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a b s t r a c t

This paper proposes a common-weights weighted essentially non-oscillatory (Co-WENO)
scheme for solving the Euler equations of gas dynamics. Different from the usual
component-wise weighting methods, common-weights means that, on one global sten-
cil, a set of weights is commonly shared by the split flux vector of Euler equations in one
spatial dimension. The common-weights WENO scheme has two significant advantages.
First, since only one set of weights is calculated and used for the split flux vector, the
method has an improved computational efficiency. Second, for a stencil (or each cell
on the stencil), the Co-WENO scheme keeps the same contribution on each component
numerical flux in a hyperbolic system of equations. How to calculate the weights is one
of the vital issues in developing this kind of Co-WENO schemes.

In this paper, based on the flux vector split method, the product of density, pressure,
and the split flux of energy equation(Γ ±

= ρpf ±

E ) is proposed to calculate the common
weights. This is based on the following considerations: (1) the density jumps at shocks
and contact discontinuities; (2) the split energy flux contains the term of the third
power of the velocity (for example, u3) and makes the resulting scheme has upwind
characteristic; (3) the pressure always jumps at shocks, and it can help improve the
stability in high speed flows, in which the kinetic energy is much larger than the internal
energy. Numerical experiments also show that the proposed common-weights WENO
scheme has good robustness and low numerical dissipation, and it can help suppress
phase errors.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Essentially non-oscillatory (ENO) and weighted essentially non-oscillatory (WENO) schemes have been developed
or problems containing both discontinuities and piecewise smooth solutions. They have revolutionized the solution
f nonlinear hyperbolic conservation laws, particularly for the Euler equations, which are often used as an inviscid
pproximation of the Navier–Stokes equations [1,2].
WENO schemes are based on ENO schemes [3,4]. Instead of choosing the smoothest stencil from candidate stencils,

he WENO scheme uses a convex combination of all stencils. The WENO scheme was first proposed by Liu et al. [5] and
hen improved by Jiang and Shu [6]. After then, WENO schemes have been attracted a lot of attentions in CFD community.
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Balsara and Shu [7] extended the WENO schemes up to 11th-order of accuracy. Gerolymos et al. [5] further developed
very-high-order WENO schemes. Henrick et al. [8] derived the necessary and sufficient conditions on the weights for fifth-
order convergence of a fifth-order WENO scheme and proposed WENO-M scheme. Borges et al. [9] introduced a global
smoothness indicator of higher-order and constructed WENO-Z scheme. Castro et al. [10] developed higher-order WENO-Z
schemes. In order to obtain higher-order accuracy at critical points, various improved WENO-Z-type schemes [11–16]were
suggested in recent years. Different from improving the accuracy of fifth-order WENO schemes at critical points, Shen
et al. [17] developed a multistep WENO scheme to improve the accuracy at transition points. Ma et al. [18] and Zeng
et al. [19] further improved multistep WENO schemes.

When a WENO scheme is applied to solve hyperbolic systems of equations, the WENO implementation is usually
erformed to reconstruct each of the characteristic variables (and hence the projections between the characteristic fields
nd the component space are needed), or each of the conservative variables, or directly construct the numerical flux of
ach split flux of the equations. From the viewpoint of computational efficiency, the characteristic variable reconstruction
ethod is the most expensive one. In the early work of Jiang and Shu [6], to save the cost of computing the nonlinear
eights and local characteristic decompositions, Jiang and Shu suggested using pressure to calculate the weights in the
enuinely nonlinear characteristic fields and using entropy for the linearly degenerate fields. Numerical results showed
hat these replacements are effective at least for problems without strong shocks and reflective waves [6].

Compared to the characteristic variable reconstruction, the conservative variable reconstruction and the flux version
f WENO method are simpler and more efficient. However, the two latter methods for equations may generate some
purious numerical issues. Johnsen [20] found that, when a finite volume formulation with the Lax–Friedrichs solver is
sed to solve problems with contact discontinuities, velocity and pressure oscillations are induced when high-order WENO
econstruction is performed directly on the conservative variables. Johnsen’s analysis [20] showed that the weights used
o calculate the conservative variables (ρ, ρu, E) are different, so that the reconstructed density has a different value in
each equation and, as a result, an error is introduced in the velocity and pressure. To overcome these errors, the density
must be reconstructed consistently in the mass, momentum and energy equations.

He et al. [21] analyzed the finite difference WENO schemes with the flux vector splitting (FVS) method and showed that
he velocity and pressure oscillations near contact discontinuities are due to the incompatibility of the point-wise splitting
f eigenvalues in FVS and the inconsistency of component-wise nonlinear difference discretization among equations of
ass, momentum, energy, and even fluid compositions for multi-material flows. He et al. suggested combining a global
VS with a consistent discretization between different equations to suppress these oscillations. In the method of He et al.
irst, the smooth-factors for equations of mass and energy, and fluid compositions, but exclude the momentum equation,
re calculated; then, the equation with the maximal value of smooth-factors is selected to calculate one set of common
eights to weight all equations. The numerical results of He et al. and also our numerical results in this paper show that
he method of He et al. can suppress the velocity and pressure oscillations near contact discontinuities, but it cannot
liminate the density oscillations that may come from the intrinsic nonlinear mechanism of a WENO scheme [21,22], and
t is not so robust for some problems. In addition, since at least two smooth-factors are calculated, the method of He et al.
eems not time-saving.
The purpose of the present paper is to develop high efficiency and robustness common-weights WENO (Co-WENO)

scheme for Euler equations. First, since the global Lax–Friedrichs FVS is one of the most dissipative splitting methods [23],
our method is based on the Steger–Warming FVS [24]. Then, the product of density, pressure, and the split flux of energy
equation(Γ ±

= ρpf ±

E ) is proposed to calculate the common weights. This is based on the following considerations: (1)
the density jumps at shocks and contact discontinuities; (2) the split energy flux contains the term of the third power of
the velocity (for example, u3) and makes the resulting scheme has upwind characteristic; (3) the pressure always jumps
at shocks, and it can help improve the stability in high speed flows, in which the kinetic energy is much larger than the
internal energy. Since only one set of weights is calculated and used for all equations, the method has high computational
efficiency. Numerical experiments also show that the proposed common-weights WENO scheme has good robustness and
low numerical dissipation, and it can effectively suppress phase errors.

This article is organized as follows: Section 2 introduces the WENO schemes for scalar conservation law equation.
Section 3 presents the flux vector splitting methods and the common-weights WENO schemes for Euler equations,
including the present method. Numerical experiments of one- and two-dimensional Euler problems are presented in
Section 4. Conclusions are drawn in Section 5.

2. WENO schemes for scalar conservation law equation

For convenience, the one-dimensional scalar conservative law equation is used as a model to describe a numerical
method

∂u
∂t

+
∂ f (u)
∂x

= 0. (1)

The flux function f (u) can be split into two parts as f (u) = f +(u) + f −(u) with df +(u)/du ≥ 0 and df −(u)/du ≤ 0. By
efining the points xi = i∆x, (i = 0, . . . ,N), where ∆x is the uniform grid spacing, the semi-discrete of Eq. (1) can be
ritten as

dui
= −

f̂i+1/2 − f̂i−1/2
, (2)
dt ∆x
2
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where f̂i±1/2 = f̂ +

i±1/2+f̂ −

i±1/2 is the numerical flux. In this paper, only the positive part f̂ +

i+1/2 is described and the superscript
+’ is dropped for simplicity. The flux f̂ −

i+1/2 is evaluated following the symmetric rule about xi+1/2.

.1. The WENO-JS scheme

The numerical flux of a fifth-order WENO [6] scheme can be written as

f̂i+1/2 =

2∑
k=0

ωkqk, (3)

here qk is the third-order flux on the sub-stencil S3k = (i + k − 2, i + k − 1, i + k), and given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q0 =

1
3
fi−2 −

7
6
fi−1 +

11
6

fi,

q1 = −
1
6
fi−1 +

5
6
fi +

1
3
fi+1,

q2 =
1
3
fi +

5
6
fi+1 −

1
6
fi+2.

(4)

The weight ωk of Jiang and Shu [6] is calculated as

ωk =
αk

α0 + α1 + α2
, αk =

ck
(ISk + ϵ)2

, k = 0, 1, 2, (5)

where, ISk is called local smoothness indicator (LSI), which is used to measure the relative smoothness of a solution on
the sub-stencil Sk. Constants c0 = 0.1, c1 = 0.6 and c2 = 0.3 are the optimal weights, which generate the fifth-order
upstream scheme. The parameter ϵ is a positive real number introduced to avoid the denominator becoming zero, and
ϵ = 10−6 is suggested by Jiang and Shu [6].

In [6], Jiang and Shu proposed a classical local smoothness indicator (LSI) as

ISk =

r−1∑
l=1

∫ xi+1/2

xi−1/2

(∆x)2l−1(q(l)k )2dx, (6)

where, q(l)k is the lth order derivative of qk(x), and qk(x) is the interpolation polynomial on sub-stencil S3k .
For the fifth-order WENO scheme (r = 3), Eq. (6) gives⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

IS0 =
13
12

(fi−2 − 2fi−1 + fi)2 +
1
4
(fi−2 − 4fi−1 + 3fi)2,

IS1 =
13
12

(fi−1 − 2fi + fi+1)2 +
1
4
(fi−1 − fi+1)2,

IS2 =
13
12

(fi − 2fi+1 + fi+2)2 +
1
4
(3fi − 4fi+1 + fi+2)2.

(7)

There are many methods proposed to improve the performance of WENO-JS, for example, WENO-M [8] was proposed
y using a mapped function to increase the approximation of ωk to the optimal weights ck at critical points, WENO-Z [9]
as proposed by introducing a global smoothness indicator to calculate the weights and hence has less dissipation and
igher resolution than WENO-JS, Multi-step WENO [17] was constructed to improve the accuracy at transition points.

. Flux vector splitting methods and common-weights WENO schemes for Euler equations

The one-dimensional Euler equations are taken as an example to describe the WENO schemes for the governing
quations of gas dynamics,

∂U
∂t

+
∂F
∂x

= 0, (8)

U =

[
ρ

ρu
E

]
, F =

⎡⎣ ρu
ρu2

+ p
(E + p)u

⎤⎦ , (9)

nd the equation of state is

p = (γ − 1)(E −
1
ρu2), (10)
2
3
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where ρ, u, E and p are density, velocity, total energy and pressure, respectively, γ is the ratio of specific heat. By using
the conservative variable U = (u1, u2, u3)T , the flux F can be written as

F(U) =

⎡⎢⎢⎣
u2

(γ − 1)u3 +
3−γ

2
u22
u1

γ
u2u3
u1

−
γ−1
2

u32
u21

⎤⎥⎥⎦ . (11)

According to the hyperbolic character of the Euler system, there are

F = AU, A =
∂F
∂U

, A = RΛL, (12)

where, Λ is the diagonal matrix of the eigenvalues of the Jacobian matrix A, Λ = diag(λ1, λ2, λ3) = diag(u, u − c, u + c),
c =

√
γ p/ρ is the speed of sound, and R and L are the matrices of the right and left eigenvectors, respectively. For

onvenience, here we give the formulations of the matrices A, R and L,

A =

⎡⎣ 0 1 0
γ−3
2 u2 (3 − γ )u γ − 1

γ−1
2 u3

− uH H − (γ − 1)u2 γ u

⎤⎦ , R =

⎡⎣ 1 1 1
u u − c u + c

1
2u

2 H − uc H + uc

⎤⎦ ,

L = R−1
=

⎡⎢⎢⎣
1 −

γ−1
2c2

u2 γ−1
c2

u −
γ−1
c2

1
2

(
γ−1
2c2

u2
+

u
c

)
−

1
2

(
γ−1
c2

u +
1
c

)
γ−1
2c2

1
2

(
γ−1
2c2

u2
−

u
c

)
−

1
2

(
γ−1
c2

u −
1
c

)
γ−1
2c2

⎤⎥⎥⎦ ,

ith the enthalpy H = (E + p)/ρ.

.1. The flux vector splitting methods for Euler equations

The flux F can be split into positive and negative parts as F = F+
+ F−,

F±
= A±U, A±

= RΛ±L, (13)

here the eigenvalues matrices Λ+
= diag(λ+

1 , λ+

2 , λ+

3 ) and Λ−
= diag(λ−

1 , λ−

2 , λ−

3 ) with λ+

j ≥ 0, λ−

j ≤ 0(j = 1, 2, 3),
nd Λ = Λ+

+ Λ−.
The generalized formulations of the split fluxes can be written as

F±
=

⎡⎣f ±

1
f ±

2
f ±

3

⎤⎦ =
ρ

2γ

⎡⎣ 2(γ − 1)λ±

1 + λ±

2 + λ±

3
2(γ − 1)λ±

1 u + λ±

2 (u − c) + λ±

3 (u + c)

(γ − 1)λ±

1 u
2
+

λ±

2
2 (u − c)2 +

λ±

3
2 (u + c)2 + w

⎤⎦ , (14)

here,

w =
(3 − γ )(λ±

2 + λ±

3 )c
2

2(γ − 1)
.

There are many methods to carry out Eq. (13). For example, in the Steger–Warming (SW ) flux vector splitting
method [24], the eigenvalues are calculated as

λ±

j =
1
2
(λj ± |λj|), (15)

he global Lax–Friedrichs (GLF ) splitting method [25] takes

λ±

j =
1
2
(λj ± α), (16)

here α is the maximal eigenvalue over the whole computational domain.
Clearly, the global Lax–Friedrichs splitting method has a simple form as

F±
=

⎡⎣f ±

1
f ±

2
f ±

3

⎤⎦ =
1
2

⎡⎣ ρu ± αρ

ρu2
+ p ± αρu

(E + p)u ± αE

⎤⎦ . (17)

Similar to the scalar case, the semi-discrete form of Eq. (8) can be written as

dUl,i

dt
= −

f̂l,i+1/2 − f̂l,i−1/2

∆x
, (18)

nd f̂l,i±1/2 = f̂ +

l,i±1/2 + f̂ −

l,i±1/2. Traditionally, if a component-wise WENO scheme is applied, the numerical flux f̂l,i±1/2

specifically the weights ω ) is calculated independently by the lth component-wise flux f ±(l = 1, 2, 3).
l,k l

4
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3.2. The method of He et al. for solving contact discontinuities

He et al. [21] analyzed the finite difference WENO schemes with the flux vector splitting (FVS) method for the Euler
quations and showed that the velocity and pressure oscillations near contact discontinuities may be caused by either one
f the incompatibility of the point-wise splitting of eigenvalues in FVS and the inconsistency of component-wise nonlinear
ifference discretization among equations of mass, momentum, energy, and even fluid composition for multi-material
lows. Hence, He et al. suggested using the global Lax–Friedrichs FVS to avoid the incompatibility of the point-wise splitting
f eigenvalues in FVS, and developing common-weights methods to guarantee consistent discretization between different
quations.
In Ref. [21], the common weights of numerical fluxes f̂l,i+1/2(l = 1, 2, 3) are determined as follows:
(1) Split the flux F into positive and negative parts by using the global Lax–Friedrichs splitting method Eq. (17).
(2) Calculate the smoothness factor βl for the lth split flux (only the split fluxes of mass- and energy-equations are

suggested by He et al. hence, l takes only 1 and 3 for the 1D Euler equations).

βl =

∑2
k=0(ISk,l + ϵ)

min(IS0,l, . . . , IS2,l + ϵ)
, (19)

here ϵ is an adaptive number calculated by the primary ϵ-adaptivity technique [22],

ϵ =

⎧⎪⎨⎪⎩
ϵmax, τ5 ≤ Smin,

ϵmin, τ5 ≥ Smax,
ϵmin − ϵmax

Smax − Smin
(τ5 − Smin) + ϵmax, otherwise,

(20)

here ϵmin = 10−6, ϵmax = 10−2, Smin = 10−3, and Smax = 10−1. τ5 = |IS0,l − IS2,l| is the fifth-order global smoothness
ndicators introduced in WENO-Z schemes [9].

(3) Select the equation with the maximal value of βl (denoted with l0) and use its smoothness indicators ISk,l0 to
calculate the common weights ωk.

There are many methods to calculate the unnormalized nonlinear weights, the formulation of WENO-JS [6] is used
in [21]

αk =
ck

(ISk,l0 + ϵ)2
, k = 0, 1, 2. (21)

Using αk, one can obtain the normalized weights ωk Eq. (5). Then, the final weighted fluxes for all equations are
calculated as

f̂l,i+1/2 = ω0ql,0 + ω1ql,1 + ω2ql,2, l = 1, 2, 3, (22)

where, l denotes the lth equation in Euler system. ql,k (k = 0, 1, 2) is the kth candidate flux (see Eq. (4)) on the sub-stencil
S3k .

3.3. The new common-weights WENO scheme for Euler equations

The new method is motivated by the following analysis:
(1) As mentioned above, the method of He et al. needs to calculate two sets of smoothness indicators to estimate the

smooth factors and to select the final equation to calculate the common weights. If we can find one available variable
to calculate only one set of smoothness indicators and also the common weights, the computational efficiency can be
improved. Besides, there are several empirical parameters introduced in Eq. (20). This may result in the method cannot
work well for some problems. For example, since τ5 = |IS0,l − IS2,l| is related with the dimension of flux f , if different
reference values are used to nondimensionlize f , then those values of parameters Smin and Smax may become ineffective.

Moreover, from the formula of the total energy E

E =
p

γ − 1
+

1
2
ρu2,

t can be seen that, if p ≪ ρu2, there is

E ∼
1
2
ρu2.

Hence, applying the first or last equation of Eq. (17) to calculate the common weights may not reasonably reflect the
pressure jumps and possibly generate negative pressure. This may be part of the reasons for the decreased robustness of
traditional WENO schemes and also the method of He et al. for solving some extreme cases.

(2) The numerical results of He et al. and also our numerical results in this paper show that the method can suppress
the velocity and pressure oscillations near contact discontinuities, but it cannot eliminate the density oscillation that may
come from the intrinsic nonlinear mechanism of a WENO scheme [21,22].
5
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(3) Gressier et al. [26] proved that if a FVS scheme exactly preserves stationary contact discontinuities, then it cannot
e positively conservative.
(4) The global Lax–Friedrichs FVS is known to be the most diffusive [1].
Hence, in this paper, we focus on developing a robust common-weights WENO (Co-WENO) scheme for Euler equations

based on the Steger–Warming flux vector splitting method and find that the product of density, pressure, and the split
flux of energy equation can serve as the variable to calculate the common weights. This is also based on the following
considerations:

(1) the density jumps at shocks and contact discontinuities;
(2) the split energy flux contains the term of the third power of the velocity (for example, u3) and makes the resulting

scheme has the upwind characteristic;
(3) the pressure always jumps at shocks, and it can help improve the stability in high speed flows, in which the kinetic

energy is much larger than the internal energy.
That is, the serving variable is designed as

Γ ±(i) = ρ(i)p(i)f ±

E (i), (23)

where, f ±

E (i) is the split energy flux of Steger–Warming FVS method (for example, f ±

E (i) is f ±

3 (i) in Eq. (15) for 1D Euler
quations).
Here is the fifth-order Co-WENO algorithm for the 1D Euler equations:
(1) Split the flux vector by Eq. (14) and get

Γ ±(i) = ρ(i)p(i)f ±

E (i).

(2) Calculate the common weights (for brevity, only the positive part is given and the superscript ‘+’ is dropped)

IS0 =
13
12

(Γi−2 − 2Γi−1 + Γi)2 +
1
4
(Γi−2 − 4Γi−1 + 3Γi)2,

IS1 =
13
12

(Γi−1 − 2Γi + Γi+1)2 +
1
4
(Γi−1 − Γi+1)2,

IS2 =
13
12

(Γi − 2Γi+1 + Γi+2)2 +
1
4
(3Γi − 4Γi+1 + Γi+2)2,

αk =
ck

(ISk + ϵ)2
, k = 0, 1, 2, !WENO − JS

ωk =
αk

α0 + α1 + α2
, k = 0, 1, 2.

(3) Calculate the numerical fluxes

DO l = 1, 3 !for 1D Euler equations

q0 =
1
3
fl,i−2 −

7
6
fl,i−1 +

11
6

fl,i,

q1 = −
1
6
fl,i−1 +

5
6
fl,i +

1
3
fl,i+1,

q2 =
1
3
fl,i +

5
6
fl,i+1 −

1
6
fl,i+2,

f̂l,i+1/2 = ω0q0 + ω1q1 + ω2q2.
ENDDO

The un-normalized weights αk can be calculated by different schemes, for example, by using the WENO-Z scheme,
there is

αk = ck

(
1 +

τ5

ISk + ϵ

)
, τ5 = |IS0 − IS2|, k = 0, 1, 2. (24)

4. Numerical examples

In this paper, the semi-discretized ordinary differential equations of Euler equations are solved by the third-order total
variation diminishing (TVD) Runge–Kutta method [4]

U (1)
= Un

+ ∆tL(Un),
U (2)

=
3
4U

n
+

1
4U

(1)
+

1
4∆tL(U (1)),

Un+1
=

1
3U

n
+

2
3U

(2)
+

2
3∆tL(U (2)),

(25)

where L is the spatial operator, Un is the solution at time step n.
To compare the new method and the method of He et al. all the numerical examples in this paper are calculated by

using the formulation (21) of WENO-JS, which is used by He et al. [21]. The serving variable and the common-weights
6
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Fig. 1. Sod problem, N = 200.

dea are also effective for other weighting methods, for brevity, this paper only gives several 1D results calculated by
sing the formulation (24) of WENO-Z.

.1. One-dimensional Euler problems

For the one-dimensional problems, the time step is taken as

∆t =
σ∆x

maxi (|ui| + ci)
, (26)

here, σ = 0.5 is CFL number, c is the speed of sound. For all 1D cases in this paper, the reference solutions are obtained
y WENO-JS with characteristic-wise reconstruction [6] and N = 2000.

.1.1. Case 1
The Sod shock tube problem is taken as the first case of one-dimensional Euler problems to compare different schemes.

he initial condition is

(ρ, u, p) =

{
(1.0, 0.0, 1.0), x ≤ 0.5,
(0.125, 0.0, 0.1), x > 0.5. (27)

Figs. 1 and 2 give the numerical results with N = 200 at T = 1.4. It can be seen that, near the contact discontinuity,
he method of He et al. (for convenience, we call it He-method in the following context)can suppress the pressure and
elocity oscillations, but it cannot prevent the density oscillation (lower part of Fig. 2). In addition, near both the expansion
nd shock waves, the velocity oscillations produced by He-method are more obvious (upper part of Fig. 2). Developing
ffective FVS methods to resolve both the shock waves and contact discontinuities is still an open issue.
The results also showed that, though the proposed common-weights method cannot avoid the numerical oscillations

f contact discontinuities, it is available for solving Euler equations as the traditional component-wise weighting method.

.1.2. Case 2
The second 1-D case is the Shu–Osher problem [4] with the initial condition

(ρ, u, p) =

{
(3.857143, 2.629369, 31/3) −5 ≤ x < −4,
(1 + 0.2sin(5x), 0, 1) −4 ≤ x ≤ 5.

(28)

Figs. 3 and 4 give the distributions of density at t = 1.8 by using N = 200 and N = 300. As these figures showed,
or this kind of high-frequency problem, since the Steger–Warming splitting method is less dissipative than the global
-F splitting method, the results of WENO-JS and the present scheme are more accurate than the He-method. We also
an see that the present common-weights WENO method has the least numerical dissipation, and it seems effective to
uppress phase errors.
7
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Fig. 2. Enlarged plot of Fig. 1.

Fig. 3. Density distribution of Shu–Osher problem, N = 200.

.1.3. Case 3
The third case is the interactive blast waves problem [9] with the initial condition

(ρ, u, p) =

⎧⎨⎩
(1, 0, 1000) 0 ≤ x < 0.1,
(1, 0, 0.001) 0.1 ≤ x < 0.9,
(1, 0, 100) 0.9 ≤ x ≤ 1.

(29)

he numerical results at t = 0.038 with N = 400 and N = 600 are presented in Figs. 5 and 6. With N = 400, at the first
eak (near x = 0.65), the He-method looks better than the other two schemes, but it becomes more dissipative at the
econd peak (near x = 0.8). With N = 600, the He-method shows abnormal behaviors near x = 6.3 and x = 0.7. Near
he peaks and valley, the He-method is more dissipative than both WENO-JS and the present method.

To validate the common-weights idea can be available to other improvedWENO schemes, the above three cases are also
alculated by using the weighting formulation (24) of WENO-Z. The results of the common-weights WENO-Z is denoted
s Co-WENO-Z. Figs. 7–9 show that the serving variable (23) and the common-weights idea are effective for the WENO-Z
8
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Fig. 4. Density distribution of Shu–Osher problem, N = 300.

Fig. 5. Density distribution of interactive blast waves, N = 400.

ethod. In particular, for the high frequency wave (Fig. 8) and the interactive blast waves problem (Figs. 9 and 10),
o-WENO-Z obtains more accurate solutions than the traditional component-wise WENO-Z scheme.

.2. Two-dimensional Euler equations

The two-dimensional Euler equations can be written as
∂U
∂t

+
∂F
∂x

+
∂G
∂y

= 0, (30)

here the conservative variables U , the inviscid flux vectors F and G are

U =

⎡⎢⎣ ρ

ρu
ρv

⎤⎥⎦ , F =

⎡⎢⎣ ρu
ρu2

+ p
ρuv

⎤⎥⎦ , G =

⎡⎢⎣ ρv

ρuv
ρv2

+ p

⎤⎥⎦ . (31)
E Eu + pu Ev + pv
9
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w
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Fig. 6. Density distribution of interactive blast waves, N = 600.

Fig. 7. Sod problem, WENO-Z, N = 200.

here

p = (γ − 1)(E −
ρ

2
(u2

+ v2)). (32)

The time step is taken as follows [27]:

∆t = δ
∆tx∆ty

∆tx + ∆ty
, with ∆tx =

∆x
maxi,j(|ui,j| + ci,j)

, ∆ty =
∆y

maxi,j(|vi,j| + ci,j)
, (33)

here δ = 0.5 is the CFL number.
10
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Fig. 8. Density distribution of Shu-Osher problem, WENO-Z N = 200.

Fig. 9. Interactive blast waves, WENO-Z, N = 400.

.2.1. Case 4
This first two-dimensional case is a Riemann configuration [11,28] with the initial conditions

(ρ, u, v, p) =

⎧⎪⎪⎨⎪⎪⎩
(1.5, 0, 0, 1.5) 0.8 ≤ x ≤ 1, 0.8 ≤ y ≤ 1,
(0.5323, 1.206, 0, 0.3) 0 ≤ x < 0.8, 0.8 ≤ y ≤ 1,
(0.138, 1.206, 1.206, 0.029) 0 ≤ x < 0.8, 0 ≤ y < 0.8,
(0.5323, 0, 1.206, 0.3) 0.8 ≤ x ≤ 1, 0 ≤ y < 0.8.

(34)

he mesh of 400 × 400 is used. The density contours at t = 0.8 are shown in Figs. 11. It can be seen that three schemes
an capture reflection shocks and contact discontinuities well. But the present scheme can resolve the roll-up of the
elvin-Helmholtz instability with finer structures than the others.
Table 1 gives the CPU-time comparison of different schemes (Fortran code). It can be seen that, for the 2D case, the

resent Co-WENO scheme can save about 16% CPU time of WENO-JS. The He-method with the global Lax–Friedrichs FVS
an save 19% CPU time of WENO-JS with the Steger–Warming FVS. The main reason is that the global Lax–Friedrichs
VS is simpler and hence computational cheaper than the Steger–Warming FVS. If the He-method is applied with the
teger–Warming FVS, it is even more expensive than WENO-JS. This is because two smooth factors (19) for equations of
ass and energy are needed to calculate.
11
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Fig. 10. Interactive blast waves, WENO-Z, N = 600.

Fig. 11. Density contours with 400 × 400 grid.

Table 1
CPU-time comparison of different schemes.

WENO-JS (SW) He-method (GLF) Co-WENO (present, SW) He-method (SW)

CPU-time (s) 421 343 355 446
Efficiency 1.00 0.81 0.84 1.06

4.2.2. Case 5
The two-dimensional Rayleigh–Taylor instability problem [29,30] is often used to test the numerical dissipation of

high-order scheme. It describes the interface instability between fluids with different densities when acceleration is
irected from heavy fluid to light one. The gravitational effect is introduced by adding ρ and ρv to the flux of the
-momentum and the energy equations, respectively. The initial distribution is

(ρ, u, v, p) =

{
(2, 0, −0.025αcos(8πx), 2y + 1), 0 ≤ y < 1/2,

(35)

(1, 0, −0.025αcos(8πx), y + 3/2), 1/2 ≤ y < 1,

12
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Fig. 12. Density contours with 240 × 960 grid.

nd α =
√

γ p/ρ is the speed of sound with γ = 5/3. The computational domain is [0, 0.25] × [0, 1]. The left and right
boundaries are reflective boundary conditions, and the top and bottom boundaries are set as (ρ, u, v, p) = (1, 0, 0, 2.5)
and (ρ, u, v, p) = (2, 0, 0, 1), respectively.

The solution at t = 1.95 is solved with mesh of 240 × 960 grid points. The density contours are plotted in Fig. 12.
s observed in 1D cases, due to less dissipation, the WENO-JS and the present schemes generate more complex unstable
tructures than the He-method.

.2.3. Case 6
A two-dimensional shock vortex interaction problem is solved to further demonstrate the high resolution of the present

cheme. The problem is taken from Jiang and Shu [6]. It describes the interaction between a stationary shock and a vortex.
he computational domain is taken to be [0, 2] × [0, 1]. A stationary Mach 1.1 shock is positioned at x = 0.5 and normal
o the x-axis. Its left state is (ρ, u, v, p) = (1, 1.1

√
γ , 0, 1). A small vortex is superimposed to the flow on the left of the

hock and is centered at (xc, yc) = (0.25, 0.5). The vortex is described as a perturbation to the velocity (u, v), temperature
(T = p/ρ), and entropy (S = ln(p/ργ )) of the mean flow and denoted by the tilde values:

ũ = ετea(1−τ2)sinθ,

ṽ = −ετea(1−τ2)cosθ,

T̃ = −
(γ − 1)ε2e2a(1−γ 2)

4aγ
,

S̃ = 0,

where τ = r/rc and r =

√
(x − xc)2 + (y − yc)2, ε indicates the strength of the vortex, a controls the decay rate of the

vortex, and rc is the critical radius for which the vortex has the maximum strength. As in Ref. [6], ε = 0.3, rc = 0.05, and
a = 0.204 are adopted in this paper.

A mesh of 400 × 200 is used. Fig. 13 is the density contours at t = 0.60. Fig. 14 gives the comparisons of the density
along the centerline of y = 0.5. To show the accuracy of the new scheme, the reference obtained by the WENO-JS scheme
with a refined mesh of 2000 × 1000 is also given. It can be seen that the original He-method generates density oscillation
near x = 0.49. And we also can see that the oscillation can be suppressed by using ϵ = 10−20 to replace the adaptive
ϵ(20) suggested in [21]. Even though, at the peak and valley, the solutions obtained by the present scheme are still more
accurate than those of the He-method and also the WENO-JS scheme. Similar as observed in the Shu–Osher shock tube
problem, the present scheme can help suppress the phase error effectively.

4.2.4. Case 7
The Sedov blast wave problem [31] is a well known benchmark test to study a strong explosion problem. The initial

conditions are given as follows,

(ρ, u, v, E) =

{
(1, 0, 0, 10−12), if x > ∆x, y > ∆y,
(1, 0, 0, 0.244816 ), otherwise.

(36)

∆x∆y

13
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Fig. 13. Density contours of shock/vortex interaction by the present scheme, N = 400.

Fig. 14. Density distribution along the line of y = 0.5.

he computational domain is [0, 1.1] × [0, 1.1]. The numerical boundary treatment is reflective for the left and bottom
dges, zero-order extrapolation for the right and top edges. The density contours obtained by the present method with the
esh of 200 × 200 are given in Fig. 15. Fig. 16 is the density distribution along y = 0. For this problem, the computation
f the He-method(regardless of the fixed value ϵ = 10−20 or the adaptive function ϵ Eq. (20) in [21]) blows up, and
ence no result is obtained. The new method resolves the strong shock pretty well, and its shock profile is sharper than
ENO-JS.

. Conclusion remarks

This paper presents a common-weights WENO (Co-WENO) method for solving the Euler equations of gas dynamics.
(1) The common weights are calculated by using the product of the split flux of energy equation, density, and pressure.
(2) The Co-WENO scheme guarantees consistent discretization between different component equations of the Euler

quations.
(3) Since only one set of weights is calculated, the method has high computational efficiency.
(4) Numerical experiments also show that the present Co-WENO scheme has good robustness and low numerical

issipation, and it can effectively suppress phase errors.
14
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Fig. 15. Density contours of Sedov problem with 200 × 200, the present scheme.

Fig. 16. Density distribution along y = 0.

(5) The common-weights method can be easily extended to other weighting methods, such as those of WENO-M and
ENO-Z.
(6) The common-weights method of the variables reconstruction combined with the Riemann solvers, such as Roe

cheme, HLL scheme, is in progress and will be presented in an upcoming paper.
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