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A B S T R A C T   

The notion of enhanced thermal convection via particle laden fluids has been around for a long time. Techno
logical challenges associated with the development of micro to nano particles with desired properties and their 
uniform dispersion in the base fluid have been a bottleneck. Relatively recently, the advent of modern 
manufacturing techniques from micro to nanoscales have rekindled interest in this class of fluids for innovative 
applications in advanced engineering systems. 

Buoyancy-induced convection and heat transfer involves conservation laws of mass, momentum, and energy. 
The mathematical model is comprised of two-way coupled system of mixed-field and convection-dominated 
partial differential equations. A stabilized method for nonlinearly coupled system is presented, and a system
atic approach to develop the sub-grid scale (SGS) physics-based models is described. Explicit structure of the 
stabilization tensor is derived and it is shown to preserve nonlinear coupling in the SGS models that plays a 
critical role when nonlinear coupling of mechanical and thermal fields leads to anisotropy across the scales. The 
formulation is variationally consistent and results in optimal spatial convergence rates on structured meshes for 
linear triangles and bilinear quadrilaterals. Consistent linearization of the nonlinear system of equations yields 
quadratic rate of convergence of nonlinear iterations in the Newton-Raphson method. The method is tested on 
problems with increasing level of complexity to highlight the mathematical attributes of the method and its range 
of applicability.   

1. Technical background and perspective 

Over a century ago, Maxwell [1] proposed the idea of suspending 
microscale particles in a base fluid to enhance its heat transfer proper
ties. However, technological limitations of the time precluded reaching 
the scale of nanosized particles. Microparticles that were used in earlier 
studies settled rapidly in the fluid causing abrasion and clogging in the 
flow channels that hindered further research. Nanofluids is a term that 
was proposed by Choi and Eastman [2] to describe a new kind of heat 
transfer fluids that contain small quantities of metallic or non-metallic 
nanoparticles that are scattered homogeneously to produce a contin
uous phase. Several research studies have highlighted the enhanced 
thermal conductivity of nanofluids in engineering applications. These 
include energy storage devices such as the solar thermal collectors, heat 
transfer devices and heat exchangers, thermal management devices and 
microchannel heat exchangers in electronic devices [3], automobile 
radiators, as well as in their innovative use in the air conditioning and 

refrigeration systems [4]. More recently, hybrid nanofluids that are 
comprised of two or more nanoparticles mixed in the base fluid, thereby 
producing a new class of heat transfer fluids that have suspending 
metallic [5] or oxide [6] nanoparticles as suspension, have shown 
promising results for applications in the cooling systems [7]. Numerical 
studies have also been performed on the use of these fluids in a variety of 
regular and irregular geometries, thus expanding the scope for the 
application of nanofluids. However, non-conventional shapes like those 
in biological systems, i.e., blood vessels, and geometries with elastic 
walls and complex curved boundaries have not been investigated 
broadly [8]. 

1.1. Preparation of nanofluids 

Despite considerable advances in the manufacturing technologies for 
nanofluids, there are still some limitations. First, nanofluids can become 
unstable due to the strong Van der Waals interactions and cohesive 
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forces between nanoparticles, thereby highlighting the importance of 
the preparation techniques in producing stable nanofluids. In general, 
there are two methods for the preparation of nanofluids. The two-step 
approach which is more common and economical involves prepara
tion of nanoparticles as dry powder before dispersing them into the base 
fluid by agitation, stirring or ultra-sonication [9]. However, a drawback 
of this technique is that it often has low stability and a high tendency of 
particle aggregation. To counter these issues, one-step technique has 
been proposed in which nanofluids are prepared by direct deposition of 
the nanoparticles using the physical vapor deposition and liquid 
chemical methods [10,11]. This method results in more stable nanofluid 
suspensions than the former method [12]. However, it is not yet scalable 
and still has stability issues due to aggregation that can be improved by 
techniques such as adding surfactants, pH modulation, and ultrasonic 
vibrations [13]. 

1.2. Effects of nanoparticles on thermophysical properties of a nanofluid 

Adding nanoparticles to a fluid enhances heat transfer by altering its 
thermophysical properties that include thermal conductivity, viscosity, 
density, and specific heat. Many experimental and numerical studies 
have been carried out to develop correlations of enhancement in thermal 
conductivity due to the addition of a variety of nanoparticles. Oxide 
nanoparticles are the most popular and thermal conductivity of the base 
fluids can be enhanced by 15–40% with their addition [14]. Moreover, 
nanoparticle shape, size, aggregation, and interfacial thermal resistance 
also effect the thermal conductivity of a nanofluid [15]. For instance, it 
has been shown that 1-D network of connected structure of nanoparticle 
is more effective than the spherical shaped particles [16]. 

Viscosity has a direct relation with the nanoparticle concentration, 
while an inverse relation with the temperature of the Newtonian 
nanofluid. Research studies have shown that for a ZnO-Ag/Water hybrid 
nanofluid, viscosity enhancement of 80% can be achieved with 2% 
volume fraction of nanoparticles. Nanofluids with non-aqueous base 
fluids show non-Newtonian behavior as their viscosity changes with 
shear rate. Paraffin based nanofluids have shown to have achieved a 
higher value of viscosity at low shear rates [17]. However, relation 
between nanoparticle concentration and rheology of the nanofluid is not 
clear, especially for hybrid nanofluids [4]. 

Density of a nanofluid generally increases with an increase in volume 
of nanoparticles. Several correlations have been proposed in the litera
ture in which density also depends on temperature in addition to the 
nanoparticle volume fraction [18,19]. However, temperature indepen
dent relation proposed in [20] is the most widely used in numerical 
simulations because of its simplicity and acceptable accuracy [12]. 

In most cases, addition of nanoparticles leads to a reduction in the 
specific heat. However, this behavior depends on the type of base fluid. 
A number of relations have been proposed in the literature for the spe
cific heat of different nanofluids that depends on volume concentration 
of nanofluid, temperature, and size of the nanoparticles [21,22]. The 
simple weighted average relationship proposed in [22] has been widely 
used in simulations as it gives good agreement with the experimental 
data [23]. 

1.3. Models for heat transfer mechanism in nanofluids 

There are three categories of heat transfer mechanisms in nanofluids: 
(i) natural convection, (ii) mixed convection, and (iii) forced convection 
[24]. The advantages of natural convection compared to forced con
vection are lower noise, reduced power consumption, and lower 
required maintenance of the systems that utilize natural convection 
strategy. Moreover, natural convection occurs due to density variation 
in the fluid and does not need any external source like a pump or a fan. In 
this paper, we will focus on the natural convection mechanism in this 
class of fluids. 

Classical theories [25,26,1] have helped explain the thermal 

conductivity enhancement in fluids with suspensions in the context of 
Brownian motion. They have also shown to be valid for a wide range of 
nanoparticle concentrations [25]. Later studies found that Brownian 
motion alone is not enough to explain the phenomenon [27]. Instead, 
mechanisms such as liquid layering (nanolayers), thermophoresis, van 
Der Waals forces, particle nanoclusters, and electro-kinetic effects also 
contribute to the enhanced thermal conductivity in nanofluids [28–31]. 
Various models that depend on extension of classical theory, liquid 
layering, particle aggregation, and particle movement mechanisms have 
been developed to explain the thermal behavior of nanofluids [28, 
32–35]. These models either employ the continuum approach that as
sumes well-dispersed nanoparticles [36] or the effective medium 
approach that accounts for local distribution of nanoparticles and 
therefore predicts enhanced thermal conductivity which is attributed to 
nanoparticle aggregation [37]. However, for decane-based nanofluids, 
an experimental study [38] showed no aggregation or sedimentation, 
thus challenging the previous explanations. Models that are based on 
Brownian dynamics [37] have also been proposed that have shown good 
agreement with the experimental data. The success of all these models 
has been somewhat limited, and no clear picture seems to have emerged 
until recently [36]. 

1.4. Numerical modelling approaches 

There are two main approaches for numerical modeling of nano
fluids, namely, single-phase and two-phase modeling methods. In single 
phase modeling, nanoparticles are assumed to be uniformly dispersed 
and the slip between the base fluid and the nanoparticles is ignored. The 
general form of the governing equations is similar to that of conven
tional fluids, whereas the thermophysical properties of nanofluids are 
estimated based on the models discussed in the previous sections. There 
are further three categories of single phase modeling: (i) homogenous, 
(ii) thermal disruption, and (iii) Boungiorno’s model. In the homoge
nous modeling, the mixture of solid nanoparticles and the base fluid is 
considered as a single-phase continuum with certain effective material 
properties that may or may not be temperature dependent. Moreover, 
the solid and fluid phases are assumed to be in a hydrodynamic and 
thermal equilibrium. This approach has been most widely used in the 
literature and is also employed in the model and the numerical method 
presented in this paper. Use of temperature-dependent relations for 
thermophysical properties in homogenous models has shown to increase 
their accuracy. Thermal disruption model is obtained by modifying 
homogenous single-phase model to account for random and chaotic 
motion of nanoparticles that enhances heat transfer and induces velocity 
and temperature perturbations [22]. By considering Brownian and 
thermophoresis effects, Buongiorno developed a two-component four-
equation nonhomogeneous equilibrium model for transport equations in 
nanofluids [39]. In Buongiorno’s model, the effect of the base fluid and 
the nanoparticle relative velocity is described more mechanistically than 
in the thermal dispersion model. 

In the two-phase approaches, base liquid and nanoparticles are 
modeled as two separate phases with different velocities and tempera
tures, such that there is a relative velocity between the particles and the 
base fluid. The two-phase approaches are categorized in two general 
groups, known as Eulerian–Eulerian and Eulerian–Lagrangian models. 
In the Eulerian–Eulerian approach, both the base fluid and the nano
particles phases are considered as interacting continua. On the other 
hand, in the Eulerian–Lagrangian approach, the base fluid is a contin
uum while the nanoparticles are considered as a discrete phase [29]. 

Since nanofluids are inherently two-phase fluids, two-phase models 
have more physics embedded in them as compared to the single-phase 
homogeneous models. They generally perform better when compared 
with the experimental data, however they are computationally more 
expensive. On the other hand some numerical studies have also shown 
that the results of homogeneous models are in fact closer to the exper
imental data as compared to the two-phase models because of the 

L. Zhu et al.                                                                                                                                                                                                                                      



Mechanics Research Communications 127 (2023) 103960

3

uncertainties in mathematical modeling of mechanisms such as sedi
mentation and aggregation of nanoparticles in the two-phase models 
[29]. 

1.5. Numerical simulation methods for nanofluids 

Several numerical methods have been proposed to simulate flow of 
nanofluids across a range of material and geometric scales. At macro
scale level, finite difference, finite volume, and finite element methods 
have been used with considerable success. Finite difference method is 
the simplest of all the methods but it is effective only for the structured 
meshes [40]. Finite volume method has been widely used in numerical 
simulations due to its simplicity, less computational cost, and the 
availability of commercial software packages [41]. However, modeling 
complex geometries with the finite volume method is considered a 
difficult task [30]. Finite Element (FE) method is particularly useful for 
efficient modeling of complicated geometries, and consequently several 
commercial packages have been developed [30]. A literature review 
reveals that FE based methods are relatively computationally expensive 
[30]. In addition, the use of staggered schemes along with a lack of 
rigorous numerical coupling to solve thermo-mechanically coupled 
non-linear system of partial differential equations are considered po
tential bottlenecks for the method. More recently, control volume finite 
element technique has been proposed that combines the benefits of both 
the finite volume and finite element methods and has shown to be 
effective for complex geometries [42]. 

At mesoscale level, lattice Boltzmann method is usually employed 
that incorporates microscopic physical interactions of the fluid particles 
to predict mesoscale thermal behavior and hydrodynamic characteris
tics [43]. In addition, dissipative particle dynamics is also employed at 
the mesoscale [44], which is a coarser version of molecular dynamics 
method and uses randomly distributed particles in the flow domain that 
preserve conservation of mass, momentum, and energy. Molecular Dy
namics Simulations (MDS) are used at microscale in which flow dy
namics and interactions of molecules and atoms are computed over a 
time period using Newton’s equations of motion together with molec
ular mechanics. These approaches are of particular interest at the 
nanoscale level where the continuum hypothesis of bulk flow region 
greater than the mean free molecular path no longer remains valid (e.g., 
flow around carbon nanotubes) [45,46]. 

2. Introduction to stabilized methods for nanofluidics 

The challenges in the modeling of nanofluids include bridging the 
gap between the scales of the modeled physics [29], and accounting for 
the microscale interaction between nanoparticles and the base fluid [47] 
in the macroscale fluid dynamics. The modeling strategies for nanofluids 
can be categorized into two classes: the single-phase approach and the 
two-phase approach [48]. The single-phase approach treats the 
dispersed nanoparticles and the base fluid as a mixture with uniformly 
distributed properties, while the two-phase approach treats the nano
particles as an independently evolving phase. Since nanoparticles can be 
comprised of different material types, namely, oxides, metallic particles, 
another attribute of nanofluids is that they can be stimulated by different 
external activation mechanisms. The class of ferrofluids that can be 
activated via magnetic flux draw special attention in many applications, 
such as biomagnetic [49] and microelectronic systems [50]. 

The mathematical model of thermal fluids consists of conservation of 
mass, momentum, and energy [51]. Mass conservation is invariably 
written as the incompressibility condition, while a Boussinesq buoyancy 
force is introduced in the momentum balance equation to account for 
the local variation of temperature. The energy conservation takes the 
form of convection-diffusion of temperature field where the velocity 
field is furnished by the Navier-Stokes equations. The mathematical 
model is a two-way coupled system of mixed-field and 
convection-dominated equations. Consequently, one needs to address 

three numerical issues to construct a robust computational framework: 
(i) the inf-sup constraint arising from the mixed field formulation, (ii) the 
convection-dominant flow in both the equations of momentum and 
energy balance, and (iii) the coupling strategy between the 
divergence-free velocity and the temperature fields. 

The inf-sup constraint has been adequately addressed in the litera
ture. In the context of finite element method, convectional Taylor-Hood 
and Crouzeix-Raviart elements that satisfy the inf-sup constraint are used 
in the computation of natural convection [40], while the control volume 
strategy has also been used in similar problems [42]. In the context of 
finite-volume method, Semi-Implicit Pressure Linked Equations (SIM
PLE) algorithm is employed with staggered grids to resolve the numer
ical difficulties [52,53]. Rhie-Chow interpolation and its derivatives 
have also been used in the finite-volume method to avoid staggered grids 
[54,55]. Though these methods are capable of resolving the coupled 
nonlinear system, they often lack consistency, leading to low computa
tional efficiency in the solution process. The lack of rigorous coupling 
between numerically computed fields reduces the robustness of the 
method when applied to higher Reynolds number and Rayleigh number 
flows. 

This paper presents a robust computational method based on Vari
ational Multiscale (VMS) framework [56] to address the numerical is
sues enumerated above in a unified way. VMS based stabilized methods 
are well established for convection dominated flow problems [57–59], 
as well as for mixed-field problems in both fluid mechanics [60,61] and 
solid mechanics [62,63]. Recently, VMS-based stabilized formulations 
have been extended to coupled systems where an active scalar field that 
is governed by a convection-diffusion equation is embedded in the 
equations for the balance of momentum (i.e., free-surface flows [64,65], 
and stratified flows [66,67]). The paradigm of VMS framework is based 
on the variational decomposition of scales, which leads to a systematic 
approach to recover the sub-grid scale (SGS) physics and project it back 
on to the resolved scales. Amongst the two approaches to develop the 
SGS models are: Green’s functions based methods [66–68], and resi
dual-free bubbles (RFB) method and its generalizations [58–65]. The 
later approach preserves the differential operators in the SGS formula
tion, which leads to stabilization tensors that evolve spatially and 
temporally as the flow physics evolves. This feature of the formulation is 
critical for the simulation of thermal fluids where nonlinear coupling of 
the fields in the system leads to anisotropy across the scales. 

An outline of the rest of the paper is as follows: Section 3 describes 
the governing equations for an incompressible thermal fluid. Section 4 
presents derivation of the fully coupled stabilized form. In Section 5, the 
proposed method is studied numerically via four test cases with 
increasing degree of complexity in the flow physics. Concluding remarks 
are presented in Section 6. 

3. Incompressible thermal fluid with Boussinesq buoyancy 

3.1. Strong form 

In the mathematical model for thermal fluids, energy conservation is 
introduced in the form of convection-diffusion equation for the tem
perature field. The spatiotemporally varying temperature field is an 
active scalar field as it also appears in the conservation of momentum 
equation. In this paper we focus on steady-state heat transfer wherein 
convection speed is far less than the acoustic speed with a limited gap 
between the intensities of thermal sources and sinks. Under these con
ditions the well-known Boussinesq approximation [51], where a buoy
ancy force is introduced to represent the thermal effect in the 
momentum balance equation, suffices to model the physics of the 
thermal fluids. The governing system of equations for steady-state 
stratified flows in an open bounded domain Ω ∈ Rnsd can be written as 
follows. 

u⋅∇u = − ∇p +∇⋅(2v∇su) − gβθ + fb (1) 
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∇⋅u = 0 (2)  

u⋅∇θ − ∇⋅(α∇θ) = f (3)  

where the unknown fields are velocity u, pressure p, and the relative 
temperature θ. ν is the kinematic viscosity and α is the thermal diffu
sivity coefficient. The governing system of Eqs. (1)–(3) are the conser
vation of momentum, mass and energy, respectively. Specifically, a 
Boussinesq buoyancy term that depends on the gravitational accelera
tion vector g, the thermal expansion coefficient β, and the unknown 
relative temperature field θ is added to the momentum balance equa
tion. The conservation of mass takes the form of divergence-free 
constraint in the limit of zero Mach number. In the equation of conser
vation of energy, the relative temperature field is transported by the 
velocity field u furnished by the momentum balance equation. The 
relative temperature field θ = T − T0 is defined as the variance of ab
solute temperature T and the reference temperature T0. The non- 
gravitational body force fb can also incorporate external forcing mech
anisms (e.g., Lorentz force), and f is the local heat source/sink. ∇s = (∇
+ ∇T)/2 is the symmetric gradient operator. 

The boundary conditions on the domain boundary Γ = ∂Ω are: 

u(x) = gM on ΓM
g (4)  

θ(x) = gE on ΓE
g (5)  

σ⋅n = (2v∇su − pI)⋅n = hM on ΓM
h (6)  

ϕ⋅n = α∇θ⋅n = hE on ΓE
h (7)  

where gM and gE are the Dirichlet boundary conditions for velocity field 
and relative temperature field, while hM and hE are the Neumann 
boundary conditions for the total stress σ and heat flux ϕ, respectively. n 
is the unit outward normal vector at the boundary. Moreover, these 
boundaries satisfy the following conditions: ΓM

g ∩ ΓM
h = ∅, ΓM

g ∪ ΓM
h = Γ, 

ΓE
g ∩ ΓE

h = ∅, and ΓE
g ∪ ΓE

h = Γ. 
In this paper, we employ the single-phase approach to model natural 

convection of nanofluids. The single-phase approach utilizes the ho
mogenized material properties of the base fluid and solid particles to 
represent the fluid parameters of the resulting nanofluid. The material 
properties of the mixture depend on the volume fraction of nanoparticles 
only. As mentioned in the introduction, this type of modeling strategy is 
based on the following assumptions: (i) nanoparticles have uniform 
geometric attributes, (ii) nanoparticles are uniformly dispersed, and (iii) 
the base fluid and nanoparticles have reached thermal equilibrium state. 

We now present the homogenization of the nanofluid properties. The 
density ρ and heat capacity ρCp are modeled via weighted averaging. 

ρnf = (1 − ϕ)ρbf + ϕρnp

(
ρCp

)

nf = (1 − ϕ)
(
ρCp

)

bf + ϕ
(
ρCp

)

np

(8) 

We adopt Brinkman’s model [69] to calculate the dynamic viscosity 
of the mixture, which is suitable for small rigid spherical particles. 

μnf =
μbf

(1 − ϕ)5/2 (9) 

The thermal conductivity of the nanofluid defined in [46] is as 
follows. 

knf

kbf
=

(
knp + 2kbf

)
− 2ϕ

(
kbf − knp

)

(
knp + 2kbf

)
+ ϕ

(
kbf − knp

) (10) 

Accordingly, the kinematic viscosity and the thermal diffusivity are 
calculated as follows. 

νnf =
μnf

ρnf

αnf =
knf(

ρCp
)

nf

(11) 

The subscripts ( ⋅ )nf, ( ⋅ )bf, and ( ⋅ )np in Eqs. (8)–(11) denote the 
corresponding material parameter of the nanofluid, the base fluid and 
the nanoparticles, respectively. The thermal expansion βnf is scaled in 
two different ways in the literature: 

βnf = βbf (1 − ϕ) + βnpϕ (12)  

βnf =
(1 − ϕ)(ρβ)bf + ϕ(ρβ)np

ρnf
(13)  

where Eq. (12) is used in [70,71] and Eq. (13) is used in [42]. 

3.2. Standard weak form 

The functional spaces U ,P ,T appropriate for the velocity, pressure 
and temperature trial solutions are defined as follows: 

U =
{

u|u ∈
(
H1(Ω)

)nsd
, u= gM on ΓM

g

}
(14)  

P = {p|p ∈(L2(Ω))
nsd} (15)  

T =
{

θ|θ ∈
(
H1(Ω)

)nsd
, θ= gE on ΓE

g

}
(16)  

where L2(Ω) and H1(Ω) are the standard Sobolev spaces. Let w(x) ∈
W = (H1

0(Ω))
nsd , q(x) ∈ Q = C0(Ω) ∩ L2(Ω), and η(x) ∈ H = H1

0(Ω) be 
the weighting functions for the velocity u, kinematic pressure p, and 
relative temperature θ, respectively. The spaces of weighting functions 
W ,Q ,H satisfy the homogenous part of the essential boundary 
conditions. 

The standard weak form of the problem is: Find V = (u,p,θ) ∈ U ×

P × T , such that ∀W = (w,q,η) ∈ W × Q × H 

(w,u⋅∇u) + (∇w, 2ν∇su) − (∇⋅w, p) + (w, gβθ) = (w,hM)ΓM
h
+ (w, fb)

(17)  

(q,∇⋅u) = 0 (18)  

(η,u⋅∇θ) + (∇η,α∇θ) = (η, hE)ΓE
h
+ (η, f ) (19)  

4. Variational multiscale method 

4.1. Variational multiscale decomposition 

We employ the variational multiscale framework [56,72] to develop 
the stabilized method and introduce an additive decomposition of the 
velocity and temperature fields {u, θ} as well as their corresponding 
weighting functions {w, η}: 

u(x) = ū(x) + u′

(x) θ(x) = θ̄(x) + θ
′

(x) (20)  

w(x) = w̄(x) + w′

(x) η(x) = η̄(x) + η′

(x) (21) 

By the additive nature of the decomposition of weighting function in 
(21), we can split the weak form into coarse-scale and fine-scale prob
lems via grouping the terms based on the weighting functions of either 
scale: 

Coarse-scale coupled problem 

(w̄, u⋅∇u) + (∇w̄, 2v∇su) − (∇⋅w̄, p) + (w̄, gβθ) = (w̄, hM)ΓM
h
+ (w̄, fb)

(22)  
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(q,∇⋅u) = 0 (23)  

(η̄, u⋅∇θ) + (∇η̄, α∇θ) = (η̄, hE)ΓE
h
+ (η̄, f ) (24) 

Fine-scale coupled problem 

(w′

,u⋅∇u) + (∇w′

, 2ν∇su) − (∇⋅w′

, p) + (w′

, gβθ) = (w′

, fb) (25)  

(η′

,u⋅∇θ) + (∇η′

, α∇θ) = (η′

, f ) (26)  

where fine-scale fields are assumed to be zero on the domain boundary. 

4.2. Solution of the fine-scale coupled problem 

This section provides a systematic procedure for the derivation of the 
models for the fine-scale velocity and temperature fields. These models 
when embedded in the coarse scale weak form not only make the 
resulting formulation stable in the sense of inf-sup stability condition but 
also address issues that arise in the case of high advection velocity. 

To make the fine scale problem tractable we make some simplifying 
assumptions. The bounded domain Ω is considered to be the union of 
non-overlapping subdomains Ω′ with boundary Γ′, such that Ω = ∪n

1 Ω′

and n is the total number of subdomains. We assume that the fine-scale 
weighting functions and trial solutions vanish at the subdomain 
boundaries, namely, w′ = u′ = 0 on Γ′ and θ′ = η′ = 0 on Γ′. 

The fine-scale sub-problem presented in Eqs. (25) and (26) yields a 
nonlinear coupled system. By resolving the fine-scale problem, we 
expect to construct the projection from the residual of the coarse-scale 
Euler-Lagrange equations to the fine-scale solution fields V′ = {u′, θ′}. 
To make the modeling of the projection feasible, we first linearize the 
fine-scale problem with respect to the fine-scale velocity and relative 
temperature fields. The fine-scale weak forms in Eqs. (25) and (26) can 
be written in the following residual form. 

R
′

M(w
′

; ū, u′

, p, θ̄, θ
′

) = (w′

,u⋅∇u) + (∇w′

, 2ν∇su)
− (∇⋅w′

, p) + (w′

, gβθ) − (w′

, fb) = 0
R

′

E(η
′

; ū,u′

, θ̄, θ
′

) = (η′

, u⋅∇θ) + (∇η′

,α∇θ) − (η′

, f ) = 0

(27)  

where R
′

M and R
′

E are the residual weak forms of fine-scale conserva
tion of momentum and energy, respectively. It is important to note that 
the right-hand side terms contain the full fields i.e., coarse and fine fields 
in the solution slots. The linearization operators are defined as follows. 

L
(
R

′

M(w
′

; ū,u′

, p, θ̄, θ
′

)
)

=
d
dεR

′

M(w
′

; ū,u′

+ εδu′

, p, θ̄, θ
′

+ εδθ
′

)

⃒
⃒
⃒
⃒

ε=0

L
(
R

′

E(η
′

; ū, u′

, θ̄, θ
′

)
)

=
d
dεR

′

E(η
′

; ū, u′

+ εδu′

, θ̄, θ
′

+ εδθ
′

)

⃒
⃒
⃒
⃒

ε=0

(28) 

Applying the linearization operators defined in Eq. (28) to the re
sidual weak form in Eq. (27), we obtain the linearized fine-scale weak 
forms as follows. 

(w′

, δu′ ⋅∇ū) + (w′

, ū⋅∇δu′

) + (∇w′

, 2ν∇sδu′

) + (w′

, gβδθ
′

)

= − (w′

, ū⋅∇ū) − (∇w′

, 2ν∇sū) + (∇⋅w′

, p)
− (w′

, gβθ̄) + (w′

, fb)

= − (w′

, r̄M)

(29)  

(η′

, δu′ ⋅∇θ̄) + (η′

, ū⋅∇δθ
′

) + (∇η′

, α∇δθ
′

)

= − (η′

, ū⋅∇θ̄) − (∇η′

, α∇θ̄) + (η′

, f )
= − (η′

, r̄E)

(30)  

where ̄rM = rM(ū, p, θ̄) is the residual of the Euler-Lagrange equations of 
the coarse-scale conservation of momentum, and r̄E = rE(ū, θ̄) is the re
sidual of the Euler-Lagrange equation of the coarse-scale conservation of 
energy. These are defined as, 

rM(ū, p, θ̄) = ū⋅∇ū +∇p − ∇⋅(2ν∇sū) + gβθ̄ − fb (31)  

rE(ū, θ̄) = ū⋅∇θ̄ − ∇⋅(α∇θ̄) − f (32) 

We follow along the lines of [72] and employ functions b′

(ξ) that are 
defined over subdomains Ω′ to interpolate the fine-scale trial solutions 
and weighting functions as follows. 

δu′

= b
′

(ξ)a′

, w′

= b
′

(ξ)c′

, δθ
′

= b
′

(ξ)m′

, η′

= b
′

(ξ)n′ (33)  

where the superscript ( ⋅ )′ in Eq. (33) denotes the subdomain-wise 
quantity. a′ and m′ are the coefficients of fine scale fields at the virtual 
node. By substituting the functions employed for fine-scale fields from 
Eq. (33) into Eqs. (29) and (30), and applying mean value theorem, the 
steady-state linearized fine-scale mixed field problem can be written in 
the form of a linear system as follows: 
[

τ̂M τ̂ME
τ̂EM τ̂E

][
a′

m
′

]

= −

[
(b

′

, r̄M)

(b
′

, r̄E)

]

≅ − ( − b′

, 1)I4x4

[
r̄M
r̄E

]

(34)  

where the explicit form of various terms in Eq. (34) are: 

τ̂M(nsd×nsd) =

∫

Ωe

(
v∇b′ ⋅∇b′ I+(b′

)
2
∇T ū+ b′ ū⋅∇b′ I+ ν∇b′

⊗ ∇b′)dΩ (35)  

τ̂E(1×1) =

∫

Ωe
(b

′ ū⋅∇b′

+α∇b′ ⋅∇b′

)dΩ (36)  

τ̂ME(nsd×1) =

∫

Ωe
gβ(b′

)
2dΩ (37)  

τ̂EM(1×nsd) =

∫

Ωe
(b

′

)
2
∇T θ̄dΩ (38)  

where ̂τM is the tensor that relates the fine-scale velocity and the residual 
of coarse-scale equation of momentum balance. The physical interpre
tation of τ̂M includes the sweeping effect (i.e., the fine-scale velocity 
transported by the coarse-scale velocity), the distortion effect (i.e., the 
coarse-scale velocity transported by the coarse-scale velocity), and the 
fine-scale diffusion; τ̂E is the parameter that relates the fine-scale tem
perature and the residual of the coarse-scale equation of the conserva
tion of energy. They are form identical to the fine-scale system of 
linearized Navier-Stokes equations, and a generic advection-diffusion 
equation, from our earlier works [58,61,64]. 

An important contribution in this work is the delineation that in 
order to derive analytical expressions for the fine-scale models, it is 
crucial to consider the coupled form of the equations even at the fine- 
scale variational level. This coupling of the fields results in the cross- 
coupling terms (i.e., τ̂ME and τ̂EM) of the mechanical phase and ther
mal phase even in the fine-scale problem. Consequently, full (nsd+1)×
(nsd+1) stability tensor is derived from the linear system in Eq. (34). 
Hereon, the incremental fine-scale velocities and temperature are writ
ten in the residual-driven form as, 
[

δu′

δθ
′

]

n+1

= be

[
a′

m′

]

n+1

= − be(be, 1)

{[
τ̂M

τ̂EM

τ̂ME

τ̂E

]}− 1

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

τ

[
r̄M

r̄E

]

n+1 (39) 

Remark 1: The inversion operation in Eq. (39) is achieved through 
solving the system in Eq. (34). To avoid the zero value in the diagonal 
terms due to the orthogonality of fine-scale function and its derivatives, 
we use advection bubble in the weighting slot of the skew advection 
term, as presented in [58,61,64]. 

4.3. Stabilized coarse-scale formulation 

Similarly, we linearize the nonlinear coarse-scale sub-problems in 
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Eqs. (22)–(24) with respect to the fine-scale velocity and temperature 
fields. The coarse-scale weak forms are rewritten in the residual form as 
follows. 

R M(w̄; ū,u′

, p, θ̄, θ
′

) = (w̄, u⋅∇u) + (∇w̄, 2ν∇su)
− (∇⋅w̄, p) + (w̄, gβθ) − (w̄, fb) − (w̄, hM)ΓM

h

R C(q; ū,u′

) = (q,∇⋅u)
R E(η̄; ū, u′

, θ̄, θ
′

) = (η̄,u⋅∇θ) + (∇η̄,α∇θ) − (η̄, f ) − (η̄, hE)ΓE
h

(40)  

where R M, R C, and R E are the residual weak forms of coarse-scale 
conservation of momentum, mass, and energy, respectively. Again, the 
terms on the right-hand side contain both the coarse and fine scale trial 
solution fields. The linearization operators are defined as follows. 

L (R M(w̄; ū, u′

, p, θ̄, θ
′

)) =
d
dεR M(w̄; ū, u′

+ εδu′

, p, θ̄, θ
′

+ εδθ
′

)

⃒
⃒
⃒
⃒

ε=0

L (R C(q; ū, u′

)) =
d
dεR C(q; ū, u′

+ εδu′

)

⃒
⃒
⃒
⃒

ε=0

L (R E(η̄; ū, u′

, θ̄, θ
′

)) =
d
dεR E(η; ū,u′

+ εδu′

, θ̄, θ
′

+ εδθ
′

)

⃒
⃒
⃒
⃒

ε=0

(41) 

By applying the linearization operators in Eq. (41) to the coarse-scale 
residual weak form in Eq. (40), we obtain the coarse-scale linearized 
formulations as follows. 

(w̄, ū⋅∇ū) + (∇w̄, 2ν∇sū) − (∇⋅w̄, p) + (w̄, gβθ̄) + (w̄, δu′ ⋅∇ū)

+ (w̄, ū⋅∇δu′

) + (∇w̄, 2ν∇sδu′

) + (w̄, gβδθ
′

)

= (w̄, hM)ΓM
h
+ (w̄, fb) (42)  

(q,∇⋅ū) + (q,∇⋅δu′

) = 0 (43)  

(η̄, ū⋅∇θ̄) + (∇η̄, α∇θ̄) + (η̄, δu′ ⋅∇θ̄) + (η̄, ū⋅∇δθ
′

) + (∇η̄,α∇δθ
′

)

= (η̄, hE)ΓE
h
+ (η̄, f ) (44) 

We now combine the resulting formulation of Eqs. (42)–(44) and 
then group the terms that depend on the fine-scale trial solutions. 

(w̄, ū⋅∇ū) + (∇w̄, 2ν∇sū) + (q,∇⋅ū) − (∇⋅w̄, p) + (η̄, ū⋅∇θ̄) + (∇η̄, α∇θ̄)

+ (w̄, gβθ̄) + (χM , δu′

) + (χE, δθ
′

)

= (w̄, hM)ΓM
h
+ (w̄, fb) + (η̄, hE)ΓE

h
+ (η̄, f )

(45)  

where, 

χM = − ū⋅∇w̄ + w̄⋅∇T ū − ν(∇(∇⋅w̄) + Δw̄) − ∇q + η̄∇T θ̄

χE = gβw̄ − ū⋅∇η̄ − αΔη̄ 

By substituting the fine-scale solutions defined in Eq. (39) into the 
corresponding slots in coarse-scale formulation, we arrive at the final 
stabilized form that is expressed in the residual form as follows. Formal 
statement is: Find V = (u,p,θ) ∈ U × P × T , such that ∀W = (w,q,η)
∈ W × Q × H , the following holds. 

(46)  

where, 

R
Gal(w, q, η; u, p, θ) = R

Gal
M (w;u, θ) + R

Gal
C (q; u)

+R
Gal
E (η;u, θ)

R
VMS

(w, η;u, θ) =
(
[χM , χE]

T
, τ[rM , rE]

)

R
Gal
M (w;u, θ) = (w,u⋅∇u) + (∇w, 2v∇su)

− (∇⋅w, p) + (w, gβθ)
R

Gal
E (η;u, θ) = (η,u⋅∇θ) + (∇η,α∇θ)
R

Gal
C (q; u) = (q,∇⋅u)

F
Gal

(w, q, η) = (w,hM)ΓM
h
+ (w, fb)

+ (η, hE)ΓE
h
+ (η, f )

Remark 2: Since the stabilized form Eq. (46) is fully represented in 
the terms of coarse-scale fields, we drop the superposed bar from the 
coarse-scale weighting function and trial solutions perturbation notation 
δ before fine-scale trial solution fields. 

Remark 3: For ease of numerical implementation, the subdomain Ω′

in the fine scale problem is taken as the domain of an individual element. 
Therefore, fine-scale functions take the form of bubble functions that are 
non-zero over the element and become zero at the element boundary. 
See e.g. [58,61] for further details. 

5. Numerical tests 

This section presents numerical test cases that establish variational 
consistency of the method and provide validation of the computed 
physics. A unique feature of stabilized methods for mixed field problems 
is that they are free of the constraints imposed by the inf-sup stability 
conditions on the admissible discrete spaces of functions for the various 
fields. The stabilized formulation developed herein results in a fully 
coupled method where all the unknown fields are solved concurrently, 
while using equal-order interpolation functions for the velocity, pres
sure, and temperature fields. 

Variational consistency of the method also results in optimal 
convergence rates that are attained in the mesh refinement study. 
Furthermore, consistent linearization of the residual (46) results in 
quadratic convergence of the solution in the Newton-Raphson loop 
within each load step (Table 5). We have employed a direct solver 
(SuperLU) to solve the discretized linear system in each iteration within 
the Newton-Raphson loop where the tolerance criterion for the relative 
energy is set equal to 10− 16. The algorithmic form of the solution pro
cedure is presented as Algorithm 1. 

There are two dimensionless parameters, namely, Prandtl number 
(Pr) and Rayleigh number (Ra) that are used in the test cases presented 
here. By introducing the characteristic length scale L0, temperature scale 
ΔT, and velocity scale U0, the two classic non-dimensional numbers are 
defined as, 

Pr =
v
α Prandtl Number (47)  

Ra =
βΔTL3

0|g|
vα Rayleigh Number (48) 

Algorithm 1   
input: initial guess {u0,p0,θ0}  
Initialize the iteration counter i ← 0  
Compute initial residual R = ‖Ro‖2 from Eq. (46)  
Newton-Raphson Loop  

while ‖Ri‖2 ≥ tol.R0 do   
Compute stabilization tensor τi in Eq. (39) using Eqs. (35)–(38),  
where i is the iteration counter.   
Compute the residual Ri using Eq. (46).   
Compute consistent tangent Ki

pq = − ∂Ri
p /∂Vi

q, where p, q are  
indices for the global system and V is the vector of  
incremental velocity, pressure, and temperature fields.   
Solve linearized system: Ki[Δui,Δpi,Δθi]

T
= Ri   

(continued on next page) 
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(continued ) 

Update solution fields: ui+1 = ui + Δui; pi+1 = pi + Δpi;  
θi+1 = θi + Δθi.   
Update the iteration counter: i ← i + 1  

end  
output: {u, p, θ}  

5.1. Beltrami flow with analytical solution 

We employ a sub-class of the Beltrami flows [40] to investigate the 
variational consistency of the proposed stabilized formulation via a 
convergence rate study. The analytical expressions for the velocity, 
pressure, and relative temperature fields of the flow are as follows, 

ue(x, y) = [ − cos(πx)sin(πy), sin(πx)cos(πy)]T (49)  

pe(x, y) = −
1
4
(cos(2πx)+ cos(2πy)) (50)  

θe(x, y) = cos(πx)cos(πy) (51)  

and the non-gravitational body forces and heat source driving the flow 
are as follows, 

fb(x, y) =

[
− 2π2vcos(πx)sin(πy) + g1βcos(πx)cos(πy)

2π2vsin(πx)cos(πy) + g2βcos(πx)cos(πy)

]

(52)  

f (x, y) = 2π2αcos(πx)cos(πy) (53) 

The computational domain is a bi-unit square Ω = [− 1, 1] × [− 1, 1] 
with domain boundaries Γ = ∂Ω that are applied with Dirichlet 
boundary conditions g(x) = [ue, pe, θe]|x ∈ Γ for the velocity, pressure, 
and relative temperature fields. All the material parameters for this 
problem are taken as unity. The exact solution and boundary conditions 
are shown in Fig. 1. 

A convergence study is performed using 10×10, 20×20, 30×30, and 
40×40 grids employing linear quadrilateral (Q4) and triangular (T3) 
elements. Figs. 2 and 3 show the convergence rate plots of velocity, 
pressure, and temperature fields for Q4 and T3 elements, respectively, 
and optimal rates are obtained for all the test cases which confirms the 
stability and variational consistency of the formulation. 

5.2. Rayleigh-Bénard convection: a benchmark case 

In this subsection, we investigate the classic Rayleigh-Bénard con
vection in a 2D bi-unit domain. The schematic diagram and boundary 
conditions are described in Fig. 4. The problem is driven by applying 
Dirichlet boundary condition for the relative temperature field at the left 
and right walls. The top and bottom surfaces are adiabatic walls. All four 
walls are applied with no-slip boundary condition, and a zero-pressure 
reference is applied at the left-bottom corner to filter out the constant 
in the pressure mode. The unit gravity force acts uniformly downwards 
(negative y direction) and the thermal expansion coefficient β is set 
equal to 1. The Prandtl number is set equal to 0.71 and it corresponds to 
the physics of the flow of air. Rayleigh number is adjusted by propor
tionally changing the value of kinematic viscosity ν and thermal diffu
sivity α. 

The exact solution for natural convection has been presented in [39] 
for Ra → 0, however cases that are of particular interest from an engi
neering viewpoint are at much higher Rayleigh number for which an 
analytical solution does not exist. Therefore, for the convergence rate 
study reported in this subsection, we compare our results with the re
ported numerical data [52,53,66,73] in Table 1. In addition, we provide 
a comparison of the maxima of velocity field, as well as the local and 
averaged Nusselt numbers. 

5.2.1. Average Nusselt number 
The average Nusselt number describes the averaged heat flux along a 

certain boundary and it is defined as follows: 

N̄u =
1

AH

∫

ΓH

∇θ⋅n dΓ (54) 

As reported in the literature, Hortmann et al. [53] used a multigrid 
finite volume method and extrapolated the averaged Nusselt number 
through the finest mesh for various Rayleigh numbers with more sig
nificant digits than in the other available data. Therefore, these 
computed values are used as the reference data for the convergence rate 
study on the error of the averaged Nusselt number (i.e., the difference 
between the computed and the reported N̄u), as shown in Fig. 5. 

Fig. 1. Visualization of Beltrami flow: velocity, pressure, and tempera
ture fields. 

Fig. 2. Convergence rate plots for linear quadrilateral elements: (a) L2-norm of 
error (b) H1-seminorm of error. 

Fig. 3. Convergence rate plots for linear triangular elements: (a) L2-norm of 
error (b) H1-seminorm of error. 
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5.2.2. Maxima of velocities 
The maximum horizontal velocity Umax along the vertical middle line 

(x = 0.5) and the maximum vertical velocity Vmax along the horizontal 
middle line (y = 0.5) is also reported in the literature [52,53,66,73]. We 
compare our simulations with a mesh of 200×200 Q4 elements with the 
reported numerical results from various numerical methods in the 
literature. This comparison is provided in Tables 2 and 3, where our 
simulation shows good agreement with the published numerical results. 

5.3. Tilted square enclosure with pipes 

Convective flows where thermal effects are taken into account via 
buoyancy force typically arise in energy related applications, namely 
solar collectors and heat exchangers where a pipe or a system of pipe
lines is arranged in a carefully designed order within an enclosure. The 
2D cross sectional domain of a long rectangular tube with a cylindrical 
hot pipe in the middle is shown in Fig. 6. In this numerical test, we are 
interested in the heat exchange due to stratification between the cold 
walls of the square and the hot wall of the cylinder. Two design 

parameters for the device that are taken into account are the radius of 
the pipe and the orientation of the device. 

5.3.1. A single cylinder in a square enclosure with varying Rayleigh number 
The first test case considers a cylinder with radius r = 0.2, where the 

gravity force acts perpendicular to the temperature gradient. The ve
locity and temperature contours superposed with velocity streamlines 
and isothermal contours are shown in Fig. 7. The computed results are 
compared with the reported data in [74], where the conventional 
uncoupled VMS stabilization is employed. Present results are attained on 
a structured mesh of 5408 nodes with linear quadrilateral elements, 
while the reference data is computed on 6379 nodes with cubic inter
polation. Figs. 8 and 9 present the distribution of the vertical velocity 
field and relative temperature along the horizontal and vertical center
lines, respectively. In these Figs., arclength is the accumulated length of 
external boundary, starting clockwise from the top-left corner. 

By varying the radius of the inner circle and the angle of inclination, 
we run another two cases in which the radius is enlarged to r = 0.3 and 
the gravity acts at an angle of π/4 with respect to the gradient of tem
perature. The velocity and temperature contours superposed with ve
locity streamlines and isothermal contours are shown in Fig. 10. 

For quantitative validation, in Fig. 11 we compare the distribution of 
local Nusselt number (heat flux) along the periphery of the domain and 
the inner circular boundaries with the reported numerical data [55] that 
was obtained via finite volume method on a staggered grid. 

5.3.2. Four cylinders in a square enclosure 
This test case is a continuation of the previous test case on natural 

convection in a square enclosure where the number of inner cylinders is 
increased to 4. The radius of each cylinder is 0.1 and they are located 
asymmetrically in the enclosure with coordinates of their centers as: 
(0.25, 0.75), (0.75, 0.75), (0.25, 0.25) and (0.75, 0.25). Velocity con
tours with superposed streamlines, and relative temperature distribu
tion with superposed isothermal contours for Ra = 104 are shown in 
Fig. 12. A quantitative comparison with reported data from [54] is 
presented in Fig. 13, where the local Nusselt number at domain 
boundaries and inner circles are plotted. 

5.4. Natural convection of nanofluid in a wavy wall enclosure 

In this section, we carry out a numerical test case on natural con
vection in nanofluids with the proposed method. An enclosure with 
wavy walls is selected to illustrate the applicability of the proposed 
method for complex geometries where heat transfer characteristics and 
entropy generation rates are less understood as compared to that in 
regular geometries. 

The working fluid is Cu-water nanofluid and the driving mechanism 
of the system is a constant heat flux ̃q applied at the left wall. The system 
is quantified by Prandtl number and Rayleigh number based on the 
properties of the base fluid (i.e., water). In the definition of Rayleigh 

number in Eq. (48), the temperature gap is calculated as ΔT = q
∼

W/kbf , 
and the characteristic length scale is chosen as the width of the bottom 
wall W. Via non-dimensionalization, the kinematic viscosity in Eq. (1) is 
defined as ν = Pr νnf/νbf , the thermal diffusivity in Eq. (3) is α =

αnf /αbf , and the thermal expansion coefficient in Eq. (1) is β =

Ra ⋅Pr βnf/βbf . The material properties of base fluid and nanoparticles 

Fig. 4. Schematic diagram of the natural convection problem.  

Table 1 
Comparison of the average Nusselt number for different Rayleigh number flows 
with the data reported in the literature.  

Ra 103 104 105 106 

Ref. [52] 1.114 2.245 4.510 8.806 
Ref. [73] 1.118 2.243 4.519 8.800 
Ref. [53] – 2.24475 4.52164 8.82513 
Ref. [66] 1.118 2.245 4.516 8.810 
Present Work 1.11777 2.24462 4.52021 8.81490  

Fig. 5. Convergence rate of the averaged Nusselt number.  

Table 2 
Maximum horizontal velocity Umax at the vertical middle line (x = 0.5).  

Ra 103 104 105 106 

Ref. [52] 0.153 0.193 0.132 0.077 
Ref. [73] 0.136 0.192 0.153 0.079 
Ref. [53] – 0.192 0.153 0.079 
Ref. [66] 0.138 0.194 0.132 0.078 
Present Work 0.136823 0.192063 0.130386 0.0769102  
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are given in Table 4, and those of nanofluids are computed following 
Eqs. (8)–(12). The external forcing term fb in Eq. (1) and the heat source/ 
sink term f in Eq. (3) are taken as zero. Thermomechanical properties of 
the base fluid and nanoparticles are given in Table 4. 

The geometry consists of an enclosure of width W in which left and 
right walls are wavy and their height is controlled by a wavelength 
parameter λ. The profile of the wavy wall is defined by the following 
equation: 

x* = α1sin
(

2πy*

λ*

)

+ α2sin
(

4πy*

λ*

)

(55)  

where α1 and α2 are the amplitudes of two superimposed sinusoidal 
waves and the superscript (*) represents non-dimensionalization carried 
out using width W. For the simulations presented here we have used α1 

= 0.5, α2 = 0.2, and W = 1. 
For boundary conditions, it is assumed that the left wall is heated by 

a constant heat flux q̃o = kbf /knf while the right wall is maintained at a 
constant low temperature (θ = 0). The upper and lower walls are both 
assumed to be insulated (no thermal flux). Moreover, no-slip velocity 
boundary conditions are applied on all the wall surfaces. A schematic 
diagram of the problem is shown in Fig. 14. The computational grid is 
comprised of 100×200 linear quadrilateral elements. 

The problem is run in a quasi-static fashion in which the thermal flux 
is applied in 10 equal load steps. We have implemented the consistent 

Table 3 
Maximum vertical velocity Vmax at the horizontal middle line (y = 0.5).  

Ra 103 104 105 106 

Ref. [52] 0.155 0.234 0.258 0.262 
Ref. [73] 0.138 0.234 0.261 0.262 
Ref. [53] – 0.233 0.261 0.262 
Ref. [66] 0.139 0.235 0.259 0.263 
Present Work 0.13885 0.232963 0.257658 0.261474  

Fig. 6. Schematic diagram of natural convection in a 2D heat exchanger.  

Fig. 7. Contours of velocity with superposed velocity streamlines (left), and 
relative temperature with isothermal contours (right) (Ra = 104, r = 0.2, 1 
cylinder case). 

Fig. 8. Vertical velocity distribution along x = 0.5 and y = 0.5 (Ra = 106 and r 
= 0.2). 

Fig. 9. Temperature field distribution along x = 0.5 and y = 0.5 (Ra = 106 and 
r = 0.2). 

Fig. 10. Contours of velocity with superposed velocity streamlines (left), and 
relative temperature with isothermal contours (right) (Ra = 106, r = 0.3, 1 
cylinder case): (a) Not inclined, and (b) Inclined at 45 degrees. 
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tangent tensor and therefore quadratic rate of convergence is achieved 
in the nonlinear iterative solution procedure. Table 5 shows the evolu
tion of the residual as a function of the iteration number for two 
representative load steps. 

The transfer of heat in this problem is measured in terms of mean 
Nusselt number at the hot wavy wall, which is a ratio of convective to 
conductive heat transfer at a fluid boundary. Stronger thermal convec
tion results in lower temperature and thus higher value of mean Nusselt 
number which is defined as: 

Nu =
1
θs

(56)  

Nu =
1
l*w

∫ λ*

0
Nu ds (57)  

where θs is the temperature on the wall surface, and l*w is the non- 
dimensional length of the wall. Furthermore, the local rate of entropy 
generation as given in [70] is as follows. 

Ṡ*
l =

knf

kbf

1
(θ + Tr)

2

[(
∂θ
∂x

)2

+

(
∂θ
∂y

)2
]

+
EcPr

(θ + Tr)

μnf

μbf

{

2

[(
∂θ
∂x

)2

+

(
∂θ
∂y

)2
]

+

(
∂ux

∂x
+

∂uy

∂y

)2
}

(58)  

where Ṡ*
l = W2/knf Ṡl is the non-dimensional rate of local entropy gen

eration, Ec = C1 /Ra is the Eckert number, and Tr = C2 /Ra. C1 and C2 
are constants with values 7.940×10− 10 and 4.607×106, respectively, as 
given in [70]. The total non-dimensional entropy generation rate per 
unit volume is obtained as: 

Ṡt =
1

V*

∫

Ṡ
*
l dV* (59) 

Figs. 15 and 16 show a qualitative comparison of isotherms, velocity 
streamlines, and local entropy generation rate of water and Cu-water 
nanofluid at two Rayleigh numbers. At lower Rayleigh number, the 
buoyancy effect is weaker and three separate vortices are formed. 
However at higher Rayleigh number, these vortices expand and interact 
with each other due to stronger thermal buoyancy. Similarly, the iso
therms at lower Rayleigh number follow the wavy surface but at higher 
Rayleigh number, due to stronger buoyance and vortices, these iso
therms are twisted. It is also observed that the isotherms are concen
trated near the wave crest region of the cold wall and the wave trough 
region of the hot wall giving rise to regions of local entropy generation 
due to increased heat transfer. At higher Rayleigh number, these regions 
are thinner and longer due to a thinner thermal boundary layer and 

Fig. 11. Distribution of local Nusselt number with respect to the arclength of 
peripheral boundaries and central angle of inner boundary. 

Fig. 12. Contours of velocity with superposed velocity streamlines (left), and 
relative temperature with isothermal contours (right) (Ra = 104, r = 0.1, 4 
cylinders case). 

Fig. 13. Distribution of local Nusselt number with respect to the arclength of 
peripheral boundaries and central angle of inner boundary. 

Table 4 
Thermophysical properties of base fluid and nanoparticles.  

Property Water Cu 
Specific heat, Cp (J/kg K) 4179 385 
Thermal conductivity, k (W/m K) 0.613 400 
Thermal diffusivity, α (m2/s) 1.47 × 10− 7 1163.1 × 10− 7 

Thermal expansion coefficient, β (m2/s) 21 × 10− 5 1.67 × 10− 5 

Density, ρ (kg/m3) 997.1 8933  

Fig. 14. Schematic diagram of the wavy-wall problem.  

Table 5 
Residual reduction in Newton Raphson scheme for wavy-wall problem (ϕ = 0%, 
Ra = 104, λ* = 4).  

Iteration Step 3 Step 10 
1 9.4450 × 104 4.8751 × 104 

2 1.1933 × 103 3.5521 × 101 

3 6.1191 × 10− 2 1.8736 × 10− 5 

4 2.2284 × 10− 10 2.1297 × 10− 14  
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generate higher local entropy. 
Although adding nanoparticles to water for both Rayleigh numbers 

shows similar trend of more efficient heat transfer, the effect is more 
pronounced in higher Rayleigh number flow. Specifically, the maximum 
local entropy generation rate reduces nearly 34% in the case with Ra =
106, while it only reduces 24% in the case with Ra = 104. Along with a 
decreased temperature within the enclosure, these results also show the 
effect of nanofluids in increasing the heat transfer properties. 

Fig. 17(a) shows change in the mean Nusselt number as a function of 
Rayleigh number for different values of nanoparticle volume fraction ϕ. 
As discussed earlier, at higher Rayleigh numbers, temperature in the 
enclosure is lower due to the increased thermal convection that results in 

a higher value of the mean Nusselt number. Addition of nanoparticles 
also increases heat transfer, and we see a nearly linear upward trend in 
Num with an increase in the volume fraction of nanoparticles. 

Fig. 17(b) shows the change in total entropy generation rate (Ṡt) with 
nanoparticle volume fraction as a function of Rayleigh number. At a 
given (but otherwise arbitrary) volume fraction, Ṡt is higher for a higher 
Rayleigh number due to the stronger convection effects and larger 
temperature gradients. However, as we add nanoparticles, both the 
viscosity and the thermal conductivity of the nanofluid increase as 
compared to that of water. Higher viscosity leads to more viscous 
dissipation, and in turn, increased entropy. But higher thermal con
ductivity results in lower entropy generation which outweighs the effect 
of increased viscosity and thus we see a slight reduction in total entropy 
generation with the addition of nanoparticles. The results in this study 
are consistent with that of [70]. 

To investigate the optimal geometric configuration of the wavy wall, 
a study is performed on the variation of mean Nusselt number and total 
entropy generation rate with the wavelength of the wavy surface as a 
function of the Rayleigh number. This study is significant in designing 
high-efficiency heat transfer systems for practical engineering applica
tions. From Fig. 18, it is observed that although the profile varies sharply 
for shorter wavelengths and hence the crest and trough regions have 
large local Nusselt number, but the area available for heat transfer is 
smaller, so mean Nusselt number is lower and the total entropy gener
ation is higher due to steeper temperature gradients in the crest and 
trough regions. The optimal configuration for heat transfer is found at 
the wavelength of 8 with maximum mean Nusselt number and lowest 
total entropy generation rate. Beyond the optimum wavelength, the 
profile varies very gently and thus there is no thermal conductivity 
enhancement due to geometry. We also verify the present findings by 
comparing them with the results given in [70]. 

6. Conclusion 

This paper started with a literature review on the technical chal
lenges encountered in the development of the class of fluids termed as 
nanofluids. Mathematical and numerical modeling of this class of fluids 
has highlighted deficiencies in the models, thereby prompting further 
theoretical developments. Experimental and numerical studies on the 
issue of statistical scatter in the properties of the particles, and conse
quently their effect on the rheology of the particle laden fluids has also 
been reported in the literature. Among the various computational 
techniques, finite element method has emerged as a method of choice 
because of its rigorous mathematical footing and due to the flexibility it 
provides for the modeling and analysis of flows in complex geometries. 

The mathematical model for thermal fluids with nano particles 
consists of conservation laws for mass, momentum, and energy. A 

Fig. 15. Isotherms, velocity streamlines, and local entropy generation rate for 
Ra = 104 and λ* = 4 (a) ϕ = 0% (water) (b) ϕ = 10%. 

Fig. 16. Isotherms, velocity streamlines, and local entropy generation rate for 
Ra = 106 and λ* = 4 (a) ϕ = 0% (water) (b) ϕ = 10%. 

Fig. 17. Variation of (a) mean Nusselt number, and (b) total entropy genera
tion rate with nanoparticle volume fraction as a function of Rayleigh number 
(λ* = 4). 
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Boussinesq buoyancy force is introduced in the momentum balance 
equation to account for the local variation in the temperature field. The 
energy conservation equation takes the form of convection-diffusion of 
temperature where the velocity field is furnished by the momentum 
balance equation. The thermal diffusivity that locally as well as globally 
depends on the volume fraction of dispersed nanoparticles in the media 
also accounts for the contribution of nanoparticles to the transport and 
exchange of heat. 

We then presented a stabilized method that is derived in the context 
of the VMS framework and leads to consistent coupling of mechanical 
and thermal phases, both at the coarse as well as the fine scale levels. It is 
shown that the application of the bubble functions method to the deri
vation of fine-scale models preserves the differential operators of the 
governing equations in the subgrid scale formulation and leads to an 
explicit definition of the stabilization tensor that has cross-coupling 
terms for mechanical and thermal fields. This cross-coupling is shown 
to play a critical role in the simulation of thermal fluids where local 
coupling leads to anisotropy across the scales. The formulation leads to 
unified and concurrent solution of all the unknown fields and variational 
consistency of the formulation results in quadratic rate of convergence 
in the nonlinear iterative solution procedure. 

The method is used to numerically investigate four test cases with 
increasing degree of complexity in the flow physics. The Beltrami flow 
with an analytical solution showed mathematical attributes of optimal 
convergence rates for linear triangles and quadrilaterals in all the so
lution fields. In the benchmark problem of Rayleigh-Bénard convection, 
we observed good agreement of averaged Nusselt number and velocity 
fields with the published literature for several Rayleigh numbers. These 
two test cases established the variational consistency and accuracy of 
the method. The computed physics was further validated on tilted 
square enclosures with several heated pipes at varying Rayleigh 
numbers. The results showed that the method accurately predicts ther
mal effects and heat transfer mechanism in heat exchangers that are 
employed in a variety of energy applications. Finally, we simulated 
natural convection of Cu-water nanofluid in a wavy enclosure. Heat 
transfer was found to be higher at higher Rayleigh number due to 
increased buoyancy. Adding nanoparticles increased both viscosity and 
thermal conductivity of the nanofluid. While higher viscosity led to 
more viscous dissipation, it in turn increased entropy. On the other hand 
higher thermal conductivity resulted in lower entropy generation, 
thereby outweighing the effects of increased viscosity and resulting in 
reduction in the total entropy generation and increase in heat transfer 
efficiency especially at higher Rayleigh number flows (Ra = 106). Nu
merical simulations also showed that isotherms were concentrated 
around the crest and trough regions of the wavy wall, giving rise to 
regions of local entropy generation, thereby highlighting geometric ef
fects on the heat transfer mechanism. 
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