
Journal of Computational Physics 475 (2023) 111827
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

An interface-resolved phase-change model based on velocity 

decomposition

Min Lu a,b, Zixuan Yang a,b,∗, Guowei He a,b

a State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
b School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 June 2022
Received in revised form 1 November 2022
Accepted 27 November 2022
Available online 9 December 2022

Keywords:
Phase-change model
Velocity decomposition
Multi-phase flow

An interface-resolved phase-change model is proposed in the interface-capturing frame-
work based on the coupled level-set and volume of fluid (CLSVOF) method. A velocity 
decomposition method is employed to ensure the numerical stability and accuracy of in-
terface propagation. Specifically, the velocity u is decomposed into the potential part ũ
associated with the phase change and the remaining rotational part ū. The potential ve-
locity ũ is computed by solving a Poisson equation. A modified momentum equation is 
derived to solve the rotational-part velocity ū, which is divergence-free. The momentum 
equation is solved using the Computational Air-Sea Tank (CAS-Tank) developed previously 
by Yang et al. [1]. To evolve the interface and ensure the mass conservation, a continuous 
interfacial velocity u� is constructed by adding the velocity û associated with the volume 
change of liquid (or gas) to ū, where û is computed by solving a Poisson equation with con-
stant coefficient. The proposed method is verified in the context of the two-dimensional 
(2D) droplet with constant evaporation rate, one-dimensional (1D) Stefan and sucking 
problems, 2D droplet evaporation at saturation temperature, 2D droplet evaporation below 
saturation temperature, and a three-dimensional (3D) evaporating droplet falling under the 
gravity. The results show that the proposed method is accurate and stable. The numerical 
method is also validated by simulating an evaporating droplet falling under the gravity 
and the numerical results are found to be in agreement with the results in the literature. 
The interaction of two evaporating droplets is also simulated in a 3D domain to show the 
capability of the proposed method in solving 3D problems.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Phase change takes place in many nature and industrial applications, such as formation of raindrop, spray combustion 
and water boiling. Numerical methods have been developed to simulate the phase-change problems in both the interface-
unresolved and interface-resolved frameworks. The interface-unresolved methods, in which the droplets are modeled as 
point particles or the two phases are modeled as the liquid-gas mixture, are not the focus of present study. We refer the 
readers to Subramaniam [2], Senocak and Shyy [3] and Liu et al. [4] for more details. In the interface-resolved frame-
work, the liquid and gas phases are separated by liquid-gas interfaces, represented by either the interface-tracking [5–7]
or interface-capturing approaches [8–12]. In interface-resolved simulation of phase-change problems, the volume source as-
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sociated with the phase change is calculated at the interface. This leads to the following difficulties: (1) The source only 
exists at the liquid-gas interface, resulting a singular term in the governing equation, which poses challenges for numerical 
accuracy and stability. (2) The singular source causes velocity jump in the total velocity field u at grid cells containing the 
liquid–gas interface, but a continuous interfacial velocity u� is required to evolve the interface.

In many previous studies, the volume source was treated smoothly to ensure numerical stability [13]. For example, 
the front-tracking method proposed by Tryggvason and coworkers [5,14] was extended to solve problems with phase 
change [15–17,7,18]. In their methods, the mass source associated with phase change at the interface was smoothed and 
incorporated into the continuity equation. A projection algorithm was adopted to calculate velocity u. To evolve the interface 
of evaporating droplets, Irfan and Muradoglu [18] subtracted the velocity of phase change ũ from the total velocity u, and 
then added the volume change velocity of liquid û to construct the interfacial velocity u� (i.e., u� = u − ũ + û). Following 
the similar philosophy, phase-change models had also been developed in the front-capturing framework. Son and Dhir [19]
enabled the level-set method to perform simulations of phase change. In their method, the momentum and continuity 
equations were solved using the same strategy as used by Juric and Tryggvason [15], and the source was smoothed using a 
mollified step function. To construct the interfacial velocity u� of the boiling film, they added the volume expansion veloc-
ity of gas phase û to the total velocity u (i.e., u� = u + û), where û was calculated algebraically by dividing the interfacial 
mass transfer rate Ṁ with the density of gas phase ρg . Welch and Wilson [20] modified the volume of fluid (VOF) method 
to simulate the boiling flows. In their method, the source was smoothed, and the total velocity u was used to evolve the 
VOF function by a time-splitting geometric advection technique. As noted by Kharangate and Mudawar [13], although the 
artificial smoothing of source term improves the numerical stability, the physical authenticity is not fully preserved.

Schlottke and Weigand [21] and Sato and Niceno [22] reported the observation of spurious velocity when the source 
points were treated sharply within their VOF framework. As noted by Schlottke and Weigand [21], the total velocity u is 
mass weighted and therefore not volume conservative in the VOF method. To improve the volume conservation and ensure 
the numerical stability, they constructed a volume weighted velocity uvol at interface cells, which consisted of liquid-part 
velocity ul and gas-part velocity ug . Then, the liquid-part velocity ul was adopted to transport the interface (i.e., u� = ul). 
Another effective approach to treat the source sharply was proposed by Nguyen et al. [23], in which a coupled level-set 
and ghost fluid method was employed to simulate the reaction flow. In their method, the source term was considered as 
a Dirichlet boundary condition of velocity, resulting in a velocity jump at the interface. To construct a continuous liquid 
velocity ul and gas velocity ug over the interface, ul and ug was extended to the gas (ughost

l ) and liquid (ughost
g ) phase, 

respectively, using the ghost fluid method [24]. A reaction velocity û (= −Ṁ/ρl · n) was then derived from the volume 
change of liquid phase and added into the continuous liquid velocity ughost

l to evolve the interface (i.e., u� = ughost
l + û). 

Later, Gibou et al. [25] employed the numerical method of Nguyen et al. [23] and the Stefan solution of Gibou et al. [26] to 
simulate film boiling problems. However, as noted by Tanguy et al. [27], this method performed good under the limitation 
of low density ratio, while unrealistic mass prediction was observed for high density ratio problems. To address this issue, 
Tanguy et al. [27] constructed a divergence-free velocity ū by projecting the extrapolated ughost

l onto its divergence-free 
part using the Hodge decomposition methodology. The interfacial velocity u� was then constructed by adding the volume 
change velocity of liquid û (= −Ṁ/ρl · n) into ū. This treatment was also adopted by Villegas et al. [28] and Sahut et 
al. [29]. Palmore Jr and Desjardins [30] also employed a similar idea to construct the divergence-free velocity ū in the VOF 
framework for simulating the phase-change problems. The interface was advected by u� = ū − Ṁ/ρl · n. Bayat et al. [31]
simulate the ice formation with convection effects using sharp-interface method. In their method, u� is calculated from 
the Stefan condition and is applied as a Dirichlet boundary condition for the irregular gas-solid interface. For more details 
on solving parabolic problems with discontinuities on irregular domain, see Guittet et al. [32], Bochkov and Gibou [33], 
and Egan and Gibou [34].

Recently, another divergence-free velocity extension strategy was proposed by Malan et al. [35] in the geometric VOF 
method framework. In their method, after the calculation of the total velocity u, a potential velocity ũ caused by phase 
change was subtracted from u to construct the divergence-free velocity field ū. The potential velocity ũ was given by the 
solution of a Poisson equation. Thus, unlike the ghost fluid method, the velocity extrapolation of liquid or gas phase were 
not required. The interface was evolved using ū and then the VOF value of the interface cells were modified to account 
for the volume change caused by the phase change. Later, Scapin et al. [36] and Zhao et al. [37] adopted the similar 
idea to their phase-change model. In their method, the volume change was considered as an explicit velocity û along the 
interface normal, i.e., û = −Ṁ/ρ · n. The interface was, therefore, advected by the interfacial velocity u� (= ū + û). Due 
to the divergence-free velocity extension strategy proposed by Malan et al. [35] on existing incompressible two-fluid flow 
solver is straightforward, we attempted to adopt it to our numerical framework, in which the interface was captured by the 
CLSVOF method [1], and the interface was kept sharp without smoothing the density across the interface. However, spurious 
velocity was observed in the divergence-free velocity field ū when simulating the evaporation of a stationary droplet. After 
the numerical error accumulated for a certain time duration, the interface was found to evolve in an unphysical manner 
and finally the simulation diverged (see Sec. 3.1). This observation was also noted by Martinez et al. [38], and the interface 
capturing scheme in their work was also the CLSVOF method.

Inspired by the method of subtracting the potential velocity ũ associated with the phase change from the total veloc-
ity u, we propose a new phase-change model based on the velocity decomposition method. The velocity decomposition 
method has been applied to solve the wave-structure interaction problems to reduce the numerical dissipation and disper-
2
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sion [39–41]. In the present study, we apply this method to solve the phase change problem. The total velocity field u is 
decomposed into potential part ũ and rotational part ū, and thus u is not solved directly. The potential velocity ũ induced 
solely by the phase change is given by the solution of a Poisson equation, and the rotational-part velocity ū is solved us-
ing the computational-fluid-dynamics (CFD) solver. As such, the divergence of the potential velocity ũ at the interface is 
included by the volume change associated with the phase change, while the rotational-part velocity ū is divergence-free 
throughout the computational domain. Besides, the interface is evolved by a continuous interfacial velocity u� , which is 
constructed by adding the velocity û induced by the volume change of liquid (or gas) to the rotational-part velocity ū.

The proposed method shows the following advantages: (1) The nonlinear interaction between the numerical error of 
the potential part and the rotational part is avoided, which improves the numerical accuracy and ensures the numerical 
stability. (2) The divergence-free velocity ū is obtained directly from the CFD solver rather than being reconstructed at each 
time step, which simplifies the implementation. (3) The interfacial velocity u� is divergence-free inside the mixed cells (i.e. 
the cells containing both liquid and gas phases), which ensures the mass conservation during the simulation. The proposed 
method is verified by comparing the simulation results with the analytical solutions of several benchmark test cases and 
the capability of the present method for simulating the droplet evaporation under gravity in both two-dimensional (2D) 
and three-dimensional (3D) domains is subsequently validated.

This paper is organized as follows. In Sec. 2, the governing equations and numerical algorithms are described. The test 
results are presented and discussed in Sec. 3, followed by conclusions in Sec. 4.

2. Numerical method

2.1. Governing equations

In the “one-fluid” formulation, the continuity equation accounting for the phase change can be expressed as

∇ · u =
(

1

ρv
− 1

ρl

)
Ṁ S�

V�

, (1)

where u is the velocity, ρ is the fluid density, the subscripts v and l denote the vapor and liquid phases, respectively, Ṁ
represents the mass change rate per interface area, S� is the interfacial area inside the cell with interface and V� is the 
volume of this cell. The conservative form of the momentum equation is

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇p + ∇ · (2μS) + ρg + fs, (2)

where t represents the time, μ denotes the fluid viscosity, p is the pressure, S is the strain-rate tensor, g is the gravitational 
acceleration, and fs is the surface tension force. The transport equation of temperature is given in a conservative form as

∂(ρcpθ)

∂t
+ ∇ · (ρcpθu) = ∇ · k∇θ − [

hlg + (
cp,v − cp,l

)
(θsat − θ�)

] Ṁ S�

V�

, (3)

where θ represents the temperature, cp is the specific heat at constant pressure, and k is the thermal conductivity. The last 
term accounts for the jump in enthalpy due to the phase change, where hlg is the latent heat. The governing equation of 
vapor mass fraction Y is expressed as

∂Y

∂t
+ ∇ · (Y u) = λ∇2Y , (4)

where λ denotes the mass diffusion coefficient.
To ensure the energy and mass conservation across the interface, the following relations are satisfied

Ṁ = kg

hlg

(
∂θ

∂n

)�

g
+ kl

hlg

(
∂θ

∂n

)�

l
, (5)

ṀY �
l − ṀY �

g +
(
ρgλ

∂Y

∂n

)�

= 0, (6)

where Y �
l and Y �

g are the vapor mass fraction at the interface in liquid and gas phases, respectively. For a mono-component 
liquid, Y �

l = 1 and the gradient of vapor mass fraction in liquid phase is zero, which means that Eq. (4) only needs to be 
solved in the gas phase. Thus, Eq. (6) can be rewritten as

Ṁ = −ρvλ∇�Y g · n

(1 − Y �
g )

, (7)

where ∇� represents the gradient at the interface. The boundary condition for Y g at the interface is calculated using the 
Clausius–Clapeyron relation, i.e.,
3
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Y �
g = P�

v,sat Ml

(Patm − P�
v,sat)Mg + P�

v,sat Ml
, (8)

P�
v,sat = Patm exp

[
−hlg Ml

R

(
1

θ�

− 1

θsat

)]
, (9)

where P�
v,sat is the saturation vapor pressure corresponding to the interface temperature θ� , θsat is the saturation tempera-

ture at ambient pressure Patm , R denotes the perfect gas constant, and Ml and Mg are the molar masses of the liquid and 
gas, respectively. As note by Villegas et al. [28], both Eqs. (5) and (7) can be used to calculate the interfacial mass transfer 
rate when the interface temperature θ� is significantly lower than the saturation temperature θsat , while the singularity 
appears in the denominator of Eq. (7) if the temperature of the interface approaches the saturation temperature. Thus, in 
the following sections, the interfacial mass transfer rate is calculated by Eq. (5) when the evaporation takes place at the 
saturation temperature, and Eq. (7) is adopted when the evaporation takes place below the saturation temperature.

2.2. Velocity decomposition

In the present numerical framework, the source points are sharply distributed inside the computational cells containing 
the interface. Due to the velocity jump at the interface cells, the total velocity field u cannot be used directly to evolve the 
interface. A continuous velocity is in demand to avoid numerical instability when the interface is evolved. Here, we develop 
a new phase-change model based on the velocity decomposition method, which is accurate and numerically stable.

Inspired by the method of subtracting the potential velocity ũ induced by the phase change from the total velocity u
proposed by Malan et al. [35], we decompose the total velocity u into the potential part ũ and the rotational part ū, i.e.,

u = ũ + ū. (10)

Thus, Eq. (1) can be rewritten as

∇ · ũ =
(

1

ρv
− 1

ρl

)
Ṁ S�

V�

, (11)

and

∇ · ū = 0, (12)

where the potential-part velocity ũ accounts for the volume change caused by phase change and ū is the remaining rota-
tional divergence-free part. The potential velocity ũ is determined by the potential flow theory as{

∇ ·
(

1
ρ ∇ϕ

)
=

(
1
ρv

− 1
ρl

)
Ṁ S�

V�

ũ = 1
ρ ∇ϕ

, (13)

where ϕ is the velocity potential associated with the mass source induced by the phase change.
The potential velocity ũ is also the solution of the following Euler equation

ρ

(
∂ũ

∂t
+ ũ · ∇ũ

)
= −∇ p̃. (14)

In order to derive the governing equation for the rotational part ū, we subtract Eq. (14) from Eq. (2) to yield

∂
[
ρ(u − ũ)

]
∂t

+ ∇ · (ρuu) − ∇ · (ρũũ
) − u

[
∂ρ

∂t
+ ∇ · (ρu)

]
+ũ

[
∂ρ

∂t
+ ∇ · (ρũ

)] =
−∇(p − p̃) + ∇ · (2μS) + ρg + fs.

(15)

In addition, the flow field should be governed by the general form of continuity equation

∂ρ

∂t
+ ∇ · (ρu) = 0. (16)

Using the relation in Eq. (10), the general form of continuity equation for ũ is

∂ρ

∂t
+ ∇ · (ρũ

) = −∇ · (ρū) . (17)

Substituting Eqs. (10), (16) and (17) into Eq. (15) yields

∂ (ρū)

∂t
+ ∇ · (ρūū) = −∇ p̄ + ∇ · (2μS̄

) + ρg + fs − ∇ · (ρūũ
)− (ρū · ∇) ũ, (18)

where p̄ and S̄ are the pressure and strain-rate tensor of the rotational-part velocity, respectively. This equation degenerates 
to the original momentum equation when phase change is absent (i.e., ũ = 0). In this sense, any existing solver for two-fluid 
flow can be readily modified by adding the last two source terms in Eq. (18) to simulate phase-change problems.
4
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Fig. 1. Schematic diagram of the discretized velocity field for a 1D evaporation problem. The regression velocity u� is negative due to the mass loss of the 
liquid phase. The total velocity u is positive in gas phase and is zero in liquid phase. The interpolated u at the interface is positive and should not be used 
to evolve the interface.

2.3. Interface advancement

The interface advancement of multiphase flows with phase change is challenging because of the velocity jump in u at 
the interface. This point can be recognized from Fig. 1, in which the discretized velocity field for a 1D evaporation problem 
is displayed. When evaporation occurs, the regression velocity u� is negative due to the mass loss of the liquid phase. The 
velocity in the gas phase ui+1 > 0, while the velocity in the liquid phase ui = 0 due to the existence of solid wall on the 
left domain boundary. As such, the interpolated u at the interface is in the opposite direction of u� . Therefore, u should 
not be used to evolve the interface. To overcome this issue, Scapin et al. [36] constructed a smooth interface propagation 
velocity u� as

u� = ū + û, (19)

and

û = − Ṁ

ρl
n, (20)

where û is the velocity associated with the volume change of liquid phase induced by the phase change.
The interfacial velocity u� is then used to evolve the VOF function ψ . Following the philosophy of Scapin et al. [36], we 

evolve both LS function φ and VOF function ψ by u� , i.e., the following transport equations of φ and ψ are solved:

∂φ

∂t
+ ∇ · (φu�) = φ∇ · u�, (21)

∂ψ

∂t
+ ∇ · (ψu�) = 0. (22)

However, the interface evolves in an unphysical manner if û is constructed by Eq. (20) in our numerical framework, because 
Ṁ is sharply distributed at the interface cells. This point is shown in Sec. 3.1. Thus, to evolve the interface reasonably in the 
present numerical framework, we must reconstruct a interface regression velocity û, which is continuous at the interface. 
Based on the Gauss’s law, the net flux over the interface is equivalent to the source inside the control volume. Thus, to 
ensure the mass conservation, the source points on the interface are moved into the liquid (or gas) phase at x�′ , which is 
defined as

x�′ = x� + 
ln, (23)

where 
l is the distance between the relocated source points and the interface. The position of the relocated source points 
is chosen according to the boundary condition. Specifically, the source points are shifted into the liquid phase (i.e., 
l is 
negatively valued) if the gas can leave the computational domain freely, otherwise the source points are shifted into the gas 
phase (i.e., 
l is positively valued). For example, as implemented in Sec. 3.1, the source points are relocated inside the liquid 
because the gas can leave the computation domain freely. A schematic diagram of the implementation is shown in Fig. 2, 
in which the solid blue line is the liquid-gas interface and the value of Ṁ is computed at the interface (red square) through 
Eq. (13). The positions of these source points are then moved inside the liquid (red dot) along the normal direction of the 
interface to calculate û. On the contrary, as implemented in Sec. 3.2.1, the source points are shifted to the gas when the 
liquid can leave the computational domain freely. According to the Gauss’s law, the velocity û induced by volume change in 
Eq. (19) can be found using the following potential flow solution{

∇ · ∇ϕ′ = −Ṁ S�

V�

û = 1′ ∇ϕ′ , (24)

ρ
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Fig. 2. Schematic diagram of the source points. The blue solid line is the liquid-gas interface and the blue dashed line is plotted by shifting the interface 
to the liquid phase along the normal direction. The potential velocity ũ and û are induced by mass source located at the square red solid points at the 
interface and the circle red solid points in the liquid phase, respectively. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

where ϕ′ denotes the potential field of source associated with the volume change of liquid (or gas), and ρ ′ is an effective 
density depending on where the mass source is relocated. Specifically, ρ ′ is set to either ρv or ρl if the mass source is 
relocated in the vapor or liquid phase, respectively.

We note here that ũ and û are two different velocity fields, though they are both induced by the mass transfer rate Ṁ
associated with the phase change. The potential velocity of ũ is associated with the volume change of the whole domain, 
and the volume source points are located at the liquid-gas interface. Thus, the velocity jump is captured over the cells with 
interface, which preserves the physical authenticity of phase change. However, such a velocity jump in u cannot provide 
accurate interface velocity as shown in Fig. 1. To avoid the velocity jump over the interface for the interface advection, we 
decompose the potential-part velocity ũ from the total velocity u. The remaining rotational-part velocity ū is continuous, 
while it is not associated with the volume change. To construct the interface regression velocity, we shift the source points 
from the interface to liquid side along the normal direction, resulting in a new potential velocity û given by Eq. (24), which 
is determined by the volume loss of the liquid phase. Because the source point is away from the interface, the induced û is 
continuous at the interface. Thus, the interface is accurately evolved using u� (= ū + û).

In fact, from a continuum perspective, the velocity at the interface is not provided by ũ due to the singularity there, 
while ũ is correct for the rest of the computational domain. To address this issue, plenty of works suggested to find the 
accurate interface velocity at the interface by calculating an interface regression velocity û based on mass conservation 
(Irfan and Muradoglu [18], Malan et al. [35], Scapin et al. [36], Zhao et al. [37]), and thus û is accurate at the interface. In 
other words, the real velocity consists of u� (= ū + û) at the interface and u (= ū + ũ) in the remainder of the flow field. 
From a discretized point of view, due to the velocity jump of ũ at the interface, the interpolated ũ cannot be used to evolve 
the interface, while û is accurate at the interface (see Fig. 1). Therefore it is appropriate to use u� (= ū + û) to evolve the 
interface. However, u� should not be used to evolve the momentum equation, because it does not give the real velocity in 
the remainder of the flow field. The most accurate treatment is to set u� as an enforced condition at the interface to evolve 
the momentum equation, as proposed by Bayat et al. [31]. In our numerical framework, in consideration of the algorithm 
simplicity, we do not consider the velocity of the interface u� in momentum transport. Instead, we directly use ũ, which 
is defined at cell faces, to conduct interpolation. When the interpolation of ũ needs to be performed based on the stencil 
points on different sides of the interface, a third-order CUI scheme is used to avoid numerical oscillations (see Sec. 2.5). 
A similar treatment is applied by Irfan and Muradoglu [18], Malan et al. [35], Scapin et al. [36], Zhao et al. [37], and the 
results are reasonable.

From the above description about the algorithms, it is understood that we solve four Poisson equations in each time 
step, one for ũ, two for ū (RK2 scheme), and one for û. In the method of Malan et al. [35] and Scapin et al. [36], if the 
RK2 scheme is also used to evolve the momentum equation, three Poisson equations need to be solved, including two for 
u and one for ũ. We solve one more Poisson equation to generate the velocity for evolving the interface. Otherwise, the 
simulation results are incorrect (see Fig. 9 and the corresponding discussions). In this regard, it is this additional Poisson 
equation that allows us to simulation the phase-change problems in the CLSVOF framework. In other words, in the present 
framework based on the CLSVOF method, solving an additional Poisson equation of û is necessary. In addition, the tolerance 
for Eq. (24) is not required to be as small as that for calculating ū and ũ, because û only accounts for the mass conservation 
without any direct participation in the evolution of the flow field. Based on our test results, solving the Poisson equation of 
û occupies 17.6% of the total simulation cost.

The numerical algorithm for solving Eqs. (21) and (22) are detailed by Sussman [42]. After the interface advances to the 
next time step, the physical properties are updated by the LS function as

η = ηg + (ηl − ηg)H(φ), (25)

where η can be either the density ρ , viscosity μ, specific heat capacity cp , or thermal conductivity k, and H(φ) is the 
Heaviside function, defined as
6
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Fig. 3. Schematic diagram of calculating (a) the temperature at the interface θ� and (b) the vapor mass fraction gradient at the interface ∇�Y g . (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

H(φ) =
{

0 φ ≤ 0
1 φ > 0

. (26)

2.4. Calculation of interfacial mass transfer rate and surface area

According to Eq. (1), the interfacial mass transfer rate Ṁ , the interfacial area inside one cell S� and the volume of cell V�

are needed to calculate the source term. The interfacial mass transfer rate Ṁ can be calculated by either Eq. (5) or Eq. (7) in 
a fully coupled system. Here, we solve Eq. (7) and thus the vapor mass fraction at the interface Y� and the gradient of vapor 
mass fraction near the interface ∇�Y g are needed to calculate the source term. Based on the Clausius-Clapeyron relation 
given by Eqs. (8) and (9), the vapor mass fraction at the interface Y� is a function of the temperature at the interface θ� . In 
order to calculate θ� , a linear interpolation scheme is utilized and a schematic diagram for the linear interpolation is shown 
in Fig. 3(a). As shown, if an interface element is located inside the computational cell (i + 1, j + 1, k), the temperature at 
the interface θ� can be calculated as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xd = x�−xi
xi+1−xi

; yd = y�−y j
y j+1−y j

; zd = z�−zk
zk+1−zk

θ� = θi, j+1,k+1 [(1 − xd) ydzd] + θi+1, j+1,k+1 (xd ydzd)

+ θi, j,k+1 [(1 − xd) (1 − yd) zd] + θi+1, j,k+1 [xd (1 − yd) zd]
+ θi, j+1,k [(1 − xd) yd (1 − zd)] + θi+1, j+1,k [xd yd (1 − zd)]
+ θi, j,k [(1 − xd) (1 − yd) (1 − zd)] + θi+1, j,k [xd (1 − yd) (1 − zd)] .

(27)

An embedded boundary method applied by Zhao et al. [37] is then used to calculate the vapor mass fraction gradient ∇�Y g

at the interface. As shown in Fig. 3(b), we draw a line along the normal direction of the interface towards the gas phase. 
The intersections of the normal line with the cell faces are two stencil points P1 and P2, which are marked by red points. 
The vapor mass fractions at these two intersections are calculated from the nodal values marked by the blue points using 
the bilinear interpolation scheme. Taking the calculation of Y P 2 as an example, the value of Y P 2 is given by

Y P 2 = Yi, j,k [(1 − yd) (1 − zd)] + Yi, j+1,k [yd (1 − zd)] + Yi, j,k+1 [(1 − yd) zd] + Yi, j+1,k+1 (ydzd) , (28)

where the definitions of yd and zd are provided in Eq. (27) with (x�, y�, z�) being the coordinates of point Y P 2. The 
calculation of Y P 1 can be deduced accordingly. After Y P 1 and Y P 2 are known, the vapor gradient at the interface is given by(

∂Y

∂n

)
�

= 1

d�−2 − d�−1

[
d�−2

d�−1
(Y� − Y P 1) − d�−1

d�−2
(Y� − Y P 2)

]
, (29)

where d�−1 and d�−2 are the distances from interface to the two intersections, respectively, and (x�, y�, z�) are the coor-
dinates of the interface center provided by the CLSVOF algorithm. After that, the vapor mass fraction Y� at the interface is 
calculated through Eqs. (8) and (9). The quadratic extrapolation approach can also be used to find the vapor gradient at the 
interface [43,44].

It should be noted that in Sec. 3.2, the vapor mass fraction is not coupled in the system and thus the interfacial mass 
transfer rate Ṁ is calculated from Eq. (5). Because the phase change takes place at the saturation temperature in the test 
cases of Sec. 3.2, the temperature gradient inside the water is 0 and thus the mass transfer rate only depends on the 
temperature gradient in the gas phase. This can be calculated through Eq. (29) with Y being replaced by θ .
7
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Fig. 4. Schematic diagram of the calculation of the interface area inside the computational cell cut by the interface in (a) 2D and (b) 3D computational 
domains. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Based on the concept of Gueyffier et al. [45], and Scardovelli and Zaleski [46], we develop an algorithm to find the 
interfacial area S� in the CLSVOF framework. For simplicity, we start from considering a specific 2D case as shown in 
Fig. 4(a). Assuming that a unitary computational cell ABC D with sides 
xi = 1 (i = 1, 2) is cut by the interface E H with 
normal vector m = (m1, m2). The origin of the Cartesian coordinate is located at A. The interface is represented by the 
following equation

m1x1 + m2x2 = α, (30)

where α is the distance from the origin to the interface. We normalize Eq. (30) to ensure α = m1 + m2 (the values of α, m1

and m2 are computed after the interface is advanced). The points at which the interface intersects with x1 and x2 are α/m1

and α/m2, respectively. The interface length S� inside the computational cell is given by

S� =
√(

α

m1

)2

+
(

α

m2

)2 [
1 − H (α − m1
x1)

α − m1
x1

α
− H (α − m2
x2)

α − m2
x2

α

]
, (31)

where 
√

(α/m1)2 + (α/m2)2 is the length of E H . Since the triangles AE H , B E F and DG H are geometrically similar, the 
lengths of E F and G H can be computed by multiplying the length of E H with the ratio of the sides B E to AE and D H
to AH , respectively. This is shown in the last two terms within the square brackets on the right-hand side of Eq. (31). The 
Heaviside function is adopted to ensure that the length of E F (or G H) is subtracted from E H when E (or H) is located 
outside the computational cell. This method can be extended to the calculation of the interfacial area S� in a 3D domain. 
We skip the derivation and provide the formula as follows,

S� =α2
√

(m1m2)−2 + (m1m3)−2 + (m2m3)−2

2

×
[

1 −
3∑

i=1

H (α − mi
xi)

(
α − mi
xi

α

)2

+ H (α − m1
x1 − m2
x2)

(
α − m1
x1 − m2
x2

α

)2

+ H (α − m1
x1 − m3
x3)

(
α − m1
x1 − m3
x3

α

)2

+ H (α − m2
x2 − m3
x3)

(
α − m2
x2 − m3
x3

α

)2
]

,

(32)

where α2
√

(m1m2)-2 + (m1m3)-2 + (m2m3)-2/2 represents the area of triangle ABC in Fig. 4(b). The negative terms inside 
the square brackets are associated with the areas outside the grid cell. For example, triangles B D F and AG H are located 
outside the cell and should be subtracted from the area of triangle ABC . However, the area of triangle E F H marked by 
black is subtracted twice and we need to add it back. Thus, the last three positive terms within the square brackets account 
for the areas which have been subtracted twice. The relations in Eqs. (31) and (32) are applicable for all of the possibilities 
during the simulation, though we only show two specific cases in Fig. 4. We note that a similar algorithm was proposed 
8
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earlier by Soh et al. [47], while the implementation of our algorithm is more straightforward in the present numerical 
framework.

2.5. Temporal and spatial discretization

A second-order Runge-Kutta (RK2) scheme is used to advance the rotational velocity ū, temperature θ and vapor mass 
fraction Y from time step n to n + 1, and the finite difference scheme is used for spatial discretization. The flow quantities 
are defined on a staggered Cartesian grid to avoid checkerboard pressure field [48,49]. All scalars are discretized at cell 
centers, while the velocity components are discretized at cell faces. A third-order total variation diminishing (TVD) scheme 
and a second-order central difference scheme are employed to compute the advection term and diffusion term, respectively. 
For more details of the flow solver, we refer the readers to Yang et al. [1]. Here, we only introduce the spatial discretization 
of the last two derived terms in Eq. (18). Taking the calculation of ∇ · (ρūũ

)
i+1/2, j,k and 

[
(ρū · ∇) ũ

]
i+1/2, j,k as examples, 

the discretization is given by

−∇ · (ρūũ
)

i+1/2, j,k = −ρ ′
i+1, j,kū′

i+1, j,kũi+1, j,k − ρ ′
i, j,kū′

i, j,kũi, j,k


x

−ρ ′
i+1/2, j+1/2,kū′

i+1/2, j+1/2,k ṽ i+1/2, j+1/2,k − ρ ′
i+1/2, j−1/2,kū′

i+1/2, j−1/2,k ṽ i+1/2, j−1/2,k


y

−ρ ′
i+1/2, j,k+1/2ū′

i+1/2, j,k+1/2 w̃i+1/2, j,k+1/2 − ρ ′
i+1/2, j,k−1/2ū′

i+1/2, j,k−1/2 w̃i+1/2, j,k−1/2


z
,

(33)

and

−[
(ρū · ∇) ũ

]
i+1/2, j,k = − ρi+1/2, j,kūi+1/2, j,k

ũ′
i+1, j,k − ũ′

i, j,k


x

− ρi+1/2, j,k v̄ i+1/2, j,k

ũ′
i+1/2, j+1/2,k − ũ′

i+1/2, j−1/2,k


y

− ρi+1/2, j,k w̄i+1/2, j,k

ũ′
i+1/2, j,k+1/2 − ũ′

i+1/2, j,k−1/2


z
,

(34)

respectively. The prime denotes a quantity calculated using the CUI scheme [50], while the advection velocities are calculated 
using linear central interpolation scheme. The discretization of the derived terms in other directions is similar to that in the 
x-direction with certain replacement in the indices.

The numerical implementations for the temperature θ and vapor mass fraction Y are also crucial for accurate simulations 
of phase change problems [26,37,35,31,36]. In the proposed method, the transport equations of temperature and mass 
fraction are evolved using the RK2 method as(

ρcpθ
)l = (

ρcpθ
)l−1 +

(
αlGl−1 − βlGl−2

)

t, (35)

(Y )l = (Y )l−1 +
(
αl Hl−1 − βl Hl−2

)

t, (36)

where l = 1, 2 corresponds to the two substeps of RK2 method. The values of αl and βl are given as α1 = 1 and β1 = 0, 
and α2 = β2 = 0.5. In Eqs. (35) and (36), G and H are the summation of advection and diffusion terms for temperature and 
vapor mass fraction equations, respectively, viz,

G = −∇ · (ρcpθu
) + ∇ · k∇θ − [

hlg + (
cp,v − cp,l

)
(θsat − θ�)

] Ṁ S�

V�

, (37)

H = −∇ · (Y u) + λ∇2Y . (38)

The temperature equation is evolved using a consistent scheme, the advection and diffusion terms are discretized using a 
third-order CUI scheme and a second-order central difference scheme, respectively. We refer the readers to Lu et al. [51]
for more details on the temperature solver. Here, we describe the numerical method for solving the vapor mass fraction 
equation. The advection term of Eq. (4) is discretized using a first-order upwind scheme [22] as

− [∇ · (Y u)]i, j,k = − Yi+1/2, j,kui+1/2, j,k − Yi−1/2, j,kui−1/2, j,k


x

− Yi, j+1/2,k vi, j+1/2,k − Yi, j−1/2,k vi, j−1/2,k


y

− Yi, j,k+1/2 wi, j,k+1/2 − Yi, j,k−1/2 wi, j,k−1/2
,

(39)

z

9
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Fig. 5. Stencil points for calculating the derivation of vapor mass fraction ∂Y/∂xi near the interface when the Dirichlet boundary condition is applied at the 
interface. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

where the vapor mass fraction at the cell faces is chosen according to the velocity there. For example, −∂(Y u)/∂x is 
calculated as

−
[

∂(Y u)

∂x

]
i, j,k

=
{ − (

Yi, j,kui+1/2, j,k − Yi−1, j,kui−1/2, j,k
)
/
x ui−1/2 ≥ 0

− (
Yi+1, j,kui+1/2, j,k − Yi, j,kui−1/2, j,k

)
/
x ui−1/2 < 0

. (40)

However, if the interface is located between i and i + 1 as shown in Fig. 5, the calculation of −∂(Y u)/∂x becomes

−
[

∂(Y u)

∂x

]
i, j,k

=
{ − (

Yi, j,kui+1/2, j,k − Y�ui−1/2, j,k
)
/lx ui−1/2 ≥ 0, φi, j,kφi−1, j,k < 0

− (
Yi+1, j,kui+1/2, j,k − Yi, j,kui−1/2, j,k

)
/
x ui−1/2 < 0, φi, j,kφi−1, j,k ≥ 0

, (41)

where lx is estimated using a height function as

lx =
∣∣φi, j,k

∣∣∣∣φi−1, j,k
∣∣ + ∣∣φi, j,k

∣∣ . (42)

As the interface approaches to the grid point (i, j, k), lx becomes extremely small. To ensure the robustness of the solver, we 
set lx = 0.1
x when lx ≤ 0.1
x, and the numerical results show that this approximation is reasonable. The diffusion term of 
Eq. (4) is discretized using a second-order scheme for non-uniform grid spacing [52,53,18,22,31]. Taking the discretization 
in the x-direction as an example, the value of 

(
∂2Y /∂x2

)
i, j,k is calculated as

(
∂2Y

∂x2

)
i, j,k

=

⎧⎪⎪⎨
⎪⎪⎩

2Y�

lx(
x+lx)
− 2Yi, j,k


xlx
+ 2Yi+1, j,k


x(
x+lx)
φi, j,kφi−1, j,k < 0

2Yi, j,k

x(
x+lx)

− 2Yi, j,k

xlx

+ 2Y�

lx(
x+lx)
φi, j,kφi+1, j,k < 0

Yi+1, j,k+Yi−1, j,k−2Yi, j,k


x2 others

. (43)

The implementation for other directions can be deduced accordingly.
We note that in Sec. 3.2, the phase change takes place at the saturated temperature and thus the temperature at the 

interface is fixed at θsat as a Dirichlet boundary condition for the air phase. In this situation, the temperature inside the air 
phase is solved using the same algorithm as that for the vapor mass fraction.

2.6. Boundary conditions and independent non-dimensional parameters

In the proposed method, the CFD solver only accounts for the rotational-part velocity ū, while the boundary conditions 
are satisfied by the total velocity u (=ū + ũ). Thus, the boundary condition for ū should be derived based on the boundary 
conditions of u. For example, due to the volume change, the outflow condition is adopted at some domain boundaries 
for phase-change problems. For a conventional CFD solver, the outflow condition at the right domain boundary for u at 
i = nx + 1/2 is given as
10
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unx+3/2, j,k = unx−1/2, j,k. (44)

We note that the commonly used “continuative approximation” is adopted here to implement the outflow condition. The 
numerical results in the following sections show that this approximation is sufficiently accurate for the problems in our 
study. The improvement of the outflow condition is not the focus of present work, and we refer the reads to Dong et 
al. [54] for more details.

To derive the boundary conditions for ū when the outflow condition is employed for u, we substitute Eq. (10) into 
Eq. (44) to yield

ūnx+3/2, j,k = ūnx−1/2, j,k + ũnx−1/2, j,k − ũnx+3/2, j,k, (45)

where ũnx+3/2, j,k is obtained from the outflow condition of the potential velocity ũ , which is given at i = nx + 1/2 as

ũnx+3/2, j,k = ũnx−1/2, j,k. (46)

Similarly, the boundary condition for interfacial velocity u� at i = nx + 1/2 is given as

u�nx+3/2, j,k = u�nx−1/2, j,k. (47)

Substituting Eq. (19) into Eq. (47) yields

ûnx+3/2, j,k = ûnx−1/2, j,k + ūnx−1/2, j,k − ūnx+3/2, j,k, (48)

where ūnx+3/2, j,k is obtained from the boundary condition of ū. Other types of boundary condition can be derived accord-
ingly.

The relevant non-dimensional parameters for the study are given as

Re = ρg uref lref

μg
, W e = ρg u2

ref lref

σ
, F r = uref√

glref
,

Sc = μg

ρgλ
, Pr = μcP

k
, St = cp,g(θ∞ − θsat)

hlg
, γη = ηl

ηg
,

(49)

where Re, W e, F r, Sc, Pr and St are the Reynolds number, Weber number, Froude number, Schmidt number, Prandtl 
number, and Stefan number, respectively, σ is the surface tension coefficient, uref and lref are characteristic velocity and 
length scale, respectively, and γη is the ratio of physical property η of liquid and gas phases.

2.7. Overall procedure

The overall procedure of the proposed algorithm is summarized as follows:
Step 1. Initialize the velocity u, temperature θ , vapor mass fraction Y and the physical properties η.
Step 2. Calculate the interfacial mass transfer rate Ṁ and interface area S� using Eqs. (5), (6), (31) and (32).
Step 3. Calculate the potential velocity ũ associated with the phase change by Eq. (13), the rotational-part velocity ū by the 
modified momentum equation Eq. (18), and the volume change velocity û of liquid by Eq. (24).
Step 4. Solve the transport equations of temperature and vapor mass fraction using the total velocity u (= ũ + ū), and the 
transport equations of LS and VOF functions using the interfacial velocity u� (= û + ū).
Step 5. Update the physical properties according to the interface position by Eq. (25) and go to step 2.

The algorithm is also outlined in Fig. 6 for clarity.

3. Results

3.1. 2D droplet with constant evaporation rate

The numerical simulation of phase change is complicated due to the coupling of momentum, heat and mass transfer. 
Thus, before the validation of the fully coupled system, we first test the accuracy of the interface propagation by decoupling 
the effect of temperature θ and vapor mass fraction Y on the momentum equation. This is accomplished by prescribing a 
constant interfacial mass flux Ṁ , and the transport equations of temperature and vapor mass fraction are not solved. The 
computational domain for this test case is depicted in Fig. 7. As shown, a 2D droplet is surrounded by gas. The density ratio 
between the liquid and gas is γρ=8.333 and the gravity is neglected. The interfacial mass transfer rate is fixed at Ṁ = 1. 
Thus, the droplet radius is expected to reduce steadily at a constant rate. The size of the computational domain is 4D0 in 
both x- and y-directions, where D0 is the initial diameter of the droplet. The origin of the coordinates is located at the 
left bottom corner of the computational domain and the center of the droplet is located at (x, y) = (2D, 2D). The outflow 
condition is applied at all boundaries. The computational domain is discretized using 256 × 256 number of grid points. 
Analytically, the diameter of the droplet as a function of time t is governed by the follow ordinary differential equation,
11
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Fig. 6. Diagram illustration of the overall procedure of the proposed algorithm.

Fig. 7. Computational domain for the test case of evaporation of a 2D droplet.

D(t)

D0
= 1 −

(
2Ṁ

D0ρl

)
t. (50)

In this test case, the theoretical value of the rotational-part velocity ū is zero, and the interface motion is solely determined 
by û from Eq. (24). Here, we relocate the source point inside the liquid phase, thus û is associated with the volume loss 
of liquid phase (i.e., ρ ′ = ρv ) in this test case. Fig. 8 compares different parts of the decomposed velocity. It is seen from 
12
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Fig. 8. The decomposed velocity vectors at t = 0.1T for the test case of a 2D droplet with a constant evaporation rate. (a) The velocity vectors of ũ induced 
by the source term on the interface; (b) The reconstructed interface regression velocity vectors of û induced by the rearranged source points inside the 
droplet. The solid red line represents the interface, and the gray band shows the location of source points. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

Fig. 8(a) that the Stephan flow velocity ũ (Eq. (13)) induced by the evaporation is discontinuous at the interface due to the 
existence of the source points there. For a conventional CFD solver, the interface is then transported using the total velocity 
u (= ũ + ū), in which the rotational part ū is 0 and such that u = ũ. As a result, the total velocity u is discontinuous. If the 
interface is transported directly using u, the volume of the droplet is enlarged in an unexpected manner. Thus, to evolve 
the interface accurately, we calculate a regression velocity û of the interface by Eq. (24). Because the source points are 
reallocated inside the interface in the liquid phase based on the mass loss of liquid, û is continuous across the liquid-gas 
interface. The interface is then advanced using the interface velocity u� (= û + ū). The regression velocity field is displayed 
in Fig. 8(b). Although there exist discontinuities in û inside the liquid phase, it is proper to be used to evolve the interface 
because the evolution of the LS and VOF functions is only determined by û near the interface.

As noted in Sec. 2.3, the interface regression velocity û can also be calculated by Eq. (20) as applied in the algebraical 
VOF framework of Scapin et al. [36]. To test the feasibility of this method in the CLSVOF framework, we use Eq. (20) to 
calculate the regression velocity of interface at the cell center and apply this velocity onto the corresponding cell faces. The 
results are shown in Fig. 9. It is evident that the interface geometry is more reasonable when û is computed by Eq. (24), 
while the circular shape is not well preserved when û is calculated using Eq. (20). This is because the source points exist 
sharply in the interface cells in our numerical framework as shown in Fig. 8(a). Thus, Eq. (20) does not give a continuous 
divergence-free regression velocity û around the interface cells. The velocity extrapolation schemes proposed by Tanguy 
et al. [27] and Palmore Jr and Desjardins [30] have the potential to address this issue. In their method, the extrapolated 
velocity also needs to be projected onto its divergence-free part through iteration as done in Eq. (24) to ensure the mass 
conservation. Another mass conservative approach to evolve the interface is proposed by Malan et al. [35] in the geometrical 
VOF framework. In their method, the rotational-part velocity ū is constructed to evolve the VOF function. Because ū is 
divergence-free, the volume change is transferred to a source term of the VOF function (i.e., ∂ψ/∂t +∇ · (ψ ū) = Ṁ S�/V�/ρ ′) 
to ensure the mass conservation for phase-change problems. However, this approach cannot be applied to the CLSVOF 
method because the level-set function φ is not a conservative quantity. Therefore, in the present study, equation (24) is 
employed to calculate û for evolving the VOF and level-set functions.

To further demonstrate the accuracy of the proposed method, we conduct the simulation using different number of grid 
points ranging from 32 × 32 to 256 × 256 and compare the evolution of droplet diameter with the analytical solution in 
Fig. 10(a). It is seen that the numerical results convergence to the analytical solution as the grid is refined. To quantify the 
numerical accuracy, we define a numerical error E of the diameter as

E =
∣∣Dt

s − Dt
a

∣∣
Dt

a
, (51)

where the subscripts s and a denote simulation and analytical results, respectively. Fig. 10(b) depicts the numerical error at 
t = 2T and t = 3T . It is observed that the accuracy of the numerical solution is close to the second order, which remains 
the same as the accuracy of the interface capturing scheme [42].

For comparison purpose, we also implement the numerical method proposed in the geometric VOF framework by Malan 
et al. [35] into our CLSVOF framework. In their method, the governing equation for the phase change is also given by Eqs. (1)
and (2), and the governing equation of total velocity u is solved. To construct a divergence-free velocity ū, they compute 
a volume change velocity, which accounts for the anti-effect of phase change. The anti-effect velocity −ũ is obtained from 
solving an additional Poisson equation. By adding −ũ to the total velocity u, the divergence-free velocity ū (= u − ũ) for 
13



Fig. 9. Instantaneous droplet geometry at (a) t = 0.1T , (b) t = 0.5T , and (c) t = 1.0T by using Eq. (20) (red dash line) and Eq. (24) (black solid line) to 
compute the interfacial velocity u� , respectively. The interfacial mass transfer rate is prescribed to Ṁ = 1. The domain size is 4D0 × 4D0, discretized using 
256 × 256 grid points. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 10. Numerical results for the test case of a 2D droplet with constant evaporation rate using different number of grid points. (a) Temporal evolution 
of the droplet diameter. (b) The numerical error E as function of the number of grid points. The blue dots line and black squares line show the results at 
t = 2T and 3T , respectively. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

the whole domain is found. To evolve the interface, the loss of liquid volume is also transferred into a interface regression 
velocity û by Eq. (24). Thus, the interface can be transported by the interfacial velocity u� (=ū+û). For notational simplicity, 
we name this numerical strategy as S2 and the numerical strategy proposed in Sec. 2 as S1. For further illustration, a 
schematic diagram for these two strategies is shown in Fig. 11. It is seen that the main difference between these two 
strategies lies in the solver for the momentum equation. In the proposed strategy S1, the momentum equations are solved 
for the rotational part ū, which is divergence-free with ∇ · ū = 0. In strategy S2, the momentum equations are solved for 
the total velocity u, of which the divergence is determined by the mass change rate as ∇ · u = (1/ρv − 1/ρl) Ṁ S�/V� .

Fig. 12(a) compares the interface geometry obtained from S1 and S2. It is seen that the interface is distorted in an 
unphysical manner at t = 0.1T when S2 is adopted. On the contrary, the interface can evolve precisely by applying S1. 
The reason for the unsatisfactory interface propagation of S2 can be found by looking into the rotational-part velocity ū, 
of which the vectors obtained from the two strategies are compared in Fig. 12(b). Theoretically, the rotational-part velocity 
ūtheo for this specific test is zero since the flow is only driven by the phase change and this is satisfied by S1 as shown in 
the left half of Fig. 12(b). However, spurious velocity is observed in the right half of Fig. 12(b) when S2 is employed. This is 
because if the total velocity u is evolved directly without applying the decomposition, its numerical error Eu consists of the 
errors in both rotational and potential parts, which have nonlinear interactions with each other. As a result, the subtraction 
of ũ from the total velocity u does not fully eliminate the numerical error, i.e.,

ūnum = (u + Eu) − (ũ + E ũ) = ūtheo + (Eu − E ũ) �= ūtheo, (52)

because (Eu − E ũ) �= 0. The subscripts ‘num’ and ‘theo’ denote the numerical and theoretical values, respectively. This leads 
to the spurious velocity in ū. The numerical error in ū accumulates with simulation time and the level-set function is 
then transported in an unphysical manner when the magnitude in ū reaches a certain level. As a result, the interface 
propagates inaccurately and in return amplifies the numerical error. This observation is reasonable because the normal 
direction of the interface is acquired from the level-set function in our CLSVOF framework and the error in the interface 
M. Lu, Z. Yang and G. He Journal of Computational Physics 475 (2023) 111827
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Fig. 11. Diagram illustration of the overall procedure using different numerical strategies. S1 represents the numerical method using the velocity decompo-
sition method proposed in Sec. 2, while S2 employs the numerical algorithm proposed in the literature without velocity decomposition.

Fig. 12. Numerical results of S1 and S2 for the test case of 2D droplet with constant evaporation rate at t = 0.1T . (a) The interface position of S1 (black 
line) and S2 (red line). (b) Contours of the norm of the rotational-part velocity ū and the velocity vectors of ū given by S1 (left) and S2 (right). The velocity 
vectors are only shown in the lower half of the computational domain. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Fig. 13. Schematic diagram of the unphysical interface propagation induced by the numerical error in ū within the CLSVOF framework when S2 is employed 
for the phase-change problem.
15



M. Lu, Z. Yang and G. He Journal of Computational Physics 475 (2023) 111827
Fig. 14. Schematic diagram for the 1D (a) Stefan and (b) sucking problems. The solid wall is set for the left boundary while the liquid can leave freely from 
the right boundary. The vapor is generated at the interface and the saturation temperature θsat is fixed at the interface.

normal direction leads to the inaccurate interface propagation. A schematic diagram is shown in Fig. 13 to demonstrate this 
point. As shown, the interface should propagate along the normal direction if ū = 0. Nevertheless, due to the numerical 
error in the solution of the Poisson equation, the existing spurious velocity changes the normal direction of the interface. 
We note here that, unlike the CLSVOF framework, the shape of the interface is solely determined by VOF function in the 
geometric VOF framework. Although the level-set method can provide an accurate representation of the interface normal 
direction, the VOF method seems to be less sensitive to the error in the velocity direction, and as such the accurate interface 
representation is achieved by using the numerical method proposed by Malan et al. [35]. Therefore, in the framework of VOF 
method, the interface is more robust to the presence of spurious velocity. The advantages of different interface-capturing 
schemes are not the focus of the present study. The objective of present study is to develop an accurate phase-change model 
in the CLSVOF framework, and the results of this test case indicate that the velocity decomposition strategy is effective.

3.2. Phase change at saturation temperature

In this section, we further verify the coupling of temperature and momentum equations. The temperature at the interface 
θ� is fixed at the saturation temperature θsat . Thus, the interfacial mass transfer rate Ṁ is computed by Eq. (5). The vapor 
mass fraction is not considered in this section.

3.2.1. The Stefan and sucking problem
The Stefan problem is a benchmark test case to validate the phase-change model at the saturation temperature θsat . The 

problem setup is depicted in Fig. 14(a). Initially, the liquid phase is at rest at the saturation temperature θsat . A vapor layer 
is located between the liquid phase and the left wall. The temperature of the interface is fixed at θsat and the temperature 
of left wall is fixed at θwall (> θsat ). The thermal diffusivity of gas and Stefan number are αg = kg/ρgcp,g = 10 and St =
0.05, respectively. The outflow condition is set at the right-side boundary. Due to the temperature gradient between the 
heated wall and the interface, phase change takes place, causing the expansion of the vapor layer. The liquid leaves the 
computational domain at the right-side boundary. The analytical solution of the interface location at an arbitrary time t is 
given as

X�(t) = 2β
√

αgt, (53)

where β is the solution of the following transcendental equation

β exp(β2)erf(β) = St√
π

. (54)

The numerical results for different numbers of grid points are plotted in Fig. 15. It is seen that the numerical results agree 
with the analytical solution at all grid resolution under test.

In the above Stefan problem, only diffusion term of temperature equation is verified while the advection term is zero 
everywhere. To further examine the temperature solver, the sucking problem is tested. This case was previously studied by 
Welch and Wilson [20]. The setup of the sucking problem is shown in Fig. 14(b). The temperature of vapor and the left wall 
is fixed at θsat while the temperature of liquid θl is higher than the saturation temperature. The phase change takes place at 
the interface and the water is pushed out of the domain across the right-side boundary. The governing parameters for this 
problem are St = 0.2, αg = 1, αl = 0.2, γk = 2 and γρ = 10. The analytical solution of the interface position versus time for 
this problem is also given by Eq. (53), while β is given by the solution of a different transcendental equation as
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Fig. 15. Evolution of interface location for Stefan problem. The solid line represents the analytical solution. The thermal diffusivity of gas and Stefan number 
are αg = 10, St = 0.05, respectively. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 16. The evolution of interface location for sucking problem. The black line is the analytical solution. The governing parameters are St = 0.2, αg = 1, 
αl = 0.2, St = 0.2, γk = 2, and γρ = 10. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

exp(β2)erf(β)

⎡
⎣β −

Stγk
√

αg exp(−β2 αg

γρ
2αl

)

√
παlerfc(β

√
αg

γρ
√

αl
)

⎤
⎦ = 0. (55)

Fig. 16 compares the numerical results for different grid resolution with the analytical solution. It is seen that the numerical 
results converge to the analytical solution when the number of grid points approaches 256.

We note here that the numerical results obtained from S1 and S2 are close in the one-dimensional (1D) problems. 
This is because the orientation of the interface cannot be changed in 1D problems. Thus, both S1 and S2 can predict the 
evolution of the interface accurately, which indicates that the unsatisfactory results of S2 in Sec. 3.1 are mainly caused by 
the inaccurate prediction of the interface normal direction.

3.2.2. Evaporation of a 2D droplet at saturation temperature
Thus far, only 1D cases are tested for phase change at the saturation temperature θsat . To further verify the proposed 

phase-change model, we conduct a simulation of the evaporation of a 2D droplet. Initially, a droplet with the saturation 
temperature θsat is located at the centroid of the computational domain, surrounded by hot gas (θg > θsat ). The phase change 
is triggered by the normal temperature gradient at the interface. As such, the droplet is expected to evaporate steadily and 
the temperature of the gas θg near the droplet decreases with time. The computational domain and boundary condition 
for this problem remains the same as those for the prescribed evaporation rate problem in Sec. 3.1. The thermal diffusivity 
of gas and the density ratio are αg = 1 and γρ = 10, respectively. The temperature of the droplet is fixed to θsat and the 
temperature of the domain boundaries is θ∞ (> θsat ). We conduct three cases, in which the latent heat hlg varies, resulting 
in various values of the St number. The characteristic length scale and time scale are D0 and D0

2/αg , respectively. The 
simulation is conducted using 256 × 256 grid points.
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Fig. 17. Evolutions of drop diameter for different St number for the test case of 2D droplet evaporation at the saturation temperature θsat . The symbols 
are the results of the numerical simulation while the lines represent the analytical solutions. The governing parameters are αg = 1 and γρ = 10. The 
computational domain size is 4D0 × 4D0, discretized evenly by 256 × 256 grid points. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

Fig. 18. The geometry of the droplet interface at t=0.4T for the test case of 2D droplet evaporation at the saturation temperature θsat using numerical 
strategies of S1 (red solid line), S2 (yellow dash dot line), and the analytical solution (black dashed line), respectively. The governing parameters are 
St = 0.2, αg = 1, and γρ = 10. The computational domain is 4D0 × 4D0, discretized evenly by 256 × 256 grid points. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

Fig. 17 shows the numerical results for different St numbers. It is observed that the drop diameter decreases faster at a 
higher St number. This observation follows the D2 law and can be expressed analytically through the following equation

dD2

dt
= −8αg

γρ

ln(1 + St)

ln(L/
√

d2)
, (56)

where L is the length of the computational domain. The analytical solutions for different St numbers are also depicted in 
Fig. 17. It is evident that the numerical results agree with the analytical solution. The results shown in Sec. 3.2 indicate that 
the proposed model is accurate for phase change at the saturation temperature θsat while the mass fraction of vapor is not 
coupled.

We have also tested the performance of strategy S2 on the problem of droplet evaporation at saturation temperature 
θsat . The interface geometry at t = 0.4T is shown in Fig. 18. The numerical result based on S1 and the analytical result are 
superimposed for comparison. It is evident from the figure that S2 causes unphysical deformation of the droplet, while the 
result of S1 is close to the analytical solution. This test result indicates that S1 is more suitable than S2 for the present 
numerical framework.

3.3. Phase change below saturation temperature

In this section, we further consider the verification of the fully coupled system, in which the temperature is significantly 
lower than the saturation temperature θsat . The interfacial mass transfer rate Ṁ is mainly determined by the local gradient 
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Table 1
Physical properties of fluid system used in Sec. 3.3.1.

ρ μ cp κ M hlg σ θsat λ

(kg/m3) (Pa·s) (J/kg K) (W/m K) (kg/kmol) (J/kg) (N/m) (K) (m2/s)

Air 1.2 1.79 × 10−5 1006 0.026 29.0 2.33 × 106 7.2 × 10−4 373.15 2.33 × 10−5

Liquid 10 1.14 × 10−3 4186 0.006 18.0

of the vapor mass fraction at the interface as given by Eq. (7). The phase change takes place when the gradient of the 
vapor mass fraction is non-zero. The heat in both liquid and air phases is absorbed by the interface as a compensation 
of phase change, and the temperature at the interface decreases. The decrease in temperature further influences the vapor 
mass fraction at the interface (see Eqs. (8) and (9)), and thus the momentum, heat and mass transfers are fully coupled.

3.3.1. Evaporation of a 2D droplet below saturation temperature
In this test case, the evaporation of a 2D liquid droplet below the saturation temperature θsat is simulated. The compu-

tational domain of this test case remains the same as that shown in Fig. 7, and Nx × N y = 256 × 256 grid points are used 
for discretization. The Dirichlet boundary condition is set for both temperature θ and vapor mass fraction Y , and the out-
flow condition is employed for the velocity u at the four boundaries. Initially, the temperature of the entire computational 
domain is the dry bulb temperature θdb = 313 K. The temperature at the boundaries is also fixed at θ∞ = 313 K. The vapor 
mass fraction at the domain boundaries Y∞ is a function of relative humidity of air � and dry bulb temperature θdb . The 
relative humidity is set to � = 50% in this test case, resulting a vapor mass fraction of Y∞ = 2.28 × 10−2 at the boundary. 
The vapor mass fraction of gas is set to Y g = 2.28 × 10−2 for the initial condition. The vapor mass fraction at the interface 
Y� varies according to the interface temperature θ� . The specific value is computed by Eq. (8), and θ� is set as the Dirichlet 
boundary condition at the interface using the method mentioned in Irfan and Muradoglu [18]. The vapor mass fraction in 
the liquid phase Yl is not considered and thus imposes no impact on the simulation. The physical properties are listed in 
Table 1, which remain the same as the test cases by Irfan and Muradoglu [18] and Zhao et al. [37]. The length scale and 
time scale for this problem are D0 and D0

2/λ, respectively. The phase change takes place when the vapor mass fraction 
in the gas Y g is lower than that at the interface Y� . During the evaporation, the temperature at the interface θ� decreases 
due to the heat loss associated with the phase change until the wet bulb temperature θwb is attained. Theoretically, the wet 
bulb temperature θwb is also a function of dry bulb temperature θdb and the relative humidity in the air �, and can be read 
from the psychrometric chart.

Fig. 19 shows the successive snapshots of the temperature and vapor mass fraction fields. It is seen that the vapor mass 
fraction Y decreases along with the decrease of the temperature θ . The temperature profile along the center line of the 
computational domain in the x-direction is shown in Fig. 20. It is seen that the temperature θ inside the droplet almost 
reaches the wet bulb temperature θwb at t = 22T , which is consistent with the results of Zhao et al. [37]. To further validate 
our solver, we compare the wet bulb temperature θwb under different conditions with the data read from the psychrometric
chart in Fig. 21. It is seen that the numerical results agree with the data given by the chart. The test results shown in this 
section indicate that the numerical method proposed in Sec. 2 is also accurate for a fully coupled system.

We have also tested the capability of S2 for simulating this case. The temperature contours, interface geometry, and 
the velocity vectors at t = 0.2T based on S1 and S2 are compared in Fig. 22. It is seen from Fig. 22(a) that the circular 
shape is better preserved by using S1, while the interface based on S2 is less satisfactory due to the spurious velocity of ū
shown in the right part of Fig. 22(b). Fig. 22(c) compares the velocity field of the Stephan flow. It is seen that the jump of 
ũ is well captured at the interface when S1 is employed, while the unsatisfactory interface geometry based on S2 leads to 
unexpected velocity vectors near the interface.

3.3.2. Falling of a 2D evaporating droplet under gravity
In this section, we consider a more general case in which the droplet is driven by the gravity during evaporation. Initially, 

the droplet is at rest and embedded in the dry air (Y g = 0), and the temperature of the whole computational domain is 
set as dry bulb temperature θdb (= 371 K). The droplet falls down and meanwhile, the phase change occurs due to the 
vapor mass fraction gradient between the droplet interface and the surrounding dry air. The heat of both liquid and air is 
absorbed by the interface as a compensation of the phase change, and as a result, the temperature around the interface 
decreases during the droplet falling. The size of the computational domain is Lx × L y = 4D0 × 16D0, discretized using 
Nx × N y = 128 × 512 grid points. To present the results, the origin of the coordinate is located at the left bottom corner of 
the computational domain, and the droplet is released at (x, y) = (2D0, 14.4D0). The physical properties are listed in Table 2.

Table 2
Physical properties of fluid system used in Sec. 3.3.2.

ρ μ cp κ M hlg σ θsat λ

(kg/m3) (Pa·s) (J/kg K) (W/m K) (kg/kmol) (J/kg) (N/m) (K) (m2/s)

Air 2 3.88 × 10−6 1006 0.026 29.0 2.4 × 106 1.0 × 10−5 373.15 1.94 × 10−6

Liquid 10 7.75 × 10−5 4186 0.006 18.0
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Fig. 19. Instantaneous geometry of a droplet and contours of temperature θ and vapor mass fraction Y during the simulation of the evaporation below the 
saturation temperature θsat at (a) t = 1T , (b) t = 5T , (c) t = 13T and (d) t = 22T . The temperature contours are partially plotted on the left and the vapor 
mass fraction contours are shown on the right side of the figures. The interface is represented by a white solid line. The dry bulb temperature and the 
relative humidity are θdb = 313 K and � = 50%, respectively. The computational domain size is 4D0 × 4D0, discretized evenly by 256 × 256 grid points. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 23 shows successive snapshots of the droplet position, temperature and the vapor mass fraction fields. It is seen that 
the temperature inside the droplet decreases with time and a low temperature zone is formed in the wake of the droplet. 
Meanwhile, the vapor mass aggregates in the wake of the droplet and two “tails” are observed in both the vapor mass 
fraction and temperature fields, an observation that is consistent with Irfan and Muradoglu [18]. To further quantify the 
motion of the droplet, we extract the coordinates of the droplet bottom and show the evolution of its position in Fig. 25. 
The results are compared with the results of Irfan and Muradoglu [18] and Zhao et al. [37]. It is observed that the droplet 
position is lower than that reported in Irfan and Muradoglu [18] and is higher than that given by Zhao et al. [37]. The 
difference in the evolution of the droplet position can be attributed to the numerical strategies. The interface capturing 
scheme is the front-tracking method in Irfan and Muradoglu [18], while the VOF method is employed by Zhao et al. [37]. 
Besides, the work of Zhao et al. [37] is based on the finite-volume method within a 2D axis-symmetric framework,while 
both Irfan and Muradoglu [18] and the present study are based on the finite-difference method in a 2D Cartesian domain. 
We note that the advantages of difference numerical schemes are not the focus of this study. The main objective of this plot 
is to show that our numerical results based on the velocity decomposition method are reasonable.

We have also simulated this case using strategy S2, in which the velocity decomposition is not utilized. Fig. 24 shows 
successive snapshots of the droplet position, temperature and the vapor mass fraction field. It is seen that the interface 
evolves steadily with the temperature and vapor mass fraction being reasonably resolved. To further quantify the difference 
of the results between S1 and S2, the evolution of the droplet position of S2 is superimposed in Fig. 25. It is found 
that numerical result of S2 is closer to the result of Irfan and Muradoglu [18], which is reasonable since the velocity 
decomposition is also not used in the work of Irfan and Muradoglu [18]. This test result also indicates that the numerical 
simulation can evolve robustly when the droplet motion is dominated by an external force. This is because the magnitude 
of the velocity induced by the external force is greater than the spurious velocity, the normal vector of the interface is not 
distorted significantly in this case.
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Fig. 20. Evolution of temperature distribution along the horizontal line at y = 2D0 for the test case of 2D droplet evaporation below the saturation 
temperature θsat . Two red dashed lines are the dry bulb temperature θdb (top) and the wet bulb θwb temperature (bottom), respectively. The dry bulb 
temperature, wet bulb temperature and the relative humidity are θdb = 313 K, θdb = 303.23 K, θwb = 303.23 K, and � = 50%, respectively. The domain size 
is 4D0 × 4D0, discretized using 256 × 256 grid points. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Fig. 21. Wet bulb temperature θwb corresponding to different relative humidity � and dry bulb temperature θdb . The relative humidity � ranges from 10%
to 90% and the dry bulb temperature θdb is either 313 K or 283 K in different test cases. The psychometric chart data is represented by the black solid 
lines. The computational domain size is 4D0 × 4D0, discretized using 256 × 256 grid points. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

Fig. 22. Numerical results of S1 (left) and S2 (right) for test case of droplet evaporation below the saturated temperature θsat at t = 0.2T . (a) The geometry 
of the droplet, contours of temperature and vapor mass fraction; (b) The velocity vector of rotational-part velocity ū; (c) The velocity vector of ũ of Stephan
flow. The dry bulb temperature and relative humidity are θdb = 313 K and � = 10%, respectively. The computational domain size is 4D0 × 4D0, discretized 
using 256 × 256 grid points. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 23. Instantaneous geometry of a moving droplet (white line) and the corresponding contours of temperature (left) and vapor mass fraction (right) 
obtained from strategy S1 at (a) t = 1T , (b) t = 4T , (c) t = 7T and (d) t = 11T . The non-dimensional parameters are Re = 28.82, W e = 2.5, F r = 1.0, 
Sc = 1.0, Pr = 0.15, γρ = 5 and γμ = 20. The computational domain size is 4D0 × 16D0, discretized using 128 × 512 grid points. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

3.4. Falling of 3D evaporating droplets under gravity

3.4.1. Falling of a 3D droplet with constant evaporation rate
Before the validation of the fully coupled system in a 3D domain, we validate our method by testing a falling droplet with 

a constant evaporation rate. The computational domain size for this case is Lx × L y × Lz = 4D0 ×8D0 ×4D0, discretized using 
Nx × N y × Nz = 128 × 256 × 128 grid points. The droplet is released from (x, y, z) = (2D0, 7.2D0, 2D0). Other parameters 
for the momentum solver, including the physical properties η, initial condition and boundary condition remain the same 
as that for the test case in Sec. 3.3.2. The mass transfer rate Ṁ is fixed at 1.05, but it is set to 0 before the bottom of the 
droplet reaches Y = 5.7D0 to generate an initial velocity field. Then, the velocity and interface position at that time are set 
as the initial condition for the following evaporation simulations. The objective for this case is to test if S1 and S2 are both 
robust with a high evaporation rate in the problems with gravity.

The evolution of the interface geometries obtained from S1 and S2 are shown in Figs. 26. It is seen from Fig. 26(a) that 
the evolution of the droplet is reasonable when S1 is employed, while the interface in the results of S2 is unsatisfactory as 
shown in Fig. 26(b). This is because the numerical errors in ū are more significant when S2 is utilized. The error-induced 
spurious velocity is not negligible compared with the velocity caused by gravity and thus alters the normal direction of 
the interface. As a consequence, the interface evolves in an unphysical manner. Fig. 27 compares the evolution of droplet 
volume V in S1 and S2. The analytical solution of a stationary spherical droplet with the same Ṁ is superimposed for 
comparison. It is seen that the evolution of the droplet volume obtained from S1 is close to the analytical solution of the 
stationary spherical droplet case. The slightly faster loss of volume in S1 than the analytical solution is reasonable because 
the interface area for a moving droplet is larger than the spherical droplet, and thus a moving droplet evaporates faster. 
However, the numerical result from S2 is undesirable, the volume is reduced too fast due to the undesirable interface 
geometry shown in Fig. 26(b).

We have also tested the time consuming for calculating û based on this case. If we set the same relative tolerance for 
all Poisson equations to O (10−6), it takes 110 steps for the two Poisson equations in the momentum solver (Eq. (18)) to 
converge, while 130 steps are needed for another two (Eqs. (13) and (24)) to converge, and thus solving Eq. (24) occupies 
approximately 27% of the overall simulation cost. However, based on our test, the tolerance for Eq. (24) is not required to 
be as small as those for other Poisson equations, because û only accounts for the mass conservation, but does not directly 
participate in the evolution of the momentum equation. If we further reduce the tolerance for Eq. (24) to O (10−2), the 
volume at the end of the simulation only changes 0.000321%, while the iteration step required for Eq. (24) decreases to 
approximately 75, which occupies 17.6% of the simulation cost.
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Fig. 24. The geometry of a moving droplet (white line) and the corresponding contours of temperature (left) and vapor mass fraction (right) obtained from 
S2 at (a) t = 1T , (b) t = 4T , (c) t = 7T and (d) t = 11T . The non-dimensional parameters are Re = 28.82, W e = 2.5, F r = 1.0, Sc = 1.0, Pr = 0.15, γρ = 5
and γμ = 20. The computational domain size is 4D0 × 16D0, discretized using 128 × 512 grid points. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

Fig. 25. Evolution of bottom position of droplet for test case of a 2D droplet evaporation under gravity. The blue solid line and the yellow dashed line are 
the numerical solutions of S1 and S2, respectively. The black triangles and the red dots are the numerical results in the literature. The non-dimensional 
parameters are Re = 28.82, W e = 2.5, F r = 1.0, Sc = 1.0, Pr = 0.15, γρ = 5 and γμ = 20. The computational domain size is 4D0 × 16D0, discretized using 
128 × 512 grid points. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3.4.2. Falling of a 3D evaporating droplet below saturation temperature
Finally, we validate our method in the fully coupled system by testing the interaction of two falling droplets with phase 

change in a 3D domain. The computational domain size is Lx × L y × Lz = 6D0 × 16D0 × 4D0, discretized using Nx × N y ×
Nz = 192 × 512 × 128 grid points. The two droplets are released simultaneously at (x1, y1, z1) = (2D0, 14.4D0, 2D0) and 
(x2, y2, z2) = (4D0, 14.4D0, 2D0), respectively. Other parameters, including the physical properties η, initial condition and 
boundary condition remain the same as that for the test case in Sec. 3.3.2. The successive snapshots of the temperature 
θ and vapor mass fraction Y are shown in Figs. 28 and 29, respectively. It is seen that the deformation of the droplets is 
less significant than that in the 2D case, though the fluid properties remain completely the same. As a consequence, the 
structures of temperature and vapor fields in the wake of the droplet are different from the results in the 2D case. This is 
similar to the numerical results of a 2D axis-symmetric droplet by Zhao et al. [37], which is closer to the 3D result than 
the 2D Cartesian framework. It is also found that the distance between two droplets increases as they fall down. This is 
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Fig. 26. Interface geometries of a falling three-dimensional evaporating droplet at different time instants obtained from using (a) S1 and (b) S2. The non-
dimensional parameters are Re = 28.82, W e = 2.5, F r = 1.0, γρ = 5 and γμ = 20. The computational domain size is 4D0 × 8D0 × 4D0, discretized using 
128 × 256 × 128 grid points.

Fig. 27. Evolution of the droplet volume obtained from using S1 and S2. The analytical solution of a stationary sphere droplet with the Ṁ = 1.05 is 
superimposed for comparison. The non-dimensional parameters are Re = 28.82, W e = 2.5, F r = 1.0, γρ = 5 and γμ = 20. The computational domain size 
is 4D0 ×8D0 ×4D0, discretized using 128 ×256 ×128 grid points. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

evident from the trajectories of the two droplets depicted in Fig. 30(a). The separation of two droplets is also observed in 
the 2D work of Irfan and Muradoglu [18]. We also depict the evolution of the mass of liquid m in Fig. 30(b), it is seen that 
originally the mass of liquid is M0 and it decreases drastically at the early stage of the simulation, and after t = 1T the 
mass is lost at a constant rate approximately.

4. Conclusion

In this paper, we have proposed a new phase-change model for the numerical simulation of evaporation within the 
CLSVOF framework. The basic idea is to construct a smooth interfacial velocity u� by decoupling the effect of phase change 
from the total velocity u. However, unlike in the geometric VOF framework, the interface capturing scheme (CLSVOF method) 
adopted in our solver is more sensitive to the numerical error. Unsatisfactory numerical results are observed in the case of 
the evaporation of a stationary droplet if we simply implement the method of Malan et al. [35]. To address the issue, the 
velocity in the proposed method is decomposed into a potential part induced solely by the mass source corresponding to 
the phase change and the residual rotational part. The potential velocity ũ is computed by solving a Poisson equation. The 
rotational-part velocity ū is governed by the modified momentum equation and solved using the NS-equation solver CAS-
Tank developed in our previous study. Besides, by shifting the source points to the vicinity of the interface, a continuous 
interfacial velocity u� is constructed at the cells with liquid-gas interfaces. Thus, the velocity jump at the interface is avoided 
and the interface propagates accurately with mass conserved.
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Fig. 28. Contours of temperature in the middle slice and the geometry of the droplet for the 3D droplets evaporation case at (a) t = 1T , (b) t = 4T , (c) 
t = 7T , (d) t = 10T . The non-dimensional parameters are Re = 28.82, W e = 2.5, F r = 1.0, Sc = 1.0, Pr = 0.15, γρ = 5 and γμ = 20. The computational 
domain size is 4D0 × 16D0, discretized using 128 × 512 grid points. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Fig. 29. Contours of vapor in the middle slice and the geometry of the droplet for the 3D droplets evaporation case at (a) t = 1T , (b) t = 4T , (c) t = 7T , (d) 
t = 10T . The non-dimensional parameters are Re = 28.82, W e = 2.5, F r = 1.0, Sc = 1.0, Pr = 0.15, γρ = 5 and γμ = 20. The computational domain size 
is 4D0 × 16D0, discretized using 128 × 512 grid points. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

The proposed method is first tested by simulating a 2D droplet with constant evaporation rate. This test decouples the 
effect of the transport of temperature and vapor mass fraction on the interface evolution. The numerical results show that 
the evolution of droplet diameter converges to the analytical solution as the grid is refined. It is also found that the accuracy 
of the proposed method is close to the second order. After this test, a 1D Stefan problem and a 1D sucking problem are 
simulated to verify the coupling of the transport equations of momentum and temperature. The numerical results converge 
to the analytical solution as the grid is refined in both test cases. A further test of the droplet evaporation at saturation 
temperature θsat is conducted in a 2D domain. We compare the numerical results with the analytical solution for different 
St numbers and found that the numerical results are in agreement with the analytical solutions. The verification is finished 
by simulating the evaporation of a 2D droplet below the saturation temperature. In this test case, the transport equations 
of momentum, temperature and vapor mass fraction are fully coupled. The wet bulb temperature θwb when the simulation 
reaches a steady state agrees with the data read from the psychometric chart under different conditions. Finally, we validate 
the proposed method by simulating the falling of evaporating droplets in both 2D and 3D domains. The evolution of the 2D
droplet position is in general consistent with the results in the literature. The capability of the proposed method to perform 
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Fig. 30. Numerical results for the test case of 3D evaporating droplets under the gravity. (a) The trajectories of the centroid of the droplets at X O Y plane. 
The blue dash dot line represents the trajectory of the left droplet and the red dash line is the trajectory of the right one. The two gray vertical straight 
lines are employed to demarcate the distance between the two droplets and its original position in x-direction. (b) Evolution of the total mass of liquid. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3D simulations is validated by simulating the falling of two evaporating droplets. It is observed that the two droplets 
separate from each other gradually as they fall down, which is also consistent with the observation in a 2D work in the 
literature.

In summary, the present study proposes a new method to implement the phase-change model into the CLSVOF frame-
work. Specifically, there are two key treatments for ensuring numerical accuracy. The first treatment is to decompose the 
total velocity into a potential part and a rotational part, and solve them separately to eliminate the nonlinear interac-
tion between the errors in these two parts. This treatment reduces the spurious velocity in rotational part velocity, which 
is crucial for accurate interface propagation in the CLSVOF framework. The second treatment is to reallocate the source 
into the liquid phase to calculate the interface regression velocity. This treatment ensures the mass conservation of the 
present phase-change model in the CLSVOF framework with the source term being sharply distributed in the interface 
cells.

CRediT authorship contribution statement

Min Lu: Formal analysis, Investigation, Methodology, Software, Validation, Writing – original draft. Zixuan Yang: Concep-
tualization, Project administration, Supervision, Writing – review & editing. Guowei He: Conceptualization, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This research is supported by the National Natural Science Foundation of China (NSFC) Basic Science Center Program for 
‘Multiscale Problems in Nonlinear Mechanics’ (No. 11988102), NSFC project (No. 11972038), and Strategic Priority Research 
Program (Grant No. XDB22040104).

References

[1] Z. Yang, M. Lu, S. Wang, A robust solver for incompressible high-Reynolds-number two-fluid flows with high density contrast, J. Comput. Phys. 441 
(2021) 110474.
26

http://refhub.elsevier.com/S0021-9991(22)00890-7/bib8E1506AF83A2C5B412072BB034B7993Ds1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib8E1506AF83A2C5B412072BB034B7993Ds1


M. Lu, Z. Yang and G. He Journal of Computational Physics 475 (2023) 111827
[2] S. Subramaniam, Lagrangian–Eulerian methods for multiphase flows, Prog. Energy Combust. Sci. 39 (2013) 215–245.
[3] I. Senocak, W. Shyy, A pressure-based method for turbulent cavitating flow computations, J. Comput. Phys. 176 (2002) 363–383.
[4] T. Liu, B. Khoo, W. Xie, Isentropic one-fluid modelling of unsteady cavitating flow, J. Comput. Phys. 201 (2004) 80–108.
[5] S.O. Unverdi, G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys. 100 (1992) 25–37.
[6] J. Glimm, J.W. Grove, X.L. Li, K.-M. Shyue, Y. Zeng, Q. Zhang, Three-dimensional front tracking, SIAM J. Sci. Comput. 19 (1998) 703–727.
[7] G. Tryggvason, A. Esmaeeli, N. Al-Rawahi, Direct numerical simulations of flows with phase change, Comput. Struct. 83 (2005) 445–453.
[8] R. Scardovelli, S. Zaleski, Direct numerical simulation of free-surface and interfacial flow, Annu. Rev. Fluid Mech. 31 (1999) 567–603.
[9] M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys. 114 (1994) 146–159.

[10] Y. Zeng, A. Xuan, J. Blaschke, L. Shen, A parallel cell-centered adaptive level set framework for efficient simulation of two-phase flows with subcycling 
and non-subcycling, J. Comput. Phys. 448 (2022) 110740.

[11] Y. Zeng, Numerical Simulations of the Two-phase flow and Fluid-Structure Interaction Problems with Adaptive Mesh Refinement, Ph.D. thesis, University 
of Minnesota, 2022.

[12] M. Theillard, F. Gibou, D. Saintillan, Sharp numerical simulation of incompressible two-phase flows, J. Comput. Phys. 391 (2019) 91–118.
[13] C.R. Kharangate, I. Mudawar, Review of computational studies on boiling and condensation, Int. J. Heat Mass Transf. 108 (2017) 1164–1196.
[14] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, Y.-J. Jan, A front-tracking method for the computations of 

multiphase flow, J. Comput. Phys. 169 (2001) 708–759.
[15] D. Juric, G. Tryggvason, Computations of boiling flows, Int. J. Multiph. Flow 24 (1998) 387–410.
[16] A. Esmaeeli, G. Tryggvason, Computations of film boiling. Part I: numerical method, Int. J. Heat Mass Transf. 47 (2004) 5451–5461.
[17] A. Esmaeeli, G. Tryggvason, Computations of film boiling. Part II: multi-mode film boiling, Int. J. Heat Mass Transf. 47 (2004) 5463–5476.
[18] M. Irfan, M. Muradoglu, A front tracking method for direct numerical simulation of evaporation process in a multiphase system, J. Comput. Phys. 337 

(2017) 132–153.
[19] G. Son, V.K. Dhir, Numerical simulation of film boiling near critical pressures with a level set method, J. Heat Transf. 120 (1998) 183–192.
[20] S.W.J. Welch, J. Wilson, A volume of fluid based method for fluid flows with phase change, J. Comput. Phys. 160 (2000) 662–682.
[21] J. Schlottke, B. Weigand, Direct numerical simulation of evaporating droplets, J. Comput. Phys. 227 (2008) 5215–5237.
[22] Y. Sato, B. Niceno, Nucleate pool boiling simulations using the interface tracking method: boiling regime from discrete bubble to vapor mushroom 

region, Int. J. Heat Mass Transf. 105 (2017) 505–524.
[23] D.Q. Nguyen, R.P. Fedkiw, M. Kang, A boundary condition capturing method for incompressible flame discontinuities, J. Comput. Phys. 172 (2001) 

71–98.
[24] R.P. Fedkiw, T. Aslam, B. Merriman, S. Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. 

Comput. Phys. 152 (1999) 457–492.
[25] F. Gibou, L. Chen, D. Nguyen, S. Banerjee, A level set based sharp interface method for the multiphase incompressible Navier–Stokes equations with 

phase change, J. Comput. Phys. 222 (2007) 536–555.
[26] F. Gibou, R. Fedkiw, R. Caflisch, S. Osher, A level set approach for the numerical simulation of dendritic growth, J. Sci. Comput. 19 (2003) 183–199.
[27] S. Tanguy, T. Ménard, A. Berlemont, A level set method for vaporizing two-phase flows, J. Comput. Phys. 221 (2007) 837–853.
[28] L.R. Villegas, R. Alis, M. Lepilliez, S. Tanguy, A ghost fluid/level set method for boiling flows and liquid evaporation: application to the leidenfrost effect, 

J. Comput. Phys. 316 (2016) 789–813.
[29] G. Sahut, G. Ghigliotti, G. Balarac, M. Bernard, V. Moureau, P. Marty, Numerical simulation of boiling on unstructured grids, J. Comput. Phys. 432 (2021) 

110161.
[30] J. Palmore Jr, O. Desjardins, A volume of fluid framework for interface-resolved simulations of vaporizing liquid-gas flows, J. Comput. Phys. 399 (2019) 

108954.
[31] E. Bayat, R. Egan, D. Bochkov, A. Sauret, F. Gibou, A sharp numerical method for the simulation of Stefan problems with convective effects, J. Comput. 

Phys. (2022) 111627.
[32] A. Guittet, M. Lepilliez, S. Tanguy, F. Gibou, Solving elliptic problems with discontinuities on irregular domains–the Voronoi interface method, J. Comput. 

Phys. 298 (2015) 747–765.
[33] D. Bochkov, F. Gibou, Solving elliptic interface problems with jump conditions on cartesian grids, J. Comput. Phys. 407 (2020) 109269.
[34] R. Egan, F. Gibou, xgfm: recovering convergence of fluxes in the ghost fluid method, J. Comput. Phys. 409 (2020) 109351.
[35] L.C. Malan, A.G. Malan, S. Zaleski, P.G. Rousseau, A geometric VOF method for interface resolved phase change and conservative thermal energy 

advection, J. Comput. Phys. 426 (2021) 109920.
[36] N. Scapin, P. Costa, L. Brandt, A volume-of-fluid method for interface-resolved simulations of phase-changing two-fluid flows, J. Comput. Phys. 407 

(2020) 109251.
[37] S. Zhao, J. Zhang, M.-J. Ni, Boiling and evaporation model for liquid-gas flows: a sharp and conservative method based on the geometrical VOF approach, 

J. Comput. Phys. 452 (2022) 110908.
[38] L.G. Martinez, B. Duret, J. Reveillon, F. Demoulin, A new DNS formalism dedicated to turbulent two-phase flows with phase change, Int. J. Multiph. 

Flow 143 (2021) 103762.
[39] P. Ferrant, L. Gentaz, B. Alessandrini, D. Le Touzé, E.C. de Nantes, A potential/RANSE approach for regular water wave diffraction about 2-d structures, 

Ship Technol. Res. 50 (2003) 165–171.
[40] K. Kim, A.I. Sirviente, R.F. Beck, The complementary RANS equations for the simulation of viscous flows, Int. J. Numer. Methods Fluids 48 (2005) 

199–229.
[41] Z. Li, B. Bouscasse, G. Ducrozet, L. Gentaz, D. Le Touzé, P. Ferrant, Spectral wave explicit Navier-Stokes equations for wave-structure interactions using 

two-phase computational fluid dynamics solvers, Ocean Eng. 221 (2021) 108513.
[42] M. Sussman, A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles, J. Comput. Phys. 187 

(2003) 110–136.
[43] T.D. Aslam, A partial differential equation approach to multidimensional extrapolation, J. Comput. Phys. 193 (2004) 349–355.
[44] D. Bochkov, F. Gibou, Pde-based multidimensional extrapolation of scalar fields over interfaces with kinks and high curvatures, SIAM J. Sci. Comput. 42 

(2020) A2344–A2359.
[45] D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, S. Zaleski, Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional 

flows, J. Comput. Phys. 152 (1999) 423–456.
[46] R. Scardovelli, S. Zaleski, Analytical relations connecting linear interfaces and volume fractions in rectangular grids, J. Comput. Phys. 164 (2000) 

228–237.
[47] G.Y. Soh, G.H. Yeoh, V. Timchenko, An algorithm to calculate interfacial area for multiphase mass transfer through the volume-of-fluid method, Int. J. 

Heat Mass Transf. 100 (2016) 573–581.
[48] G. Tryggvason, R. Scardovelli, S. Zaleski, Direct Numerical Simulations of Gas–Liquid Multiphase Flows, Cambridge University Press, 2011.
[49] Y. Zeng, A.P.S. Bhalla, L. Shen, A subcycling/non-subcycling time advancement scheme-based DLM immersed boundary method framework for solving 

single and multiphase fluid–structure interaction problems on dynamically adaptive grids, Comput. Fluids 238 (2022) 105358.
27

http://refhub.elsevier.com/S0021-9991(22)00890-7/bib2CC62026854053A47120D27A4E7DEF31s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib1307DB0A7ECC2C95BC3828807A390DCFs1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib41E4843AB6F55A734053CA6887620760s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib432CE66590E5569954A0AC35CF40B6BFs1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib0F229ED7552A90700C3B5D671E602525s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib49D64AFD8C3C363F68F41514123004A5s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib48C3B98D8324585D43C91E6F48211871s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibA6010F7F4F676F8948F7C4A053E9C3F7s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibC9B4BC25959F58D14261A56F0070FE93s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibC9B4BC25959F58D14261A56F0070FE93s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibC4C504DAD8A309A1236BD8E1EABBD56Ds1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibC4C504DAD8A309A1236BD8E1EABBD56Ds1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibF5B1680AB17986DFE841DDE339ACA538s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibA0E9B26D25B3A343F005BCDC6D5604E8s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibBAB0306DFE89BF2C87D26F77C9FC7A54s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibBAB0306DFE89BF2C87D26F77C9FC7A54s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibD52EAF4CB29AED147D08B01B705D3B8Es1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibF468E8704CB617655C14EB601AAC68E1s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib0BC88BA837B7EB9AB914A7C922C58BE2s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib06EB8A9A5C66D0DCF7F81230040CF70Fs1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib06EB8A9A5C66D0DCF7F81230040CF70Fs1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib9FA1C41D0CBC331D70CCE45477A550D3s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib3199FF0A41FD0F5F60DA5A7A75F9DA55s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib57210CF9E893D507A62E8DAB40BC9C4Fs1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibAD7216F7C9E319A134BCE732892F21ABs1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibAD7216F7C9E319A134BCE732892F21ABs1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib1F54E92BEF48022F8277C670C3BCB2BFs1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib1F54E92BEF48022F8277C670C3BCB2BFs1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibD7A20885E39EF939402F03781B8BC5D1s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibD7A20885E39EF939402F03781B8BC5D1s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib9CD1E899804286D479673443F20D2477s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib9CD1E899804286D479673443F20D2477s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib39B075B71C8570E8E359EBBB67F0817Fs1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib5C6CB43608FD3109CB753F49AD77BED1s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibA2A7AFF241BB89E795BDA03145EAF5A1s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibA2A7AFF241BB89E795BDA03145EAF5A1s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib9BAC2CD0BEA69E0BD9067DB4DABD928Cs1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib9BAC2CD0BEA69E0BD9067DB4DABD928Cs1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibCC05D9590315990CEAC521A5220371C5s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibCC05D9590315990CEAC521A5220371C5s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibAD0214FB40FBEBE43EC1E170439E6E13s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibAD0214FB40FBEBE43EC1E170439E6E13s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib673A0CC8B519EA2C4F24BBC161DBB92Es1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib673A0CC8B519EA2C4F24BBC161DBB92Es1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib041730A14F0ED4CB2FAE684927A59495s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib67276747E40FBE7A08CD0903FB3B6BE0s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib45332C558C3E61CD448F4F0A8085E5B5s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib45332C558C3E61CD448F4F0A8085E5B5s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibB19C476FE295E5C8A418A2D7470FA80Es1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibB19C476FE295E5C8A418A2D7470FA80Es1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib5C4BCDFF5A1B3CEC5664E198D11CC155s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib5C4BCDFF5A1B3CEC5664E198D11CC155s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib9DC9A0C34B722757D68FF4C02CB12E2Es1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib9DC9A0C34B722757D68FF4C02CB12E2Es1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibE61D97103DFF7AA843167B1F206F5B3Cs1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibE61D97103DFF7AA843167B1F206F5B3Cs1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibDC62BFE6AF6BF206073B401843FFBB6Cs1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibDC62BFE6AF6BF206073B401843FFBB6Cs1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib241E026BEDBCCBA1A2E6CECAD6C587D1s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib241E026BEDBCCBA1A2E6CECAD6C587D1s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib0D379F3B051815572B8C71A0C7F8F70Cs1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib0D379F3B051815572B8C71A0C7F8F70Cs1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib6E13F1E00B54FD0E89D4F21681A7B1EFs1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibFDBE15A04BA7C460E9F79CEE2C646985s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibFDBE15A04BA7C460E9F79CEE2C646985s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib93E32604081FA78B38D725FFA9A4CA42s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib93E32604081FA78B38D725FFA9A4CA42s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib37AD385BBD532F57211BD89A142ACB39s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib37AD385BBD532F57211BD89A142ACB39s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib6D886E42567FF797B815643780A981D9s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib6D886E42567FF797B815643780A981D9s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibDECDABCDA3B909A216D465320D874D33s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibB883ACDF445985B5432B5F8CBFC110CEs1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibB883ACDF445985B5432B5F8CBFC110CEs1


M. Lu, Z. Yang and G. He Journal of Computational Physics 475 (2023) 111827
[50] J.K. Patel, G. Natarajan, A generic framework for design of interface capturing schemes for multi-fluid flows, Comput. Fluids 106 (2015) 108–118.
[51] M. Lu, Z. Yang, G. He, A robust scheme for numerical simulation of heat transfer in two-fluid flows with high volumetric heat capacity contrasts, Int. 

J. Numer. Methods Heat Fluid Flow (2022), https://doi .org /10 .1108 /HFF-05 -2022 -0296, in press.
[52] G.H. Shortley, R. Weller, The numerical solution of Laplace’s equation, J. Appl. Phys. 9 (1938) 334–348.
[53] F. Gibou, R. Fedkiw, A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan 

problem, J. Comput. Phys. 202 (2005) 577–601.
[54] S. Dong, G.E. Karniadakis, C. Chryssostomidis, A robust and accurate outflow boundary condition for incompressible flow simulations on severely-

truncated unbounded domains, J. Comput. Phys. 261 (2014) 83–105.
28

http://refhub.elsevier.com/S0021-9991(22)00890-7/bib918C09ECB68B9C3BA896B8481E221A62s1
https://doi.org/10.1108/HFF-05-2022-0296
http://refhub.elsevier.com/S0021-9991(22)00890-7/bibF5EE8373329F6484B9FBEB628CC3B400s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib6909D70E7CAD000B7C1080C696318A11s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib6909D70E7CAD000B7C1080C696318A11s1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib3251BE1FB58B481E41C7011438DCEC3Bs1
http://refhub.elsevier.com/S0021-9991(22)00890-7/bib3251BE1FB58B481E41C7011438DCEC3Bs1

	An interface-resolved phase-change model based on velocity decomposition
	1 Introduction
	2 Numerical method
	2.1 Governing equations
	2.2 Velocity decomposition
	2.3 Interface advancement
	2.4 Calculation of interfacial mass transfer rate and surface area
	2.5 Temporal and spatial discretization
	2.6 Boundary conditions and independent non-dimensional parameters
	2.7 Overall procedure

	3 Results
	3.1 2D droplet with constant evaporation rate
	3.2 Phase change at saturation temperature
	3.2.1 The Stefan and sucking problem
	3.2.2 Evaporation of a 2D droplet at saturation temperature

	3.3 Phase change below saturation temperature
	3.3.1 Evaporation of a 2D droplet below saturation temperature
	3.3.2 Falling of a 2D evaporating droplet under gravity

	3.4 Falling of 3D evaporating droplets under gravity
	3.4.1 Falling of a 3D droplet with constant evaporation rate
	3.4.2 Falling of a 3D evaporating droplet below saturation temperature


	4 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


