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a b s t r a c t

The hydrodynamic interactions between waves and a truncated floating circular cylinder
array were examined in this work. Each cylinder of the array is allowed to oscillate
with five degrees of freedom (DOFs), and there can be relative motions among different
cylinders. The hydrodynamic responses of such arrays in the presence of ambient
incident waves were studied using a semi-analytical technique, in which, the unknown
coefficients of radiation–diffraction velocity potentials caused by array motions were
expressed by the linear combination of each cylinder’s to-be-calculated oscillation
amplitudes in each direction. Then, for each cylinder in the array, the amplitude of
each degree of freedom was computed. Variations in the oscillation amplitudes of the
cylinders in the array with wavenumbers for various incidence angles and column
spacing, and amplitude distributions of free surface elevation for various wavenumbers
were given. Additionally, extensions to the situation of multidirectional irregular waves
were presented. Last but not least, we examined the effects of other DOFs (nonheave)
on hydrodynamic responses and wave energy extraction performances (capture width
w and interaction factor q) by comparing the results obtained by the 5-DOF and the
1-DOF (heave) models. In terms of response amplitude and wave energy extraction
performance, the 5-DOF model’s results were significantly different from those of the 1-
DOF model. Therefore, it is suggested to use the 5-DOF model to analyze such cylindrical
arrays.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Since many floating offshore engineering structures may be described as cylinder arrays, the interaction between
ylinders and waves is a key topic in the hydrodynamics of ocean engineering. When the hydrodynamic analysis of the
nteraction between cylinder arrays and waves is conducted, these arrays can be roughly divided into two categories.
he floating bodies of offshore drilling and production platforms (such as semi-submersibles and tension leg platforms)
nd the floating foundations of offshore wind turbines can be classified into one category. These floating bodies can be
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thought of as such a cylinder array, in which the cylinders are rigidly connected to each other. The array’s cylinders
move collectively because there is no relative motion between them. However, in the other category of arrays, such as
an oscillating buoy type wave energy converter array, there are relative motions among cylinders and the array does not
move as a whole. The hydrodynamic issue with such arrays has gained more and more attention recently and is also the
focus of this work.

The hydrodynamic problems of complex-shaped floating bodies are usually solved by numerical methods such as the
oundary element method/ finite element methods, or a combination of numerical and analytical methods. While for
he floating bodies with regular cross sections (such as circle, ellipse and some smoothly shapes), it can be solved by
nalytical method. Over the years, a variety of analytical and semi-analytical methods have been proposed to analyze
he above hydrodynamic problems of cylinder arrays. Okhusu (1974) used the iterative multiple scattering method
o analyze the diffraction problem of a group of vertical cylinders. Mavrakos and Koumoutsakos (1987) extended this
ethod to axisymmetric objects of arbitrary shape. Konispoliatis and Mavrakos (2016) used this method to investigate

he bottomless oscillation water column array. Spring and Monkmeyer (1975) applied the direct matrix method to the
iffraction problem of bottom-mounted cylinders, in this method component waves of each cylinder are obtained at the
ame time without iteration. Linton and Evans (1990) developed this method and derived a simplified form of velocity
otential. Kagemoto and Yue (1986) derived an exact algebraic method to solve the diffraction and radiation problem
f an array of bodies in waves, and the solution and characteristics of the diffraction transfer matrix have been further
tudied by Mcnatt et al. (2015), Flavia and Meylan (2019). Mavrakos et al. (2018) compared the results obtained by the
ultiple scattering method and direct method for wave diffraction on truncated cylinders, and found that they are in
ood agreement. In addition, there are some approximation methods. For the case of large spacing between cylinders, the
lane-wave approximation method (Simon, 1982; Williams and Abul-Azm, 1989; Singh and Babarit, 2014) can be used.
or the case that the wavelength and cylinder spacing are much larger than the characteristic size of the cylinder, the point
bsorber approximation (Falnes, 1980; Thomas and Evans, 1981; McGuinness and Thomas, 2016) can be adopted. For a
reat number of bodies, Kashiwagi (2017) developed a hierarchical method to analyze the hydrodynamic interactions.
For water wave diffraction by an array of fixed cylinders, from Okhusu (1974) and Spring and Monkmeyer (1975) to

inton and Evans (1990), people have obtained the solution of this problem. In recent years, phenomena such as trapping
nd near-trapping in the water wave diffraction of some specific geometric cylinder arrays have also been observed (e.g., a
arge number of circular cylinders arranged in a row, cylinders arranged along a circle, arrays containing cylinder position
erturbation, etc.). Studies on these phenomena have greatly deepened the understanding of the diffraction problem of
ylinder arrays. Maniar and Newman (1997) found that the wave forces on a long array of bottomed cylinders could
ncrease significantly at certain wavenumbers. Evans and Porter (1997) and Chatjigeorgiou et al. (2019) investigated
imilar cases in the wave diffraction of a circular array of bottomed cylinders and a long array of truncated cylinders.
eng et al. (2019) studied the regular fluctuation phenomenon of wave forces in non-trapped regions of a long array of
ottomed cylinders and proposed prediction formulas. Bennetts et al. (2017) studied the influence of cylinder position
hanges on the maximum peak load of the original array in a long array of cylinders. Chatjigeorgiou (2019) investigated
ave diffraction by an array of truncated cylinders in front of a vertical wall. For cylinder arrays that can oscillate in
aves, in addition to obtaining the wave excitation forces by solving the wave diffraction problem, it is also necessary to
tudy the radiated waves generated by the oscillations of the cylinders. Based on the method of Kagemoto and Yue (1986),
ilmaz (1998) studied the radiation problem of truncated-cylinder array moving as a whole, and gave the hydrodynamic
oefficients. Siddorn and Taylor (2008) studied the radiation problem of cylinder array with relative motions and gave
he concrete results in the case of cylinders making translational oscillations. Zeng and Tang (2013) and Zeng et al. (2016)
ave concrete results on the radiation problem of such an array with both translation and rotation oscillations.
After studying the wave diffraction and radiation of cylinder arrays, combined with the structural dynamics equation,

ynamic responses, such as displacements of the floating cylinder array in the presence of incident waves can also be
olved. At this time, however, the motion of the cylinder array is unknown before solving, which is different from the
adiation problem of prescribed motion in advance. For those cylinder arrays that can be regarded as a whole (e.g., floating
odies of semi-submersibles/tension leg platforms), there has been a lot of work on its response in the presence of incident
aves for many years. For this type of cylinder array, the recent work is more on the response mitigation and optimal
esign (Odijie et al., 2017; Zhang et al., 2018, 2020). In recent years, wave energy extraction has received renewed
ttention from industries and academia. The wave energy converter (WEC) array composed of multiple floating bodies
s a typical offshore wave power farm type. Many studies investigated the influences of buoy size and spacing, buoy
umber, array layout, wave climate, and power take-off control strategy on the performance of these WEC arrays (Child
nd Venugopal, 2010; Göteman, 2017; Penalba et al., 2017; Sharp and DuPont, 2018; Balitsky et al., 2018; Tokić and Yue,
019; Zhong and Yeung, 2019; Giassi et al., 2020). There is no structural connection among the floating buoys in a WEC
rray, and there are relative motions among the buoys under the action of waves. Therefore, this type of array could not be
egarded as a whole, making it necessary to analyze the different motions of each cylinder. Each cylinder in such an array
as multi-degree-of-freedom (DOF) (i.e. translations and rotations in various directions). However, most existing studies
ave only considered the heave motion of each cylinder in the analysis. In these works, the 1-DOF heave model of each
ylinder was used to analyze the array’s hydrodynamic characteristics and motion responses. At present, few concrete
nalysis results have been published on the motion responses of an independently oscillating cylinder array in which
ach cylinder has multi-DOF. Whether the WEC array analysis based on a single DOF model can accurately reflect the
2
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situation of multi-DOF remains to be further studied. This study shows that the results considering multi-DOF motions of
each cylinder are significantly different from that of the single DOF (as shown in Section 4 of this paper). It is necessary
to study the motion responses of an array with multi-DOF in the presence of ambient incident waves. This investigation
might not only help to establish a more reasonable hydrodynamic analysis model but also help to improve the design of
oscillating buoy type WEC array to improve the energy extraction efficiency, structural safety, and service life.

In this paper, the diffraction, radiation, and motion responses of truncated cylinders in an independently oscillating
ylinder array in the presence of incident waves were studied by a semi-analytical method. The amplitude of each
ylinder’s DOF in the array, the amplitude distributions of free surface elevation around the array, and the wave energy
xtraction performance (capture width w and interaction factor q) were given. The significant difference between this
tudy and the previous work is that each floating cylinder in the array can experience multi-DOF (rather than single
OF) translational and rotational motions in the presence of regular and irregular incident waves. This paper is divided
nto the following parts: In Section 2, the analytical model of diffraction and radiation problems of the hydrodynamic
nteractions among truncated cylinders in the array was established, after which the formulas of velocity potential and
otion amplitude of each DOF were derived. Then, Section 3 showed variations in the amplitude of each DOF in the
rray with dimensionless wavenumbers for different wave incidence angles and cylinder spacing, and gave the contour
lots of the amplitude of free surface elevation for different wavenumbers. In Section 4, the oscillating amplitude of each
ylinder, capture width and interaction factor of two WEC arrays were computed using a multi-DOF analysis model in this
aper, after which we compared them with those of the single DOF model. In Section 5, the extensions to the situation
f irregular waves were given. In Section 6, conclusions were summarized.

. Mathematical models

This study was carried out in the context of time-harmonic linear water waves. As shown in Fig. 1(a), considering
n array composed of N truncated cylinders that can experience multi-DOF translation and rotation in the presence of
ncident waves, there can be relative motions among cylinders (relative-motion-array). As shown in Fig. 1(b), each cylinder
n the array is allowed to oscillate in surge, sway, heave, roll, and pitch modes, yaw motion is not considered because it
oes not produce hydrodynamic force in the ideal fluid. Meanwhile, each cylinder may have a different radius and draught.
öteman (2017) studied the case for arrays of cylinders with different sizes and topology but oscillating only in heave
ode. As shown in Fig. 1(c), a global Cartesian coordinate system OXYZ with (X, Y )-plane fixed on the undisturbed free

surface and Z-axis pointing vertically upwards is introduced. In addition, for each cylinder, a local cylindrical coordinate
system, oiriθizi, with its origin located at the intersection of the cylinder’s axis and the undisturbed free surface and zi-axis
pointing vertically upwards is introduced.

The fluid is incompressible, inviscid and the flow is irrotational, the cylinder oscillates periodically with small amplitude
in the presence of the incident linear water waves. Thus, the total velocity potential Φ can be expressed as

Φ (X, Y , Z, t) = Re
{
ϕ (X, Y , Z) e−iω0t

}
, (1)

where ω0 is the angular frequency of the ambient incident wave; ϕ is the spatial factor, e−iω0t is the time factor and
i =

√
−1.

The fluid domain around each cylinder is divided into the exterior and core regions, as shown in Fig. 1(d), where the
adius and draught of cylinder j are ai and hi and the water depth is d.

The total velocity potential ϕ(j) in the vicinity of cylinder j is represented by the total velocity potential in the exterior
egion ϕ

(j)
E and the total velocity potential in core region ϕ

(j)
C . ϕ(j)

E can be further expressed as

ϕ
(j)
E = ϕI +

N∑
i=1

ϕ
(i)
D−E +

N∑
i=1

5∑
s=1

ϕ
(i)
Rs−E, (2)

here ϕI is the velocity potential of the ambient incident wave, ϕ
(i)
D−E the diffraction potential in the exterior region of

cylinder i; ϕ
(i)
Rs−E the radiation potential of cylinder i oscillating in s mode. In order to solve the problem conveniently,

ϕ
(i)
D−E is divided into two parts ϕ

(i)
D0−E and ϕ

(i)
D1−E : ϕ

(i)
D0−E , which is independent of oscillations of each cylinder, is the

diffraction potential of cylinder i induced by the ambient incident wave acting on a fixed array; whereas ϕ
(i)
D1−E , related

to the oscillations of every cylinder, is the diffraction potential of cylinder i induced by the radiated and diffracted waves
of other cylinders except cylinder i when each cylinder undergoes five DOFs oscillations in the absence of the ambient
incident wave. Then, Eq. (2) becomes

ϕ
(j)
E = ϕI +

N∑
ϕ

(i)
D0−E +

N∑ 5∑
ϕ

(i)
Rs−E +

N∑
ϕ

(i)
D1−E . (3)
i=1 i=1 s=1 i=1

3
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Fig. 1. Schematic showing (a) a cylinder array; (b) the multi-DOF motion of an isolated cylinder; (c) coordinate systems; (d) fluid domain division.

Let

ϕ
(j)
ID−E = ϕI +

N∑
i=1

ϕ
(i)
D0−E,

ϕ
(j)
RD−E =

N∑
i=1

5∑
s=1

ϕ
(i)
Rs−E +

N∑
i=1

ϕ
(i)
D1−E,

(4)

Consequently,

ϕ
(j)
E = ϕ

(j)
ID−E + ϕ

(j)
RD−E, (5)

where ϕ
(j)
ID−E is the velocity potential in the exterior region of cylinder j in the presence of incident waves, which is the

sum of the ambient incident potential and the resulting diffraction potential of each cylinder, the subscript ID indicates
incidence–diffraction. ϕ(j)

RD−E is the velocity potential in the exterior region of cylinder j when each cylinder in the array
performs five DOF oscillations with different amplitudes, which is the sum of the radiation potential of each cylinder and
the resulting diffraction potentials, and subscript RD indicates radiation–diffraction.

Similarly, the velocity potential in the core region can also be divided into ϕ
(j)
ID−C and ϕ

(j)
RD−C :

ϕ
(j)

= ϕ
(j)

+ ϕ
(j)

, (6)
C ID−C RD−C

4
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where ϕ
(j)
ID−C is the velocity potential in the core region in the presence of the ambient incident wave; ϕ

(j)
RD−C is the velocity

potential in the core region in the absence of the ambient incident wave, induced by radiation (due to oscillations of
cylinders) and the diffraction of radiated waves.

In the following, Section 2.1 is about the diffraction problem of ambient incident waves for fixed truncated cylinders,
with the formulas listed in Appendix A using symbols in this paper, with which wave exciting forces and moments are
presented in Section 2.3. Section 2.2 solved the radiation–diffraction problem for arrays of independently oscillating trun-
cated cylinders, with which radiation–diffraction forces and moments are given in Section 2.3. Considering hydrodynamic
forces and other forces acting on the cylinder, the equations of motion of arrays of truncated cylinders in which each
cylinder is allowed to oscillate with five DOFs are given in Section 2.3.

2.1. The velocity potential for diffraction problems of a truncated-cylinder array

As mentioned above, the total velocity potential in the vicinity of a cylinder in an array is divided into two parts:
one is the velocity potential for diffraction problems in the presence of the ambient incident wave, and the other is the
velocity potential for radiation–diffraction problems, in which cylinders oscillate with different amplitudes in the absence
of the ambient incident wave. This section follows the method of Kagemoto and Yue (1986) and Yilmaz (1998) to solve
the diffraction problem of a truncated-cylinder array. Some main formulas used in obtaining the velocity potentials ϕ

(j)
ID−E

and ϕ
(j)
ID−C of the diffraction problem in this study are listed in Appendix A.

2.2. The velocity potential for radiation–diffraction problems when each cylinder in a truncated-cylinder array oscillates with
different amplitudes

In this study, the radiation–diffraction velocity potential induced by the array motion is expressed by the linear
combination of the unknown oscillation amplitudes of each cylinder, after which the radiation–diffraction hydrodynamic
forces expressed by unknown oscillation amplitudes are obtained. Considering the wave exciting forces, radiation–
diffraction hydrodynamic forces, inertial forces, restoring forces, and other damping forces (damping forces other than
radiation damping forces), motion equations of every cylinder in the array can be obtained, after which the amplitude
of each degree of freedom of each cylinder can be obtained by solving the simultaneous equations. Once the oscillation
amplitudes are obtained, the radiation–diffraction velocity potential of the array can be obtained at the same time.

In this section, the radiation–diffraction problem of a truncated-cylinder array, in the absence of the ambient incident
wave, is studied when each cylinder in the array performs five DOF oscillations with different amplitudes.

First, we study how to express the velocity potentials ϕ
(j)
RD−E and ϕ

(j)
RD−C of the radiation–diffraction problem using a

linear combination of the unknown oscillation amplitudes of each cylinder.
Each cylinder in the array oscillates periodically at frequency ω0, and its displacement is:

Ξ (i)
s (t) = Re

{
ζ (i)
s e−iω0t

}
, (7)

where ζ
(i)
s is the complex amplitude of cylinder i in the direction of the sth degree of freedom, and the corresponding

velocity is

Ξ̇ i
s (t) = Re

{
−iω0ζ

(i)
s e−iω0t

}
. (8)

In the coordinate system oiriθizi, the radiation potential ϕ
(i)
Rs−E in the exterior region, generated by the oscillation of

cylindrical i with amplitude ζ
(i)
s , can be written as

ϕ
(i)
Rs−E = −iω0ζ

(i)
s

∞∑
m=−∞

[
R(i)
0msZ0 (z)Hm (k0ri) +

∞∑
n=1

R(i)
nmsZn (z) Km (knri)

]
eimθi , (9)

with R(i)
nms being the radiation characteristics of an isolated truncated cylinder:

R(i)
nms =

⎧⎪⎨⎪⎩
DR

s
0m cosh k0d

H ′
m(k0ai)N

1/2
0

, n = 0,

DR
s
nm

K ′ (k a )N1/2 , n > 0,
(10)
m n i n

5
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where coefficients DR
s
nm is given in Appendix B, N0 and Nn are:

N0 =
1
2

(
1 +

sin h2k0d
2k0d

)
, Nn =

1
2

(
1 +

sin 2knd
2knd

)
. (11)

Eq. (9) can be written in the form of a matrix and further represented in the coordinate system ojrjθjzj using the
oordinate transformation matrix Tij:

ϕ
(i)
Rs−E = −iω0ζ

(i)
s Ris

TψD−E
i = −iω0ζ

(i)
s Ris

TTijψ
I
j. (12)

When each cylinder performs DOF oscillations, the diffraction potential in the exterior region of cylinder i induced by
he radiated and diffracted waves of other cylinders in the array except cylinder i can be written as

ϕ
(i)
D1−E =

∞∑
m=−∞

[
A(i)
R0mZ0 (z)Hm (k0ri) +

∞∑
n=1

A(i)
RnmZn (z) Km (knri)

]
eimθi . (13)

Similar to Eqs. (12), (13) can also be rewritten in the form of a matrix as

ϕ
(i)
D1−E = AT

Riψ
D−E
i = AT

RiTijψ
I
j, (14)

here the coefficient column vector ARi is to be determined.
The total incident waves of cylinder j consist of the radiated and diffracted waves emitted from other cylinders:

N∑
i=1,i̸=j

ϕ
(i)
Rs−E |j +

N∑
i=1,i̸=j

ϕ
(i)
D1−E |j

=

N∑
i=1,i̸=j

5∑
s=1

(
−iω0ζ

(i)
s Ris

T ) Tijψ
I
j +

N∑
i=1,i̸=j

ARi
TTijψ

I
j

=

N∑
i=1,i̸=j

[
5∑

s=1

(
−iω0ζ

(i)
s Ris

T )
+ ARi

T

]
Tijψ

I
j.

(15)

Thus, the total radiated waves in the vicinity of cylinder j can be related by its isolated-body inherent diffraction
ransfer matrix BE

j (Kagemoto and Yue, 1986):

ARj = BE
j

N∑
i=1,i̸=j

Tij
T

[
5∑

s=1

(
−iω0ζ

(i)
s Ris

)
+ ARi

]
, j = 1, 2, . . . , N. (16)

here BE
j is given in Appendix A. The unknown coefficient vector ARj can be obtained by solving Eq. (16). By combining

the equations of all ARj as shown above, we can get

AR = −iω0

5∑
s=1

[E − BT]−1 BTRsζs, (17)

where

AR =
[
AR1

T , AR2
T , . . . , ARj

T , . . . , AR(N−1)
T , ARN

T ]T , (18)

B =

⎡⎢⎢⎢⎣
BE
1 0 · · · 0

0 BE
2 · · · 0

...
...

...

0 0 · · · BE
N

⎤⎥⎥⎥⎦ , (19)

T =

⎡⎢⎢⎢⎢⎣
0 T21

T
· · · TN1

T

T12
T 0

...
... 0 TN(N−1)

T

T1N
T

· · · T(N−1)N
T 0

⎤⎥⎥⎥⎥⎦ , (20)
6
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w
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Rs =

⎡⎢⎢⎣
R1s 0 · · · 0
0 R2s · · · 0
...

...
...

0 0 · · · RNs

⎤⎥⎥⎦ , (21)

ζs =
[
ζ (1)
s , ζ (2)

s , . . . , ζ (j)
s , . . . , ζ (N−1)

s , ζ (N)
s

]T
, (22)

In the calculation, the infinite series in Eq. (13) is truncated into the sum of finite terms with upper bounds of
summation m0 and n0. AR is a N(n0+1)(2m0+1)-by-1 matrix with N row partitions (matrix partitioned into N blocks by
rows, each block being a column vector with (n0+1)(2m0+1) entries); E is the identity matrix of order N(n0+1)(2m0+1)
ith N row partitions and N column partitions; B and T are two square matrices of order N(n0+1)(2m0+1) with N row
artitions and N column partitions. Rs is a N(n0+1)(2m0+1)-by-N matrix with N row partitions and N column partitions.
s is a column vector with N entries.
[E − BT]−1 BTRs is a N(n0+1)(2m0+1)-by-N matrix, which can be partitioned into N2 submatrices as follows:

[E − BT]−1 BTRs =

⎡⎢⎢⎢⎢⎢⎣
κ11s · · · κ1ks · · · κ1Ns
...

...
...

κj1s · · · κjks · · · κjNs
...

...
...

κN1s · · · κNks · · · κNNs

⎤⎥⎥⎥⎥⎥⎦ , (23)

ach submatrix κjks is a column vector with (n0+1)(2m0+1) entries. According to Eq. (17), Eq. (18), Eq. (22), and Eq. (23),
e can obtain the expression below

ARj = −iω0

5∑
s=1

N∑
k=1

κjksζ
(k)
s . (24)

Therefore, for the radiation–diffraction problem, the total velocity potential in the exterior region of cylinder j can be
btained, as shown below

ϕ
(j)
RD−E =

[
5∑

s=1

(
−iω0ζ

(j)
s Rjs

T )
+ ARj

T

]
ψD−E

j +

N∑
i=1,i̸=j

[
5∑

s=1

(
−iω0ζ

(i)
s Ris

T )
+ ARi

T

]
Tijψ

I
j

=

[
5∑

s=1

(
−iω0ζ

(j)
s Rjs

T )
− iω0

5∑
s=1

N∑
k=1

ζ (k)
s κjks

T

]
ψD−E

j

+

N∑
i=1,i̸=j

[
5∑

s=1

(
−iω0ζ

(i)
s Ris

T )
− iω0

5∑
s=1

N∑
k=1

ζ (k)
s κiks

T

]
Tijψ

I
j

= −iω0

5∑
s=1

⎧⎨⎩ζ (j)
s

⎡⎣(Rjs
T

+ κjjs
T )ψD−E

j +

N∑
i=1,i̸=j

κijs
TTijψ

I
j

⎤⎦
+

N∑
k=1,k̸=j

ζ (k)
s

⎡⎣κjksTψD−E
j +

⎛⎝Rks
TTkjψ

I
j +

N∑
i=1,i̸=j

κiks
TTijψ

I
j

⎞⎠⎤⎦⎫⎬⎭
= −iω0

5∑
s=1

⎛⎝ζ (j)
s ϕ

(jj)
RD−Es +

N∑
k=1,k̸=j

ζ (k)
s ϕ

(jk)
RD−Es

⎞⎠ ,

(25)

here

ϕ
(jj)
RD−Es =

(
Rjs

T
+ κjjs

T )ψD−E
j +

N∑
i=1,i̸=j

κijs
TTijψ

I
j,

ϕ
(jk)
RD−Es = κjks

TψD−E
j +

⎛⎝Rks
TTkjψ

I
j +

N∑
κiks

TTijψ
I
j

⎞⎠ .

(26)
i=1,i̸=j

7
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The total velocity potential in the core region of cylinder j can also be obtained, as shown below

ϕ
(j)
RD−C =

5∑
s=1

[
−iω0ζ

(j)
s ϕ

(j)
Rs−C (rj, θj, z)

]
+

⎧⎨⎩
N∑

i=1,i̸=j

[
5∑

s=1

(
−iω0ζ

(i)
s Ris

T )
+ ARi

T

]
Tij

⎫⎬⎭(BC
j
)T
ψD−C

j

= −iω0

5∑
s=1

⎧⎨⎩ζ (j)
s ϕ

(j)
Rs−C (rj, θj, z) +

N∑
i=1,i̸=j

[
ζ (i)
s Ris

T
+

N∑
k=1

ζ (k)
s κiks

T

]
Tij
(
BC
j
)T
ψD−C

j

⎫⎬⎭
= −iω0

5∑
s=1

⎧⎨⎩ζ (j)
s

⎡⎣ϕ
(j)
Rs−C (rj, θj, z) +

N∑
i=1,i̸=j

κijs
TTij

(
BC
j
)T
ψD−C

j

⎤⎦
+

N∑
k=1,k̸=j

ζ (k)
s

⎛⎝Rks
TTkj

(
BC
j
)T
ψD−C

j +

N∑
i=1,i̸=j

κiks
TTij

(
BC
j
)T
ψD−C

j

⎞⎠⎫⎬⎭
= −iω0

5∑
s=1

⎛⎝ζ (j)
s ϕ

(jj)
RD−Cs +

N∑
k=1,k̸=j

ζ (k)
s ϕ

(jk)
RD−Cs

⎞⎠ ,

(27)

where

ϕ
(jj)
RD−Cs = ϕ

(j)
Rs−C

(
rj, θj, z

)
+

N∑
i=1,i̸=j

κijs
TTij

(
BC
j
)T
ψD−C

j ,

ϕ
(jk)
RD−Cs = Rks

TTkj

(
BC
j

)T
ψD−C

j +

N∑
i=1,i̸=j

κiks
TTij

(
BC
j
)T
ψD−C

j ,

(28)

and ϕ
(j)
Rs−C is the radiation potential for an isolated cylinder in the core region of cylinder j, defined as

ϕ
(j)
Rs−C (rj, θj, z) =

∞∑
m=−∞

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Cs
R0m
2

(
rj
aj

)|m|

+

∞∑
p=1

C s
Rpm

Im
(

pπrj
d−hj

)
Im
(

pπaj
d−hj

) cos
[
pπ (z + d)

d − hj

]
+ Λsλms

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ eimθj , (29)

here coefficients C s
Rpm, Λs and λms are defined in detail in Appendix B.

It is evident from Eqs. (17), (25), and (27) that for the radiation–diffraction problem of an array, the linear combination
f the amplitudes of each DOF ζ

(i)
s can represent the diffraction potential coefficient vector ARj, and further represent the

otal velocity potentials ϕ
(j)
RD−E and ϕ

(j)
RD−C . Based on this result, the amplitude ζ

(i)
s can be subsequently solved using the

ynamic equations for each cylinder, which will be described in detail in the next section.

.3. The hydrodynamic forces/moments and oscillation amplitudes of each cylinder in a truncated-cylinder array

As shown in Eqs. (5) and (6), once ϕ
(j)
ID−E , ϕ

(j)
ID−C , ϕ

(j)
RD−E , and ϕ

(j)
RD−C have been obtained, the total velocity potentials in the

xterior region ϕ
(j)
E and the core region ϕ

(j)
C can also be obtained. Therefore, the spatial factor of hydrodynamic pressure

on cylinder j becomes

P(j)
= iρωϕ(j), (30)

Subsequently, the total hydrodynamic forces and moments on cylinder j can be obtained by integrating the pressure
over its wet surface S, resulting in its spatial factor F (j)

Hp, as shown below

F (j)
Hp =

{ ∫
P(j)ndS, p = 1, 2, 3,∫
P(j) (r × n) dS, p = 4, 5, (31)

here r is the position vector pointing from the center of mass to the integrating point and n is the unit normal vector
f wet surface pointing into the body:

n =

{ (
− cos θj, − sin θj, 0

)
, lateral surface, (32)
(0, 0, 1) , bottom surface.
8
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Substituting Eqs. (25) and (27) into Eqs. (30) and (31), we can get

F (j)
Hp = F (j)

IDp + F (j)
RDp = F (j)

IDp +

5∑
s=1

N∑
i=1

F (ji)
RDpsζ

i
s , (33)

where the exciting force/moment F (j)
IDp in each direction on cylinder j is defined as follows: Surge exciting force:

F (j)
ID1 = −iω0ρ

∫ 2π

0

∫ 0

−h
ϕ

(j)
ID−E

⏐⏐⏐
r=aj

cos θjajdθjdz, (34)

Sway exciting force:

F (j)
ID2 = −iω0ρ

∫ 2π

0

∫ 0

−h
ϕ

(j)
ID−E

⏐⏐⏐
r=aj

sin θjajdθjdz, (35)

Heave exciting force:

F (j)
ID3 = iω0ρ

∫ 2π

0

∫ a

0
ϕ

(j)
ID−C

⏐⏐⏐
z=−hj

rjdrjdθj, (36)

Roll exciting moment:

F (j)
ID4 = iω0ρ

∫ 2π

0

∫ a

0
ϕ

(j)
ID−C

⏐⏐⏐
z=−hj

rj sin θjrjdrjdθj + iω0ρ

∫ 2π

0

∫ 0

−h
ϕ

(j)
ID−E

⏐⏐⏐
r=a

(
z − z j

)
sin θjajdθjdz, (37)

itch exciting moment:

F (j)
ID5 = −iω0ρ

∫ 2π

0

∫ a

0
ϕ

(j)
ID−C

⏐⏐⏐
z=−hj

rj cos θjrjdrjdθj − iω0ρ

∫ 2π

0

∫ 0

−h
ϕ

(j)
ID−E

⏐⏐⏐
r=aj

(
z − z j

)
cos θjajdθjdz, (38)

The radiation–diffraction hydrodynamic force/moment F (j)
RDp on cylinder j, induced by the oscillations of all cylinders

n the array, is defined as follows:
adiation–diffraction hydrodynamic force in the surge direction:

F (j)
RD1 = iω0ρ

∫ 2π
0

∫ 0
−hj

ϕ
(j)
RD−E

⏐⏐⏐
r=aj

(
− cos θj

)
ajdθjdz

= iω0ρ
∫ 2π
0

∫ 0
−hj

iω0

5∑
s=1

⎛⎝ζ (j)
s ϕ

(jj)
RD−Es +

N∑
k=1,k̸=j

ζ (k)
s ϕ

(jk)
RD−Es

⎞⎠⏐⏐⏐⏐⏐⏐
r=aj

cos θjajdθjdz

=

5∑
s=1

⎡⎣ζ (j)
s

(
−ω0

2ρ

∫ 2π

0

∫ 0

−hj
ϕ

(jj)
RD−Es

⏐⏐⏐
r=aj

cos θjajdθjdz

)
+

N∑
k=1,k̸=j

ζ (k)
s

(
−ω0

2ρ

∫ 2π

0

∫ 0

−hj
ϕ

(jk)
RD−Es

⏐⏐⏐
r=aj

cos θjajdθjdz

)⎤⎦
=

5∑
s=1

⎛⎝ζ (j)
s F (jj)

RD1s +

N∑
k=1,k̸=j

ζ (k)
s F (jk)

RD1s

⎞⎠ =

5∑
s=1

N∑
i=1

F (ji)
RD1sζ

i
s ,

(39)

Radiation–diffraction hydrodynamic force in the sway direction:

F (j)
RD2 = iω0ρ

∫ 2π
0

∫ 0
−hj

ϕ
(j)
RD−E

⏐⏐⏐
r=aj

(
− sin θj

)
ajdθjdz

= iω0ρ
∫ 2π
0

∫ 0
−hj

iω0

5∑
s=1

⎛⎝ζ (j)
s ϕ

(jj)
RD−Es +

N∑
k=1,k̸=j

ζ (k)
s ϕ

(jk)
RD−Es

⎞⎠⏐⏐⏐⏐⏐⏐
r=aj

sin θjajdθjdz

=

5∑
s=1

⎡⎣ζ (j)
s

(
−ω0

2ρ

∫ 2π

0

∫ 0

−hj
ϕ

(jj)
RD−Es

⏐⏐⏐
r=aj

sin θjajdθjdz

)
+

N∑
k=1,k̸=j

ζ (k)
s

(
−ω0

2ρ

∫ 2π

0

∫ 0

−hj
ϕ

(jk)
RD−Es

⏐⏐⏐
r=aj

sin θjajdθjdz

)⎤⎦
=

5∑⎛⎝ζ (j)
s F (jj)

RD2s +

N∑
ζ (k)
s F (jk)

RD2s

⎞⎠ =

5∑ N∑
F (ji)
RD2sζ

i
s ,

(40)
s=1 k=1,k̸=j s=1 i=1

9
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Radiation–diffraction hydrodynamic force in the heave direction:

F (j)
RD3 = iω0ρ

∫ 2π
0

∫ aj
0 ϕ

(j)
RD−C

⏐⏐⏐
z=−hj

rjdrjdθj

= −iω0ρ
∫ 2π
0

∫ aj
0 iω0

5∑
s=1

⎛⎝ζ (j)
s ϕ

(jj)
RD−Cs +

N∑
k=1,k̸=j

ζ (k)
s ϕ

(jk)
RD−Cs

⎞⎠⏐⏐⏐⏐⏐⏐
z=−hj

rjdrjdθj

=

5∑
s=1

⎡⎣ζ (j)
s

(
ω0

2ρ

∫ 2π

0

∫ aj

0
ϕ
(jj)
RD−Cs

⏐⏐⏐
z=−hj

rjdrjdθj

)
+

N∑
k=1,k̸=j

ζ (k)
s

(
ω0

2ρ

∫ 2π

0

∫ aj

0
ϕ
(jk)
RD−Cs

⏐⏐⏐
z=−hj

rjdrjdθj

)⎤⎦
=

5∑
s=1

⎛⎝ζ (j)
s F (jj)

RD3s +

N∑
k=1,k̸=j

ζ (k)
s F (jk)

RD3s

⎞⎠ =

5∑
s=1

N∑
i=1

F (ji)
RD3sζ

i
s ,

(41)

Radiation–diffraction hydrodynamic moment in the roll direction:

F (j)
RD4 = iω0ρ

(∫ 2π
0

∫ aj
0 ϕ

j
RD−C

⏐⏐z=−hj rj
2 sin θjdrjdθj +

∫ 2π
0

∫ 0
−h ϕ

j
RD−E

⏐⏐r=aj

(
z − z j

)
aj sin θjdθjdz

)
= −iω0ρ

⎡⎢⎣∫ 2π
0

∫ aj
0 iω0

5∑
s=1

⎛⎝ζ (j)
s ϕ

(jj)
RD−Cs +

N∑
k=1,k̸=j

ζ (k)
s ϕ

(jk)
RD−Cs

⎞⎠⏐⏐⏐⏐⏐⏐
z=−hj

rj2 sin θjdrjdθj

+
∫ 2π
0

∫ 0
−hj

iω0

5∑
s=1

⎛⎝ζ (j)
s ϕ

(jj)
RD−Es +

N∑
k=1,k̸=j

ζ (k)
s ϕ

(jk)
RD−Es

⎞⎠⏐⏐⏐⏐⏐⏐
r=aj

(
z − z j

)
aj sin θjdθjdz

⎤⎥⎦
=

5∑
s=1

[
ζ (j)
s

(
ω0

2ρ

∫ 2π

0

∫ aj

0
ϕ
(jj)
RD−Cs

⏐⏐⏐
z=−hj

rj2 sin θjdrjdθj + ω0
2ρ

∫ 2π

0

∫ 0

−hj

ϕ
(jj)
RD−Es

⏐⏐⏐
r=aj

(
z − z j

)
aj sin θjdθjdz

)

+

N∑
k=1,k̸=j

ζ (k)
s

(
ω0

2ρ

∫ 2π

0

∫ aj

0
ϕ
(jk)
RD−Cs

⏐⏐⏐
z=−hj

rj2 sin θjdrjdθj + ω0
2ρ

∫ 2π

0

∫ 0

−hj

ϕ
(jk)
RD−Es

⏐⏐⏐
r=aj

(
z − z j

)
aj sin θjdθjdz

)⎤⎦
=

5∑
s=1

⎛⎝ζ (j)
s F (jj)

RD4s +

N∑
k=1,k̸=j

ζ (k)
s F (jk)

RD4s

⎞⎠ =

5∑
s=1

N∑
i=1

F (ji)
RD4sζ

i
s ,

(42)

adiation–diffraction hydrodynamic moment in the pitch direction:

F (j)
RD5 = iω0ρ

(
−
∫ 2π
0

∫ aj
0 ϕ

j
RD−C

⏐⏐z=−hj rj
2 cos θjdrjdθj −

∫ 2π
0

∫ 0
−hj

ϕ
j
RD−E

⏐⏐r=aj

(
z − z j

)
aj cos θjdθjdz

)
= iω0ρ

⎡⎢⎣∫ 2π
0

∫ aj
0 iω0

5∑
s=1

⎛⎝ζ (j)
s ϕ

(jj)
RD−Cs +

N∑
k=1,k̸=j

ζ (k)
s ϕ

(jk)
RD−Cs

⎞⎠⏐⏐⏐⏐⏐⏐
z=−hj

rj2 cos θjdrjdθj

+
∫ 2π
0

∫ 0
−hj

iω0

5∑
s=1

⎛⎝ζ (j)
s ϕ

(jj)
RD−Es +

N∑
k=1,k̸=j

ζ (k)
s ϕ

(jk)
RD−Es

⎞⎠⏐⏐⏐⏐⏐⏐
r=aj

(
z − z j

)
aj cos θjdθjdz

⎤⎥⎦
=

5∑
s=1

[
ζ (j)
s

(
−ω0

2ρ

∫ 2π

0

∫ aj

0
ϕ
(jj)
RD−Cs

⏐⏐⏐
z=−hj

rj2 cos θjdrjdθj − ω0
2ρ

∫ 2π

0

∫ 0

−hj
ϕ

(jj)
RD−Es

⏐⏐⏐
r=aj

(
z − z j

)
aj cos θjdθjdz

)

+

N∑
k=1,k̸=j

ζ (k)
s

(
−ω0

2ρ

∫ 2π

0

∫ aj

0
ϕ
(jk)
RD−Cs

⏐⏐⏐
z=−hj

rj2 cos θjdrjdθj − ω0
2ρ

∫ 2π

0

∫ 0

−hj
ϕ

(jk)
RD−Es

⏐⏐⏐
r=aj

(
z − z j

)
aj cos θjdθjdz

)⎤⎦
=

5∑
s=1

⎛⎝ζ (j)
s F (jj)

RD5s +

N∑
k=1,k̸=j

ζ (k)
s F (jk)

RD5s

⎞⎠ =

5∑
s=1

N∑
i=1

F (ji)
RD5sζ

i
s ,

(43)

where z is the vertical coordinate of the center of mass of cylinder j.
j

10
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F (j)
IDp is the exciting force/moment on cylinder j in the presence of ambient incident waves, independent of oscillations

f cylinders; F (j)
RDp (=

∑5
s=1
∑N

i=1 F
(ji)
RDpsζ

(i)
s ) is the hydrodynamic force/moment on cylinder j induced by oscillations of

cylinders in the absence of ambient incident waves, which is directly proportional to the amplitudes of oscillations.
F (ji)
RDpsζ

(i)
s is the pth-direction hydrodynamic force/moment on the jth cylinder due to the sth-direction oscillation of the

th cylinder with amplitude ζ
(i)
s .

As a result, the equation of motion for cylinder j in the pth direction is obtained, as shown below(
−ω2M(j)

p − iωλ
(j)
p + δ

(j)
p + k(j)

p

)
ζ

(j)
p −

5∑
s=1

N∑
i=1

F (ji)
RDpsζ

(i)
s = F (j)

IDp,

j = 1, 2, . . . ,N; p = 1, 2, . . . , 5,

(44)

where M(j)
p denotes the mass (p = 1, 2, 3) or moment of inertia (p = 4, 5) of cylinder j. λj

p and δ
j
p denote the mechanical

damping and stiffness of cylinder j in direction p respectively, caused by the power take-off and mooring systems. k(j)
p

denotes the hydrostatic restoring stiffness of cylinder j in direction p. Finally, by solving linear equations of Eq. (44), the
amplitude ζ

(j)
p of each floating cylinder in each direction can be obtained, thereby solving the whole problem completely.

As an additional result, the added mass and damping coefficients can also be straightforwardly obtained as well:

a(ji)
ps = Re

[
F (ji)
RDps

]
/ω2

b(ji)
ps = Im

[
F (ji)
RDps

]
/ω

(45)

3. Results and discussions

3.1. Verification

In Section 2 of this paper, a semi-analytical method for the hydrodynamic responses of truncated cylinders in an array
with relative motions in the presence of ambient incident waves is proposed. This method can solve the problem that
each cylinder is allowed to oscillate with five DOFs of translation and rotation, and the amplitudes of each cylinder in
the array can be different. This section verifies the method. At present, there are hardly any published results on such
an array in which each cylinder oscillates with five DOFs. The results of some published examples can be regarded as
the degradation cases. Hence, these examples were recalculated by the method in Section 2 and compared with existing
results.

Matsui and Tamaki (1981) used the boundary element method to calculate the oscillation amplitudes of two DOFs
(surge and heave) for an array with relative motions consisting of two truncated cylinders in the presence of incident
waves. The two cylinders are distributed along the X direction, with the spacing between the two cylinders being 3a.
Each cylinder has a radius of a, a draught of 0.5a, and a moment of inertia of 0.75ρa5. The heading angle of the ambient
incident wave is β = 0 and the water depth is 10a. The comparison between the results of the present study and those of
Matsui and Tamaki (1981) is shown in Fig. 2(a, b), they are in good agreement. Wang et al. (2004) calculated the variations
in the pitch amplitude of the two above cylinders with wave frequencies using the numerical method of the free-surface
Green function source distribution. The results of the present study are also in good agreement with those of Wang
et al. (2004), as shown in Fig. 2(c). Zhong and Yeung (2019) used a semi-analytical method to calculate the surface-wave
interactions among an array of truncated cylinders. They calculated the exciting forces and damping coefficients of the
four cylinders moving as a whole. The cylinders are arranged as shown in Fig. 5. Each cylinder has a radius of a and a
draught of 2a, with the spacing between the two cylinders being 8a and the water depth being 10a. As before, the results
of our study are in good agreement with those of Zhong and Yeung (2019), as shown in Fig. 3.

In addition, many published results on the cylinder array’s added mass and damping coefficient of cylinder array exist.
The author of this paper has previously made many comparisons (e.g., Zeng et al., 2016). Another example comparison
is given in this section. Mavrakos (1991) used the multiple scattering method to calculate the coupling hydrodynamic
coefficients of three cylinders arranged in an equilateral triangle. The results of the present study are in good agreement
with his results, as shown in Fig. 4.

3.2. Upper bounds of summation and computation time

Upper bounds of summation
In existing studies on diffraction and radiation of water waves, there have been some works on the upper bounds of

summation (i.e. the number of terms retained in the eigenfunction expansion) required for convergence. For the diffraction
and radiation problems of truncated cylinder groups, Kagemoto and Yue (1986) showed that good convergence results
can be achieved when the upper bound of summation M is taken as 2 and Nm is taken as 4 (using the symbols in this
paper, that is, m0 = 4, n0 = 2). For radiation problem of arrays of independently oscillating truncated cylinders, Zeng

et al. (2016) showed that good convergence results can be obtained when m0 = 6, n0 = 25 for the cases they studied.

11
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Fig. 2. Surge (a), heave (b) and pitch (c) amplitudes of the two cylinders.

Fig. 3. Exciting forces and damping coefficient of the four cylinders.

For the problems related to the motion of a cylinder array in the presence of incident waves, there are hardly any
published results on the influence of the upper bounds of the summation on the convergence. This study investigated
this problem in the computation process. According to our computations on the motions of arrays of independently
oscillating truncated cylinders with five DOFs in the presence of incident waves, the smaller the ratio of the draught
to water depth is, the more terms for convergence are required. This finding is similar to the result of Zeng et al. (2016)
12
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Fig. 4. Hydrodynamic coefficients of the three cylinders. (a): the added mass; (b): the damping coefficient.

n the upper bounds of summation in the radiation problem. For the cases we investigated, our computations also show
hat convergence results are obtained for all considered wavenumbers when m0 is taken as 5 and n0 as 25.

We evaluate the convergence behaviors by comparing the results obtained when the upper bounds of summation are
mall with those when the upper bounds of summation are large enough. Investigations revealed that when m0>5, even
f we continue to increase the upper bound of summation m0, there is no significant change in the calculation results (the
rror is less than 0.1%). Moreover, increasing m0 will greatly increase the calculation time. So, taking m0 as 5 is enough.
orresponding tests were also conducted for n0. It was found that when n0>25, even at the cost of significantly increasing
he calculation time, increasing n0 does not significantly change the calculation results (the error is within 1%). Therefore,
t is sufficient to take n0 as 25.

omputation time
The computation time in this study depends on the upper bounds of summation (m0 and n0) and the number of

ylinders (N). For the configuration with four truncated cylinders, the computation time for one wave number is about
45.8 s, and the error is less than 1% when m0 = 5 and n0 = 25 are selected. If the accuracy requirements are relaxed,
.g. the error is kept within 5%, the computation time is about 77.6 s. The computer system used is Intel(R) Xeon(R)
-2133 CPU @ 3.60 GHz with 6 cores and 12 threads, and the RAM is 32.0 GB.
Our computations show that for other cases with different numbers of cylinders, selecting m0 = 5 and n0 = 25 can

till give results with good accuracy (when the error is about 1%). Therefore, we propose that m0 = 5 and n0 = 25 can be
enerally selected for computation. Even ifm0 and n0 are fixed, the computation time depends on many factors, such as the
umber of cylinders, the efficiency of matrix generation, the efficiency of solving linear equations, the performance of the
omputer, and so on, making it difficult to express this dependency accurately with explicit expressions. Our computations
how that, by and large, with an increase in the number of cylinders, the computation time roughly shows a piecewise
inear growth with different slopes. Its growth rate is faster than the linear growth and slower than the square law growth.

.3. The responses of an array with relative motions composed of four truncated cylinders in the presence of ambient incident
aves

In this section, the dynamic responses of an array with relative motions consisting of four truncated cylinders in the
resence of ambient incident waves are calculated using the method developed in Section 2. As shown in Fig. 5, each
ylinder is of radius a, draught 0.5a, and moment of inertia 0.75ρπa5. The spacing between the two cylinders is L. The
eading angle of the ambient incident wave is β . Each cylinder in the array is allowed to experience oscillations of five
OFs (surge, sway, heave, roll, and pitch) with different amplitudes. Since there have been many studies on the wave
xcitation forces and the hydrodynamic coefficients for arrays of cylinders in academic publications, this section mainly
ocuses on the amplitudes of each cylinder and free surface elevation in the presence of incident waves. At present,
here are few concrete computations of the oscillation amplitude of the cylinder array. A tiny number of results based
n the discrete numerical method are that each cylinder oscillates with only two degrees of freedom. There are hardly
ny specific results for the case that each cylinder experiences five DOFs oscillations with different amplitudes. Therefore,
n this section, we perform computations for this problem and investigate the effects of cylinder spacing L and wave
ncidence angle β on the oscillation amplitude.
13
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Fig. 5. The configuration for an array composed of four cylinders.

mplitudes of each cylinder with five degrees of freedom at different wave incidence angles
Fig. 6 shows the amplitude responses of the array with relative motions in the presence of incident waves at five

ifferent incidence angles for L = 4a. The red, blue, green, pink and brown lines represent the results for β = 0, β = π/8,
= π/4, β = 3π/8 and β = π/2, respectively. Variations in the surge, sway, heave, roll and pitch amplitudes of cylinders
and 4 with dimensionless wavenumber k0a are plotted. The black line indicates the amplitudes of an isolated cylinder
ith β = 0.
It is evident that when β = 0, the isolated cylinder’s sway and roll amplitudes are zero. However, as shown in Fig. 6(c),

d), (g), and (h), for a cylinder in the array, the sway and roll amplitudes are usually not zero due to the hydrodynamic
nteractions among cylinders.

Since the array shown in Fig. 5 is a square layout, the amplitudes of each cylinder should have some symmetry. This
s also confirmed by the computation results shown in Fig. 6, which shows that the surge (sway) amplitude of cylinder 1
t incidence angle β is equal to the sway (surge) amplitude of cylinder 4 at incidence angle π/2 - β , the heave amplitude
f cylinder 1 at incidence angle β is equal to the heave amplitude of cylinder 4 at incidence angle π/2 - β , and the pitch

(roll) amplitude of cylinder 1 at incidence angle β is equal to the roll (pitch) amplitude of cylinder 4 at incidence angle
π/2 - β . These results are in line with expectations, indicating this study’s accuracy.

The heave of a single isolated cylinder is not coupled with other DOFs. For the isolated cylinder in this example, the
variation curve of heave amplitude with k0a has a resonant peak at k0a = 0.99, as shown in the black line in Fig. 6(e) and
(f). The situation is different for the cylinder-array. Since the four cylinders are coupled together through hydrodynamic
interactions, the motion equations for the four-cylinder-array are coupled equations with 20 DOFs. The peak position of
each cylinder’s heave amplitude curve is different from that of the isolated cylinder, as shown in other color curves in
Fig. 6(e) and (f). The difference between the amplitude peak positions of cylinders in the array and an isolated cylinder
reflects the influence of hydrodynamic interactions among cylinders.

For cases with different wave incidence angles, the variations in the amplitude with k0a are complex. When the
wavelength of the incident wave is long (k0a < 0.7 in this example), the variation trend of each cylinder’s amplitude with
k0a is close to that of an isolated cylinder. In this region, with an increase in the wave incidence angle, the surge/pitch
decreases, and the sway/roll increases. It is also observed that each cylinder’s DOF amplitude in the array has a peak near
k0a ∼ 1. This is because the region k0a ∼ 1 is where the heave resonance peak is located. Therefore, not only the heave
of each cylinder has the maximum value in this region, but also the amplitudes of other DOFs have local extreme points
in this region due to the hydrodynamic interactions among each DOF. The heave of an isolated cylinder is not coupled
with other DOF, so for an isolated cylinder, the amplitudes of other DOFs are not affected by the heave peak.

When the incidence angle is β = π/2 (or β = 0), the hydrodynamic force on each cylinder induced by the
incident wave velocity potential (the Froude–Krylov force) does not contribute to the surge and pitch (sway and roll)
of each cylinder. At this time, the surge and pitch (sway and roll) are completely caused by the radiation and diffraction
hydrodynamic interactions among the cylinders. Therefore, the variation trends of surge and pitch (sway and roll) differed
from those of the cases with other incidence angles but are similar to that of the heave amplitude curve for β = π/2 (or
β = 0), having obvious peaks near k0a ∼ 1.

Amplitudes of each cylinder with five degrees of freedom for different cylinder spacings
Fig. 7 shows the amplitude responses of the array for cases with three different cylinder spacing in the presence of

incident waves with β = 0. The red, blue, and green lines represent the results for L = 4a, L = 6a and L = 10a, respectively.
Variations in the surge, sway, heave, roll and pitch amplitudes of cylinders 1 and 4 with dimensionless wavenumber k0a
are plotted. Cylinders 1 and 4 represent the situations of the upstream and downstream cylinders respectively. The black
line indicates the amplitude of an isolated cylinder, which can also be regarded as the case of infinite cylinder spacing.

As shown in Fig. 7(a), while variations in the surge amplitude of an isolated cylinder with wavenumbers show a
monotonically decreasing curve, the situation differs for cylinders in the array. Due to the hydrodynamic interactions
among the cylinders, although the surge amplitude of cylinder 1 does not decrease monotonically with the increase of
wavenumber, it fluctuates around the amplitude response curves of an isolated cylinder. Also, with an increase in cylinder
spacing L, this fluctuation becomes more rapid. Previously, Zeng et al. (2019) conducted a detailed study on the fluctuation
phenomenon of excitation forces for a long array of bottom-mounted cylinders. Then they revealed the mechanism of the
14
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r

Fig. 6. Amplitude responses of cylinder 1 (a, c, e, g, i) and cylinder 4 (b, d, f, h, j) at five incident wave angles (L = 4a). (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
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amplitude fluctuation of the wave excitation force. This work, however, studies the situation of an array of cylinders
allowed to oscillate, which is more complex than that of a bottom-mounted cylinder array. Nevertheless, the fluctuation
phenomenon in Fig. 7(a) can still be understood by referring to the analysis of Zeng et al. (2019): The amplitude fluctuation
is caused by the constructive and destructive interference of the diffraction and radiation waves emitted from the cylinders
at the upstream and downstream ends of the array, and the fluctuation period decreases with an increase in the cylinder
spacing. The peak near k0a ∼ 1.0 in Fig. 7(a) is caused by resonance in the heave-dominated mode of the cylinder array.

Similarly, the curves in Fig. 7(b) – (j) also have such fluctuations and peaks. For the case of L = 4a, the heave peaks
of cylinders in the four-cylinder-array appear at k0a = 1.04, while the resonant peak of the heave of an isolated cylinder
is at k0a = 0.99, which indicates a natural frequency of four-cylinder-array that is close to the heave’s natural frequency
of an isolated cylinder. At the natural frequency of the heave-dominated mode of the cylinder array (k0a = 1.04), the
peaks of sway and roll are also obvious, while the peaks of surge and pitch are less obvious. This is because Fig. 7 is
obtained when the incidence angle is β = 0. At this time, the velocity potential of the incident wave does not contribute
to swaying/rolling excitation forces/moments, and the sway and roll amplitude are completely generated by the diffraction
and radiation potentials of the array. The radiation potential also has peaks at the frequency corresponding to the heave
peak, resulting in sway and roll amplitudes peaks. With changes in cylinder spacing, the natural frequencies of the array
system change, and the peak positions of motion amplitudes of cylinders in the array also change consequently.

We note that several large peaks at heave resonance in Figs. 6 and 7 indicate that the linear water wave theory is
not strictly valid when the resonance amplitude is large. The linear water wave theory is valid in the wide range of non
resonant regions in which motions are small. Although the motion amplitude obtained in the resonant region is not very
accurate using a linear theory, it can fairly accurately give an effective estimate of the natural frequency of the array
system consisting of independently oscillating cylinders. In order to obtain an accurate value for the motion amplitudes
of every cylinder in the array at resonance, the nonlinear wave theory (even the viscosity should also be considered)
should be used. It is expected that the values of motion amplitudes obtained by the higher-order theory in the case of
resonance will be smaller than that of linear wave theory, but the frequency corresponding to the peak will not differ
greatly from the frequency obtained by the linear theory.

Elevation of free surface
Subsequently, we investigate the free surface elevation amplitude, η/A, for the array of relative motions consisting of

four cylinders in the presence of incident waves. The results for the cases with incidence angle β = 0, cylinder spacing L
= 4a, and wavenumber k0a being 0.5, 1.0, 1.5 and 2.0 are presented. While the left column of Fig. 8 (i.e. Fig. 8(a), (c), (e),
and (g)) shows the amplitude of free surface elevation for the array with relative motions, the right column (i.e. Fig. 8(b),
(d), (f), and (h)) shows that of the corresponding fixed array for comparison.

As shown in Fig. 8(a) and (b), the amplitude of the free surface elevation is relatively small in the case of k0a = 0.5.
When the array is allowed to oscillate under the action of waves, while the free surface amplitude in the inner area of
the array is smaller than that when the array is fixed, the free surface amplitude in the downstream area of the array is
larger than that in the fixed case.

However, in the case of k0a = 1.0, as shown in Fig. 8(c), the maximum free surface amplitude appears in the area
surrounded by cylinders for the array with relative motions, with the maximum reaching 2.52. When the array is fixed,
as shown in Fig. 8(d), the maximum free surface amplitude appears in the area between cylinders 1 and 3, and the
maximum is 2.37, less than the array with relative motions. The free surface amplitude in the downstream area of array
with relative motions is also larger than that of the fixed array.

Then, in the case of k0a = 1.5, as shown in Fig. 8(e), for array with relative motions, the maximum free surface
amplitude appears in the area between cylinders 1 and 3 with a value of 2.07. For a fixed array, as shown in Fig. 8(f), the
maximum free surface amplitude of 1.87 appears in immediate areas at the front of cylinders 1 and 3. Different from the
first two cases, at this wavenumber, the free surface amplitude downstream the array with relative motions is less than
that downstream the fixed array.

Finally, in the case of k0a = 2.0, as shown in Fig. 8(g) and (h), the distribution of the free surface amplitude of the
array with relative motions is very close to that of the fixed array.

It is evident from Fig. 8 that the free surface amplitude distribution of the array with relative motions becomes closer
to that of the fixed array with an increase in the wavenumber. This is because the larger the wavenumber, the more the
wave force frequency is greater than the natural frequency of the array system, so that the response of the array system
will be closer to that of the fixed array.

4. The influence of the factor that each cylinder in the array is allowed to oscillate with five degrees of freedom on
the WEC array’s performance

For the WEC array composed of multiple oscillating buoys, existing studies usually model each buoy as a truncated
cylinder with a single DOF (heave) for hydrodynamic analysis. This section considers two models that each cylinder is
allowed to oscillate with five DOFs and only a single DOF (heave). By comparing the results of the two models, the
influence of each cylinder’s five DOFs oscillations on the wave energy extraction performance of the WEC array is revealed.
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Fig. 7. Amplitudes of cylinders 1 (a, c, e, g, i) and 4 (b, d, f, h, j) for different cylinder spacings L.. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Free surface amplitudes (η/A) of arrays with relative motions (a, c, e and g) and fixed arrays (b, d, f and h) at different wave numbers. (a)
and (b): k0a = 0.5; (c) and (d): k0a = 1.0; (e) and (f): k0a = 1.5; (g) and (h): k0a = 2.0.
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Fig. 9. Amplitude responses of a WEC array based on the 1-DOF model (Model 1) and the 5-DOF model (Model 2). (a): L = 3a; (b): L = 10a.

The two models are named Model 1 and Model 2 respectively. While Model 1 is a single DOF model (i.e. 1-DOF model),
odel 2 is a five DOFs model (i.e. 5-DOF model). In Model 1, each cylinder has only one DOF of heave, and the power

ake-off characteristics of each cylinder are considered linear and set to δ (stiffness) and λ (damping). In Model 2, however,
ach cylinder has five DOFs comprising the surge, sway, heave, roll, and pitch, with the power take-off characteristics in
he heave direction set to the same parameters as that of Model 1, and the mechanical stiffness and damping in other
irections set to 0 (i.e. no power is extracted in other directions).
According to Falnes (2002), the mean power extracted by cylinder j oscillating in the heave direction with amplitude

(j)
s should be

P j
s =

1
2
ω2λs

⏐⏐ζ (j)
s

⏐⏐2 . (46)

There are two important indicators describing the performance of a WEC array: the capture width w and interaction
factor q, as shown in Eqs. (47) and (48), which are used to represent the total wave power extraction capacity of the
array and determine whether the hydrodynamic interactions among cylinders in the array are conducive to wave power
generation.

w =

∑N
i=1
∑5

s=1 P
(i)
s

PI
, (47)

q =

∑N
i=1
∑5

s=1 P
(i)
s

N ×
∑5

s=1 P iso
s

, (48)

here PI denotes the power flux of the ambient incident wave, as shown below

PI =
1
2
ρgA2

·
ω0

2k0

(
1 +

2k0d
sin h2k0d

)
. (49)

Subsequently, the computation is performed for a WEC array composed of four truncated cylinders, whose sizes have
been described in Section 3.2, with two different cylinder spacings being considered. Let δ = 0 and λ = 0.44ρa3ωn, where
the value of λ equals the radiation damping of an isolated cylinder at heaving resonance frequency ωn. Fig. 9 shows the
comparison results of the heave amplitude of each cylinder in the WEC array based on Model 1 and Model 2. The results
of arrays with small and large cylinder spacings are shown in Fig. 9(a) (L = 3a) and Fig. 9(b) (L = 10a), respectively. Since
the wave incidence angle β = 0, the amplitude responses of cylinders 1 and 3 are identical, the same is true for cylinders
2 and 4. It is evident from Fig. 9 that the heave amplitude of the same cylinder in the array is quite different using the
1-DOF and the 5-DOF models. As shown in Fig. 9(a), at k0a = 1.16, the dimensionless amplitudes of cylinders 1 and 3
(Upstream cylinders of the array) reach 1.14 based on the 1-DOF model while it is 0.72 based on the 5-DOF model that
if the 1-DOF model is used to analyze the problem which is actually a 5-DOF problem, the error is as high as 57%. The
difference between the results of the two models for downstream cylinders of the array (cylinder 2 or 4) is also large at
k0a = 1.0, which is 39%. This difference still exists when the cylinder spacing changes. For example, as shown in Fig. 9(b),
the error is 22% for the upstream cylinder at k0a = 1.66, and 37% for the downstream cylinder at k0a = 1.30.

It can be seen from Eqs. (46), (47), and (49) that the result of the oscillating amplitudes of each cylinder will directly
affect the wave power extraction performance of the array. Fig. 10 shows the comparisons of the capture width w of a
WEC array based on the two different models. As shown in Fig. 10(a), the 1-DOF model underestimates the capture width
when 0.65 < k0a < 0.97, while it overestimates the capture width when 0.97 < k0a < 1.49. The difference between the two
models reaches 71% at k0a = 1.13. As shown in Fig. 10(b), when the cylinder spacing is large (L = 10a), the 1-DOF model
overestimates the capture width at almost all wavenumbers, and the biggest difference reaches 51% at k a = 1.33.
0
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Fig. 10. Capture width w of a WEC array based on the 1-DOF and 5-DOF models. (a) L = 3a and (b) L = 10a.

Fig. 11. Interaction factor q of a WEC array with the 1-DOF and 5-DOF models. (a) L = 3a and (b) L = 10a.

Fig. 11 shows the comparisons of the interaction factor q of a WEC array based on the two different models. q > 1
eans that the power extraction performance of the WEC array is better than that of the same number of isolated WECs,
hich indicates that the hydrodynamic interactions among cylinders are constructive to the array performance. q < 1
eans that the interactions are destructive. As shown in Fig. 11(a), at k0a = 1.17, the q factor reaches 1.30 based on the
-DOF model, while it is only 0.75 based on the 5-DOF model, the difference is up to 73% for the case L=3a. As shown in
ig. 11(b), the biggest difference reaches 45% at k0a = 1.66 for the case L = 10a.
It can be seen that if the other degrees of freedom are not fully constrained, even if only the oscillation in the heave

irection is used to generate power, it is recommended to consider the effect of other degrees of freedom on hydrodynamic
odeling and analysis; otherwise, it may lead to large errors.
Incidentally, for WEC arrays with large individual energy absorption but small q coefficient, it may be possible to

onsider how to further improve its interaction coefficient through layout optimization, and to improve the capture width
s well. It is also recommended to use the 5-DOF hydrodynamic model for layout optimization.

. Extensions to the situation of irregular waves

In the previous sections, we studied the hydrodynamic interactions between single-directional harmonic waves and
rrays of cylinders. However, this section will discuss the situation when incident waves are omnidirectional irregular
aves.
To analyze the hydrodynamic interactions between waves and arrays of floating cylinders in the presence of multidi-

ectional irregular incident waves, a multidirectional irregular model presented in Yu et al. (1991) is adopted to represent
he incident waves, in which the omnidirectional irregular waves are expressed by the superposition of many regular
omponent waves. As a result, the free surface elevation ηI(X, Y , t) of incident waves at point (X, Y ) can be expressed, as
hown below

ηI(X, Y , t) = Re

⎧⎨⎩
M∑ N∑

aµνe−i[ωµν t−kµν (X cos θν+Y sin θν )−εµν]

⎫⎬⎭ (50)

µ=1 ν=1
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where

ωµν = ωµ −
δω

2
+ (ν − 1 + rµν)

δω

N
(51)

aµν =
√
2S(ωµ, θν)δω δθ (52)

µν is the random phase with a uniform distribution from 0 to 2π , and rµν is a random number uniformly distributed
ithin the interval [0, 1], introduced to impart a random component to ωµν . aµν , ωµν , and kµν are the amplitude, angular

frequency, and wavenumber of the component wave, respectively.

ωµ =
1
2
(ωµ + ωµ−1) (53)

ωµ = ωH − µ · δω (54)

δω =
ωH − ωL

M
(55)

δθ =
θmax − θmin

N
(56)

here ωL and ωH are the minimum and maximum angular frequencies, respectively. The interval [ωL, ωH ] is equally
ivided into M parts. θν is the incident angle of the component wave. The interval [θmin, θmax] is equally divided into N
arts. [θmin, θmax] is the direction distribution interval, which is [−π/2, π/2].
Generally, the directional spectrum S(f , θ ) can be considered as the product of a frequency spectrum S(f ) and a

irectional spreading function G(f , θ ), i.e.,

S(f , θ ) = S(f )G(f , θ ) (57)

JONSWAP spectrum recommended by Goda (1999) is used for the frequency spectrum in this study.

S(f ) = βJH2
1/3T

−4
p f −5 exp

[
−1.25(Tpf )−4]

· γ
exp

[
−(Tpf−1)2/2σ2

]
(58)

here

βJ =
0.06238

0.230 + 0.0336γ − 0.185(1.9 + γ )−1 × [1.094 − 0.01915 ln γ ] (59)

Tp =
T1/3

1.0 − 0.132(γ + 0.2)−0.559 (60)

σ =

{
0.07f ≤ fp
0.09f > fp

(61)

1/3, T1/3, Tp, fp are the significant wave height, the significant period, the peak period, and the peak frequency,
espectively, and γ is the peak enhancement factor, which takes a value of 3.3 in this study.

For multidirectional irregular waves, the total energy should equal that of unidirectional irregular waves. This means
hat the spectrum and directional spectrum need to satisfy the following relationship∫

∞

0
S(f )df =

∫
∞

0

∫ θmax

θmin

S(f , θ )dθ df (62)

Then the direction spreading function G(f , θ ) must satisfy∫ θmax

θmin

G(f , θ )dθ = 1 (63)

The Mitsuyasu-type spreading function is adopted here for the directional spreading function, defined by Longuet-
Higgins et al. (1963) as

G(f , θ ) = G0(τ ) cos2τ
(

θ − θ0

2

)
(64)

here τ is the directional spreading parameter (the larger the parameter τ , the narrower the direction distribution) and
0 is the principal wave direction. By combining (63) and (64), G0(s) can be solved as follows:

G0(τ ) =

[∫ θmax

θmin

cos2τ
(

θ − θ0

2

)
dθ
]−1

(65)

or simplicity, τ is taken as independent of the frequency.
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Fig. 12. Comparisons between the frequency spectra.

The complex amplitude ξ
(j)
s /A of the jth-cylinder’s displacement in the direction of the sth DOF for unit incident wave

mplitude has been obtained in Section 2. Some examples for
⏐⏐⏐ξ (j)

s /A
⏐⏐⏐ are shown in Figs. 6 and 7 of sub-Section 3.2.

Considering that the object studied in this paper is a linear system, the time series of the displacements of the jth-cylinder
in the sth-direction in the presence of multidirectional irregular waves can be expressed as

Ξ (j)
s (t) = Re

⎧⎨⎩
M∑

µ=1

N∑
ν=1

⏐⏐T (j)
s (ωµ, θν)

⏐⏐ aµνe−i[ωµν t−εµν−αµν]

⎫⎬⎭ (66)

where T (j)
s (ωµ, θν) is ξ

(j)
s /A when the angular frequency of incident waves is ωµ, and the incidence angle is θν . αµν =

rctan
Im
[
T (j)
s (ωµ,θν )

]
Re
[
T (j)
s (ωµ,θν )

] .
Subsequently, the time series of the multidirectional irregular waves are obtained using Eq. (50). In the calculation,

M = 300 and N = 100 are used. For verification, we carried out a fast Fourier transform (FFT) analysis on the obtained
irregular waves time series to obtain the frequency spectrum and compare it with the frequency spectrum calculated
with Eq. (58). The two examples (Yu et al., 1991; Zhang et al., 2019) of comparison are shown in Fig. 12, both of which
are in good agreement.

With Eq. (66), the time series of the displacements of the jth-cylinder in the sth-direction in the presence of
ultidirectional irregular incident waves can be obtained. Then, the frequency spectrum can be obtained by FFT analysis
f the time series. Next, the motions of an array of four truncated cylinders in the presence of the multidirectional irregular
ncident waves are calculated. As shown in Fig. 5, each cylinder has a radius of a, a draught of h = 0.5a. The spacing L
nd water depths are 4a and 10a, respectively. The significant wave height H1/3 = 5.0 m, significant period T1/3 = 10.0 s,
nd principal wave direction θ0 = 0

◦

. The surge time series (Ξ (1)
1 (t)) of cylinder 1 for different directional spreading

arameter τ are shown in Fig. 13. The time series of other DOFs and other cylinders are similar.
By performing FFT analysis on the surge time series in Fig. 13, the frequency spectra of the surge of cylinder 1 for

ifferent directional spreading parameters τ can be obtained. Similarly, the frequency spectra of other motion modes can
lso be obtained. The frequency spectra of each DOF for cylinders 1 and 4 are shown in Fig. 14 as representatives. As shown
n Fig. 14, the larger the τ , the higher the spectral peaks of the cylinder’s surge and pitch. This result is because the larger
he directional spreading parameter τ , the narrower the directional distribution is. Therefore, the incident wave energy is
ore concentrated in the principal direction (i.e. the surge direction for the case investigated), resulting in greater surge
nd pitch responses. When τ becomes smaller, the incident wave energy is distributed in a wider direction, resulting in
igher spectral peaks of sway and roll in this example.

. Conclusion

In this paper, the hydrodynamic responses of a truncated-cylinder array in the presence of incident waves are studied.
elative motions are allowed among the cylinders in the array, with each cylinder allowed to oscillate with five DOFs:
urge, sway, heave, roll, and pitch. A semi-analytical method is developed to deal with the hydrodynamic problem of
nteractions among waves and the array with relative motions consisting of truncated cylinders, in which the radiation–
iffraction velocity potential induced by the array motion is expressed by the linear combination of the oscillation
22
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Fig. 13. Surge time series of cylinder 1 for different directional spreading parameter τ (H1/3 = 5.0 m, T1/3 = 10.0 s).

mplitudes to be solved in each direction of each cylinder, and then the radiation–diffraction hydrodynamic forces
xpressed by the oscillation amplitudes to be solved is obtained. Considering the balance among wave excitation forces,
adiation–diffraction hydrodynamic forces, inertia forces of cylinder array, restoring forces, and other damping forces
damping forces other than radiation damping forces), the amplitude in each DOF of each cylinder and the radiation and
iffraction velocity potentials of the array are obtained.
Subsequently, the amplitudes of every DOF of the array in the presence of incident waves are computed. Variations

n the amplitude of each DOF of the cylinder in the array with dimensionless wavenumbers for cases with different
ncidence angles and cylinder spacings are obtained, and the amplitude distributions of free surface elevation for different
avenumbers are given. Furthermore, extensions to the situation in the presence of the multidirectional irregular waves
re presented, and time series and frequency spectra of oscillation responses of cylinders are given.
Finally, the WEC array is analyzed based on 1-DOF model and 5-DOF models to investigate the influence of the multi-

OF model on hydrodynamic responses and wave energy extraction performances (capture width and interaction factor).
otably, the results obtained using the 5-DOF model differ greatly from those of the 1-DOF model in terms of oscillation
mplitudes and wave energy extraction performances. It is suggested that the 5-DOF model should be used to analyze
uch cylinder arrays, especially in studying their wave extraction performances.
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Fig. 14. Frequency spectra of each degree of freedom of cylinder 1 (a, c, e, g, i) and cylinder 4 (b, d, f, h, j) for different τ (H1/3 = 5.0 m, T1/3 = 10.0 s).
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Appendix A. Diffraction solution

The amplitude of the ambient incident wave is A, the angular frequency is ω0. The incidence angle of the ambient wave
is at an angle of β with the positive direction of X-axis. Then the velocity potential of the ambient incident wave in the
local cylindrical coordinate ojrjθjzj at cylinder j is (Newman, 1977):

ϕI = −
igA
ω0

∞∑
m=−∞

Ijeim(π/2−β)
· Z0 (z) Jm

(
k0rj

)
eimθj , (A.1)

where g denotes the gravitational acceleration, Ij = eik0(Xj cosβ+Yj sinβ) the phase factor, (Xj, Yj) the coordinate of the axis
of cylinder j in the global coordinate system, Z0 = cosh k0(z + d)/ cosh k0d, Jm the mth-order Bessel function of the first
kind, and wavenumber k0 satisfies the dispersion relationship k0 tanh k0d = ω2

0/g .
In the coordinate system oiriθizi, the velocity potential of the diffracted waves in the exterior region of cylinder i is:

ϕ
(i)
D0−E = −

igA
ω0

∞∑
m=−∞

[
A(i)
0mZ0 (z)Hm (k0ri) +

∞∑
n=1

A(i)
nmZn (z) Km (knri)

]
eimθi , (A.2)

here A(i)
nm is the undetermined complex coefficients, Hm the mth-order Hankel function of the first kind and Km the

th-order modified Bessel function of the second kind. Zn = cos kn(z + d) is the characteristic function in z direction for
n ≥ 1 and wave number kn is given by positive real roots of kn tan knd = −ω2

0/g .
Eqs. (A.1) and (A.2) can be written in matrix form:

ϕI = −
igA
ω

· ajTψI
j, (A.3)

ϕ
(i)
D0−E = −

igA
ω0

· Ai
TψD−E

i , (A.4)

here the superscript T indicates the transpose. Elements of each vector are

aj (n, m) =

{
Ijeim(π/2−β), n = 0,
0, n ≥ 1,

ψI
j (n, m) =

{
Z0 (z) Jm

(
k0rj

)
eimθj , n = 0,

Zn (z) Im
(
knrj

)
eimθj , n ≥ 1,

(A.5)

ψD−E
i (n, m) =

{
Z0 (z)Hm (k0ri) eimθi , n = 0,
Zn (z) Km (knri) eimθi , n ≥ 1,

(A.6)

ψD−E
i can be rewritten in term of the representation of it in the coordinate system ojrjθjzj by using Graf’s addition theorems

for Bessel functions:

ψD−E
i (n, m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞∑
l=−∞

Hm−l
(
k0Rij

)
eiαij(m−l)

· Z0 (z) Jl
(
k0rj

)
eilθj , n = 0,

∞∑
l=−∞

Km−l
(
knRij

)
eiαij(m−l) (−1)l · Zn (z) Il

(
knrj

)
eilθj , n ≥ 1,

(A.7)

here Rij is the distance between the origins oi and oj, αij the azimuthal angle of oj relative to oi (shown in Fig. 1(c)).
And it can be further written in the matrix form:

ψD−E
i =Tijψ

I
j, (A.8)

here Tij is a matrix representing the coordinate transformation from i to j:

Tij (n, m, l) =

{
Hm−l

(
k0Rij

)
eiαij(m−l), n = 0,

Km−l
(
knRij

)
eiαij(m−l) (−1)l , n ≥ 1.

(A.9)

Therefore, the diffraction potential in the exterior region of cylinder i represented by Eq. (A.4) can be written as follows
in the coordinate system ojrjθjzj:

ϕ
(i)
D0−E |j = −

igA
Ai

TTijψ
I
j. (A.10)
ω0
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c

The total incident waves of cylinder j consist of the ambient incident wave and the diffracted waves from other

ylinders:

ϕ
(j)
I = ϕI +

N∑
i=1,i̸=j

ϕ
(i)
D0−E |j = −

igA
ω0

⎛⎝ajT +

N∑
i=1,i̸=j

Ai
TTij

⎞⎠ψI
j. (A.11)

The total incident waves and total diffracted waves in the vicinity of cylinder j can be related by its isolated-body
inherent diffraction transfer matrix BE

j (Kagemoto and Yue, 1986):

Aj = BE
j

⎛⎝aj +
N∑

i=1,i̸=j

Tij
TAi

⎞⎠ , j = 1, 2, . . . ,N, (A.12)

Following the method given in Kagemoto and Yue (1986), elements of diffraction transfer matrix BE
j and BC

j for an
isolated truncated circular cylinder are obtained, which are listed as follows:

BE
j (0, 0,m) = −

J ′m(k0aj)
H ′

m(k0aj)
+

Dn
mq cosh k0d

H ′
m(k0aj)N

1/2
0 eim(π/2−β)

, n = 0, q = 0, (A.13)

BE
j (q, 0,m) =

Dn
mq

K ′
m(kqaj)N

1/2
q eim(π/2−β)

, n = 0, q ≥ 1, (A.14)

BE
j (0, n,m) =

Dn
m0 cosh k0d

H ′
m(k0aj)N

1/2
0

, n ≥ 1, q = 0, (A.15)

BE
j (q, n,m) =

⎧⎪⎨⎪⎩
Dn
mq

K ′
m(kqaj)N

1/2
q

, n ≥ 1, q ≥ 1, q ̸= n,

−
I ′m(kqaj)
K ′
m(kqaj)

+
Dn
mq

K ′
m(kqaj)N

1/2
q

, n ≥ 1, q ≥ 1, q = n,
(A.16)

BC
j (0, 0,m) =

Cn
m0

2aj|m|im
, n = 0, p = 0, (A.17)

BC
j (p, 0,m) =

Cn
mp

Im
(
pπaj/(d − hj)

)
im

cos
(
pπ (z + d)
d − hj

)
, n = 0, p ≥ 1, (A.18)

BC
j (0, n,m) =

Cn
m0

2aj|m|
, n ≥ 1, p = 0, (A.19)

BC
j (p, n,m) =

Cn
mp

Im
(
pπaj/(d − hj)

) cos(pπ (z + d)
d − hj

)
, n ≥ 1, p ≥ 1, (A.20)

where Cn
mp and Dn

mq are the unknown coefficients of the velocity potential of an isolated truncated cylinder in the core
region and exterior region respectively, Following the method given in Garrett (1971), they are obtained by solving⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Cn
mp +

∞∑
q=0

FmpqDn
mq = Rn

mp

Dn
mq −

∞∑
p=0

GmqpCn
mp = 0

, (A.21)

where

Fmpq =

⎧⎪⎨⎪⎩
−

2Hm(k0aj)k0(d−hj)(−1)p sinh k0(d−hj)

H ′
m(k0aj)·N

1/2
0 ·[k02(d−hj)2+p2π2]

, q = 0,

−
2Km(kqaj)kq(d−hj)(−1)p sin kq(d−hj)

K ′
m(kqaj)·N

1/2
q ·[kq2(d−hj)2−p2π2]

, q ≥ 1,
(A.22)

Gmqp =

⎧⎪⎪⎨⎪⎪⎩
|m|·sin kq(d−hj)

2aj·d·kq2N
1/2
q

, p = 0,

I ′m(
pπaj
d−hj

)·pπ (d−h)(−1)p·sin kq(d−hj)

Im(
pπaj
d−hj

)·d·N1/2
q ·[kq2(d−hj)2−p2π2]

, p ≥ 1,
(A.23)

Rn
mp =

⎧⎪⎨⎪⎩
2im[Jm(k0aj) −

J ′m(k0aj)
H ′
m(k0aj)

Hm(k0aj)] ·
(−1)p·k0(d−hj) sinh k0(d−hj)
cosh k0d·[k02(d−hj)2+p2π2]

, n = 0,

2[Im(knaj) −
I ′m(knaj)
′ Km(knaj)] ·

(−1)pkn(d−hj) sin kn(d−hj)
2 2 2 2 , n ≥ 1.

(A.24)

Km(knaj) kn (d−hj) −p π
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c

A

e

By combining the equations of all Aj as shown in Eq. (A.12), we can get

⎡⎢⎢⎢⎣
A1
A2
.
.
.

AN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
BE
1 0 · · · 0

0 BE
2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · BE
N

⎤⎥⎥⎥⎦ ·

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎣
a1
a2
.
.
.

aN

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
0 TT

21 · · · TT
N1

TT
12 0 · · · TT

N2
.
.
.

.

.

.
. . .

.

.

.

TT
1N TT

2N

.

.

. 0

⎤⎥⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎣
A1
A2
.
.
.

AN

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⇒

⎡⎢⎢⎢⎣
A1
A2
.
.
.

AN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣E −

⎡⎢⎢⎢⎣
BE
1 0 · · · 0

0 BE
2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · BE
N

⎤⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎢⎣
0 TT

21 · · · TT
N1

TT
12 0 · · · TT

N2
.
.
.

.

.

.
. . .

.

.

.

TT
1N TT

2N

.

.

. 0

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎦

−1

·

⎡⎢⎢⎢⎣
BE
1 0 · · · 0

0 BE
2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · BE
N

⎤⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎣
a1
a2
.
.
.

aN

⎤⎥⎥⎥⎦
(A.25)

The unknown coefficient vector Aj can be obtained by solving this linear system with N(n0+1)(2m0+1) unknowns. For
further matrix construction of BE

j and Tij, refer to Zeng et al. (2016).
The total velocity potential in the exterior region of cylinder j for the diffraction problem of a truncated-cylinder array

an be written as follows:

ϕ
(j)
ID−E = −

igA
ω0

⎡⎣Aj
TψD−E

j +

⎛⎝ajT +

N∑
i=1,i̸=j

Ai
TTij

⎞⎠ψI
j

⎤⎦ . (A.26)

Similarly, the total velocity potential in the core region of cylinder j has the form:

ϕ
(j)
ID−C = −

igA
ω0

⎛⎝ajT +

N∑
i=1,i̸=j

Ai
TTij

⎞⎠(BC
j
)T
ψD−C

j , (A.27)

where BC
j are given in Appendix A. Elements of vector ψD−C

j are

ψD−C
j (p,m) =

{
r |m|

j eimθj , p = 0,

Im
(

pπrj
d−hj

)
eimθj , p ≥ 1.

(A.28)

ppendix B. Radiation solution of an isolated cylinder

Following the method give in Yeung (1981) and Sabuncu and Calisal (1981), CR
s
pm and DR

s
nm can be solved from

quations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
CR

s
pm +

∞∑
q=0

FmpqDR
s
qm = RR

s
pm

DR
s
qm −

∞∑
p=0

GmqpCR
s
pm = SRsqm

. (B.1)

In the above formula,

RR
s
pm = −

2
d − h

∫
−hj

−d
λmsΛs

(
aj, z

)
cos

[
pπ (z + d)

d − hj

]
dz, (B.2)

SRsqm =
λms

kqd

∫
−hj

−d

∂Λs
(
aj, z

)
∂r

Zq (z) dz +
λms

kqd

∫ 0

−hj

fs (z) Zq (z) dz, (B.3)

where

fs (z) =

⎧⎪⎨⎪⎩
1, s = 1, 2,
0, s = 3,
− (z − z) , s = 4, (B.4)
(z − z) , s = 5,
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Λs =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, s = 1, 2,
1

2(d−hj)

[
(z + d)2 −

r2j
2

]
, s = 3,

rj
2(d−hj)

[
(z + d)2 −

r2j
4

]
, s = 4,

−
rj

2(d−hj)

[
(z + d)2 −

r2j
4

]
, s = 5,

(B.5)

λms =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
m = 1 :

⎧⎨⎩ λ11 = λ15 =
1
2

λ13 = 0
λ12 = λ14 =

1
2i

, m = 0 :

{
λ01 = λ05 = 0
λ03 = 1
λ02 = λ04 = 0

m = −1 :

⎧⎨⎩ λ−11 = λ−15 =
1
2

λ−13 = 0
λ−12 = λ−14 = −

1
2i

, m = others : λms = 0

(B.6)
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