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Defect clusters including dislocations, grain boundaries, and precipitations can serve as sink sources for point
defects during radiation damage. As a result, radiation tolerance can be tuned by engineering the defects in the
structural materials, however, is a challenging topic due to the complexity. In this paper, the mechanism of in-
teraction between the preexisting dislocation and the displacement cascade in CoCrCuFeNi high entropy alloy
(HEA) is investigated using molecular dynamics simulations. The results show that the dislocation climbs, and

promotes the diffusion of point defects generated by the cascade to the dislocation line. As a result, it increases
the probability of defect annihilation and recombination and therefore strengthens radiation tolerance. The inter-
action of dislocations with void in CoCrCuFeNi and Ni shows that CoCrCuFeNi high entropy alloy has excellent
resistance to irradiation hardening. Our atomic insights could be beneficial in the design of high-performance
irradiation resistant high entropy alloys.

1. Introduction

Green energy is critical to the environment on earth and sustainable
development of human being civilization. Nuclear energy plays an im-
portant role in all the strategies to generate clean energy [1]. With the
development of a new generation of nuclear reactors, structure materials
work in severe conditions, which demand higher irradiation resistance
under high temperature. New structural materials need to be designed
to meet the demands. HEAs are one potential candidate. HEAs, which
are alloys with equal or nearly equal atomic ratios composed of five or
more elements, were first proposed by Yeh et al. [2] and Cantor et al.
[3] in 2004. Due to the severe lattice distortion [4,5], HEAs have ex-
cellent mechanical properties, such as high strength [6], high hardness
[7] and high ductility [8]. Also for having slow diffusion effect [9-11],
researchers suggested that HEAs might have excellent resistance to ir-
radiation.

There are a few efforts in the study of radiation response of HEAs.
Yang et al. [12] investigated the irradiation response of Al,CoCrFeNi
(x = 0.1, 0.75, and 1.5) HEA. The results showed that Al ; CoCrFeNi
exhibited good phase stability under ion irradiation due to the high
conformational entropy and atomic slow diffusion effect. Zhang et al.
[13] found that the FCC phase remained stable in nanocrystalline CoCr-
CuFeNi at 3 MeV Ni ions irradiation at room temperature. Kumar
et al. [14] investigated irradiation resistance of 27%Fe-28%Ni-27%Mn-
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18%Cr HEA under 5.8 MeV Ni ions at room temperature to 700 °C.
The results showed that the dislocation loops at all temperatures were
small and no voids appeared due to relatively sluggish solute diffusion.
Tunes et al. [15] studied the irradiation resistance of FeCrMnNi HEA
and austenitic stainless steel AISI-348 under 40 and 140 dpa doses Xe*
heavy ions irradiation. The results showed that HEA maintained 80% of
the solid solution phase, while irradiation-induced precipitation (RIP)
was observed in austenitic stainless steel. Saikumaran et al. [16] found
that CrFeMoV had better He ions irradiation resistance than P91 ferritic
steel at room temperature. Recently, researchers found that the intro-
duction of dislocations [17,18] and grain boundaries [19-21] in ma-
terials had a significant impact on the defects produced by cascading.
For example, Lu et al. [22] indicated that dislocations promoted the for-
mation of voids in NiCoCrFePd. Meanwhile, Cao et al. [23] studied the
irradiation resistance of (CoCrFeNi)y,Ti,Al4 by 4 MeV Au ions at room
temperature. The results showed that the presence of nano precipitates
slowed down the growth of dislocation loops and the material hardening
caused by irradiation was not obvious.

In addition to experiments, computations including molecular dy-
namics (MD) simulations have been widely used to study irradiation
damage in alloys [24-27]. However, only some researchers studied the
influence of dislocation on irradiation resistance in ternary and binary
alloys. Dou et al. [28] investigated the interaction of edge dislocations
with void in Fe; yNi,,Cr and Fes3Nij3Cr, and indicated that the latter ex-
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hibited better irradiation hardening resistance behavior due to stronger
slow diffusion that would inhibit the transformation of void to stacking
fault tetrahedra. Zhao et al. [29] simulated the interaction between va-
cancies and dislocation in pure Ni and NiFe alloys. Avalos et al. [30] in-
vestigated the change of the dipole of an edge dislocation during the
cascade by molecular dynamics simulation and found that larger clus-
ters of vacancies are produced in the presence of dislocations.

Although HEAs are proposed as novel candidates for nuclear reactor
structural materials [31], the mechanism of the influence of the dislo-
cation on irradiation resistance still lacks, therefore, in this paper, we
investigate the interaction of primary knock-on atoms (PKA) with dis-
locations in CoCrCuFeNi HEA by molecular dynamics simulation. The
approach of MD simulation is employed here because it has been proved
to be suitable for displacement cascade simulations [32-34]. Our study
has discovered that the pre-existing dislocations serve as defect traps ab-
sorbing irradiated defects. The model and details of molecular dynamics
simulations are scrutinized in Section 2. The results and discussions are
in Section 3, followed by the conclusions in Section 4.

2. Model and simulation

A 1/2<110> edge dislocation is created in the middle of the model
[35], as shown in Fig. 1(a). The three directions of the Cartesian coordi-
nate system represent the [112], [110], and [111], respectively. There-
fore, the Burgers vector b is along y-axis and the slip plane is perpen-
dicular to z-axis. The model of CoCrCuFeN:i is illustrated in Fig. 1(b),
which consists of five elements of Co, Cr, Cu, Fe, and Ni with the
same ratio. The model contains 186,624 atoms with dimensions of
10.4 nm x 10.2 nm x 19.7 nm along x, y, and z direction. The peri-
odic boundary is applied along x, y directions [36]. Five rows of atoms
at the top and bottom along z direction are fixed to avoid the movement
of the model during the cascade.

Considering the size of the model, the energy of the PKA atom is cho-
sen to be 5 keV, and the velocities are along the negative direction of
z direction, thus the cascade interacts with a larger range of pre-added
dislocation [37]. The whole simulation is performed at a temperature
300 K. The PKA locates at a distance of —1 to 5 nm from the initial dis-
location at 1 nm intervals, respectively. We carry out 5 simulation cases
for each PKA location, and also carry out 10 cascades for the pristine
material without initial dislocation. The whole process is conducted us-
ing LAMMPS molecular dynamics software [38]. The interaction among
atoms is described by EAM potential proposed by Deluigi et al. [39],
which has been shown to study the cascade collision process of CoCr-
CuFeNi HEA successfully.
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Fig. 1. Schematics of atomic models. (a) Pre-added disloca-
tion (blue straight line) and the initial PKA position and di-
rection. (b) CoCrCuFeNi model with random distributions, the
elements are distinguished by the colors.

The simulation is performed as follows: First, a lattice parameter of
0.3552 nm [40] for CoCrCuFeNi is chosen, which is close to the exper-
imental value of 0.3579 nm [41]. Then the system is relaxed at 300 K
for 60 ps using NVT ensemble to make the system reach equilibrium.
As shown in Fig. 1(b), due to the high energy of the initially added full
dislocation, the dislocation spontaneously turns into two Shockley dislo-
cations during relaxation: %[OTT] . é[TTZ] + é[lQT]. When the cascade
collision starts, the NVE ensemble is applied. Meanwhile, the atoms in
the outermost 0.5 nm thick layer of the model are selected to keep the
temperature at 300 K using the Berendsen method. The other atoms are
thermodynamic. An adaptive variable step is applied to ensure that the
atoms do not move more than 0.002 nm within a step. The entire process
lasts 100 ps, which is long enough for the model to reach equilibrium.
The analysis of the simulation results is all performed using OVITO vi-
sualization software [42].

Wigner-Seitz defect analysis is applied to identify point defects gen-
erated by the cascade. The point defects consist of two parts, as shown as
Fig. 2. One part is the initially added dislocations and new dislocations
linked to the initial dislocations, marked with black circles in Fig. 2.
Ab-SIAs and ab-Vacs denote interstitials and vacancies in this part, re-
spectively. The other part is the rest of defects in the matrix. Re-SIAs and
re-Vacs denote interstitials and vacancies in the matrix, respectively.

3. Results and discussions
3.1. Defects creation in cascade

With displacement cascade, PKA in CoCrCuFeNi creates plenty of
Frenkel pair (FP) point defects. Defects caused by PKA will interact with
the dislocation. The interaction depends on the separation between PKA
and dislocation. As shown in Fig. 3(a), the interstitials (re-SIAs) and
vacancies (re-Vacs) resided in the matrix are almost the same as in the
ideal bulk material when the PKA occurs at —1 nm to the dislocation,
which indicates that the cascade does not interact with the dislocations.
However, when the distance between PKA and the initial dislocation
increases is at 0-3 nm, the number of re-SIAs and re-Vacs in the matrix is
less than that in the ideal material, which indicates that the dislocations
act as defect traps to capture point defects. The total number of re-SIAs
and re-Vacs increases gradually to that of ideal bulk material when the
distance is larger than 3 nm, suggesting that the interaction between
PKA and dislocation decreases.

We have examined the number of interstitials (ab-SIAs) and vacan-
cies (ab-Vacs) that interact with dislocation, as shown in Fig. 3(b). The
trend of the absorbed defects as a function of the distance is opposite to
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Fig. 2. Changes in atomic and dislocation structures at the
end of the cascade. Interstitials and vacancies are identified us-
ing Wigner-Seitz. HCP, BCC and Unidentified are atomic struc-
tures. FCC structures have been removed.
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Fig. 3. The number of point defects produced by PKA with preexisting dislocation at different distances. (a) The number of point defects resided in the matrix.
The black dashed line filled with light purple represents the number of defects produced by PKA in ideal bulk material. Re-SIAs and re-Vacs are the interstitials and
vacancies resided in the matrix. (b) The number of point defects absorbed by dislocations. ab-SIAs and ab-Vacs are the interstitials and vacancies interacted with the

dislocations.

that of residues in the matrix shown in Fig. 3(a). The peaks of ab-SIAs
and ab-Vacs are at 3 nm and 2 nm, respectively. The total number of
absorbed interstitials and vacancies (ab-SIAs + ab-Vacs) is the biggest
at 2 nm, which indicates that the dislocation absorbs the most point
defects at this distance.

The number of vacancies resided in the matrix is larger than the
number of interstitials (Fig. 3(a)), which implies that the dislocations
tend to capture more interstitials. A large number of vacancies might
gather to form void and thus lead to swelling. To check this hypothe-
sis, the distribution of residual defect clusters in the matrix is analyzed
when the distance between PKA and dislocation is at —1 nm, 2 nm and
3 nm. The cascade does not interact with dislocation at —1 nm, while
the interaction between PKA and dislocation is the strongest at 2 nm
and 3 nm. As shown in Fig. 4(a), the residual interstitial clusters in the
matrix are mainly dominated by sizes 1 and 2 at 2 nm and 3 nm. There
are much more interstitial clusters of sizes 3-5+ in the bulk, and when
the seperation of PKA and dislocation is —1 nm. More importantly, there
is no cluster of size of 5+ when the distance is 3 nm. The vacancy clus-
ters in Fig. 4(b) also show that the vacancy cluster size 1 dominates at

distance 3 nm, and there is no big cluster whose size is larger than 5.
The results imply that the absorption of point defects by dislocations
in CoCrCuFeNi can reduce the formation of large defect clusters in the
matrix.

3.2. The dislocation during pka process

At the end of the cascade process, the point defects aggregate to
form various defect clusters including dislocations. The dislocation num-
ber density and dislocation density are analyzed as shown as Fig. 5(a)-
(b). Both dislocation number density and dislocation density at distance
2 nm and 3 nm increase gradually, and then fluctuate within a certain
range. The number density and dislocation density at distance —1 nm is
obviously less than the cases in which PKA interacts with dislocation.
Besides, the dislocation density fluctuates to a less extent than the dis-
location number density in three cases, consistent with the results of
Peng et al. for the Fe simulation cascade [32]. The average dislocation
length is shown in Fig. 5(c). The —1 nm, 2 nm and 3 nm cases have an
average dislocation length of 10.6 nm in the beginning because of the
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Fig. 4. The size distribution of the defect clusters during displacement cascade. —1, 2, 3 nm represents the distance between PKA and dislocation. Bulk denotes the
ideal material without dislocation. (a) The number of interstitials in clusters of different sizes. (b) The number of vacancies in clusters of different sizes.
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Fig. 5. Dislocations. (a) Dislocation number density. (b) Dislocation density. (c) Average length of dislocation, the inset shows the zoo-in view for better comparison.

(d) Total number of point defects produced in PKA with distance -1, 2, and 3 nm.

initial addition of edge dislocations. When the cascade begins, the av-
erage dislocation length decreases rapidly in cases with distance 2 and
3 nm. The dislocation length is largest in the case with distance —1 nm.
The results imply that the interaction between cascade and dislocation
increases the dislocation density in the material, but decrease the aver-
age dislocation length. The total number of defects (re-SIAs + ab-SIAs)

in these three cases is shown in Fig. 5(d). Fewer point defects are pro-
duced in the case with distance —1 nm than that in 2 and 3 nm, which
is consistent with the conclusion.

The discussion above compares the variation in point defects and dis-
locations. Now we focus on how the pre-added dislocations absorb the
point defects. As shown in Fig. 6(a), the number of defects reaches the



Y. Liu, R. Li and Q. Peng

Materialia 21 (2022) 101307

0.63 ps

& J e
AV e o
° o o
2.24 ps ’

7.14ps © ©

96.14 ps [pterstitial Cluster

Fig. 6. Evolution of dislocations and point defects during cascade in CoCrCuFeNi. Different color lines denote different dislocations, Green, purple are 1/6<112>
Shockley dislocation, 1/6<110> Stair-rod dislocation, respectively, Red and blue spheres are vacancies and interstitials, respectively.

maximum value at 0.63 ps. When the displacement cascade proceeds
to 2.24 ps, the number of defects reduces obviously due to annihila-
tion. Shockley dislocation can only slip but not climb. When the leading
dislocation of these two dislocations encounters an obstacle and stops
slipping, while the tracking dislocation continues slipping until the two
dislocations overlap and form a full dislocation, and then it can climb.
As shown in Fig. 6(c), The cascade interacts with the leading disloca-
tion to form an L-C dislocation: 1[211] + é [121] - é[ilO], also known
as Stair-rod dislocation, which is a fixed dislocation that cannot slip. It
therefore hinders the slippage of the leading dislocation in the Shockley
dislocations.

Fig. 6(d) shows the tracking dislocation catches up with the leading
dislocation and overlaps each other, so that the two Shockley disloca-
tions achieve climbing. When the vacancy and interstitial spread from
elsewhere to the dislocation line, they are called positive and negative
climbing. Dislocations absorb vacancies by positive climbing and inter-
stitials by negative climbing, thus reduce the number of point defects in
the matrix. At the same time, the interstitials and vacancies captured by
dislocations have the opportunity to undergo annihilation.

3.3. Interaction of dislocation and void

when the cascade generates a large number of vacancies aggregation,
void forms, which can cause serious damage to the material. Therefore,
it is necessary to study the interaction of dislocation with void driven
by external loads such as shear strain. Meanwhile, the study shows
that HEAs may have better resistance to irradiation than simple alloys
[14,15,27]. Here we compare the interaction of dislocations with void in
CoCrCuFeNi HEA and Ni to investigate irradiation hardening resistance
of HEAs.

First, a 0.8 nm diameter void is set in the middle of the model. The
upper and lower 0.6 nm thick atomic layers are set as rigid. The 0.7 nm
thick atomic layers adjacent to the rigid bodies are set as thermostatic
layers. The void is far enough from the initial dislocations so that the
dislocations do not interact with it during relaxation. The temperature is
500 K. Besides, to allow a large enough shear speed for the dislocations,

a shear strain rate of 6 *107 s ~ 1 is applied to the upper rigid body. The
results show that the width of the stacking fault in CoCrCuFeNi HEA is
larger than in Ni, which means L,<L,, as shown as Fig. 7(a) and (e).
The width of stacking fault is related to the stacking fault energy

Ga?
Lo =
07 24ny,

(€]

where G is shear modulus, « is the lattice constant, y, is the stacking
fault energy. The stacking fault energies in two cases are calculated.
The HEAs have random distribution of atoms in the stacking fault re-
gion due to the complexity of their composition. We create a model of
100 CoCrCuFeNi HEA to calculate the distribution of the stacking fault
energies. The results are shown in Fig. 8(a). The mean value y obtained
by Gaussian fitting is 67.15 mJ/m?2, while the stacking fault energy of Ni
is a definite value of 124.55 mJ/m?, which explains the larger width of
the stacking fault region in CoCrCuFeNi HEA than that in Ni according
to Eq. 1.

When the shear is applied, the dislocations move towards the direc-
tion of the void, as shown in Fig. 7(b)-(d) and (f)-(h) for the interaction of
dislocations and void during the whole process. It is noteworthy that the
void in Ni has been partially transformed into stacking fault tetrahedra
in the region, while the void in the HEA remains stable. Fig. 7(d) and (h)
also show that part of the void in Ni has formed stacking fault tetrahedra
after interacting with dislocations, while the voids in the CoCrCuFeNi
HEA remain the same. The shear stress 7,, during the whole process are
shown in Fig. 8(b). Since the void is hard to move, the movement of the
dislocation is hindered by the void and therefore the value of the shear
stress reaches its minimum in the Ni and HEA, as shown in C; and N;
in Fig. 8(b) corresponding to Fig. 7(b) and (f). The stress peaks occur at
N, and C, when the dislocation totally go through the void, as shown
as Fig. 7(c) and (g). The shear stress is 331.5 MPa and 195.1 MPa in Ni
and CoCrCuFeNi, respectively, indicating the stacking fault tetrahedra
have a stronger hindering effect on the dislocations in Ni. The results
imply that CoCrCuFeNi HEAs have excellent resistance to irradiation
hardening.
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Fig. 7. Interaction of the pre-added dislocations with the void. (a)-(d) Snapshot of the interaction of dislocations and voids in Ni under an applied shear strain in the
x-direction. (e)-(f) Snapshot of the interaction of dislocations and voids in CoCrCuFeNi under applied shear strain in the x-direction, the types of atoms of different
colors are consistent with Fig. 2, here the hollow spheres made up of white atoms represent voids.
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the interaction of dislocations and void in CoCrCuFeNi HEA compared to that in Ni.

4. Conclusions

We have investigated the effect of preexisting dislocations on the ra-
diation resistance in CoCrCuFeNi HEA employing molecular dynamics
simulations. The interaction of pre-existing dislocations with the dis-
placement cascades depends on the seperation between the PKA and
dislocations. Fewer defects remain in the matrix when the cascade gen-
erated by PKA interacts with the pre-existing dislocations. Atomic struc-
ture analysis shows that some point defects are absorbed by the dislo-
cations. The preexisting dislocations serve as sinks for the point defects,
both interstitials and vacancies.

The dislocation evolution indicates that the absorption of the point
defects generated by the cascade is mainly caused by the climbing of
dislocations. Preexisting dislocation can be a defect trap and the center
for the recombination of point defects. The comparative study of the Ni
and CoCrCuFeNi HEA systems for the interaction between dislocations
and void manifests that HEAs have excellent resistance to irradiation

hardening. Our atomic insights might be helpful in material design of
next generation of nuclear materials with high radiation tolerance.
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