
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tctm20

Combustion Theory and Modelling

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tctm20

A dynamic load balancing model coupled with DAC
and ISAT for a stochastic turbulent combustion
model

Zhijie Huo, Matthew J. Cleary, Kun Wu, Assaad R. Masri & Xuejun Fan

To cite this article: Zhijie Huo, Matthew J. Cleary, Kun Wu, Assaad R. Masri & Xuejun
Fan (2023) A dynamic load balancing model coupled with DAC and ISAT for a stochastic
turbulent combustion model, Combustion Theory and Modelling, 27:3, 317-345, DOI:
10.1080/13647830.2023.2165967

To link to this article:  https://doi.org/10.1080/13647830.2023.2165967

Published online: 17 Jan 2023.

Submit your article to this journal 

Article views: 169

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tctm20
https://www.tandfonline.com/loi/tctm20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/13647830.2023.2165967
https://doi.org/10.1080/13647830.2023.2165967
https://www.tandfonline.com/action/authorSubmission?journalCode=tctm20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tctm20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/13647830.2023.2165967
https://www.tandfonline.com/doi/mlt/10.1080/13647830.2023.2165967
http://crossmark.crossref.org/dialog/?doi=10.1080/13647830.2023.2165967&domain=pdf&date_stamp=17 Jan 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/13647830.2023.2165967&domain=pdf&date_stamp=17 Jan 2023


Combustion Theory and Modelling, 2023
Vol. 27, No. 3, 317–345, https://doi.org/10.1080/13647830.2023.2165967

A dynamic load balancing model coupled with DAC and ISAT for a
stochastic turbulent combustion model

Zhijie Huoa,b, Matthew J. Cleary b,c, Kun Wua∗, Assaad R. Masrib and Xuejun Fana,d

aState Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese
Academy of Sciences, Beijing, People’s Republic of China; bSchool of Aerospace, Mechanical and

Mechatronic Engineering, The University of Sydney, Sydney, NSW, Australia; cARC ITTC Data
Analytics for Resources and Environments, The University of Sydney, Sydney NSW, Australia;

d School of Engineering Science, University of Chinese Academy of Sciences, Beijing, People’s
Republic of China

(Received 14 August 2022; accepted 22 December 2022)

Due to the composition-dependent stiffness of chemistry, simulations of reactive turbu-
lent flows may present computational load imbalance among parallel processes when
spatial decomposition is used for parallelisation, causing high CPU idle time and
waste of computational resources. To increase computational efficiency, a dynamic
load balancing (DLB) model is proposed to redistribute computational load among
computing cores. The DLB model exploits a decomposition in the mixture fraction
space with two dynamic adjusting decomposition strategies to realise load redistribu-
tion. The DLB model is suitable for the integration of chemistry on stochastic particles
in hybrid Eulerian/Lagrangian turbulent combustion models in which the Eulerian field
is conventionally decomposed statically in physical space in a way that balances the
computational load for the solution of the Navier-Stokes equation but which does not
generally lead to balanced load for the computation of the composition fields. Here it
is tested using an OpenFOAM-based platform, mmcFoam, which is a comprehensive
object-orientated C + + library for stochastic turbulent combustion modelling. Apart
from direct integration (DI) for chemistry, the DLB model is also coupled with dynamic
adaptive chemistry (DAC) and in situ adaptive tabulation (ISAT), which allows for
extra speedup. The performance of the coupled models is validated and assessed for two
laboratory flame conditions that exhibit different levels of computational load imbal-
ance. Overall, the DLB model effectively balances the computational load distribution
and increases the effective usage of computing power, shortening the simulation wall
time required. Moreover, a strong scaling test is carried out using up to 512 cores.
Although all approaches have sub-ideal scalability, the scalability of each with DLB is
significantly better than without DLB. While DLB-ISAT has relatively poor scalability
compared to the DI- and DAC-based methods, DLB-ISAT still ranks the fastest among
the algorithms in all scaling trials.

Keywords: dynamic load balancing; DAC; ISAT; turbulent combustion; MMC-LES

1. Introduction

Turbulent reactive flows, which are common in practical combustion systems, can be
strongly affected by nonlinear turbulence-chemistry interactions (TCI) which can disturb
the performance of combustors. Turbulence involves a wide span of scales, and resolving

∗Corresponding author. Email: wukun@imech.ac.cn

© 2023 Informa UK Limited, trading as Taylor & Francis Group

https://crossmark.crossref.org/dialog/?doi=10.1080/13647830.2023.2165967&domain=pdf&date_stamp=2023-05-20
http://orcid.org/0000-0003-1558-7222
mailto:wukun@imech.ac.cn


318 Z. Huo et al.

all the scales by direct numerical simulation (DNS) is too computationally expensive for
practical use. Therefore, the temporal averaging and spatial filtering methods, i.e. the
Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES), respectively,
are often employed to achieve computationally affordable simulations. However, the TCI
occurs in the unresolved sub-grid scales, and the highly nonlinear chemical source term
becomes unclosed.

Probability density function (PDF) models [1–3] have a significant advantage over other
turbulent combustion models, e.g. the flamelet [4] and conditional moment closure (CMC)
[5] models, in that the nonlinear chemical source term in the transport equations appears in
closed form without simplification, and represents the most general turbulent combustion
model that is methodologically applicable to different combustion regimes. The stochastic
multiple mapping conditioning (MMC) [6, 7] is a PDF-type model with an MMC mix-
ing model enforcing localness in a combined physical and reference variable space. In the
last decade, the MMC has evolved and resulted in the MMC-LES model being validated
against a wide range of characteristics and physics [8–14]. To reduce the computational
cost, these methods commonly replace the Eulerian PDF transport equations with the
equivalent stochastic differential equations ( SDEs), forming a hybrid Eulerian–Lagrangian
approach in which the flow fields are solved by standard finite volume/difference methods
while the reactive composition fields are represented by the notional particles governed by
the SDE.

Solving the Lagrangian field involves a fractional reacting step that computes the non-
equilibrium chemical source term on each notional particle. The chemistry is described by
the coupled stiff ordinary differential equations ( ODEs), and direct integration (DI) of the
ODEs by stiff ODE solvers such as the Runge–Kutta or Rosenbrock methods [15] is com-
putationally expensive. In practice, the computational cost of updating chemistry scales
with respect to the size and stiffness of ODEs and accounts for a majority of computational
cost for reactive flow simulations. This issue has motivated the development of expedit-
ing algorithms for chemistry such as in situ adaptive tabulation (ISAT) [16], which stores
chemical calculation history and reuses it, and dynamic adaptive chemistry (DAC) [17],
which locally reduces the size of chemical kinetics during runtime.

Parallel computing has become a routine technique, and it is desired to split a prob-
lem into parts with the same computational load. However, due to the inhomogeneity
of composition fields and the composition-dependent stiffness of chemical ODEs, spa-
tial partitioning of the computational domain with an equal number of cells and particles
per processor may result in an unbalanced load distribution, which causes increased CPU
idle time and wastes computational resources. Dynamic load balancing (DLB) methods
for pure Eulerian solvers exist that estimate weights locally and then update partitioning
boundaries based on the weights [18, 19]. However, domain decomposition is a non-trivial
operation, and the performance may suffer if the load redistribution is applied too fre-
quently. Moreover, it may encounter a conflict of load balancing between the Eulerian and
Lagrangian modules in hybrid solvers since the computational cost scales differently for
Eulerian and Lagrangian fields.

Instead of dynamic domain partitioning, a different DLB strategy employs parallel
communication to redistribute the computational load. The method transfers Lagrangian
workloads between CPU cores to reach a balanced load distribution and thus demands
heavy data exchange. The performance of different DLB models is strongly influenced
by the hardware architecture, i.e. shared or distributed memory. On the one hand, par-
allel communication via OpenMP presents trivial wall time in shared memory systems,



Combustion Theory and Modelling 319

but it is limited by the hardware and not suitable for large-scale parallelisation. On the
other hand, the distributed memory system is more prevalent in high-performance com-
puting (HPC) infrastructure, but data transfer via Message Passing Interface (MPI) can be
time-consuming.

Sitaraman and Grout [20] employed a redistributing approach to balance computational
load via MPI and proposed an equalisation algorithm to reduce data exchange. A satis-
factory speedup was achieved; however, their method focused on non-reactive flow and
only balanced the number of particles. The shared memory architecture was explored by
Amritkar et al. [21] who enforced an evenly distributed Lagrangian workload via OpenMP
and reported appreciable improvements compared to a distributed memory system using
MPI. Thari et al. [22] proposed asynchronous task-based parallelism for shared mem-
ory systems and achieved a reduction in computational time by 62%. Hybrid systems
were exploited to take advantage of both shared and distributed memory communication.
Yakubov et al. [23] employed a hybrid MPI-openMP method in which the computational
load of Lagrangian fields is balanced via OpenMP. Houzeaux et al. [24] proposed a multi-
code approach with a similar hybrid MPI-openMP method, introducing an asynchronous
model with load balancing. These openMP-based DLB strategies for Lagrangian fields
significantly reduced the communication time between computing cores compared to MPI,
but their applicability is constrained by HPC architecture, and they are usually less scalable
than MPI implementation. Moreover, the past methods focus on balancing the computa-
tional load for particle convection, which is not a major concern in stochastic turbulent
combustion modelling; therefore, a suitable DLB strategy for calculating chemistry is
needed.

In the reacting fractional step, chemistry evolution can be fully described by the ODEs
which are only dependent on the instantaneous composition fields regardless of physi-
cal coordinates, featuring a convenience for parallelisation. Tekgül et al. [25] and Muela
et al. [26] employed a similar strategy in that the cell thermochemical states are packaged
and shared between overloaded and underloaded processors, and then the updated ther-
mochemical states are returned to the original cells via MPI. Inspiring improvements in
computational efficiency were reported in their deterministic Eulerian solvers. In the load
redistribution methods, the computational cost of solving chemistry needs to be predicted
precisely so that the workload can be redistributed evenly. However, the computational
cost is related to the stiffness of the ODEs and differs significantly in a nonlinear fashion.
Therefore, predicting the computational cost of chemical reactions for stochastic particles
is challenging. The questions about how many and which particles need to be transferred
remain unanswered, not to mention the more complicated situation when the solver is
coupled with DAC and ISAT.

In the present work, we propose a novel DLB model which employs conditioning
and which is suitable for stochastic combustion models in the context of hybrid Eule-
rian/Lagrangian schemes. Two different strategies for dynamically adjusting the load
balance are investigated and a hybrid of the two permits efficient coupling with ISAT to
further speed up the calculations. The DLB models are examined by simulations of two
laboratory turbulent flame configurations that have been the focus of many previous mod-
elling publications, and detailed performance investigations are presented. The remainder
of this paper is arranged as follows. Section 2 presents the models for turbulent combustion
and the algorithms for DAC and ISAT. Section 3 introduces the details of the DLB model.
In Section 4, the numerical implementation of the models is presented. Experimental setup



320 Z. Huo et al.

and numerical configurations of test cases, as well as results and discussion, are shown in
Section 5. Lastly, conclusions are drawn in Section 6.

2. Numerical models

2.1. MMC-LES

MMC-LES is a hybrid model [7, 27] that solves the flow field by conventional Eulerian
LES and the composition field by a Lagrangian scheme. The Eulerian module solves the
filtered equations for mass, momentum, pressure and reference mixture fraction, f̃ , which
is used for mixing closure. The composition field is represented probabilistically by the fil-
tered density function (FDF) [2] and the evolution is governed by the stochastic differential
equations ( SDEs)

dxp
i =

[̃
ui + ∂

∂xi
(D + Dt)

]p

dt +
[√

2(D + Dt)
]p

dwi, (1)

dφp
α = (

Sp
α + W p

α

)
dt, (2)

where D and Dt are the molecular and turbulent diffusivity, respectively; superscript p

represents quantities carried by particles or interpolated at particle locations; dwi is an inde-
pendent Wiener process; W p

α = Wα(φp) is the chemical source term, and Sp
α is the mixing

operator that models molecular mixing. MMC enforces mixing to be local in the combined
physical and reference space so that the conditional mean is conserved, i.e. 〈Sα|x, f̃ 〉 = 0
[6, 7]. Localness of mixing is achieved by pairing particles that are close in the (x, f̃ )-space,
and then paired particles mix linearly as

φp
α(t + �t) = φp

α(t) + γm(φ
p,q
α (t) − φp

α(t)), (3)

φq
α(t + �t) = φq

α(t) + γm(φ
p,q
α (t) − φq

α(t)), (4)

where γm = 1 − exp(−�t/τ p,q
m ) is the mixing extent and τ

p,q
m is the mixing time scale

modelled by the C&K model [7] or a-ISO model [28].

2.2. Expediting algorithms

2.2.1. Dynamic adaptive chemistry (DAC)

The DAC method [17] aims to locally (i.e. on each notional particle) and dynamically
(i.e. temporally) reduce the number of chemically active species, thus reducing the size
of coupled systems of ODEs and the computational cost of integrating them. It uses a
reduction algorithm based on the direct relation graph with error propagation (DRGEP)
concept [29].

For a chemical kinetics, species are coupled through reactions, and the strength of the
kinetic relationships between species can be defined by a contribution matrix

rAB = | ∑nr
i=1 νi,AWiδ

i
B|

max(PA, CA)
, (5)



Combustion Theory and Modelling 321

where

PA =
nr∑

i=1

max(0, νi,AWi), (6)

CA =
nr∑

i=1

max(0, −νi,AWi). (7)

In the above, nr is the number of reactions, νi,A is the stoichiometric coefficient of
species A in the ith reaction, Wi is the reaction rate and δi

B equals one if the ith reac-
tion involves species B and otherwise equals to zero. The relationship between species A
and B can be considered negligible if rAB < εDAC , where εDAC is a specified DAC error tol-
erance. Species that are eliminated are chemically frozen but still participate in three-body
reactions.

To take advantage of the possible additional dimension reduction, species that are far
away from the target species are also trimmed. The dependency of a secondary species P
from primary species P0 is quantified by

RP0(P) = max
�

(∏
rij

)
(8)

where � is all possible paths from P0 to P and rij is defined by Equation (5). Species with
RP0(P) < εDAC are also marked inactive with relevant reactions eliminated. In practice,
multiple primary species, called the search initial set (SIS), can be specified by the user
depending on the aim of the modelling.

2.2.2. In-situ adaptive tabulation (ISAT)

ISAT stores the chemical states and reaction mapping computed by direct integration (DI)
and, when possible, extrapolates them to approximate later variations in the chemical state.
A general introduction to ISAT is provided below and complete details can be found in [16,
30–32].

For an initial thermochemical state ϕ(t0) = ϕ0, the reacted thermochemical state for a
fixed timestep is a unique function of ϕ0 expressed as ϕ(t0 + �t) = R(ϕ0) which is called
the reaction mapping. If a query point ϕq (i.e. a composition point whose reaction mapping
is required) is similar to the ϕ0 that are stored on leaves, DI for ϕq(t0 + �t) is replaced by
the linear approximation

R(ϕq) ≈ Rl(ϕq), (9)

and compositions satisfying

εlocal = |R(ϕq) − Rl(ϕq)| ≤ εISAT (10)

defines an ellipsoid of accuracy (EOA) that controls the following operation at each
timestep.

Retrieval: The leaf with the most similar composition to a query point is found. If the
query point, ϕq, is in the EOA, then the data is retrieved and the new composition, R(ϕq),
is obtained by Equation (9) instead of conducting DI. Move to the next query point.

Direct integration: If ϕq is not in the EOA, then R(ϕq) is obtained by DI and εlocal is
calculated. Depending on the local error, move to either the growth or add steps.



322 Z. Huo et al.

Growth: If εlocal ≤ εISAT , the current EOA is deemed as being too conservative and the
leaf is grown according to the minimum volume rule [31] to include the current query
point. Move to the next query point.

Add: If εlocal > εISAT , a new leaf is added to the tree for possible use in later retrievals.
Move to the next query point.

Removal: To reduce memory usage leaves are removed from the tree if they have not
been accessed in the last Nd time steps, where Nd has a user-specified value and is set to
200 in the present work based on past experience with the flames studied here.

3. Dynamic load balancing (DLB) model

3.1. Principles

Parallelisation must be implemented explicitly in solvers to tackle communication between
processors and must be designed to fit the computing hardware. The more prevalent dis-
tributed memory systems designate each CPU a private memory space that is uniquely
accessible by itself, and computing cores need to be united via an interconnected network
to enable inter-processor communication. The DLB model proposed in the present work is
for computing infrastructures with distributed memory.

The composition fields are solved by notional particles that carry information about the
thermochemical state. The computational cost of solving chemistry on a particle is asso-
ciated with the stiffness of the chemical ODE, and it can differ significantly for small
variations in composition. Therefore decomposing the domain with an equal number of
particles fails to achieve a balanced load distribution. Although the computational cost of
individual stochastic particles presents large fluctuations and is hard to predict, the overall
distributions of cost in mixture fraction (z) space exhibit very similar scattering as shown
in Figure 1(a). Moreover, as shown in Figure 1(b), the computational cost density func-
tions Pcost(z) for the two adjacent timesteps almost overlap. Here, Pcost(z) is defined as the
derivative of the cumulative cost distribution Fcost(z)

Pcost(z) = dFcost(z)

dz

= d(
∑

p costp|zp ≤ z)

dz
(11)

where Fcost(z) is approximated by the gross cost of particles that have zp ≤ z. The good
consistency of the computational cost density function over �t can be used as a convenient
measure to predict the computation cost based on the information collected from the past
timestep.

In the current work, the new DLB model decomposes the mixture fraction space into
Npc partitions that correspond to an equal amount of computational load based on the
Pcost(z) evaluated from the last timestep. Here, Npc is the number of processors. The Npc

continuous mixture fraction intervals covering z ∈ [0 1] are dynamically generated and
are assigned to different processors. Particles that fall within the same intervals are col-
lected from the entire domain, solved by the same processor, and then returned to their
owners via MPI. This methodologically simple and effective approach ensures that every
processor can solve the assigned problems within similar wall time and thus achieve a
load-balanced condition. Decomposition in mixture fraction space also enables proces-
sors to solve similar chemical problems, benefiting the DAC and ISAT models. Note that



Combustion Theory and Modelling 323

the present methodology is not limited to decomposition in mixture fraction space only
and can be extended to other conditioning dimensions depending on the complexity of
the target flames. The success of the conditioning will in general depend on how strong
the correlation is between the computational cost and the chosen conditioning variable. In
non-premixed combustion the mixture fraction is a suitable choice and, although not tested
here, we expect a progress variable to be suitable in premixed combustion. Departures
from pure non-premixed combustion and pure premixed combustion lead to weaker cor-
relations with the mixture fraction and progress variable, respectively, and at some point,
two conditioning variables may be needed. This is case specific but, in principle, our load
balancing method is also applicable to two conditioning variables although its performance
remains to be tested

The DLB model includes two major components: (1) the dynamic decomposition
strategy and (2) the data transmission module. These are discussed in turn below.

3.2. Dynamic decomposition strategy

The decomposition strategy is a critical component that decisively affects the extent of
load balance. In the present work, two methods are proposed to dynamically adjust the
decomposed boundary in mixture fraction space.

3.2.1. Global adjusting

The global adjusting method computes the mixture fraction boundaries by dividing the cost
density function, Pcost(z), c.f. Figure 1(b), into Npc pieces so that their integrated areas are
the same. Considering the average cost

costav =
∫ 1

0 Pcost(z)dz

Npc
, (12)

the z boundaries can be found starting from either end of the mixture fraction space. For
instance, given z0 = 0 and Pcost(z) is evaluated from the previous timestep, z1 can be
uniquely determined via ∫ z1

z0

Pcost(z)dz = costav, (13)

Figure 1. (a) Scatter plot of computational cost for chemistry versus mixture fraction at two
adjacent numerical time steps. (b) Computational cost density function evaluated from the scatter
data.



324 Z. Huo et al.

and subsequently for zn, where n = 2, . . . , Npc, via∫ zn

zn−1

Pcost(z)dz = costav. (14)

Note that, Pcost(z) is evaluated by binning particles based on mixture fraction and estimated
by constant approximation within each bin. Dividing z space into more bins can increase
the resolution of the evaluated Pcost(z); however, it may result in a fewer number of par-
ticles in each bin, causing larger stochastic fluctuation, which scales by O(Np)

−1/2. Here,
Np represents the number of particles in each bin. We have compared Pcost(z) evaluated for
1000, 10,000 and 50,000 bins which revealed that 1000 bins are insufficient to capture the
peak in the cost density function whereas 10,000 equal-width bins produce nearly identical
results to 50,000 bins without an excessive computational burden and are therefore deemed
to be adequate.

3.2.2. Diffusive adjusting

The diffusive adjusting method is motivated by the significant fluctuating performance of
the global adjusting method when coupled with ISAT (shown in Section 5). It is worth
emphasising that the diffusive adjusting method is a balancing strategy that makes an
analogy to diffusion but does not simulate any physical diffusion processes. The ISAT
algorithm stores and tabulates DI solutions to approximate solutions of similar chemical
states. For parallel computing, it is a standard implementation that ISAT builds tables in the
private memory space of individual processors. The current DLB model with mixture frac-
tion decomposition can methodologically decrease the accessed region to be tabulated in
each processor and increase the efficiency of ISAT. However, the accessed region is highly
dimensional in composition space, and it is computationally intractable to fully be tabu-
lated. The stochastic evolution of the Lagrangian composition field may result in varying
retrieve rates (or DI rates) and hence computational cost fluctuations. The global adjusting
method may assign z-intervals to processors that are very different from the z-intervals,
and thus tabulated regions, assigned at previous time steps, which nullifies the effort for
the previous tabulation and intensifies the imbalance of the load distribution. Therefore a
diffusive approach is proposed that gradually shares the computational load of a processor
with its neighbours and reduces the timestep to timestep fluctuations of cost.

In principle, the diffusive adjusting method modifies the assigned mixture fraction
boundaries progressively so that the wall time of computing chemistry relaxes toward
the mean via a diffusive manner. A schematic illustration is shown in Figure 2. The
computational load, indicated by the height, of the processor P is shared with the neigh-
bouring processors K and N via modifying the left and right z-boundary by �zl and �zr,
respectively.

The relationship between the computational load distribution L and �z of a processor is
formulated as follows. We firstly derive the change of computational load �L if it follows
a kind of diffusing behaviour. A diffusion equation in z space has the form

∂L

∂t
= Dc

∂2L

∂z2
(15)

where Dc represents the diffusion coefficient of the computational load. Here, the equation
can be extended to multidimensional space by replacing z with a characteristic space ζ =



Combustion Theory and Modelling 325

(ζ1, ζ2, . . . , ζn), but this is not considered in the current work. Applying standard finite
volume techniques and Gauss’s divergence theorem leads to the semi-discrete form

∂L

∂t
= Dc

V

[(
−S

dL

dz

)
l

+
(

S
dL

dz

)
r

]
(16)

where ·l and ·r represent quantities on the left and right faces of a cell respectively, and
S is the face area. For a cell P and its neighbouring cells K and N, as shown in Figure 3,
V = (zr − zl) · 1 · 1 and Sf = 1 · 1. Here, the cells basically represent processors with Li

being the load on rank i, where i = K, P, N in this example, and zl and zr being the assigned
z boundaries for process rank P. Using the explicit forward scheme in time and central
approximation in space, a discrete form of Equation (16) can be obtained

Ln
P = Lo

P +
(

−dt · Dc

zr − zl

LK − LP

zK − zP

)o

︸ ︷︷ ︸
�LP,l

+
(

dt · Dc

zr − zl

LP − LN

zP − zN

)o

︸ ︷︷ ︸
�LP,r

(17)

where superscript ·n is the value at the new timestep and ·o is the value at the old timestep.
The second and third terms on the rhs represent the load changes, �LP,l and �LP,r, caused
by the modification of �zl and �zr, respectively. For the left boundary, they can be linked
via �zl = −�LP,l/ρzl , where ρzl represents the computational cost per unit length in z
space at zl and is approximated by 1

2 (LK/�zK + LP/�zP). Therefore, the increment of the
left z-boundary for the cell P is

�zl =
[

dt · Dc

zr − zl

LK − LP

zK − zP

]
/

[
1

2

(
LK

�zK
+ LP

�zP

)]
, (18)

and similarly, for the right boundary

�zr =
[

dt · Dc

zr − zl

LP − LN

zP − zN

]
/

[
1

2

(
LP

�zP
+ LN

�zN

)]
. (19)

Figure 2. (a) Computational load distribution before adjusting. (b) Computational load distribution
after adjusting z boundaries by �zl and �zr.

Figure 3. Discretisation in z-space.



326 Z. Huo et al.

Equations (18) and (19) represent a model for the required increments on the z boundaries
to enforce load redistribution in a diffusive manner. The values are computed based on the
computational load Li and the z decomposition in the past timestep. The general stability
condition for a diffusion equation is

Dc�t

�z2
<

1

2
(20)

where �t is the timestep size and �z is the width of the decomposed z-intervals. Therefore,
to keep the adjusting algorithm stable, i.e. no overshooting,

Dc = 1

2
Kc

(�z)2
min

�t
(21)

where (�z)min is the smallest z intervals, 0 < Kc < 1 is a coefficient to adjust stability and
balancing performance, and the present study uses Kc = 0.5.

3.2.3. Coupling with DI, DAC and ISAT

Generally, the global adjusting method has the advantage of numerical simplicity and hav-
ing a fast response to an evident load imbalance but may overshoot the adjustments if cost
estimation is not precise, causing a performance drop. The diffusive adjusting method takes
time to balance the load, but it can achieve more stable and predictable performance. In the
tests shown later in Section 5, the global adjusting method is adequate to balance the load
for DI and DAC. Therefore the global adjusting method is used solely for DI and DAC,
and the z decomposition is adjusted every timestep. The coupled methods are denoted by
DLB-DI and DLB-DAC.

However, coupling the global adjusting method solely with ISAT, denoted as DLB-ISAT
(Global), leads to a strongly oscillating load distribution and deteriorates model perfor-
mance, as shown in Section 5. In the present work, a combination of the global and
diffusive methods is proposed. In the combined adjusting method, diffusive adjusting is
executed every two timesteps to minimise the influence on the cost estimation due to
adding and growing operations for the newly updated z-intervals, and the global adjust-
ing method is activated when the extent of load imbalance is greater than a user-defined
threshold. The extent of load imbalance can be quantified by the potential improvement
(PI) defined as

PI = Costmax − Costav

Costmax
(22)

where Costmax = max(Li) and Costav = ∑Npc

i=1 Li/Npc, i = 1, . . . , Npc. The PI indicates how
far away the current condition is from the ideally balanced condition. PI = 0 implies
a completely balanced load distribution, whereas PI = 1 indicates the most extremely
imbalanced condition. A user-defined parameter εPI is used as a threshold, and the global
adjusting method is activated when PImin > εPI , where PImin is the minimum PI in the past
tr timesteps. This condition is examined every tg timesteps. tr and tg should take values
that are sufficiently large such that ISAT has adequate data to build a table leading to stable
computational cost predictions with which the load can be effectively balanced. However,
if the values are too large the subsequent adjustment towards a well-balanced load condi-
tion is slow and computational time is sub-optimal. In the present work, tr = 5 and tg = 25.
The chosen values in the current work are a compromise of those two effects.



Combustion Theory and Modelling 327

3.3. Data transmission module

The data transmission module is responsible for workload redistribution among proces-
sors. In practice, notional particles carry many supporting data and objects that are not
required for chemical calculation. Therefore, only the necessary thermochemical scalars,
i.e. chemical species concentration, temperature, pressure and required supporting data,
are enveloped and transferred in the DLB model. The data define complete chemical ODEs
which can be solved by the receiving processors. The enveloping operation on each proces-
sor groups data according to their mixture fraction and the dynamically adjusted mixture
fraction boundaries z = {z0, z1, . . . , zn} and then sends the data to buffers for non-blocking
MPI communications.

A flowchart of the scheme is shown in Figure 4 illustrating the following operations of
DLB model.

(i) At the start of an iteration, computational cost information of the last iteration is
collected and used to update mixture fraction division z on the master node. The
updated division is then broadcasted to all processors.

(ii) Each processor groups chemical problems based on their mixture fraction and the
updated mixture fraction boundaries {z0, z1, . . . , zn}, and sends the enveloped data of
particles in the n-th z-intervals to the n-th processor.

(iii) Processors solve the received problems. While solving chemistry, the cost of each
ODE and the corresponding mixture fraction are recorded and packaged with the
solutions. If tabulation is invoked, private ISAT trees are built based on the problems
solved in each processor.

(iv) Once the calculation is finished, the packaged solutions are returned to the memory
space of the original owners, and the thermochemical states of the notional particles
are updated.

(v) Lastly, the computational cost information is summarised to update mixture fraction
division {z0, z1, . . . , zn} in the next iteration.

Figure 4. A schematic of data flow between processors in the DLB model.



328 Z. Huo et al.

4. Numerical implementation

4.1. mmcFoam

The MMC-LES has been implemented in the object-orientated C + + open-source plat-
form, mmcFoam, and its numerical performance has been widely tested [33]. It is a
hybrid Eulerian–Lagrangian solver for turbulent combustion. There is a two-way coupling
between the Eulerian and Lagrangian fields. The forward coupling interpolates the fil-
tered quantities from the Eulerian fields to particle locations to integrate the SDEs, while
the backward coupling maintains mass consistency between the two fields and feedbacks
density to LES. The backward coupling employs a conditional form [7] of the equivalent
enthalpy method [34]. Several transport equations for major species are solved, and the
source terms for each cell are modelled to relax toward the conditional mean evaluated by
the flamelet regression method [7] or the kernel estimation method [33]. Complete details
about mmcFoam can be found in [33].

4.2. DLB model

The DLB model is a supplementary model that is only activated for chemistry calculations
and is independent of the other components of the solver, as illustrated in Figure 5. Com-
pared to the previous version of mmcFoam [33], the DLB implementation in the submodels
is an additional layer between the base class of finite rate chemistry and the calculation
schemes, e.g. DI, DAC and ISAT. Therefore, different methods can be flexibly selected and
coupled with the DLB model. When DLB is combined with ISAT, the model tabulates all
computed chemical solutions locally, i.e. in the memory spaces where they are solved, and
does not return any ISAT-related objects to the original processors. Such implementation
allows processors to tabulate only a narrow range of mixture fractions, which corresponds
to a much smaller region in composition space than the whole realisable region. When the

Figure 5. A schematic of code blocks for mmcFoam and the newly implemented DLB model. This
block diagram should be read in conjunction with the block diagram shown in Figure 1 in [33].



Combustion Theory and Modelling 329

processors solve chemical problems within the same, or similar, mixture fraction range,
the possibility of successful retrieval from the table is indeed greater, resulting in higher
computational efficiency of ISAT.

5. Performance evaluation

The performance of the DLB models is tested under two laboratory non-premixed flame
conditions. In both cases, the spatial domains are partitioned by a conventional domain
decomposition method in the axial direction with an equal number of particles per pro-
cessor and the purpose, therefore, is to assess the benefits of the DLB methods. The first
case is a Sydney piloted flame on a burner with adjustable inlet mixture homogeneity [35,
36]. Here, the case FJ200-5GP-Lr300-59, which has a homogeneous mixture (CH4/Air) at
the burner exit, is considered. This case was simulated previously by Galindo et al. using
mmcFoam [10] and represents a condition where computational load distribution is rela-
tively balanced by conventional domain decomposition due to the relatively constant size
of the near-stoichiometric reactive fluid volume along the flame axis. Because the case is
less computationally demanding, it is used to validate the correctness of code implementa-
tion. The second case is the piloted non-premixed methane flame, Delft III flame [37, 38],
which has a highly variable reactive region volume along the flame axis and represents a
test case for which conventional domain decomposition does not lead to good load balanc-
ing and for which the new DLB method is expected to provide a significant computational
performance. The effectiveness of the DLB model is assessed by comparing the computa-
tional efficiency with and without load balancing in this turbulent reactive flow. All flame
simulations are partitioned by the standard domain decomposition method along the axial
direction with an equal number of particles per processor.

Simulations for both flame cases are carried out using a GRI-3.0 chemical mechanism
[39] which has 53 species and 325 reactions. The DLB overhead is mainly induced by data
transmission and is associated with the number of species. Although only one mechanism
is tested in this work, the DLB overhead for other chemical kinetics is expected to scale
linearly with respect to the number of species. The base cases use ISAT tolerances of
εISAT = 10−4 and DAC tolerance of εDAC = 10−2 with CH4 being the SIS. These tolerances
are found to be reasonably accurate in the tests shown later.

5.1. Sydney piloted flame with homogeneous fuel mixture

5.1.1. Experimental setup and numerical configuration

A schematic diagram of the burner is shown in Figure 6 along with the temperature contour
of the flame produced by MMC-LES. A retractable inner pipe with a diameter of 4 mm is
concentric with a Dfj = 7.5-mm-diameter outer tube that is surrounded by a pilot annulus
of pilot with a diameter of 18 mm stabilised on a perforated plate located at 4mm upstream
of the burner’s exit plane. The retraction length, Lr, controls the mixing extent between the
fuel and air issuing respectively from the inner and outer tubes and thus the homogeneity
of the fuel mixture at the burner exit. For the case studied here, Lr is at its maximum
value, producing a non-premixed flame with a homogeneous CH4/Air mixture with a bulk
velocity of 59 m/s. The entire burner is centred in a wind tunnel where a coflow stream of
15 m/s is provided. In the present study, the same numerical configuration of the previous
work [10] is used, i.e. the same grid, notional particle distribution and boundary conditions.



330 Z. Huo et al.

Figure 6. (a) A schematic of the Sydney piloted burner with retractable inner pipe. (b) Instanta-
neous Eulerian equivalent temperature field from simulation.

The flamelet regression method is used for density coupling. The time-averaged results are
obtained for the same period of 6 ms starting from the same initial condition. The efficiency
of the DLB model is tested on an eight-core desktop workstation equipped with Intel(R)
Xeon(R) Gold 5115 CPU @ 2.40GHz.

5.1.2. Results

We firstly examine the correctness of the code implementation by comparison of the
time-averaged results produced by DI, DLB-DI, DLB-DAC and DLB-ISAT. Here, the
DLB-ISAT uses a combined adjusting method with εPI = 0.25. The radial profiles of
temperature are shown in Figure 7. The overlapping of the results for DI and DLB-DI
presents a validation of the DLB code implementation. As for ISAT and DAC, while
εISAT = 10−3 and εDAC = 10−1 are too coarse leading to appreciable deviations from the DI
results, εISAT = 10−4 and εDAC = 10−2 produce an excellent agreement with the DI results,
indicating that these tolerances, which are used in the remainder of this work, are adequate.

The temporal evolutions of computational cost and PI using DI and DLB-DI are shown
in Figure 8. Note that the computational cost is measured by the wall time taken to solve
chemistry and includes all related overhead. By inspecting the results of PI, the origi-
nal case setup without the DLB model shows a fairly balanced load distribution in that
PI fluctuates around the mean value of 0.071. Even though this condition leaves a very
small margin for improvement, the DLB achieves a lower mean PI at around 0.037. How-
ever, although the DLB model achieves around 50% lower PI, it leads to a rather minor
enhancement in the computational speed.

Figure 9 presents the temporal evolution of computational cost and PI using DAC with
and without the DLB model. When DLB is coupled with DAC, the computational cost
accounts for DI and all DAC operations. Overall, the DLB-DAC model presents a slightly
lower PI in the simulations than the standalone DAC model, indicating an improved load
distribution. DAC dynamically reduces the chemical kinetics and shortens the compu-
tational time by around 28% compared to DI; however, applying DLB to DAC shows



Combustion Theory and Modelling 331

Figure 7. Radial profiles of mean temperature using different methods.

Figure 8. Temporal evolutions of potential improvement (PI) and computational cost for simula-
tions of the Sydney flame with homogeneous compositional inlet using DI and DLB-DI.

Figure 9. Temporal evolutions of computational cost and potential improvement (PI) for simula-
tions of the Sydney flame with homogeneous compositional inlet using DAC and DLB-DAC.

marginal improvement in the simulation since the original computational load distribution
is reasonably balanced.

As can be seen in Figure 10(a), ISAT breaks the original balanced load distribution. The
number of successful retrievals from the table varies due to the stochastic evolution of



332 Z. Huo et al.

Figure 10. Temporal evolutions of (a) potential improvement (PI) and (b) computational cost for
simulations of the Sydney flame with homogeneous compositional inlet using ISAT and DLB-ISAT.

particles in the composition space, and consequently, the performance of ISAT fluctuates.
The deteriorated load distribution using ISAT is in fact attributed to the different speedup
effects on different processors.

The influence of the dynamic adjusting method on the performance of DLB-ISAT meth-
ods is shown in Figure 10(a). The methods using the global and combined adjusting
methods are denoted as DLB-ISAT (Global) and DLB-ISAT (εPI = 0.25), respectively.
Here, the DLB-ISAT (Global) applies the global adjusting method continuously, and the
combined method specifies an allowed extent of imbalance, εPI = 0.25, below which load
distribution is only tailored by the diffusive adjusting approach. Both DLB-ISAT meth-
ods present improved load distributions relative to straight ISAT. However, DLB-ISAT
(Global) tends to cause larger fluctuations and produces an overall larger PI than DLB-
ISAT (εPI = 0.25). Overshooting of load adjustment by DLB-ISAT (Global) can be seen
from the spikes in the time series and is caused by abrupt changes to the mixture fraction
divisions and the resultant need to grow the ISAT tables by direct integration. DLB-ISAT
(εPI = 0.25) suppresses the overshooting quite well once the initial transient phase passes.

Comparing Figure 10(b) with Figure 8 indicates that, after an initial period to build
the table, ISAT effectively reduces the computational wall time by around 87% com-
pared to DI. Using ISAT alone exhibits relatively large fluctuation in computation wall
time, but there is a decreasing cost trend over time. Both DLB-ISAT methods show sim-
ilar fast-developing stages initially and then transit to stages presenting slow but steady
computational efficiency increase, achieving similar computational at the end of the simu-
lations. Although more spikes are produced by the DLB-ISAT (Global) method, the overall
computational cost using DLB-ISAT (Global) and DLB-ISAT (εPI = 0.25) are similar.



Combustion Theory and Modelling 333

Figure 11. Averaged computational cost using different methods.

The averaged computational cost of chemistry for different expediting algorithms is dis-
played in Figure 11. The averaged wall time and overhead are the results averaged over
the second half of the simulation runs. The most obvious feature is the vanishingly small
overhead, which is around 0.17 s per time step for all methods using DLB. This demon-
strates the excellent efficiency of the DLB methods and implementation. However, overall
for this flame, the DLB methods lead to only a limited reduction in computational cost
because the load distribution is already well balanced by physical domain decomposition.
However, the kinetics reduction (DAC) and tabulation (ISAT) methods provide appreciable
savings in computational cost compared to DI. The DLB-DAC method is slightly slower
than DAC by 0.3 s resulting from the DLB overhead and fluctuations. In contrast, the
DLB-ISAT tends to have higher efficiency than straight ISAT due to slightly improved
load distribution and the localised tabulation in the mixture fraction space. Nevertheless,
the results shown in this section prove the correctness of the code implementation and the
low overhead associated with the DLB methods

5.2. Delft III methane/air non-premixed flame

5.2.1. Experimental setup and numerical configuration

A schematic diagram of the burner is shown in Figure 12 along with the temperature con-
tour of the flame. The burner exit has a central fuel jet with an inner diameter Ddf = 6
mm surrounded by the pilot issued from 12 equidistant 0.5-mm-diameter holes positioned



334 Z. Huo et al.

Figure 12. (a) A schematic of the Delft flame burner. (b) Instantaneous Eulerian equivalent
temperature field from MMC-LES.

on a 7-mm circle with an outer diameter of 8 mm. A concentric metal rim surrounding the
pilot insert is centred in a 45-mm pipe, producing an annulus of 15 mm from where the
primary coflow air is ejected. The fuel jet and the primary air leave the burner exit with
velocities of 21.9 m/s (Re = 9700) and 4.4 m/s (Re = 8800), respectively, while the entire
burner is situated in a wind tunnel with a coflowing secondary airstream at 0.3 m/s. The
pilot flame insert in the fuel pipe causes a decrease in jet diameter from 8 mm to 6 mm
starting at a location 16 mm upstream of the burner exit, resulting in a convergent fuel noz-
zle, and the reduction of the outer diameter of the rim from 30 to 15 mm with a 7◦ angle
produces a divergent air annulus nozzle that causes the non-negligible radial velocity at
burner exit. The fuel is natural gas, and the pilot burns a mixture of acetylene/hydrogen/air
with a carbon-to-hydrogen ratio equal to 1:4 corresponding to an equivalence ratio of 1.4
and accounts for around 1% of the total thermal power of the flame [37, 38].

The computational domain is a cylinder with a diameter of 250 mm and length of 900
mm, discretised by a stretched grid with 623, 114 and 48 cells in axial, radial, and cir-
cumferential directions, respectively. Following Mueller and Pitsch [40], two-stage pipe
flow simulations are used to produce inflow boundary data for the fuel jet and primary
coflow exits. However, similar to the FDF study by Donde et al. [41], fluctuations of the
primary coflow data are discarded to suppress excessive flame extinction. For the com-
position, approximately 0.95 million particles in total are used, leading to a sparseness of
one Lagrangian particle per 3.7 Eulerian cells (1L/3.7E). During a simulation, a particle
number control algorithm maintains spatial resolution by cloning or removing stochastic
particles within control cells containing multiple LES cells. The number is controlled to
be 25 ± 5 particles per control cell. The kernel estimation method is used for density cou-
pling. The base simulation is carried out by 32 processors on Tianhe-II with CPU Intel(R)
Xeon(R) CPU E5-2697A v4 @ 2.60GHz.



Combustion Theory and Modelling 335

5.2.2. Results

The temporal evolution of PI and computational cost and the load distributions of the
latest timestep using DI and DLB-DI are shown in Figure 13. The indicator PI reaches
around 0.44 on average using DI, implying significant load imbalance by conventional
physical domain decomposition. Applying the DLB method shows excellent performance
and reduces the PI to around 0.03, indicating a well-improved load distribution. A direct
comparison of load distribution at the latest timestep is shown in Figure 13(b). The com-
putational wall time of solving the reacting fractional step is determined by the slowest
processor; therefore, using DI without the DLB method requires around 180 s to solve
chemistry. The DLB method redistributes the computational load rather evenly among
computing cores, and all cores finish calculation with a similar time around 105 s, resulting
in lower computational wall time than that of DI. As the flame evolves, DI exhibits a slight
decrease in computational cost due to particle convection in the slowest core, whereas
DLB-DI balances load and presents an almost constant cost for each timestep.

Temporal evolution of PI and computational cost along with the load distribution at the
last timestep in the tests are shown in Figure 14 for DAC and DLB-DAC. Relative to DI,
DAC reduces the size of chemical ODE and achieves enhanced computational efficiency
in all the cores; however, the PI increases to about 0.55 which is higher than the PI value
obtained for DI and this is due to the different extent of kinetics reduction on processors.
The coupled DLB-DAC method experiences a short period of oscillation at the start of the
simulation and then converges to a steadily balanced condition with the PI of around 0.02,
leading to a lower computational cost. The excellent performance of the DLB method can
be clearly confirmed by comparing the load distributions with and without the DLB method
at the final timestep in the test in Figure 14(b), i.e. the computational load is effectively
balanced by the DLB method.

The temporal evolution of PI and computational cost using ISAT and DLB-ISAT meth-
ods are shown in Figures 15(a) and 15(b), respectively. When using ISAT, both PI and
computational cost present a similar decreasing trend at the start of the simulation and then
fluctuates around 0.4 and 30 s, respectively. Compared to the DI and DAC results discussed

Figure 13. (a) Temporal recordings of PI and cost for simulations of the Delft III flame using DI
and DLB-DI; (b) Load distribution using DI and DLB-DI at the latest timestep.



336 Z. Huo et al.

Figure 14. (a) Temporal recordings of PI and cost for simulations of the Delft III flame using DAC
and DLB-DAC; (b) Load distribution using DAC and DLB-DAC at the latest timestep.

above, ISAT produces a higher load imbalance since the increased computational efficiency
depends on the quality of tabulation and computation history, which differs significantly in
different cores.

Both ISAT-DLB methods lead to overall lower PI and cost, but distinct performances are
observed. The DLB-ISAT (Global) method shows significant oscillation in its balancing
performance because it enforces continuous global adjusting to update z decomposition.
The frequent and abrupt changes to the z divisions lead to composition spaces being
accessed which are not in the table requiring additional computational effort to grow the
tables in these new z-intervals by direct integration. Therefore, the computational cost
information collected from the last iteration may not reflect an accurate cost prediction for
the current time step, causing degraded load distribution and spikes in the PI and computa-
tional cost time series. The computational cost shows similar fluctuations with occasionally
extreme overshooting (capped at 80 s in the plot, but the slowest timestep can take around
17 times longer than using ISAT alone) and the spikes of computational cost and PI are
synchronised, appearing at the same timestep.

The DLB-ISAT (εPI = 0.25) method effectively suppresses the global adjusting method
when it is not necessary, i.e. PImin ≤ εPI , and leads to far fewer temporal fluctuations in PI
and computational cost. When the extent of load imbalance is beyond the user-defined
threshold, i.e. PImin > εPI , the global adjusting method is activated to provide prompt
z-intervals adjustments. Such a condition is encountered in the simulation at around the
1200th timestep, where spikes in PI and cost are observed. The spike and the subsequent
gradual decrease in the cost profile indicate a new table-buildup stage, after which lower
PI and cost are both achieved.

The load distribution of two timesteps, the 1600th and 2000th timestep, are extracted to
illustrate the details of the methods’ performance, as shown in Figure 15(c ,d), respectively.
It can be seen that the majority of computational cost of ISAT with and without DLB is
associated with the unsuccessful retrieval from the ISAT table followed by necessary DI,
whereas successfully retrieving solutions from tables is efficient and accounts for only a
small fraction of the total cost. The standalone ISAT presents various speedup levels on



Combustion Theory and Modelling 337

Figure 15. Temporal recordings of (a) PI and (b) computational cost for simulations of the Delft III
flame using ISAT and DLB-ISAT. Computational load distribution at the (c) 1600th and (d) 2000th
timestep. The red horizontal lines indicate the ideal computational cost using ISAT alone when load
is perfectly balanced.

different processors and results in a worsened load distribution (larger PI). The DLB-ISAT
(Global) method can cause extreme imbalance when too abrupt adjusting is applied to z-
intervals, shown in Figure 15(c). Although overshooting exists, the DLB-ISAT (Global)
method has the potential to achieve proper load distribution as shown in Figure 15(d). As
for the DLB-ISAT (εPI = 0.25) method, load distribution between the 1600th and 2000th
timestep is only via the diffusive method (no abrupt changes) and the load balance is very
stable.

The computational time required for an ideally balanced load distribution using ISAT,
Costav,ISAT , is indicated by the horizontal line in the figures. Although the DLB-ISAT



338 Z. Huo et al.

Figure 16. Temporal recordings of the DI rate for simulations of the Delft III flame using ISAT
and DLB-ISAT.

methods do not balance load perfectly, they can both achieve lower computational time
than Costav,ISAT . This is due to two aspects: (1) more even computational load alloca-
tion and (2) ISAT tables on each processor representing a smaller region of the accessed
composition space. The former better harnesses the underloaded processors to solve a
fixed amount of computational load within a shorter wall time. The latter is an outcome
of the z decomposition introduced by the DLB method. In the DLB method, chemical
ODEs with similar mixture fractions are grouped, solved and tabulated by the same pro-
cessors. Because particles that are close in mixture fraction space usually carry similar
composition for non-premixed combustion, the tables built by the DLB method are more
frequently accessed than those produced via conventional physical domain decomposition.
As shown in Figure 16, localised tabulation in z space can reduce the number of unsuc-
cessful retrievals followed by DI by around 50% for DLB-ISAT (εPI = 0.25). Here, the
DI rate is defined as the ratio between the number of DI executed and the total number of
chemical state space updates.

The sensitivity of DLB-ISAT performance to the parameter εPI is investigated in
Figure 17. Overall, larger εPI leads to less temporal fluctuation of the PI. Larger εPI is
associated with fewer global adjustments, reducing overshooting. However, εPI = 0.25
shows the lowest PI and cost by the end of the test, implying that proper global adjustment
improves load distribution and increases computational efficiency. This is because some of
the z-intervals may be very wide and require an impractically long time to balance via the
diffusive adjusting method, while appropriate global adjusting can efficiently update the z
boundaries.

In the 2000-iteration test, DLB-ISAT (εPI = 0.5) activates global adjusting only once
at the first iteration and then enforces pure diffusive adjusting after that. Therefore, the
effectiveness of the diffusive adjusting method can be demonstrated by the evolution of
computational load distribution shown in Figure 18. After a sufficient number of itera-
tions, the crest of load distribution at the 100th timestep diffuses to a relatively flat shape
at the 2000th timestep. However, the diffusive method is too slow to balance the load at
the two ends of the mixture fraction range because the z-intervals are wide and the incre-
ments �z that are calculated by the diffusive method at each time step are small. Note
that �z is linked to the load diffusivity Dc whose magnitude is limited by the (�z)min in
Equation (21). In contrast, the results of DLB-ISAT (εPI = 0.25) in Figure 15 have good
load distribution even at the two ends of the mixture fraction range after a global adjusting
at around the 1200th timestep.



Combustion Theory and Modelling 339

Figure 17. Temporal recordings of (a) PI and (b) computational cost for simulations of the Delft
III flame using DLB-ISAT with different εPI .

Figure 18. Load distribution of DLB-ISAT (εPI = 0.5) at the 100th and 2000th timestep.

The computational cost of solving chemistry using the different methods is summarised
in Figure 19. The values are the averages over the second half of the time steps in the
tests. In summary, applying the DLB method to DI and DAC can effectively reduce the
computational time by around 41% and 50%, respectively. The DLB-ISAT method shows
a slight difference depending on the adjusting strategies and the parameter εPI which con-
trols the infrequent activation of the global adjusting method. Despite the overshooting of
pure global adjusting, it shortens the computational time by around 36%. Using εPI = 0,
0.25 and 0.5 reduces the computational load by around 45%, 48% and 50%, respectively,
compared to using ISAT alone. The overhead induced by DLB operations varies from 0.28
to 0.6 s and accounts for a negligibly small fraction of the computational time. Based on
Figure 19, the speedup factors, which are the ratio between the wall time using DI and
different methods, are summarised in Table 1.

Lastly, the parallel scalability of the DLB methods for solving chemistry is examined.
Simulations using DI, DLB-DI and DLB-DAC are carried out for 100 iterations, and the
statistics are averaged over the final 50 iterations due to the relatively stable performance
in that period. For DLB-ISAT with εPI = 0.25 and εPI = 1, simulations were run for 2000
iterations and statistics are averaged over the final 1000 iterations. Here, DLB-ISAT (εPI =
1) represents a case enforcing a pure diffusive adjusting method. Figure 20(a) displays the



340 Z. Huo et al.

Figure 19. Averaged computational cost using different methods.

Table 1. Speedup factors using different methods.

DI DAC ISAT

w/o DLB 1.00 1.56 6.19
with DLB 1.70 3.11 9.76

(Global)
11.90

(εPI = 0.25)
12.46

(εPI = 0.5)

so-called strong scalability results in which the problem has a constant size (i.e. constant
number of particles) while the number of cores is increased sequentially in multiples of
two. The speedup is the ratio relative to the computational cost of simulations using just
32 cores.

It is evident that all models coupled with DLB present improved scalability compared to
that without DLB models. For 512 cores, the computational speed of DLB-DI, DLB-DAC
and DLB-ISAT is improved by around 59%, 84% and 126% compared to DI, DAC and
ISAT, respectively. The deviations of the scalability from the ideal speedup factors indicate
drops in DLB performance as the number of cores increases. It should be emphasised that
such drops are not caused by the increase in inter-processor communication, because the



Combustion Theory and Modelling 341

Figure 20. (a) Strong scalability of the DI and DLB methods. (b) Averaged PI and overhead
percentage of the DI and DLB methods.

overhead of all models accounts for less than 10% of the total cost. Instead, the scalability
drops are mainly related to the stochastic attribute of the notional particles. As the number
of processors increases, fewer particles are distributed to each processor and the stochastic
effect becomes stronger. As a result, the DLB model cannot maintain the same level of bal-
anced load condition, as shown by the increase of PI in Figure 20(b), and thus cause drops
of strong scalability. As for DLB-ISAT, the ISAT operations can amplify the stochastic
fluctuations of computational cost because the add and growth operations of ISAT can be
several orders of magnitude more computationally expensive than the retrieval operations,
exacerbating load imbalance.

The strong scaling test indeed provides useful information on the parallel computing
performance; however, from a practical point of view, the wall time required for compu-
tation using a different number of cores is more of interest to users. As can be seen from
Figure 21, despite the relatively low scalability of DLB-ISAT for both εPI values compared
to DI and DAC, the ISAT approaches still rank as the fastest of methods in these tests. The
superior computing speed of DLB-ISAT is predominant when a small number of cores are

Figure 21. The averaged computational cost using different methods and different number of
cores.



342 Z. Huo et al.

Table 2. Speedup factors relative to the cost of DI using different methods with
the same number of cores.

#cores DLB-DI DLB-DAC
DLB-ISAT

(εPI = 0.25)
DLB-ISAT
(εPI = 1)

64 1.78 3.24 9.85 11.66
128 2.02 3.63 8.79 9.37
256 2.47 4.46 7.30 8.62
512 2.89 5.36 7.00 8.90

used, i.e. Npc ≤ 64. However, due to the different scalability, the computational cost for
DLB-DAC and DLB-ISAT have become comparable when the number of cores increases
to 512, while the relative performance between DLB-DI and DLB-DAC remains fairly
constant. Based on these results, the speedup factors relative to the corresponding cost of
DI using the same number of cores are summarised in Table 2. DLB-DI and DLB-DAC
show higher speedup factors when more cores are used due to better scalability than DI,
whereas the speedup of DLB-ISAT drops with more cores since the parallel efficiency is
lower.

6. Conclusion

Parallel simulations of turbulent combustion may impose imbalanced load distribution due
to unbalanced reactive volumes and differing stiffness of the ODEs in different regions of
the flame. A DLB method employing load redistribution has been proposed in the present
study to alleviate this issue. The DLB method employs a decomposition in mixture frac-
tion space to provide a more precise estimation of computational cost based on which load
is evenly redistributed among computing cores. This method also increases the locality of
ISAT tables and hence the computational efficiency of ISAT. Two dynamic adjusting algo-
rithms are proposed namely global and diffusive adjusting methods. The global method is
found to be sufficient for the DLB-DI and DLB-DAC methods, while a combination of the
global and diffusive methods is the best approach when using ISAT as it achieves the best
compromise between fast response to load imbalances and stable performance avoiding
too frequent changes in the accessed region in composition space on each processor.

The DLB methods have been tested against two laboratory flames. The Sydney piloted
flame with homogeneous inlet composition presents a special case where the computational
load distribution is achieved rather efficiently by conventional spatial domain decomposi-
tion. The tests for this flame case validate the DLB implementation even though there is
little margin for improvement. The Delft III flame simulation exhibits appreciable load
imbalance by conventional spatial domain decomposition. The DLB-DI and DLB-DAC
methods achieve excellent load balancing compared to those without DLB. While the
global adjusting method causes significant performance oscillation for DLB-ISAT, the
combined global and diffusive approach works well. A parameter εPI is introduced to con-
trol the timing of infrequent activation of the global adjusting method amongst regular,
steady and diffusive load balancing. Although performance differences for different εPI

are observed, the influence on the overall computational time is small. It is found that the
DLB-ISAT method can achieve even shorter computational time than an ideally balanced



Combustion Theory and Modelling 343

load distribution using ISAT. This is attributed to the joint benefits from the better usage of
computing resources and localised tabulation in mixture fraction space.

Significantly improved parallel scalability of the DLB-DI and DLB-DAC methods are
observed compared to DI, whereas the DLB-ISAT presents considerable efficiency drops
starting from 128 cores. For all the methods, the decline of parallel scaling efficiency is
mostly attributed to the degraded balancing operation stemming from the stochastic fluc-
tuations of computational cost since fewer notional particles are solved on each core. In
all cases, the communication cost only accounts for a reasonably small fraction of the
total computational cost. Lastly, although the DLB-ISAT method shows lower scalability
than the DLB-DI and DLB-DAC, it still has the lowest computational cost of the various
algorithms in these test cases.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
This work was financially supported by the National Key Project [grant number GJXM92579] and
the Australian Research Council [grant number DP180104190].

ORCID
Matthew J. Cleary http://orcid.org/0000-0003-1558-7222

References

[1] S.B. Pope, PDF methods for turbulent reactive flows, Prog. Energy Combust. Sci. 11 (1985),
pp. 119–192.

[2] P.J. Colucci, F.A. Jaberi, P. Givi, and S.B. Pope, Filtered density function for large eddy
simulation of turbulent reacting flows, Phys. Fluids 10 (1998), pp. 499–515.

[3] F. Jaberi, P. Colucci, S. James, P. Givi, and S. Pope, Filtered mass density function for large-
eddy simulation of turbulent reacting flows, J. Fluid Mech. 401 (1999), pp. 85–121.

[4] N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion, Prog.
Energy Combust. Sci. 10 (1984), pp. 319–339.

[5] A.Y. Klimenko and R.W. Bilger, Conditional moment closure for turbulent combustion, Prog.
Energy Combust. Sci. 25 (1999), pp. 595–687.

[6] A.Y. Klimenko and S.B. Pope, The modeling of turbulent reactive flows based on multiple
mapping conditioning, Phys. Fluids 15 (2003), pp. 1907–1925.

[7] M.J. Cleary and A.Y. Klimenko, A detailed quantitative analysis of sparse-Lagrangian filtered
density function simulations in constant and variable density reacting jet flows, Phys. Fluids 23
(2011), pp. 115102.

[8] G. Neuber, F. Fuest, J. Kirchmann, A. Kronenburg, O.T. Stein, S. Galindo-Lopez, M.J. Cleary,
R.S. Barlow, B. Coriton, J.H. Frank, and J.A. Sutton, Sparse-Lagrangian MMC modelling of
the sandia DME flame series, Combust. Flame 208 (2019), pp. 110–121.

[9] Y. Ge, M.J. Cleary, and A.Y. Klimenko, A comparative study of sandia flame series (D–F) using
sparse-Lagrangian MMC modelling, Proc. Combust. Inst. 34 (2013), pp. 1325–1332.

[10] S. Galindo, F. Salehi, M.J. Cleary, and A.R. Masri, MMC-LES simulations of turbulent piloted
flames with varying levels of inlet inhomogeneity, Proc. Combust. Inst. 36 (2017), pp. 1759–
1766.

[11] Z. Huo, F. Salehi, S. Galindo-Lopez, M.J. Cleary, and A.R. Masri, Sparse MMC-LES of a
sydney swirl flame, Proc. Combust. Inst. 37 (2019), pp. 2191–2198.

[12] G. Neuber, A. Kronenburg, O.T. Stein, and M.J. Cleary, MMC-LES modelling of droplet
nucleation and growth in turbulent jets, Chem. Eng. Sci. 167 (2017), pp. 204–218.

http://orcid.org/0000-0003-1558-7222


344 Z. Huo et al.

[13] S. Vo, A. Kronenburg, O.T. Stein, and M.J. Cleary, Multiple mapping conditioning for silica
nanoparticle nucleation in turbulent flows, Proc. Combust. Inst. 36 (2017), pp. 1089–1097.

[14] G. Neuber, A. Kronenburg, O.T. Stein, C.E. Garcia, B.A.O. Williams, F. Beyrau, and M.J.
Cleary, Sparse-Lagrangian PDF modelling of silica synthesis from silane jets in vitiated
co-flows with varying inflow conditions, Flow, Turbul. Combust. 106 (2021), pp. 1167–1194.

[15] G. Wanner and E. Hairer, Solving Ordinary Differential Equations II, Stiff and Differential-
Algebraic Problems, Springer, Berlin, 1996.

[16] S. Pope, Computationally efficient implementation of combustion chemistry using in situ
adaptive tabulation, Combust. Theory Modell. 1 (1997), pp. 41–63.

[17] L. Liang, J.G. Stevens, and J.T. Farrell, A dynamic adaptive chemistry scheme for reactive flow
computations, Proc. Combust. Inst. 32 (2009), pp. 527–534.

[18] A. Niemoeller, M. Schlottke-Lakemper, M. Meinke, and W. Schroeder, Dynamic load balanc-
ing for direct-coupled multiphysics simulations, Comput. Fluids 199 (2020), pp. 104437.

[19] S. Herff, A. Niemöller, M. Meinke, and W. Schröder, Les of a turbulent swirl flame using
a mesh adaptive level-set method with dynamic load balancing, Comput. Fluids 221 (2021),
pp. 104900.

[20] H. Sitaraman and R. Grout, Balancing conflicting requirements for grid and particle decompo-
sition in continuum-lagrangian solvers, Parallel Comput. 52 (2016), pp. 1–21.

[21] A. Amritkar, S. Deb, and D. Tafti, Efficient parallel cfd-dem simulations using openmp,
J. Comput. Phys. 256 (2014), pp. 501–519.

[22] A. Thari, N.C. Treleaven, M. Staufer, and G.J. Page, Parallel load-balancing for combustion
with spray for large-scale simulation, J. Comput. Phys. 434 (2021), pp. 110187.

[23] S. Yakubov, B. Cankurt, M. Abdel-Maksoud, and T. Rung, Hybrid mpi/openmp parallelization
of an euler–lagrange approach to cavitation modelling, Comput. Fluids 80 (2013), pp. 365–
371.

[24] G. Houzeaux, M. Garcia, J.C. Cajas, A. Artigues, E. Olivares, J. Labarta, and M. Vázquez,
Dynamic load balance applied to particle transport in fluids, Int. J. Comput. Fluid Dyn. 30
(2016), pp. 408–418.

[25] B. Tekgül, P. Peltonen, H. Kahila, O. Kaario, and V. Vuorinen, Dlbfoam: an open-source
dynamic load balancing model for fast reacting flow simulations in openfoam, Comput. Phys.
Commun. 267 (2021), pp. 108073.

[26] J. Muela, R. Borrell, J. Ventosa-Molina, L. Jofre, O. Lehmkuhl, and C.D. Pérez-Segarra,
A dynamic load balancing method for the evaluation of chemical reaction rates in parallel
combustion simulations, Comput. Fluids 190 (2019), pp. 308–321.

[27] A.Y. Klimenko, Lagrangian particles with mixing. II. Sparse-Lagrangian methods in applica-
tion for turbulent reacting flows, Phys. Fluids 21 (2009), pp. 065102.

[28] S. Vo, O.T. Stein, A. Kronenburg, and M.J. Cleary, Assessment of mixing time scales for a
sparse particle method, Combust. Flame 179 (2017), pp. 280–299.

[29] P. Pepiot-Desjardins and H. Pitsch, An efficient error-propagation-based reduction method for
large chemical kinetic mechanisms, Combust. Flame 154 (2008), pp. 67–81.

[30] L. Lu and S.B. Pope, An improved algorithm for in situ adaptive tabulation, J. Comput. Phys.
228 (2009), pp. 361–386.

[31] S.B. Pope, Algorithms for ellipsoids, Cornell University Report No. FDA 2008, pp. 08–01
[32] I. Veljkovic, P.E. Plassmann, and D.C. Haworth, A scientific on-line database for efficient func-

tion approximation, in Computational Science and Its Applications — ICCSA 2003. Lecture
Notes in Computer Science, Vol. 2667. Kumar V., Gavrilova M.L., Tan C.J.K., L’Ecuyer P.,
eds., Springer, Berlin, Heidelberg, 2003. pp. 643–653.

[33] S. Galindo-Lopez, F. Salehi, M.J. Cleary, A.R. Masri, G. Neuber, O.T. Stein, A. Kronenburg,
A. Varna, E.R. Hawkes, B. Sundaram, and A.Y. Klimenko, A stochastic multiple mapping con-
ditioning computational model in OpenFOAM for turbulent combustion, Comput. Fluids 172
(2018), pp. 410–425.

[34] M. Muradoglu, S.B. Pope, and D.A. Caughey, The hybrid method for the PDF equations of
turbulent reactive flows: consistency conditions and correction algorithms, J. Comput. Phys.
172 (2001), pp. 841–878.

[35] R. Barlow, S. Meares, G. Magnotti, H. Cutcher, and A. Masri, Local extinction and near-field
structure in piloted turbulent ch4/air jet flames with inhomogeneous inlets, Combust. Flame
162 (2015), pp. 3516–3540.



Combustion Theory and Modelling 345

[36] S. Meares and A.R. Masri, A modified piloted burner for stabilizing turbulent flames of
inhomogeneous mixtures, Combust. Flame 161 (2014), pp. 484–495.

[37] T.W.J. Peeters, P.P.J. Stroomer, J.E. De Vries, D.J.E.M. Roekaerts, and C.J. Hoogendoorn, Com-
parative experimental and numerical investigation of a piloted turbulent natural-gas diffusion
flame, Symp. (Int.) Combust. 25 (1994), pp. 1241–1248.

[38] P.A. Nooren, M. Versluis, T.H. van der Meer, R.S. Barlow, and J.H. Frank, Raman-Rayleigh-
LIF measurements of temperature and species concentrations in the delft piloted turbulent jet
diffusion flame, Appl. Phys. B 71 (2000), pp. 95–111.

[39] G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bow-
man, R.K. Hanson, S. Song, and W.C. Gardiner, The GRI 3.0 Chemical Kinetic Mechanism, Gas
Research Institute, Chicago, IL, 1999. Available at http://www.me.berkeley.edu/gri_mech.

[40] M.E. Mueller and H. Pitsch, LES model for sooting turbulent nonpremixed flames, Combust.
Flame159 (2012), pp. 2166–2180.

[41] P. Donde, V. Raman, M.E. Mueller, and H. Pitsch, LES/PDF based modeling of soot–turbulence
interactions in turbulent flames, Proc. Combust. Inst. 34 (2013), pp. 1183–1192.

http://www.me.berkeley.edu/gri_mech

	1. Introduction
	2. Numerical models
	2.1. MMC-LES
	2.2. Expediting algorithms
	2.2.1. Dynamic adaptive chemistry (DAC)
	2.2.2. In-situ adaptive tabulation (ISAT)


	3. Dynamic load balancing (DLB) model
	3.1. Principles
	3.2. Dynamic decomposition strategy
	3.2.1. Global adjusting
	3.2.2. Diffusive adjusting
	3.2.3. Coupling with DI, DAC and ISAT

	3.3. Data transmission module

	4. Numerical implementation
	4.1. mmcFoam
	4.2. DLB model

	5. Performance evaluation
	5.1. Sydney piloted flame with homogeneous fuel mixture
	5.1.1. Experimental setup and numerical configuration
	5.1.2. Results

	5.2. Delft III methane/air non-premixed flame
	5.2.1. Experimental setup and numerical configuration
	5.2.2. Results


	6. Conclusion
	Disclosure statement
	Funding
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


