣∣∣∂
→
R(r)
∂r
·∂r
∂l
· ∂l
∂x1

∣∣∣∣∣∣+ a
2

∣∣∣∣∣∣∂
→
R(r)
∂r
·∂r
∂l
· ∂l
∂x2

∣∣∣∣∣∣ = l√
H2 + l2

(|cos ϕ|+ |sin ϕ|)·
a
∣∣∣∣→R(0)

∣∣∣∣
DGrain

(15)

KAM(l, ϕ) is influenced by the position metrics l and ϕ; thus, its local values were
averaged over the cross profile of each grain by integral operation. The expression for
KAMave is shown in Equation (16).

KAMave =

∫√(
DGrain

2 )
2
−H2

0

∫ 2π
0 KAM(l, ϕ)·ldϕ·dl

π

[(
DGrain

2

)2
− H2

] =

f (2H/DGrain)︷ ︸︸ ︷ 1√
1− (2H/DGrain)

2
− (2H/DGrain)

2

1− (2H/DGrain)
2 ln

 1 +
√

1− (2H/DGrain)
2

2H/DGrain

· 4a
∣∣∣∣→R(0)

∣∣∣∣
πDGrain

(16)

In particular, the f (2H/DGrain) is a grain geometrical structure-related coefficient de-
termined by the ratio 2H/DGrain ranging from 0 to 1. As two extreme cases, the expressions
for KAMave in 2H/DGrain → 0 and 2H/DGrain → 1 are shown in Equation (17) according
to the limit operation on Equation (16). The case of 2H/DGrain → 0 means that the GC is
located on the 2D-EBSD observational plane, where the expression for KAMave degenerates
into 2D polycrystalline plasticity model shown in Ref. [45].

lim
2H/DGrain→0

KAMave =

4a
∣∣∣∣→R(0)

∣∣∣∣
πDGrain

=
2ab
π

ρGND =
4a·C(k, φ1, φ, φ2)

πDGrain
εp, lim

2H/DGrain→1
KAMave = 0 (17)

KAMave is still influenced by the grain geometrical structure-related coefficient
f (2H/DGrain) and the grain-orientation-related coefficient C(k, φ1, φ, φ2). Therefore, these
average values KAMA

ave, KAMB
ave · · · are further averaged over multiple grains by their

cross profile areas S as shown in Equation (18).
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KAM =
SA·KAMA

ave + SB·KAMB
ave + · · ·

SA + SB + · · · =
2ab
π

ρGND = C f (k)·
4aεp

πDGrain
(18)

The ρGND is an equivalent density of intragranular geometrically necessary dislocation
density ρA

GND, ρB
GND · · · of multiple grains in the 2D-EBSD observational region, which can

be calculated by Equation (19).

ρGND =

[
1− (2HA/DGrain)

2
]
· f (2HA/DGrain)·ρA

GND +
[
1− (2HB/DGrain)

2
]
· f (2HB/DGrain)·ρB

GND + · · ·[
1− (2HA/DGrain)

2
]
+
[
1− (2HB/DGrain)

2
]
+ · · ·

(19)

The C f (k) is an equivalent factor of various grain orientation related coefficients
C
(
k, φA

1 , φA, φA
2
)
, C
(
k, φB

1 , φB, φB
2
)
· · · of multiple grains in the 2D-EBSD observational

region calculated by Equation (20).

C f (k) =

[
1− (2HA/DGrain)

2
]
· f (2HA/DGrain)·C

(
k, φA

1 , φA, φA
2
)
+
[
1− (2HB/DGrain)

2
]
· f (2HB/DGrain)·C

(
k, φB

1 , φB, φB
2
)
+ · · ·[

1− (2HA/DGrain)
2
]
+
[
1− (2HB/DGrain)

2
]
+ · · ·

(20)

Another intragranular misorientation parameter GROD is defined as the absolute

value of the intragranular misorientation
∣∣∣∣→R(r)−

→
R(H)

∣∣∣∣ between the point P on 2D-EBSD

observational plane and the origin R of 2D-EBSD scanning coordinate system, whose
expression is shown in Equation (21).

GROD(l) =
∣∣∣∣→R(r)−

→
R(H)

∣∣∣∣ = (√H2 + l2 − H
)
·
2
∣∣∣∣→R(0)

∣∣∣∣
DGrain

(21)

GROD(l) is also influenced by the position metric l, thus its local values were averaged
over the cross profile of each grain by integral operation. The expression for GRODave is
shown in Equation (22).

GRODave =

∫√(
DGrain

2 )
2
−H2

0 GROD(l)·2πldl

π

[(
DGrain

2

)2
− H2

] =

g(2H/DGrain)︷ ︸︸ ︷[
2− 2H/DGrain − (2H/DGrain)

2

1 + 2H/DGrain

]
·

∣∣∣∣→R(0)
∣∣∣∣

3
(22)

Similarly, the g(2H/DGrain) is another grain geometrical structure related coefficient
determined by the ratio 2H/DGrain ranging from 0 to 1. As two extreme cases, the expres-
sions for GRODave in 2H/DGrain → 0 and 2H/DGrain → 1 are shown in Equation (23)
according to the limit operation on Equation (22). The case of 2H/DGrain → 0 means that
the GC is located on the 2D-EBSD observational plane, where the expression for GRODave
degenerates into 2D polycrystalline plasticity model shown in Ref. [45].

lim
2H/DGrain→0

GRODave =

2
∣∣∣∣→R(0)

∣∣∣∣
3

=
2·C(k, φ1, φ, φ2)

3
εp, lim

2H/DGrain→1
GRODave = 0 (23)

GRODave is still influenced by the grain geometrical structure-related coefficient
g(2H/DGrain) and the grain-orientation-related coefficient C(k, φ1, φ, φ2). Therefore, these
average values GRODA

ave, GRODB
ave · · · are further averaged over multiple grains by their

cross profile areas S as shown in Equation (24).

GROD =
SA·GRODA

ave + SB·GRODB
ave + · · ·

SA + SB + · · · = Cg(k)·
εp

3
(24)
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The Cg(k) is an equivalent factor of various grain-orientation-related coefficients
C
(
k, φA

1 , φA, φA
2
)
, C
(
k, φB

1 , φB, φB
2
)
· · · of multiple grains in the 2D-EBSD observational

region calculated by Equation (25).

Cg(k) =

[
1− (2HA/DGrain)

2
]
·g(2HA/DGrain)·C

(
k, φA

1 , φA, φA
2
)
+
[
1− (2HB/DGrain)

2
]
·g(2HB/DGrain)·C

(
k, φB

1 , φB, φB
2
)
+ · · ·[

1− (2HA/DGrain)
2
]
+
[
1− (2HB/DGrain)

2
]
+ · · ·

(25)

Last but not least, the above equivalent metrics ρGND, C f (k) and Cg(k) shown in
Equations (19), (20) and (25), respectively, are mesoscopic statistical parameters determined
by the microscopic geometrical structure factor 2H/DGrain and orientation factor φ1, φ, φ2
of each counted grain covered by the 2D-EBSD observational region. They will converge
to constant values (assume that the variable k is fixed, because the C f (k) and Cg(k) here
are k-related) if the counted grains number is large enough as well as the possible values
assigned to 2H/DGrain and Euler angles φ1, φ, φ2 of each counted grain are completely
random in their ranges. For polycrystalline metals with uniform equiaxial grains, the
2H/DGrain and Euler angles φ1, φ, φ2 of multiple grains covered by arbitrary 2D-EBSD
observational region will follow the similar statistical distribution law, whichever the plane
we choose for the 2D-EBSD observation. The isotropy of C f (k) and Cg(k) in the mesoscopic
scale (the RVE scale, i.e., 2D-EBSD observational region scale) is the origin of isotropic
evolution law of intragranular misorientation in deformed polycrystalline low alloy steel
with uniform equiaxial grains. Based on the above discussions, both the average KAM and
GROD follow the isotropic linear evolution with the maximum principal plastic strain εp,
and are influenced by the ratio k between another two principal plastic strains of RVE at
the same time according to Equations (18) and (24).

5. Conclusions

In this research, we focused on the evolution law of intragranular misorientation
in deformed low alloy steel with uniform equiaxial grains. Intragranular misorientation
parameters KAM and GROD were measured on 2D-EBSD observational planes with
different angles to loading axis in both undeformed clamp sections and deformed gauge
section of a interrupted tensile specimen. To explain the isotropic evolution law of average
KAM and GROD with mesoscopic plastic strain observed in our experimental results and
other literature studies, a modified 3D polycrystalline plasticity model was then developed
in this research, based on our 2D polycrystalline plasticity model published elsewhere.

(1) The average KAM and GROD values in the deformed gauge section measured on
2D-EBSD observational planes with different angles to loading axis are almost the
same, which reveals the isotropic evolution law of KAM and GROD during the
deformation.

(2) Six fundamental assumptions including several necessary simplifications, such as
spherical grain hypothesis and minimum activated slip factors number hypothesis,
were made in this research to help us establish the modified 3D polycrystalline
plasticity model based on our previous 2D model.

(3) The relative lattice rotation
→
R(0) at the GC and the intragranular misorientation

distribution
→
R(r) = (1− 2r/DGrain)·

→
R(0) were calculated in different cases based on

the equations given by the 3D polycrystalline plasticity model. The linear relationship∣∣∣∣→R(0)
∣∣∣∣ = C(k, φ1, φ, φ2)·εp turned out to exist between the relative lattice rotation

angle
∣∣∣∣→R(0)

∣∣∣∣ at the GC and the maximum principal plastic strain εp of RVE, where the

coefficient C was influenced by both the Euler angles φ1, φ, φ2 of any individual grain
and the ratio k between another two principal plastic strains of RVE.

(4) The KAM and GROD were theoretically derived from the intragranular misorien-

tation distribution
→
R(r) according to their definitions: KAM = C f (k)·4aεp/πDGrain
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and GROD = Cg(k)·εp/3. For polycrystalline metals with uniform equiaxial grains,
C f (k) and Cg(k) were turned out to be isotropic factors independent of 2D-EBSD
observational plane selection. Therefore, both KAM and GROD follow the isotropic
linear evolution law with the maximum principal plastic strain εp and are meanwhile
influenced by the ratio k between another two principal plastic strains of RVE.

(5) Two laws given by this model were supported by experimental results: the linear evo-
lution law of KAM and GROD has already been widely reported by previous studies,
and the isotropic evolution law was verified by experimental result in this research.

Author Contributions: Conceptualization, S.-S.R.; methodology, S.-S.R.; software, Z.-H.S.; vali-
dation, Y.S.; formal analysis, Y.S.; investigation, S.-S.R.; resources, J.-M.Z.; data curation, S.-S.R.;
writing—original draft preparation, S.-S.R.; writing—review and editing, S.-S.R.; visualization,
Z.-H.S.; supervision, H.-J.S.; project administration, H.-J.S.; funding acquisition, H.-J.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research work is financially supported by the National Natural Science Foundation of
China (Nos. 12202446, 12172193, 12002155 and 12102348), the National Major Science and Technology
Projects of China (No. J2019-VI-0002-0115), the Opening Fund of the Key Laboratory of Aero-
engine Thermal Environment and Structure, Ministry of Industry and Information Technology (No.
CEPE2022004), as well as the Opening Fund of the State Key Laboratory of Nonlinear Mechanics.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Qi-Nan Han from the Nanjing University of Aeronautics and Astro-
nautics for his invitation and kind suggestions during the submission of this work.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The derivation process of Equation (14) is attached as follows. Taking the lattice

rotation vector at the grain center
→
R(0) as the Earth axis, we establish the Earth-like

longitude–latitude network and the spherical coordinate system
(→

e r,
→
e ψ,

→
e t

)
as shown

in Figure 12a. Therein, ψ is the angle between position vector
→
r and earth axis,

→
e t is the

tangent vector and
→
e n is the normal vector of a latitude circle. The above vectors follow

Equation (A1) below:
→
e n ×

→
e r = cos ψ

→
e t,

→
e n ×

→
e r =

→
e ψ (A1)

The residual lattice rotation tensor
~
Ωlattice(r) distribution inside each grain can be

given as following according to Assumption (6), under the orthogonal coordinate system(→
e t,
→
e n,
→
e t ×

→
e n

)
, and the direction of lattice rotation vector

→
R(r) is parallel to

→
e t ×

→
e n.

~
Ωlattice(r) =

∣∣∣∣→R(r)
∣∣∣∣(→e t

→
e n −

→
e n
→
e t

)
=

∣∣∣∣→R(0)
∣∣∣∣(1− 2r

DGrain

)(→
e t
→
e n −

→
e n
→
e t

)
(A2)

Furthermore, ∇ is the Nabla operator for calculating gradient, divergence and curl, whose
format under spherical coordinate system

(→
e r,
→
e ψ,
→
e t

)
can be expressed as Equation (A3):

∇ =
→
e r

∂

∂r
+
→
e ψr

∂

∂ψ
+
→
e tr sin ψ

∂

∂t
(A3)

Then, the geometrically necessary dislocation (GND) density tensor ρGND can be

expressed as the right curl of residual lattice rotation tensor
~
Ωlattice(r), as shown in

Equation (A4):
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ρGND(ψ) =
~
Ωlattice(r)×∇ =

∂

∣∣∣∣→R(r)
∣∣∣∣

∂r

(→
e t
→
e n −

→
e n
→
e t

)
×→e r =

2
∣∣∣∣→R(0)

∣∣∣∣
DGrain

(→
e n
→
e ψ − cos ψ

→
e t
→
e t

)
=

2
∣∣∣∣→R(0)

∣∣∣∣
bDGrain

(→
b n
→
e ψ − cos ψ

→
b t
→
e t

)
(A4)
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