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Hidden spatiotemporal sequence in transition to shear band in amorphous solids
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Localization of plastic flow into a narrow shear band is a fundamental and ubiquitous nonequilibrium
phenomenon in amorphous solids. Because of the intrinsic entangling of three types of elementary local atomic
motion—shear, dilatation, and rotation—the precise physical process of shear band emergence is still an enigma.
Here, to unveil this mystery, we formulate a theoretical protocol covering both affine and nonaffine components
of deformation, to decode these three highly entangled local atomic-scale events. In contrast to the broad concept
of the shear transformation zone, the plastic behavior can be demonstrated comprehensively as the operative
manipulation of more exact shear-dominated zones, dilatation-dominated zones, and rotation-dominated zones.
Their spatiotemporal evolution exhibits a transition from synchronous motion to separate distribution at the onset
of the shear band. The hidden mechanism is then revealed with the help of extreme value theory and percolation
analysis. Numerical evidence from extreme value theory indicates that dilatation is the dominant mode at the
embryonic stage of the initial plastic units, as evidenced through the larger degree of dilatation localization
compared with shear and rotation. The percolation analysis points towards the critical power-law scaling nature
at the transition from stochastic activation to percolation of plastic regions. Then the comprehensive picture
underlying shear banding emergence is uncovered. Firstly, dilatation triggers initial shear and rotation in soft
regions, leading to the embryos of the initial flow units, which are followed by the secondary activation of
rotation in neighboring hard material, thus causing an alternating distribution of rotation and shear-dilatation
regions. Such rotation activation contributes to further perturbation in these regions and ultimately leads to
percolation transition and shear band formation. Our findings also reinforce that the discussion of plastic behavior
in disordered materials must take into account both affine and nonaffine component deformation.
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I. INTRODUCTION

Transition from smooth and homogeneous plastic flow
to unstable and inhomogeneous flow in the form of a thin,
highly localized shear band is a ubiquitous and fundamen-
tal nonequilibrium phenomenon in condensed matter ranging
from metals to polymers, glasses, colloids, granular media,
etc. [1–10]. For metallic glasses, the shear band is their
dominant deformation mode at room temperature, which can
induce catastrophic fracture with very limited ductility, im-
peding further engineering applications [1,11–15]. Therefore
it is extremely important to explore the physical origin of
the shear band in metallic glasses. However, in contrast to
their crystalline counterparts, whose plastic flow is given by
well-defined topological defects in the periodic lattice such
as dislocations, plastic deformation mechanisms of metal-
lic glasses are less well understood due to their inherent
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structural disorder [16–19]. To date, numerous theoretical
models have been proposed to describe local flow events in
metallic glasses, such as the free-volume model [11,20,21],
shear transformation zone (STZ) [22–24], cooperative shear
model [25], flow units [26,27], soft spot [28], and tension
transformation zone (TTZ) [29,30], among which the shear
transformation zone, involving local rearrangement of a small
cluster of atoms, is generally accepted as the elementary
process of plastic deformation in metallic glasses [31,32]. In
this connection, considerable experimental [33–35] and the-
oretical attempts [36–39] have been made to find the bridge
between the STZ’s motion and shear banding emergence.
Later simulations indicate that the continued propagation
of shear strain occurs by a process of self-assembly: The
operation of one STZ creates a localized distortion of the
surrounding material and triggers the autocatalytic formation
of large planar bands of STZs, causing shear band formation
[40–42]. This is so far the most widely accepted scenario of
shear banding.

In spite of this, further experimental and simulated ev-
idence collected later on revealed the density variation (or
free-volume annihilation and creation process) [34,43–45] as
well as vortexlike motion [46–48] in shear banding regions,
supporting the general consensus that shear is not neces-
sarily the only deformation mode that accommodates local
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atomic rearrangement. Actually, shear, dilatation, and rota-
tion are all intrinsic natures of local excitations in metallic
glasses, which cannot be fully explained via the classical
STZ model. It is the inherent coupling of these deformation
events that hinders establishment of an intuitive picture of
shear banding emergence in metallic glasses. In this con-
nection, Şopu et al. [48] recently proposed the STZ-vortex
two-unit model to address the issue of sequential activation
of STZs along the direction of the shear band. The STZ-
vortex model proposes the mechanism of STZ coalescence
with a critical role of rotation events as a catalyst, which
mediates distortion between two adjacent STZs [48]. Despite
its notable progress in providing an atomistic description of
shear banding, the STZ-vortex model has not totally decoded
the entangled atomic motions hidden in the nonaffine de-
formation section. In Ref. [48], the nonaffine displacement
[23] was calculated and discussed as a whole; however, it
was not decoupled into shear, dilatation, and rotation events.
The decoupling method in the STZ-vortex framework is
based on the purely affine part of the local displacement
field—the local deformation gradient tensor [49]. It should
be noted that considering only affine deformation may cause
one to miss any meaningful mechanism hidden in the non-
affine components. The latter are also strongly correlated with
inhomogeneous plastic deformation in generic disordered ma-
terials [23,50,51]. Therefore, to thoroughly unveil the shear
banding mechanism at atomic scale, a decoupling framework
considering both affine and nonaffine deformation is urgently
necessary.

To this end, we propose a theoretical framework that can
incorporate both the affine and nonaffine parts of deformation
by extensively combining the first- and second-order displace-
ment gradient tensor. As we will later demonstrate via testing
simulated Cu50Zr50 metallic glass, information from a single
affine or nonaffine input can only partially capture the nature
of plastic deformation. The addition of a second-order term
significantly enhances the capacity of the theoretical model
in mapping the real displacement field. On the basis of this
powerful framework, we decouple the highly entangled shear,
dilatation, and rotation events and thus give the precise identi-
fication of these three deformation units. As a step beyond the
usual broad concept of STZ percolation, the comprehensive
and clear atomic-scale physical process of shear banding is
then rationalized via the complicated and obscure interplay
between the versatile shear, dilatation, and rotation events.
Firstly, shear, dilatation, and rotation are strongly correlated
with each other; among them, dilatation plays a dominat-
ing role in the embryos of initial plastic events in liquidlike
regions. Then, as strain goes on, secondary rotation in ad-
jacent solidlike materials is significantly activated, causing
the transition from homogeneous motion to inhomogeneous
flow behavior. Such rotation activation contributes to further
softening and perturbation in these regions and ultimately
leads to the connection of coexisting localized plastic re-
gions characterized as shear band emergence. The connection
phenomenon exhibits a percolation transition with power-law
scaling nature that is consistent with classical percolation the-
ory. Our findings shed light on the fundamental understanding
of shear band formation in metallic glasses and other amor-
phous materials.

II. SIMULATION DETAILS

The molecular dynamic simulations were performed us-
ing the LAMMPS code [52], with the embedded-atom method
(EAM) potential [53] being adopted to describe the atomic
interactions for the Cu50Zr50 metallic glass. A small sample
containing 13 500 atoms was melted from its crystalline phase
from 100 to 2100 K and then was equilibrated for 500 ps
at 2100 K before being quenched to a glassy state (100 K)
at a cooling rate of 0.02 K/ps. A larger model system to
be deformed, containing ∼660 000 atoms, with dimensions
of 37.3 × 6.2 × 61.7 nm3 in the x, y, and z directions, re-
spectively, was then produced by the replication of the initial
glass configuration. The large system was further annealed
for 500 ps at 800 K to reduce the artificial boundary effect
of multiplication. Periodic boundary conditions were adopted
for each direction during the sample preparation process. To
ensure that there would be only a single shear band during the
deformation, a small notch was created in the rectangular sam-
ple to yield a stress concentration on the notch and nucleation
of the shear band. Uniaxial loading, with a constant strain
rate of 4 × 107 s−1, was employed on the notched sample
along the z direction at a low temperature of 100 K. While
periodic boundary conditions were imposed along the y and z
directions, the free-surface condition was applied in the x di-
rection to enable the occurrence of the shear offset on the free
surfaces during the deformation process. The pressure and
temperature were controlled using isothermal-isobaric (atom
number N , pressure P, and temperature T ) ensembles [54]
and a Nosé-Hoover thermostat [55,56] for both the sample
preparation and uniaxial loading process. The time step of the
molecular dynamics was 0.001 ps.

III. THEORETICAL FRAMEWORK

A. Mapping the deformation field

Based on the continuum mechanics, the local transfor-
mation relation between reference and current configurations
during a time interval �t can be described in the form of
Taylor expansion:

di j (t + �t ) = Fidi j (t ) + 1

2
ηidi j (t )2 + O(di j (t )3). (1)

Here, vectors and tensors are given in bold font. The su-
perscript i and j are used to distinguish different atoms.
di j (t ) is the center-to-center position vector between central
atom i and its neighboring jth atom. Thus t = 0 character-
izes the initial configuration before any applied strain. Within
the Taylor expansion, the first term, Fidi j (t ), denotes the
linear relation or affine part of the local displacement field
around central atom i. Fi is the deformation gradient tensor
with the definition of Fi = Hi + I, where the displacement
gradient tensor Hi characterizes the spatial gradient of the
displacement field and I is the identity tensor representing
the rigid translation. In terms of this affine part, Shimizu
et al. [49] identified the local Lagrangian strain tensor εi =
1
2 [Fi(Fi )T − I] and proposed a local von Mises strain as

εi
Mises =

√
ε2

xy + ε2
yz + ε2

zx + (εxx−εyy )2+(εxx−εzz )2+(εzz−εyy )2

6 . Then,
the addition of the second- and higher-order terms of Eq. (1),
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FIG. 1. The power of the TTG model in describing the deformation field of metallic glass. (a) The stress-strain curve and the distribution
of D2

min after yielding, with the dashed box showing the position of the mature shear band. (b) Evolution of residual displacement lost by
the affine framework and by the TTG model. (c) Evolution of the relative difference of displacements between the whole deformation field
and predictive parts described by the affine model and by the TTG model. (d) Distribution of atomic effective strain at a strain of 0.08. (e)
Distribution of atomic effective strain gradient at a strain of 0.08. SB, shear band.

i.e., 1
2ηidi j (t )2 + O(di j (t )3), constructs the nonaffine part of

the displacement field. Here, O(di j (t )3) denotes the higher-
order terms, and ηi is the second-order displacement gradient
tensor, i.e., the strain gradient tensor. To characterize de-
partures from the local affine deformation, Falk and Langer
[23] proposed the widely used nonaffine squared displacement
D2

min = ∑
j

[di j (t + �t ) − Fidi j (t )]2.

Both the nonaffine displacement and the local von Mises
strain are good measures of deformation and have raised broad
interest in and had broad impact on the field of glassy physics
[57–60]. However, these two quantities actually characterize
distinct parts of deformation in terms of their definitions. On
the one hand, the local von Mises strain is the output of the
local linear strain field. Thus it depicts the affine part of de-
formation. On the other hand, D2

min quantifies departures from
the local linear strain field and thus characterizes the nonaffine
part. Both of these quantities have achieved great success in
mapping deformation of disordered materials [61–63]. How-
ever, it is still a challenge to distinguish and characterize
the rotation, dilatation, and shear events via these theoretical
models, as rotation is mostly related to rigid motion, which
is affine, while dilatation as well as shear are dominated by
distortion, which is nonaffine. To settle this problem, a further
theoretical framework containing both affine and nonaffine
deformation is urgently needed, which then drives the birth of

our proposed two-term gradient (TTG) model. On the basis
of the linear affine formalism, the second term of Eq. (1),
which incorporates the strain gradient tensor, is supplemented
to recognize the nonaffine part. Thus the displacement field is
assumed to vary as

di j (t + �t ) ≈ Fidi j (t ) + 1

2
ηidi j (t )2. (2)

Then, Fi and ηi are calculated by minimizing the mean-square
difference between the actual displacement field and that
demonstrated by Fi and ηi:

�i = 1

Ni

∑
j

[
di j (t + �t ) − Fidi j (t ) − 1

2
ηidi j (t )2

]2

. (3)

Here, Ni is the number of neighboring atoms around central
atom i. The minimum value of �i is then used to quantify the
capacity of our TTG model in mapping the real displacement
field.

In this paper, we employ molecular dynamics simulations
in a prototypical binary Cu50Zr50 glass as a computational
microscope to test and demonstrate the TTG model. Figure 1
shows the strong power of the TTG model in describing the
real displacement field. It should be noted that for all of
the numerical results, the reference configuration [di j (t ) in
the TTG model] is chosen as the initial or undeformed state
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while the current configuration is then represented by strained
states varying with sample strain. Firstly, a typical stress-strain
curve is presented in Fig. 1(a), from which it is clear that
deformation localization appears at a macroscopic strain of
0.06, while the formation of a mature shear band falls behind
at a larger strain (0.08), as marked with an asterisk in the plot.
In the inset of Fig. 1(a), the spatial distribution of D2

min at a
strain of 0.08 is shown, and one can visualize the shear band-
ing pattern outlined by the dashed black box. In this sense,
atoms in the dashed black box can be characterized as plastic
ones which participate in shear banding behavior. Then other
atoms belong to the matrix. In Fig. 1(b), we plot the evolution
of �i for atoms in the shear band as well as those taken from
the matrix. For comparison, the departure of the displacement

field assumed by the affine model from the real one is also
presented. It is noted that the affine model is defined as the
framework which only uses the first term of Eq. (1), i.e.,
Fidi j (t ), to describe the local displacement field. Here, the
behavior of deformation localization can be observed at a
strain of 0.06, which meets the stress-strain curve well. More
interestingly, the difference between the actual displacement
field and the TTG model is much less than that for the affine
model. This gives direct evidence for the strong enhancement
of mapping power of the TTG model over the linear affine
model. It reinforces the importance of incorporating the strain
gradient term. To further quantify how much the deformation
information is omitted by the TTG model compared with the
whole displacement field, we propose the following measure:

ρTTG = 1

N

∑
i

∣∣∣∑ j

[
Fidi j (t ) + 1

2ηidi j (t )2 − di j (t )
]2 − ∑

j [di j (t + �t ) − di j (t )]2
∣∣∣∑

j [di j (t + �t ) − di j (t )]2 , (4)

which is the ratio of the omitted displacements to the actual ones. N is the total number of atoms in the sample. For comparison,
a similar definition is used for the affine model:

ρaffine = 1

N

∑
i

∣∣∑
j [Fidi j (t ) − di j (t )]2 − ∑

j [di j (t + �t ) − di j (t )]2∣∣∑
j [di j (t + �t ) − di j (t )]2 . (5)

The ratios ρ for both the affine model and the TTG model
as a function of macroscopic strain are shown in Fig. 1(c).
They provide direct evidence that the present TTG model with
integration of the strain gradient effect leads to much higher
mapping capability. The TTG model contains most of the de-
formation information whether the atom is in the shear band or
in the matrix. This implies that deformation in metallic glasses
is more related to the nonaffine components, of which the
TTG model contains the crucial part—the second-order term.
Such success of the TTG model confirms the validity and
reliability of our decoupling results and conclusions below.

Before we present the decoupling method in the next sec-
tion, it is useful to discuss the critical role of the strain gradient
in shear banding. Firstly, to quantify plastic deformation at
the atomic scale, we introduce the atomic local strain for
each atom based on the TTG model. Following the general
expression given by Gao et al. [64], the microscale strain
field incorporating the strain gradient is defined as �i

mn =
εi

mn + 1
Ni

∑
j

[ 1
2 (ηi

kmn + ηi
knm)di j

k (t )], where the subscripts k, m,

and n indicate the Cartesian components, e.g., x or y or z,
and the superscripts i and j are particle indices. Here, di j

k (t )
is the kth component of the position of the jth neighboring
atom relative to center atom i in the reference configuration,
and Ni is the number of neighboring atoms around atom i.
The atomic strain field �i

mn is thus related to the strain tensor
εi

mn and strain gradient tensor ηi
kmn. Following the classical

plasticity theory, the effective strain in the form of a scalar is

then introduced as �̃i =
√

2
3�i

mn�
i
mn. The spatial distribution

of �̃i at a strain of 0.08 is shown in Fig. 1(d); like Falk and
Langer’s D2

min [23], �̃i is a good measure of local inelastic
deformation. More projected strain fields color-coded by �̃i

at various applied strains are shown in Fig. S1 of the Supple-
mental Material [65]. Then the atomic effective strain gradient

in the form of a scalar is introduced as η̃i =
√

1
4ηi

kmnη
i
kmn,

which is similar to that of the effective strain [64]. The pro-
jected strain gradient field at a strain of 0.08 is plotted in
Fig. 1(e). Here, we can find good correspondence between the
strain gradient field and the distribution of deformation. More
snapshots color-coded by strain gradient are given in Fig. S2
[65]. Local regions with accumulated strain penetrate into
each other, and these regions overlap with locations where the
strain gradient effect is apparent. This indicates that the strain
gradient effect does play an important role in shear banding.
To clarify the critical role played by the strain gradient during
the shear banding process, the statistics of the effective strain
and strain gradient as functions of macroscopic strain are
given in Fig. 2. The results are calculated for atoms in the
shear band and for atoms in the matrix. They show that the de-
viation between the shear band and the matrix for the effective
strain gradient is earlier than that for the effective strain. This
is direct evidence that the strain gradient takes precedence
over strain localization and promotes the formation of the
shear band. This result is consistent with our previous works
[66–68], which demonstrate a self-feedback mechanism in
which a high strain gradient, acting as the driving force, will
induce inhomogeneous energy dissipation and thus aggravate
deformation localization.

B. Decoupling the entangled shear, dilatation,
and rotation events

Next, we explain the proposed method to decouple the en-
tangled shear, dilatation, and rotation events. Here, the index
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FIG. 2. Evolution of (a) effective atomic strain and (b) effective
strain gradient during shear banding. The results are calculated for
atoms in the shear band and for atoms in the matrix. The strain
gradient effect is apparent in the shear band during deformation.
Much of the large strain gradient is located inside of the shear band.
The black arrows point out the critical points where the localization
of the strain or strain gradient occurs.

notation of tensor analysis is used to demonstrate the details
of the decoupling method. In the matter of the affine part,
as mentioned above, the deformation gradient tensor F i

mn =
Hi

mn + Imn. As Imn is the identity tensor which represents
the rigid translation and contains no effective deformation,
we just need to consider the decoupling of the displacement
gradient tensor, Hi

mn, which can be rearranged into three
parts, i.e.,

Hi
mn = 1

2

(
Hi

mn − Hi
nm

) + [
1
2

(
Hi

mn + Hi
nm

) − 1
3

(
Hi

ll Imn
)]

+ 1
3

(
Hi

ll Imn
)
, (6)

where the terms 1
2 (Hi

mn − Hi
nm), [ 1

2 (Hi
mn + Hi

nm) − 1
3 (Hi

ll Imn)],
and 1

3 (Hi
ll Imn) on the right-hand side characterize the

rotation, shear, and dilatation components, respectively.
All of these are related to affine deformation. That

is,

RH,i
mn = 1

2

(
Hi

mn − Hi
nm

)
,

SH,i
mn = [

1
2

(
Hi

mn + Hi
nm

) − 1
3

(
Hi

ll Imn
)]

,

DH,i
mn = 1

3

(
Hi

ll Imn
)
. (7)

As for the decoupling method related to the strain gradi-
ent tensor, following the notation of Fleck and Hutchinson
[69], Dη,i

kmn = 1
8 (δknη

i
mll + δmnη

i
kll ) denotes the hydrostatic,

i.e., dilatation part of 1
2ηi. Here, δkn is the Kronecker sym-

bol. Then the deviatoric component follows as 1
2η′i

kmn =
1
2ηi

kmn − Dη,i
kmn, of which the fully symmetric tensor Sη,i

kmn =
1
6 (η′i

kmn + η′i
mnk + η′i

nkm) is introduced to denote the shear
part. Therefore the remaining part, Rη,i

kmn = η′i
kmn − Sη,i

kmn, can
be utilized to specify the rotation related to the strain gradient
tensor. Based on the decoupling of the affine and nonaffine
deformation, we can introduce the scalar product of these
tensors as

ξ i
R =

√
RH,i

mn RH,i
mn ·

√
Rη,i

kmnRη,i
kmn,

ξ i
D =

√
DH,i

mn DH,i
mn ·

√
Dη,i

kmnDη,i
kmn,

ξ i
S =

√
SH,i

mn SH,i
mn ·

√
Sη,i

kmnSη,i
kmn,

(8)

which are called the rotation transformation factor, dilatation
transformation factor, and shear transformation factor, respec-
tively. These factors are used to quantitatively describe the
rotation, dilatation, and shear transformation events in the
model glass. It should be noted that higher ξ i

R, ξ i
D, and ξ i

S
values indicate a more severe level of corresponding local
transformation motion. In Figs. 3(a)–3(c), the representative
microscopic motion for all of the rotation, dilatation, and
shear events is revealed by virtue of the atomic displacement
vectors. As shown in the first column of Fig. 3(a), one can
clearly observe the atomic-scale rotation transformation, man-
ifesting as a collective, vortexlike motion. The same analysis
on the representative dilatation and shear events is shown
in the first column of Figs. 3(b) and 3(c), respectively. The
displacement fields denote that the atoms seem to move desul-
torily compared with those participating in rotation events.
If all of these atoms are colored according to their rotation
transformation factor ξ i

R, dilatation transformation factor ξ i
D,

and shear transformation factor ξ i
S, as shown in the panels

of the second to the fourth columns of Figs. 3(a)–3(c), we
can carefully observe good spatial correspondence between
the distribution of these quantities and the exact locations of
rotation, dilatation, and shear events. To be more specific,
the bright ξ i

R regions [colored in red in the second column
of Fig. 3(a)] overlap with the vortex core outlined by the
displacement field in the first column of Fig. 3(a). The results
of dilatation and shear events show a similar correspondence,
as evidenced by the consistency between bright ξ i

D or ξ i
S

fields [colored in red in the third column of Fig. 3(b) and
the fourth column of Fig. 3(c), respectively] and atoms with
disordered displacement vectors, as shown in the first column
of Figs. 3(b) and 3(c), respectively. This correspondence indi-
cates that these three transformation factors, ξ i

R, ξ i
D, and ξ i

S, are
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FIG. 3. Representative illustrations of (a) rotation, (b) dilatation, and (c) shear events in the shear band described by the displacement
vectors, with magnitudes of ξR, ξD, and ξS (color-coded), respectively. (d) Representative SDZ and DDZ, where atoms mainly undergo shear
and dilatation transformation, as denoted by the red and green atoms, respectively. (e) Representative RDZ, where atoms mainly undergo
rotation transformation as denoted by the blue atoms. The yellow arrows represent the displacement vectors, and the atoms are colored
according to their RDZ, DDZ, and SDZ labels, respectively. All snapshots are taken with a slice of 5 Å perpendicular to the paper plane.

indeed excellent diagnostics for identifying the local rotation,
dilatation, and shear events, respectively.

In order to quantitatively distinguish the relative roles
of shear, dilatation, and rotation events at the atomic scale,
we further introduce three transformation zones, namely, the
rotation-dominated zone (RDZ), dilatation-dominated zone
(DDZ), and shear-dominated zone (SDZ). First, the partic-
ipation fraction of the rotation, dilatation, and shear in the
deformation of an atom is defined as

χ i
R = ξ i

R

/
ξM

R√(
ξ i

R

/
ξM

R

)2 + (
ξ i

D

/
ξM

D

)2 + (
ξ i

S

/
ξM

S

)2
,

χ i
D = ξ i

D

/
ξM

D√(
ξ i

R

/
ξM

R

)2 + (
ξ i

D

/
ξM

D

)2 + (
ξ i

S

/
ξM

S

)2
,

χ i
S = ξ i

S

/
ξM

S√(
ξ i

R

/
ξM

R

)2 + (
ξ i

D

/
ξM

D

)2 + (
ξ i

S

/
ξM

S

)2
, (9)

where ξ i
R and ξM

R denote the value of the rotation transforma-
tion factor for atom i and the mean value of atoms residing
in the matrix, respectively. Thus we can see that the for-
mula ξ i

R/ξM
R indicates the degree of rotation localization for

the ith atom. Similar definitions are used for the other two
transformation modes, which are given as ξ i

D/ξM
D and ξ i

S/ξ
M
S ,

respectively. Therefore we can obtain the relative contribution
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FIG. 4. (a) Comparison of the average magnitudes of the local
fivefold symmetry parameter in the RDZ, DDZ, and SDZ at different
levels of macroscopic strain. (b) The magnitudes of the atomic strain
as a function of macroscopic strain for the atoms evolving into RDZs,
DDZs, and SDZs during shear banding. All of the atoms used for the
analysis here are taken from the shear band. This figure shows that
RDZs are more likely overlapping with solidlike structures and can
resist more distortion during deformation.

that each type of event makes to the whole local deformation
according to Eq. (9). By using such definitions, we then cal-
culate the participation fraction as χR, χD, and χS for all of
the atoms. The maximum value in the population {χ i

R, χ i
D, χ i

S}
defines an atomic-scale deformation region to be in either the
RDZ, the DDZ, or the SDZ, respectively. This means that a
specific deformation event dominates the defined local region
of an atom. For example, if χ i

R is a maximum in the three
parameters, the ith atom then belongs to the RDZ. Figures 3(d)
and 3(e) show the good correspondence between the labels
of RDZ, DDZ, and SDZ and the exact locations of rotation,
dilatation, and shear events.

We further investigate the structural origin of the RDZ,
DDZ, and SDZ by using the average degree of the local
fivefold symmetry parameter (L5FS) [57,70,71]. Here, L5FS
is defined on the basis of the widely used Voronoi index,
which has the form 〈n3, n4, n5, n6, . . . , ni, . . .〉, where ni de-
notes the number of i-edge polygons. In this connection, L5FS
is defined as the fraction of pentagons in each polyhedron,
i.e., L5FS = n5/

∑
i ni. Figure 4(a) shows the average magni-

tudes of the L5FS in the RDZ, DDZ, and SDZ at different
levels of deformation. It shows that the highest L5FS level
appears in the RDZ, compared with those in the DDZ and
SDZ. This indicates that rotation events are best correlated
with the solidlike regions, which are generally more resistant
to deformation. This observation is further verified by the
evolution of the effective strain �̃ residing in the RDZ, DDZ,
and SDZ, as shown in Fig. 4(b). It is seen that atoms in SDZs
and DDZs are prone to undergo plastic deformation while
atoms in RDZs always experience the lowest level of local
strain and thus can resist more distortions.

To elaborate more on the concepts of the SDZ, DDZ,
and RDZ, we provide a statistical analysis of their size
distributions. By using Eq. (9), each atom is labeled as SDZ,
DDZ, or RDZ. For a local region with cutoff radius r, the ra-
tio α(r) = (number of RDZ atoms)/(number of total atoms)
is calculated. The involved atoms in a RDZ can thus be cap-
tured by gradually increasing the cutoff radius. Once α(r) <

0.8, the cutoff and the participating atoms are recorded. Here,
the threshold value 0.8 is used to make sure that rotation in-

FIG. 5. The size distribution of the RDZs, DDZs and SDZs. (a),
(b), and (c) Statistical results for the number of atoms involved
in the specific RDZ, DDZ, and SDZ event, respectively. (d), (e),
and (f) Statistical results for the volume of clusters of the RDZ,
DDZ, and SDZ, respectively. In each panel, the main figure denotes
the cumulative frequency, while the inset shows the frequency as a
function of cluster size.

deed dominates the exact local region. Similar definitions are
used to measure the cluster size of the DDZ and the SDZ. The
results are shown in Fig. 5, where the cumulative frequency
as well as frequency are plotted as a function of the number
of participating atoms and cluster volume. All the size distri-
butions exhibit an exponential-decay-like distribution, with a
large fraction of the clusters being clusters of tens of atoms.
According to the result shown by the cumulative frequency,
however, there are somewhat local events containing several
hundred atoms. This observation is consistent with the widely
accepted analysis of the size of the STZ, which attributes to
the STZ sizes of between a few and approximately several
hundred atoms [22,62,72,73]. This indicates that the SDZ,
DDZ, and RDZ are comparable in size to the well-known
concept of the STZ.

IV. RESULTS AND DISCUSSION

A. Atomistic scale pattern of shear banding

Having identified the basic deformation units as the RDZ,
DDZ, and SDZ, it is now possible to discuss the formation
process of the shear band from the perspective of the spa-
tiotemporal evolution of these events. A close inspection of
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FIG. 6. Spatial and temporal evolution of the RDZ, DDZ, and SDZ, and the corresponding fluctuation of ξR, ξD, ξS, and η̃ along the shear
band direction. The snapshots are shown at different strain magnitudes of (a) 0.02, (b) 0.04, (c) 0.06, (d) 0.07, (e) 0.08, and (f) 0.10. A mature
shear band forms at a strain of 0.08, as demonstrated in Fig. 1(a). A slice of 5 Å along the y direction is coarse-grained for the plot.

the temporal evolution of the RDZ, DDZ, and SDZ maps dur-
ing shear banding is given in Fig. 6. Here, we can observe that
at the strain levels of 0.02, 0.04, and 0.06 [Figs. 6(a)–6(c)],
RDZs, DDZs, and SDZs are distributed homogeneously and
diffusely. This indicates the synchronous activation and mo-
tion of rotation, dilatation, and shear events at the early stage
of deformation before the appearance of strain localization.
However, when the strain reaches a value of 0.07 [Fig. 6(d)], at
which point a shear band is about to emerge, the synchronous
motion is broken down with the RDZs and SDZs-DDZs dis-
tributed separately. As the deformation proceeds, the shear
band forms in the direction of the maximum shear stress with
again the homogenous distribution of RDZs, DDZs, and SDZs
as the patterns show in Figs. 6(e) and 6(f). To obtain further
quantitative insight into the temporal and spatial evolution
of the deformation pattern, we bin and reduce the values of
ξR, ξD, and ξS along the shear band direction at different
strain levels, i.e., 0.02 and 0.04 (early deformation stage),
0.06 (just before strain localization), 0.07 (strain localization),
0.08 (mature shear band formation), and 0.1 (steady-state
flow), as shown in Figs. 6(a)–6(f), respectively, below the
deformation pattern. At the early stage of deformation, these
three deformation events are homogeneously distributed, and
shear, dilatation, and rotation events overlap with each other
in the whole sample. However, one can observe an alternating
correspondence between the peaks of ξR and valleys of ξD and

ξS, at a strain of 0.07, at which point strain localization has
already formed. Together, these pieces of evidence verify the
existence of a transition from synchronous motion to separate
distribution of rotation, shear, and dilatation events. Besides,
such a transition occurs before the onset of shear banding.
In addition, the fluctuation of effective strain gradient η̃ is
also plotted in Fig. 6 to detail the evolution of the strain
gradient distribution. It shows that the fluctuation of the strain
gradient field overlaps with that of ξD and ξS, which implies
the accumulation of plastic strain in DDZs and SDZs.

Then, it is necessary to figure out when the transition
from synchronous motion to inhomogeneous distribution of
shear, dilatation, and rotation events happens and what the
physical origin hidden in such atomic motion is. To settle
such problems, the correlation coefficient is applied to eval-
uate the evolution of correlation among ξR, ξD, and ξS in
the shear band as C = 〈P1P2〉−〈P1〉〈P2〉√

〈P2
1 〉−〈P1〉2

√
〈P2

2 〉−〈P2〉2
. Here, P1 and P2

denote two different parameters which can be replaced by ξR,
ξD, or ξS. The calculated correlation functions are shown in
Fig. 7(a) as a function of macroscopic strain. The positive
magnitude of the correlators for ξR-ξS and ξR-ξD during the
early stage of deformation indicates the strong positive corre-
lation between shear-dilatation and rotation. This is consistent
with the phenomenon that these three atomic events overlap
with each other during the early stage of deformation. The
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FIG. 7. (a) The evolution of correlation among shear, dilatation,
and rotation during deformation. All of the data used for the calcula-
tion are taken from the shear band. (b) Spatial distribution of RDZ,
DDZ, and SDZ, and their fluctuation along the shear band direction
at a strain of 0.064.

abrupt decrease of the correlator of ξR-ξS and ξR-ξD from
strain = 0.06 to strain = 0.064 shown in Fig. 7(a) clarifies
the synchronization-separation transition with an alternating
distribution sequence between shear-dilatation and rotation.
Thus it can be concluded here that the separating distribution
of shear-dilatation and rotation occurs at a strain of 0.064.
To confirm this, the spatial distribution of RDZs, DDZs, and
SDZs and the corresponding fluctuations of ξR, ξD, ξS, and η̃

along the direction of the shear band at a strain of 0.064 are
plotted in Fig. 7(b).

The next task at hand is to figure out what causes the
transition from synchronous motion to separate distribution of
shear, dilatation, and rotation during such a short period. Col-
ored maps of ξS for atoms inside the shear band at strains of

FIG. 8. The rotation degree of the RDZ between two shear-
dilatation regions is enhanced during short period from strain = 0.06
to strain = 0.064. The contour maps show the distribution of ξS at
strains of 0.06 (a) and 0.064 (b). The white spheres superimposed on
the contour maps indicate the positions of the atoms that are labeled
RDZs. The size of the white spheres denotes the magnitude of ξR.

0.06 and 0.064 are plotted in Figs. 8(a) and 8(b), respectively.
For a direct comparison, the instant RDZs are superimposed
in Figs. 8(a) and 8(b), where white spheres, whose sizes are
proportional to the magnitude of ξR, represent the atoms that
have been labeled RDZs. The figure shows that the relative
distribution of ξS in the snapshot where the strain level is
0.06 is similar to that in the snapshot where the strain level
is 0.064 since the locations of regions with relatively high
and low values of ξS are almost the same between the two
snapshots. In contrast, the rotation degree for RDZs adjacent
to shear-dilatation zones is strongly enhanced during this
short period, thus resulting in the alternating distribution of
shear-dilatation and rotation at a strain of 0.064. Actually, the
process of enhancing rotation took place earlier, probably at
a strain of 0.05, when the ξR-ξD and ξR-ξS correlators begin
to attenuate. It is during the short period of 0.06–0.064 that
the rotation-increasing behavior becomes obvious. The fact
that RDZs are strongly correlated with initial hard clusters
indicates that solidlike regions along the shear band direction
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FIG. 9. Extreme value analysis of rotation, dilatation, and shear
events in metallic glass. (a)–(c) Statistical distribution of the extreme
values normalized by the mean value for rotation (a), dilatation (b),
and shear (c) at various applied strains. (d) The evolution of the
normalized extreme value, ξXR/〈ξR〉, ξXD/〈ξD〉, and ξXS/〈ξS〉, during
the shear banding process.

would undergo a second activation of rotation that is more
severe than the first one before softening. Such an enhance-
ment of the rotation event is similar to vortex stretching, which
usually contributes to the energy dissipation process [74]. In
this sense, this class of severe rotation plays an important
role in dissipating energy and further softening in the exact
regions. A similar pattern is further given in Fig. S3 [65], in
which the spatial distribution of ξR, ξD, and ξS at strains of
0.06 and 0.064 is plotted. It shows that the rotation degree of
regions surrounding shear and dilatation zones is enhanced,
while the relative distribution of ξS is almost the same as it is
at a strain of 0.06. It is more interesting to find the somewhat
enhanced dilatation residing in the newly activated RDZs.
This is direct evidence of dilatation softening of RDZs which
is followed by a percolating process and thus the formation of
a shear band. Such a percolating mechanism will be discussed
in detail in the following section.

B. Extreme statistics of initial plastic events

As mentioned above, the picture is clear that the secondary
activation of rotation events (here, we refer to the rotation
together with shear and dilatation at the early stage as the first
activation) and the following softening of RDZs occur at the
onset of shear banding. However, the precious identification
of initial activation of distorting units via shear, dilatation, and
rotation at an earlier stage still remains elusive.

To clarify the respective roles of shear, dilatation, and
rotation in this process, we apply the extreme value the-
ory [75–77] to analyze the localization behavior of these
three deformation events and how it varies with macroscopic
strain. First of all, the transformation factors ξR, ξD, and
ξS are rescaled by their mean values 〈ξR〉, 〈ξR〉, and 〈ξR〉,
respectively. Figures 9(a)–9(c) show the probability density

distribution of these reduced factors at various applied strains.
It shows that the peak probability always stays at ∼1 without
obvious transitions even for the maximum applied macro-
scopic strain. The main difference is the much longer tail
of the distribution as the strain increases. Such long tails at
extreme sites for all of the distributions of ξR/〈ξR〉, ξD/〈ξD〉,
and ξS/〈ξS〉 indicate the onset of inhomogeneous flow for
rotation, dilatation, and shear units.

To further quantify the evolution of such long-tailing be-
havior for rotation, dilatation, and shear, we track the extreme
sites residing in the long tail. Atoms with the highest 1%
value of transformation factors are picked out. The reduced
mean value of these atoms (PX/〈P〉, where PX denotes the
extreme values of P and P can be replaced by ξR for rotation,
ξD for dilatation, and ξS for shear) is used to measure the
degree of heterogeneity for different deformation events. The
evolutions of ξXR/〈ξR〉, ξXD/〈ξD〉, and ξXS/〈ξS〉 as functions
of macroscopic strain are shown in Fig. 9(d). It shows that the
long-tail behavior for all of the rotation, dilatation, and shear
events experiences two-step growth before the formation of a
mature shear band at a strain of 0.08. One step is at the embry-
onic stage of deformation characterizing the initial activation
of rotation, dilatation, and shear. The other step takes place
at the critical time of percolation, which will be discussed
in detail in the next section. The long plateaus adjacent to
these two abrupt enhancements imply the existence of a cage
effect or percolation barrier before shear banding. As PX/〈P〉
is dimensionless, we can compare the degrees of rotation,
dilatation, and shear contributing to the whole localization
behavior directly. It is interesting to find that dilatation has the
most important role compared with rotation and shear at the
early stage of deformation. This is direct evidence verifying
the dominating role played by dilatation during early defor-
mation. Based on this evidence, the scenario for the initial
deformation process emerges: When strain is applied, soft
regions in metallic glass mainly undergo the dilatation event
and generate free volume, within which atoms are permitted
to do further rotation and shear motion, thus causing the
activation of initial plastic units. To test whether the stress
concentration introduced by the notch would influence the
operations of SDZs, DDZs, and RDZs, we conducted an ad-
ditional tensile test on a glass sample without a notch. The
simulation results are shown in Fig. S4 [65]. It shows that the
magnitude of stress of the glass without a notch is much higher
than that of the notched sample. Besides, the yielding behavior
of the sample without a notch takes place later than for the
notched one. According to the extreme value analysis shown
in Fig. S4(b) [65], dilatation localization also dominates the
initial plastic events in the glass sample without a notch. This
indicates that the notch will not affect the initial operations
of shear, dilatation, and rotation. It is the intrinsic nature of
plastic deformation in metallic glasses that dilatation plays a
dominating role at the early stage of deformation. However,
the stress concentration induced by the notch will influence
the nucleation site of the initial activation of dilatation, as
evidenced by Fig. S5 [65], where the spatial distribution of the
dilatation transformation factor and the mean stress are plotted
together. It shows that the nucleation of the initial dilatation
events takes place near the notch where stress concentration
occurs.
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FIG. 10. Percolation analysis in metallic glass. (a) Size of the maximum percolating cluster as a function of p. Here, the critical fraction
pc is characterized as 0.02. (b) Variation of percolating probability, pspan, with p. The inset shows a power-law statistic, pspan ∝ (p − pc )β with
exponent 0.40, which is consistent with the classical scaling behavior in percolation analysis for three dimensions [78]. (c) Time evolution of
the percolating factor, Smax/Sall, displaying three characteristic flow steps (regimes I–III) before shear banding formation.

C. Percolation transition and shear banding emergence

The remaining question is how these coexisting localized
plastic regions, dominated by the initial dilatation events,
span to large scales in the form of shear bands. To settle
this problem, we apply percolation analysis, which usually
provides a complementary framework for analyzing the na-
ture of shear banding in metallic glass and other disordered
materials [77–80]. Firstly, we define an atom as being plastic
or not by setting a threshold of 0.25 for the effective atomic
strain �̃. Snapshots of plastic atoms at various applied strains
are shown in Fig. S6 [65], where one can observe a clear
transition from stochastic activation to percolation of plastic
regions with increasing strain. To quantify and characterize
the occurrence of percolation transition, we monitor the frac-
tion of plastic atoms, p, as well as the number of plastic
atoms residing in the maximum percolating cluster, Smax.
Figure 10(a) plots Smax as a function of p, which shows that
beyond a critical fraction pc = 0.02, tremendous amounts of
plastic atoms are covered in the maximum cluster. It is of note
that the critical fraction pc is determined by examination of
the discontinuity in the slope of the Smax-p curve, as pointed
out by the intersection of the red and blue lines in Fig. 10(a).
This indicates the occurrence of the percolation transition. It
should be noted here that pc = 0.02 is smaller than the result
of classical percolation analysis for three dimensions [78].
This is because the presence of a notch in the sample used
in this paper leads to stress concentration near the notched
region, thus bringing the transition forward. Above the perco-
lation threshold, we can figure out the spanning cluster which
is exactly the shear band. Here, we compute the probability
that a plastic atom belongs to the spanning cluster, namely,
pspan. Then we plot in Fig. 10(b) the evolution of pspan as
a function of p, which shows that pspan will dramatically
increase when p exceeds the critical point pc = 0.02. Then, it
quickly converges to ∼1, indicating that all the plastic atoms
are part of such a spanning cluster or shear band. In the inset of
Fig. 10(b), we plot the power-law statistics when p approaches
pc from above. Here, it is evident that we observe a power-law
scaling behavior pspan ∝ (p − pc)β with a critical exponent
of 0.4, which is consistent with the classical scaling nature

in percolating analysis for three-dimensions [78]. Actually,
β = 0.4 is a universal value only depending on the dimension
of the sample. This is direct evidence that the connection of
existing localized plastic units, manifesting as shear banding
emergence, follows the mechanism of classical percolation
transition.

To characterize an accurate physical picture of shear band-
ing emergence, we further investigate the time evolution of
the percolating process evaluated by the fraction of the largest
percolating cluster in all plastic atoms, Smax/Sall, namely, the
percolating factor. Here, Sall denotes the number of atoms that
have undergone plastic events at an instant in time, while
Smax characterizes the size of the percolating cluster. Thus
the abrupt increase in Smax/Sall can catch the occurrence of
percolating events. Figure 10(c) plots the time evolution of the
percolating factor, Smax/Sall, which shows three characteristic
regimes before shear banding formation. In regime I, dilata-
tion drives the stochastic activation of liquidlike regions as
mentioned above; thus Smax/Sall increases as strain proceeds,
with two-step growth characterizing the local percolating
events near the notch region. In regime II, Smax/Sall decays
with the increasing strain. This indicates that the percolating
process in the shear band is sluggish while new activation
events in the matrix still go on, causing the growth speed
of the percolating cluster to be less than that of stochastic
activation. The hidden mechanism is that the solidlike clusters
near the coexisting activated regions function as obstacles
hindering the broadening of plastic events. As mentioned be-
fore, these solidlike clusters adjacent to initial plastic regions
will be characterized as the secondary activated RDZs with
the rotation degree dramatically enhanced during this period,
as shown in Fig. 8. This in turn enhances the softening of
hard RDZs, which is followed by the percolating transition
at the critical point as shown in regime III. Finally, Smax/Sall

converges to ∼1, implying the formation of a mature shear
band.

D. Comprehensive mechanism of the shear band

Having identified the temporal and spatial sequence of the
elementary units—dilatation, rotation, and shear—in shear
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banding, it is now possible to discuss the comprehensive
mechanism of shear band formation led by the collective
motion of shear, dilatation, and rotation events with the help
of the extreme value theory and percolation analysis men-
tioned above. In this connection, the shear banding process
can be separated into four critical steps. In step 1, owing to
the disordered structure of metallic glasses, the atoms can
exhibit a variety of local environments, causing the inhomoge-
neous distribution of stable and unstable clusters. Then, as the
strain proceeds, dilatation events of soft regions are activated,
causing the dilatation localization over the matrix, which is
recognized as step 2. The dominating role played by dilatation
during the initial activation of plastic events has been verified
by extreme value analysis; see Fig. 9. The free volume in-
duced by the dilatation events is enough for the atoms residing
in the dilating regions to be able to undergo further shear
and rotation motion. In this period, the spatial distributions
of dilatation, shear, and rotation are nesting within each other;
see Figs. 6(a)–6(c). Such distorting units containing dilatation,
shear, and rotation are actually the familiar concept of the
STZ. However, decoupling the three entangled events makes
the physical process of stochastic activation clearer, where the
picture of dilatation pioneering shear and rotation is firstly
proposed.

In step 3, the further broadening of plastic deformation in
the soft regions is hindered by the surrounding hard clusters,
causing the accumulation of a strain gradient in the initial
plastic regions. As evidenced by the structural features of
RDZs in Fig. 4, atoms in hard clusters mainly undertake
rotating motion. As strain goes on, the rotation degree of
those solidlike clusters adjacent to initial plastic regions is
dramatically enhanced, as shown in Fig. 8. In contrast to
the initial activation of rotation events together with shear
and dilatation in soft regions, this secondary activation of
rotation is stronger and constitutes the concept of RDZ in this
paper. Therefore we can visualize the correlation decrease of
ξR-ξD and ξR-ξS and, as a consequence, the transition from
synchronous motion to separate distribution of SDZs-DDZs
and RDZs during such a short time period; see Figs. 6(d)
and 7. Such rotation motion, much like the vortex-stretching
process [74,81,82], in turn contributes to the energy cascade
process and further aggravates the dilatation of the border of
these RDZs. This is verified by Fig. 6, where the boundary
of RDZs is entangled with DDZs. This shows the critical role
of rotation during the further softening of hard clusters along
the direction of shear banding. In the final step, step 4, when
the softening of RDZs reaches the limit, which is at the critical
point of percolating, the well-activated distorting units will
connect with each other, driving the emergence of the shear
band in the direction of maximum stress.

V. CONCLUSION

In summary, we propose a theoretical TTG framework
by categorizing the displacement gradient tensor and strain
gradient tensor into three parts and thus decouple the en-
tangled shear, dilatation, and rotation events hidden in the
deformation of metallic glasses. The proposed TTG model

in this paper simultaneously captures the mechanism from
both affine and nonaffine perspectives. This combination gives
rise to a more comprehensive and more effective description
of the cooperative shear, dilatation, and rotation events be-
yond the conventional, purely affine or nonaffine model. The
proposed transformation factors, ξS, ξD, and ξR, can accu-
rately quantify the degree of shear, dilatation, and rotation
events, respectively. From the perspective of the participation
fraction, SDZs, DDZs, and RDZs are defined to reveal the
physical mechanism of shear band formation. At low strain,
SDZs, DDZs, and RDZs are strongly coupled with each other,
leading to stochastic activation of initial plastic events in soft
regions. The extreme value theory results suggest that the
predominant process during the activation of initial plastic
units is the dilatation of liquidlike spots. This is in good
agreement with early theoretical works based on continuum
mechanics [1,11,38]. The present work further gives direct
atomic evidence that dilatation softening is the root source
for the onset of strain localization. It is also found that before
the softening of the exact solidlike clusters adjacent to initial
plastic regions, the rotation degree in these hard regions will
be significantly enhanced, causing the secondary activation of
RDZs there. This activation of RDZs is at a dominating level
compared with the first one and causes the transition from syn-
chronous activation to inhomogeneous plastic motion which is
effectively characterized by the separately distributed SDZs,
DDZs, and RDZs. Such severely rotating motion further ag-
gravates the softening of hard regions and contributes to the
directional perturbation process as well as ultimate shear band
formation. Our percolation analysis yields the critical power-
law scaling nature of shear banding, with scaling exponent in
analogy with classical percolating theory. It demonstrates how
the coexisting localized plastic regions span to large scales in
the form of shear banding and confirms the above three-unit
atomistic description of the shear banding mechanism.

Therefore we believe that our atomic-scale scenario of
shear band emergence may provide a fundamental under-
standing of the nature of rheological behavior in metallic
glass. While this study concentrates on the metallic glass, the
TTG model, relying on atomic position alone, can be directly
applied to other disordered materials. The incorporation of
both affine and nonaffine components of deformation may
open up new opportunities to gain deep conceptual under-
standing not achieved via conventional models.
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