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A B S T R A C T

The hydraulic fracturing process involves complex coupling problems of the deformation and fracturing of solid
and fluid flow in fractures. In this paper, a simple numerical tool for simulating the coupled hydro-mechanical
behavior is developed by using an analogy between hydraulic fracturing and heat conduction. Using this
analogy, the numerical implementation can be simply realized in the framework of a commercial finite element
package ABAQUS with two user material subroutines to fully characterize the complex coupling problems of
hydraulic fracturing. It is thus considerably simplified without any new development of user-defined element
and fluid–solid solver but directly with the commercial finite element package. The proposed numerical tool
along with the virtual crack method for elastic–brittle material is firstly verified by the classical 2D plain strain
KGD analytical solution and then applied to several representative hydraulic fracturing problems and laboratory
tests to illustrate its advantageous features. The present method is aiming to develop a useful numerical tool to
study the coupled hydro-mechanical behavior of hydraulic fracturing. However, it is not limited to any specific
materials and can be extended to other constitutive models that featured with the fully coupling problems of
fluid and solid due to its simplicity.
1. Introduction

As the key technology in engineering practice for the exploita-
tion of unconventional oil and gas resources, hydraulic fracturing has
been extensively performed worldwide in recent decades (Montgomery
and Smith, 2010). The increasing attention from the petroleum engi-
neering appeals many researchers to investigate the complex process
for characterization and development of oil and gas extraction. It is
generally acknowledged that hydraulic fracturing is a complex multi-
physics coupling process involving the mechanical deformation and
fracturing of the shale formation, the fluid flow within the fractures
and the coupling problems of fluid and solid (Osiptsov, 2017) as well
as the proppant transport (Barboza et al., 2021). Several analytical
solutions have been proposed to study the propagation of hydraulic
fractures, however, only for some simplified fracture geometries, such
as Khristinaovic-Geertsma–de Klerk (KGD) and Perkins–Kern–Nordgren
(PKN) and other improved models (Detournay, 2004; Mitchell et al.,
2006). The numerical models are thus progressively developed for more
complex geometries and multi-physics process with the development
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of computational technology (Adachi et al., 2007). However, the nu-
merical simulation of hydraulic fracturing is a tremendous challenge
in particular the numerical treatment for the fully coupled hydro-
mechanical behavior of the fluid flow and rock cracking (Chen et al.,
2022).

Many research efforts have been devoted to developing differ-
ent computational approaches to model the complex coupling system
of hydraulic fracturing, such as displacement discontinuity method
(DDM) (Olson and Dahi-Taleghani, 2009; Dong and de Pater, 2001;
Xie et al., 2016; Kresse et al., 2013), finite element method (FEM)
(Hunsweck et al., 2013; Devloo et al., 2006; Carrier and Granet,
2012), extended finite element method (XFEM) (Lecampion, 2009;
Mohammadnejad and Khoei, 2013; Gordeliy and Peirce, 2013), discrete
element method (DEM) (Al-Busaidi, 2005; Shimizu et al., 2011) as well
as other emerging methods including phase field method (PFM) (Wilson
and Landis, 2016; Mikelic et al., 2015; Miehe et al., 2015), discrete
fracture network (DFN) (Fu et al., 2013; Dershowitz et al., 2010) and
smeared crack model (SCM) (Hu et al., 2014; Li et al., 2016). To
vailable online 12 January 2023
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solve the complex coupling system successfully, two major concepts
have been proposed to capture the rock fractures in the literature,
i.e. discrete crack methods and continuum formulation based methods.
The first class of the methods treats the crack as strong discontinuity
in which the crack is real or equivalent to physical situation. However,
these methods require advanced computational ability, especially for
hydraulic fracturing with strong nonlinear coupling problems with
the fluid flow (Shimizu et al., 2011). Alternatively, the approaches
with continuum formulation, in which the crack is considered as
continuously distributed form, have gained wide popularity. In con-
trast to the discrete crack models, these approaches regularize the
crack discontinuities within a pure continuum formulation to avoid
the difficulties of capturing the crack path evolutions associated with
initiation, direction turning, as well as branching (Rahimi-Aghdam
et al., 2019). This class of methods has been commonly applied in
computational implementation in a straightforward manner. Among
these approaches, the smeared crack model (SCM) treats the crack as
an equivalent anisotropic continuum with degraded material properties
in the direction normal to the crack orientation, and the remesh is
avoided. However, the disadvantages of these methods are the in-
evitable difficulty of obtaining the crack information such as width
and surface and handling the coupling problems of the fluid flow
within the diffuse cracks. Alternatively, Chen et al. (2020) proposed
an improved phase-field hydraulic fracturing model with a new FE-FV
scheme and applied in simulating complex propagation of hydraulic
fracture in naturally fractured formation. Therefore, large efforts still
need to be made to handle these issues such as the difficulty of the
numerical implementation of the interaction of pressurized fluids with
crack surfaces.

In general, each type of approaches possesses its own advantages
and disadvantages and the selected solution strongly depends on the re-
quirements of the problems such as efficiency, accuracy or application.
Among these methods, many efforts on the finite element method are
based on the commercial package ABAQUS by its user subroutines to
define the material’s mechanical and other behaviors (Chau et al., 2016;
Yao et al., 2015). For example, a user defined subroutine was developed
to model the anisotropic damage behavior of shales (Chau et al.,
2016) and a user-defined element was developed to treat the coupling
problems of solid and fluid of multiple hydraulic fractures (Yao et al.,
2015).

This paper develops an alternative method to study the fully coupled
hydro-mechanical behavior of the fluid flow and rock fractures by an
analogy between hydraulic fracturing and heat conduction. These two
phenomena are completely different in nature, however, they can be
mathematically treated the same by the concept of analogy which has
been applied in many fields such as heat and mass transfer (Chung
et al., 2021), diffusion and heat transfer (Duan et al., 2013), and
thermal and electrical properties (Hao et al., 2018). Although the
hydrothermal analogy is known in some literature (Bažant et al., 2014),
the aim of this paper is to develop a simple and useful numerical tool by
directly using the embedded heat conduction equations in a commercial
finite element package ABAQUS without any new development of
user-defined element and fluid–solid solver. Using this analogy, the nu-
merical implementation can be realized in the framework of ABAQUS
with two user material subroutines to fully characterize the complex
coupling problems of hydraulic fracturing. Since this implementation
does not involve any new development of user-defined element and
fluid–solid solver, it is expected that the complex coupled hydro-
mechanical behavior of the fluid flow and rock fractures of hydraulic
fracturing can be thus considerably simplified. The present method is
firstly validated by the classical KGD solution and then used to study
several typical applications and laboratory tests of hydraulic fracturing
2

problems.
2. Theory for hydraulic fracturing

The process of hydraulic fracturing involves the flow of fluid in
cracks, the damage and crack opening of the shale and the coupling
of each other. In this theory, the property of shale is modeled with
damage mechanics and the cracks are considered in the smeared way
by a concept of virtual crack method. The flow of fluid is modeled by
the classic percolation theory with Lubrication equation. The pressure
induced by the fluid affects the damage of the shale around cracks,
which also changes the flow of fluid in return.

2.1. Deformation and fracturing of the shale

The property of shale is very complex due to the strongly anisotropic
behavior related to the inherent mesostructure and damage mecha-
nisms (Li et al., 2020). The failure of the shale, namely, the complete
loss of loading carrying capacity, results from the progressive degra-
dation of the material stiffness which can be modeled via damage
mechanics. In this theory, the mechanical behavior of shale is char-
acterized by an isotropic elastic damage constitutive law, as shown
in Fig. 1(a). The maximum tensile strain criterion is assumed as the
damage threshold while the compressive damage is not considered.
Under uniaxial tension the stress–strain response follows a linear elastic
relationship until the value of the critical strain is reached which
corresponds to the onset of the micro-cracking. Beyond the damage
threshold the damage progresses gradually until the breaking elastic
strain which indicates fully damage in the shale formation. With respect
to the constitutive law, the damage variable representing the degree of
damage is proposed as:

𝑤 =

⎧

⎪

⎨

⎪

⎩

0 𝜀 ≤ 𝜀𝑡0
𝜀

𝜀𝑏𝑟𝑒𝑎𝑘
𝜀𝑡0 ≤ 𝜀 ≤ 𝜀𝑏𝑟𝑒𝑎𝑘

1 𝜀𝑏𝑟𝑒𝑎𝑘 ≤ 𝜀

(1)

where the damage variable 𝑤 takes values from zero for the undamaged
material to one for completely damage.

However, in this theory, the simulation of cracking process is at-
tained via FEM as the basic stress analysis tool, where hexahedron
element is used as the basic element in the finite element mesh and the
elastic–brittle damage constitutive relationship (Fig. 1(b)) is adopted
coupled with a concept of virtual crack model (Appendix A). In general,
the element is considered to be linear-elastic until the maximum princi-
ple strain reaches a critical value, and a virtual crack in the element is
assumed to take place in the normal direction. As the crack occurs, the
element is assumed to be fully cracked in that direction corresponding
to the brittle failure state of the elastic–brittle constitutive law, and thus
the components of material stiffness matrix related to that direction
are changed to zero. Three orthogonal cracks are allowed in one
3D element at most and the crack system is fixed as normal to the
maximum principal strain at the time the cracks start to form and
remain constant afterwards. However, the crack is assumed to be able
to close and reopen according to the stress state, and the closed crack
is able to support compressive loading but no shear ones. The arbitrary
growth of the fractures can be modeled by changing the coefficient
matrix of the constitutive relations. For more details, the simulation
of the cracking process with FEM is referred to Appendix A.

It should be emphasized here that the following discussion is not
specifically limited to the isotropic elastic–brittle constitutive model
along with the virtual crack concept, the methodology can be applied
to the general field theories to couple the fluid flow and rock fractures
in hydraulic fracturing.
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Fig. 1. Elastic damage constitutive law under uniaxial stress. (a) Strain softening with residual strength. (b) Brittle without residual strength.
2.2. Fluid flow through fractures

For fluid flowing in a single crack along 𝑥 axis, Poiseuille law gives
the relation between the volume discharge per unit width 𝑞 and the
pressure gradient as:

𝑞 = − ℎ3

12𝜇
𝜕𝑃
𝜕𝑥

(2)

where 𝑃 is the fracking water pressure, ℎ the crack aperture and 𝜇 the
fluid viscosity.

In 3D space, the crack of a 2D plane and the direction of flow
are not necessary to coincide with the global coordinates. Both the
volume discharge and the pressure gradient are extended to vectors.
Their relation becomes:

𝒒 = −𝑩 ⋅ (∇𝑃 ) 𝑜𝑟 𝑞𝑖 = −𝐵𝑖𝑗
𝜕𝑃
𝜕𝑥𝑗

(3)

where the second order permeability tensor 𝑩 takes the form:

𝑩 = ℎ3

12𝜇
(𝑰 − 𝒏⊗ 𝒏) 𝑜𝑟 𝐵𝑖𝑗 =

ℎ3

12𝜇
(𝛿𝑖𝑗 − 𝑛𝑘𝑖𝑛𝑛𝑗 ) (4)

where 𝑰 = 𝛿𝑖𝑗𝒆𝑖𝒆𝑗 is the unit tensor, 𝒏 = 𝑛𝑖𝒆𝑖 the unit normal direction of
the crack plane, (𝑒1, 𝑒2, 𝑒3) the unit basis vectors of global coordinates.

In fact, two types of flow play a role in hydraulic fracturing, i.e.
the flow inside the hydraulically fractures and the flow through the
pores and intrinsic defects in shale. However, compared with the
scale of hydraulically cracks, the pore-sizes in shale are typically in
nanoscale (Josh et al., 2012), thus the fluid flow in porous media can
be negligible as long as the hydraulic fractures form. Nevertheless, the
effects of pores and initial defects should be taken into account for some
phenomena, such as crack initiation and branching (Rahimi-Aghdam
et al., 2019; Sun et al., 2021).

2.3. The effects of the shale damage to the flow of fluid

In general, three mutually orthogonal cracks are allowed in one 3D
element (Fig. 2) and the crack opening widths are calculated from the
principal inelastic strains 𝜀′′1 , 𝜀

′′
2 , 𝜀

′′
3 in the form:

ℎ1 = 𝑙⟨𝜀′′1 ⟩, ℎ2 = 𝑙⟨𝜀′′2 ⟩, ℎ3 = 𝑙⟨𝜀′′3 ⟩ (5)

where 𝑙 is the material characteristic length which equals to the brick
element size. The principal inelastic strains are calculated from the
inelastic strains as follows:

𝜀′1 = 𝜀1 −
𝜎1 − 𝜈(𝜎2 + 𝜎3)

𝐸

𝜀′2 = 𝜀2 −
𝜎2 − 𝜈(𝜎3 + 𝜎1)

𝐸

𝜀′3 = 𝜀3 −
𝜎3 − 𝜈(𝜎1 + 𝜎2)

𝐸

𝜀′4 = 𝜀4 −
(1 + 𝜈)𝜎4

𝐸

𝜀′5 = 𝜀5 −
(1 + 𝜈)𝜎5

𝐸

𝜀′ = 𝜀 −
(1 + 𝜈)𝜎6

(6)
3

6 6 𝐸
where 𝐸 and 𝜈 are Young’s modulus and Poisson’s ratio, respectively.
𝜎1, 𝜀𝑖 are the stress and strain components.

The flows within the three fractures are assumed to be independent
of each other and the total permeability tensor of the element with
three orthogonal cracks is the superposition of the contributions of
these cracks:

𝑩 = 1
12𝜇

3
∑

𝑘=1
ℎ3𝑘(𝑰 − 𝒏𝑘 ⊗ 𝒏𝑘) 𝑜𝑟 𝐵𝑖𝑗 =

1
12𝜇

3
∑

𝑘=1
ℎ3𝑘(𝛿𝑖𝑗 − 𝑛𝑘𝑖𝑛𝑘𝑗 ) (7)

𝒏𝑘 = 𝑛𝑘𝑖𝒆𝑖 is the direction of the principal inelastic strain. Thus, the
crack widths change the permeability tensor relating to the fluid flow
in the shale to affect the fluid flow with the change of the distribution
of the pressure in the fluid.

2.4. The effects of the flow of fluid to the shale damage

Meanwhile, the changing distribution of the fluid pressure in turn
affects the stresses and crack widths in the shale which also in turn
affect the fluid flow and pressure. The effects of fluid flow on the
deformation of shale are treated as an additional stress 𝜎𝐴 on the walls
of each crack separately:

𝝈𝐴 = −
3
∑

𝑘=1
[(𝑃𝑤𝑘𝒏𝑘 ⊗ 𝒏𝑘) + 𝑃𝑤𝑘

ℎ𝑘
𝑙 + ℎ𝑘

(𝑰 − 𝒏𝑘 ⊗ 𝒏𝑘)] 𝑜𝑟

𝜎𝐴𝑖𝑗 = −
3
∑

𝑘=1
[𝑃𝑤𝑘𝑛𝑘𝑖𝑛𝑘𝑗 + 𝑃𝑤𝑘

ℎ𝑘
𝑙 + ℎ𝑘

(𝛿𝑖𝑗 − 𝑛𝑘𝑖𝑛𝑘𝑗 )]

(8)

where 𝑤𝑘 is a variable representing the degree of damage with respect
to the elastic–brittle constitutive relationship (Fig. 1(b)):

𝑤𝑘 =

{

0 𝜀′′𝑘 ≤ 𝜀′′𝑘,𝑏𝑟𝑒𝑎𝑘
1 𝜀′′𝑘 ≥ 𝜀′′𝑘,𝑏𝑟𝑒𝑎𝑘

(9)

where the damage variable indicates no damage as the principal inelas-
tic strain not exceeding the critical breaking inelastic strain 𝜀′′𝑘,𝑏𝑟𝑒𝑎𝑘 and
fully damage on the other hand.

2.5. Governing equations for the flow of fluid

The principle of fluid mass conservation gives the following conti-
nuity equation:

𝜕(𝜌ℎ)
𝜕𝑡

+
𝜕(𝜌𝑞𝑖)
𝜕𝑥𝑖

= 0 (10)

where ℎ = ℎ1 + ℎ2 + ℎ3 is the summation of the crack width. The
fracturing water is considered to be compressible and the mass density
of the fluid depends on the pressure and takes the form:

𝜌 = 𝜌0(1 +
𝑃
𝐾
) (11)

where 𝜌0 is the mass density at reference pressure 𝑃 and 𝐾 is the
volumetric modulus of fracking fluid. It is noted that the mass density
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Fig. 2. Three orthogonal cracks system and evolution pattern with flow and pressure distribution in a 3D element. (a) Intact element. (b) Cracked element with flow and pressure
inside. (c) Closed cracked element with pressure inside.
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Table 1
Analogy between hydraulic fracturing and heat conduction.

Hydraulic fracturing Heat conduction Analogy

Mass flow rate: Fourier law: 𝑞𝑖 = 𝑀𝑖
𝑀𝑖 = −𝑘𝑖𝑗

𝜕𝑃
𝜕𝑥𝑗

𝑞𝑖 = −𝑘𝑖𝑗
𝜕𝑇
𝜕𝑥𝑗

𝑇 = 𝑃

Mass conservation: Thermal energy conservation: 𝜌 = 𝜌0
𝜌0

𝜕𝑉
𝜕𝑡

+ 𝜕𝑀𝑖

𝜕𝑥𝑖
= 0 𝜌 𝜕𝑈

𝜕𝑡
+ 𝜕𝑞𝑖

𝜕𝑥𝑖
= 0

Governing equation: Governing equation: 𝑈 = 𝑉
𝜌0

𝜕𝑉
𝜕𝑡

− 𝜕
𝜕𝑥𝑖

[𝑘𝑖𝑗
𝜕𝑃
𝜕𝑥𝑗

] = 0 𝜌 𝜕𝑈
𝜕𝑡

− 𝜕
𝜕𝑥𝑖

(𝑘𝑖𝑗
𝜕𝑇
𝜕𝑥𝑗

) = 0

of the fluid 𝜌 = 𝜌0 if the fluid is incompressible with infinite large
olumetric modulus.

Combining Eqs. (3), (10) and (11) gives the diffusion equation for
he flow of fracking fluid though shale as follows:

0
ℎ
𝐾

𝜕𝑃
𝜕𝑡

− 𝜌0
𝜕
𝜕𝑥𝑖

[(1 + 𝑃
𝐾
)𝐵𝑖𝑗

𝜕𝑃
𝜕𝑥𝑗

] + 𝜌0(1 +
𝑃
𝐾
) 𝜕ℎ
𝜕𝑡

= 0 (12)

3. Analogy between hydraulic fracturing and heat conduction

In general, the governing equation for the fluid flow in hydraulic
fracturing can be derived as:

𝜌0
𝜕𝑉
𝜕𝑡

− 𝜕
𝜕𝑥𝑖

[𝑘𝑖𝑗
𝜕𝑃
𝜕𝑥𝑗

] = 0 (13)

rom the mass flow rate 𝑀𝑖 = −𝑘𝑖𝑗𝜕𝑃∕𝜕𝑥𝑗 and the conservation of
ass 𝜌0𝜕𝑉 ∕𝜕𝑡 + 𝜕𝑀𝑖∕𝜕𝑥𝑖 = 0, where 𝑘𝑖𝑗 = 𝜌0(1 + 𝑃∕𝐾)𝐵𝑖𝑗 is the

oefficient of the flow, as known as hydraulic conductivity, 𝑉 the fluid
olume within the fracture, 𝜌 the fluid density, 𝐾 the fluid volumetric

modulus. The relations between these variables are summarized as
𝜌 = 𝜌0(1 + 𝑃∕𝐾), 𝑉 = ℎ(1 + 𝑃∕𝐾), 𝜕𝑉 ∕𝜕𝑃 = ℎ∕𝐾.

Accordingly, the governing equation of the heat conduction takes
the form as:

𝜌 𝜕𝑈
𝜕𝑡

− 𝜕
𝜕𝑥𝑖

(𝑘𝑖𝑗
𝜕𝑇
𝜕𝑥𝑗

) = 0 (14)

with the heat flux 𝑞𝑖 = −𝑘𝑖𝑗𝜕𝑇 ∕𝜕𝑥𝑗 and the conservation of heat
𝜌𝜕𝑈∕𝜕𝑡 + 𝜕𝑞𝑖∕𝜕𝑥𝑖 = 0, in which 𝑘𝑖𝑗 is the thermal conductivity, 𝑇 the
temperature, 𝑈 the internal heat energy and 𝜌 the density.

By comparing Eqs. (13) and (14), the hydraulic fracturing and the
heat conduction can be analogized by the following equivalence in
Table 1.

The initial and boundary conditions can be analogized as:

𝑇 = �̄�0 ⇔ 𝑃 = 𝑃0 (15)

𝑇 = �̄� , 𝑎𝑡 𝛤1
𝑞𝑖𝑛𝑖 = −𝑞, 𝑎𝑡 𝛤2

𝑞𝑖𝑛𝑖 = −𝛼𝑇 (�̄� − 𝑇 ), 𝑎𝑡 𝛤3

⎫

⎪

⎬

⎪

⎭

⇔

⎧

⎪

⎨

⎪

⎩

𝑃 = 𝑃 , 𝑎𝑡 𝛤1
𝑀𝑖𝑛𝑖 = −�̄�, 𝑎𝑡 𝛤2

𝑀𝑖𝑛𝑖 = 𝛼𝑃 (𝑃 − 𝑃 ), 𝑎𝑡 𝛤3

(16)

here �̄�0, 𝑃0 are the initial temperature and fluid pressure, 𝛤1, 𝛤2, 𝛤3 de-
ote the first, second and third boundary conditions with the boundary
alues �̄� for temperature and 𝑞 for heat flux, and boundary values 𝑃 , �̄�
4

u

or fluid pressure and mass flow rate, and 𝛼𝑇 and 𝛼𝑃 the thermal and
luid coefficient of diffusion. Thus, the analogy between hydraulic frac-
uring and heat conduction is mathematical established from governing
quations as well as initial and boundary conditions.

Using this analogy, the fluid flow in hydraulic fracturing process
an be realized through coupled heat transfer and deformation by
efining specific heat transfer behavior (UMATHT) for the fluid flow
nd mechanical constitutive relations (UMAT) for solid formation.
he fully-coupled temp-displacement analysis can be utilized to fully
ouple the fluid flow and solid deformation with the specific cou-
led temperature–displacement element type in ABAQUS. Therefore,
he challenge of numerical implementation is significantly simplified
ithout any further development of user-defined element (UEL) and

luid–solid solver.

. Numerical implementations

To this end, the proposed method is completely developed for the
umerical simulation of hydraulic fracturing based on the simplified
umerical tool by the analogy between the hydraulic fracturing and
eat conduction. The flow chart of the solving procedure for hydraulic
racturing is illustrated in Fig. 3. After initialization the strain vector 𝜀𝑖
s updated at 𝑡+𝛥𝑡 and the crack directions 𝑛𝑘𝑖 are updated according to
he state of the last step. If there is no crack the rotation matrix 𝑇𝑖𝑗 will
e unit matrix and the strain vector 𝜀𝑝𝑖 at crack system will be the same
s the total strain vector. Otherwise, the strain vector will be updated
ccording to the crack system at last step and the updated strain vector
ill be utilized to determine the new state of element and new crack
irections. The local stiffness matrix 𝐷𝐿

𝑖𝑗 can be determined by the
tate of element and the global stiffness matrix 𝐷𝐺

𝑖𝑗 can be calculated
y the rotation matrix 𝑇𝑖𝑗 in the function of the crack directions. The
rocedure in the red box is basically the coupling of virtual crack
ystem and elastic–brittle constitutive model. After determination of
hese variables the fully coupled process is then required within each
ime step by the exchange of the crack width ℎ𝑘, flow coefficient
𝑖𝑗 and the fluid pressure 𝑃 which are so-called coupling parameters.
pecifically, the crack width ℎ𝑘 and the flow coefficient 𝐵𝑖𝑗 can be
hen calculated and transferred to the fluid flow part by the common
lock. The additional stress 𝜎𝐴𝑖𝑗 induced by the fluid pressure within
he crack can be calculated by the state of the element and the fluid
ressure 𝑃 transferred back from fluid flow part. It is noted that we
alculate the incremental additional stress by the difference between
he additional stress at current step and the previous step in order to
void the new sudden fracture at current step. Finally, the total stress
𝑖(𝑡+𝛥𝑡) is updated with three stresses including the former stress 𝜎𝑖(𝑡), the
ncremental constitutive stress 𝑑𝜎𝑐𝑖(𝑡+𝛥𝑡) and the incremental additional
tress 𝑑𝜎𝐴𝑖(𝑡+𝛥𝑡). The Jacobian matrix is lastly updated according to the
tiffness matrix of the element at current state. It is worth noting that
he stiffness matrix related to the state of the element with different
ractures dose not destroy the original structure which is suitable to

pdate the Jacobian matrix.
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Fig. 3. Flowchart of the interaction between UMAT and UMATHT for fully coupled
hydro-mechanical problem.

Table 2
Material parameters used for the numerical simula-
tions and KGD analytical solution.

Young’s modulus 𝐸 (GPa) 20.0
Poisson’s ratio 𝜈 0.20
Injection rate 𝑞 (m3/s) 1.0 × 10−5

Volumetric modulus 𝐾 (GPa) 0.08
Dynamic viscosity 𝜇 (mPa s) 1.01
Model height ℎ (m) 0.1
Breaking strain 𝜀𝑘 0.00025

5. Verification

In this section, the performance of the proposed numerical treat-
ment for hydraulic fracturing is preliminarily verified by the classic
KGD analytical solution (Geertsma and de Klerk, 1969; Mohammadne-
jad and Khoei, 2013). The KGD model is assumed to be a 2D-plain-
strain problem with homogeneous and isotropic formation which is
characterized by the Young’s modulus 𝐸 and Poisson’s ratio 𝜈. The fluid
is injected at a constant rate 𝑞 which generates an elliptical fracture in
horizontal cross-section with a constant height ℎ of rectangular shape in
vertical cross-section. The fluid flow with dynamic viscosity 𝜇 inside the
fracture can be described with the smooth parallel-plate mode without
considering the fluid leak off. With these assumptions the maximum
fracture aperture 𝑤𝑚𝑎𝑥 and the maximum net fluid pressure 𝑝𝑛𝑒𝑡,𝑚𝑎𝑥 in
the fracture can be calculated using the following equation:

𝑤𝑚𝑎𝑥 = 2.36
(

𝑞3𝜇
𝐸′ℎ3

)1∕6

𝑡1∕3

𝑝𝑛𝑒𝑡.𝑚𝑎𝑥 = 1.09(𝐸′2𝜇)1∕3𝑡−1∕3
(17)

here 𝐸′ = 𝐸∕(1 − 𝜈2) is the plain strain modulus. The material
arameters used for the verification are listed in Table 2.

The numerical model has a dimension of 10.1 m × 10 m × 0.1 m and
ach element has a dimension of 0.1 m × 0.1 m × 0.1 m as shown in
ig. 4(a). In order to be consistent with the KGD model the plain strain
oundary conditions are applied to the model and symmetric boundary
5

condition is applied to the left side with injection hole. A constant
injection rate 𝑞 is performed and the simulation results of hydraulic
fracturing for different times are illustrated in Fig. 4(b) and (c). The
comparison between the numerical simulation and the classic KGD an-
alytical solution for the maximum fracture aperture and the maximum
net fluid pressure are shown in Fig. 5. As can be seen that the prediction
of the maximum fracture aperture provided by the proposed method
is nearly in agreement with the KGD analytical solution with slightly
difference. However, the prediction underestimates the maximum net
fluid pressure and overestimates the remaining net fluid pressure in the
fracture. It is mainly due to the initial pressure of the injection point
which reduces the effect of the fluid pressure which is the limitation of
the present model. Due to the limitations of the present computational
capacity, a more thorough verification could be made in future such as
large size of the domain, the mesh sizes and the fracture length. Thus,
the present model is validated by the classical KGD solutions for the
further investigations.

6. Numerical results and analysis

The present method is expected to be a useful numerical tool to
study related problems due to its simplicity and can be extended to
other constitutive models to solve the cracking process. In this section,
some representative numerical examples of the hydraulic fracturing
are analyzed and discussed based on the material parameters listed in
Table 2.

6.1. Simulation of multiple simultaneous hydraulic cracking

Simultaneous hydraulic fracturing is the current preferred method
of completion of horizontal wells in unconventional oil and gas ex-
traction. However, the propagation of multiple simultaneous hydraulic
fractures is strongly affected by the fracking water pressure as well as
the interactions among each other. For this purpose, two-dimensional
horizontal layers of shale with multiple perforations are investigated. It
must be noted that two categories of simultaneous hydraulic cracking
are take into account to obviate the effects of boundary conditions:
finite cracks and infinite cracks.

For the case of finite cracks, the geometry is shown in the leftmost
graph of Fig. 6(a) for three perforations and (b) for five ones on the
left side of the model. As for the boundary conditions, the left side
is set to be symmetric about 𝑥-axis (𝑢𝑥 = 0), and fixed on the other
sides (𝑢𝑥 = 0, 𝑢𝑦 = 0). Two types of boundary conditions are analyzed
for the top and bottom sides, i.e. (1) fixed boundary (𝑢𝑥 = 0, 𝑢𝑦 = 0)
and (2) no constraint boundary. Meanwhile, the distance between the
top/bottom boundary and the outmost perforations is set to be 10 times
of perforation spacing to exclude the possibility of the effects from the
boundaries of the model. The size of the model thus varies with the
perforation spacing and three typical spacing are studied, namely, 2 m,
4 m and 10 m. The crack propagation and distribution of fluid pressure
are visualized in the middle graphs of Fig. 6(a) and (b). One can observe
that the fluid flow barely starts to develop crack at the interior borehole
but the cracks from the exterior ones propagate smoothly until hit the
boundary. It is noted that the stress distribution near the perforations is
the same at the primary state, however, as the fluid pressure increase
the interior one is clearly suppressed by the other two which is the
reason why the interior crack rarely propagates. The results remain
the same for different boundary conditions and different numbers and
spaces of perforations. For further analysis of the reason, the critical
strain values at the moment of crack initiation are recorded in the
rightmost graph Fig. 6(a) and (b). It is found that the critical strains
of the center perforations for all conditions are constantly less than the
values of the exterior perforations. The main reason is that the fluid
pressures from the exterior perforations compress on the interior ones
to restrain its propagation which is so called stress shadow effect. It is
noteworthy that the stress interaction is decreasing with large fractures



Computers and Geotechnics 156 (2023) 105259M. Li et al.
Fig. 4. Numerical simulation of the hydraulic fracturing for the KGD model. (a) Geometry of the model. (b) Crack propagation and fluid pressure distribution with the crack at
47 s. (c) Crack propagation and fluid pressure distribution with the crack at 100 s.
Fig. 5. Validation of the proposed model using the KGD analytical solution. (a) Comparison of the maximum fracture aperture. (b) Comparison of the maximum net fluid pressure.
spacing and there is only a marginal difference between the critical
strain values as the cracks spacing increases to 10 m. Additionally,
even though the fractures propagate along nearly straight paths, the
fluid flow inside the cracks indeed influences each other to inclined
angles. The curved crack paths can be more evident as the numerical
model is further improved to avoid the mesh sensitivity in the future
work. The results in this study are consistent with the works of other
researchers (Zeng et al., 2017; Olson, 2008).

For the case of infinite cracks, the numerical results are quite
different from the ones of finite cracks. As illustrated in the leftmost
graph of Fig. 6(c) for three perforations and (d) for five ones, symmetric
boundary conditions are applied on all sides of the model and the dis-
tance between the exterior perforations and the up/bottom boundary
is set to be half perforation spacing. It is noteworthy that the multiple
fractures propagate randomly for different perforation spacings which
is entirely different from the results of the finite cracks. For the case
of three boreholes the center one propagates but the two outer ones
are stunted when the perforation spacing is 2 m. However, when
the perforation spacing is 4 m and 10 m the outer cracks propagate
but the center one is suppressed (Fig. 6(c)). Similarly, the pattern of
cracks propagation for five perforations is also random as depicted in
the middle graphs of Fig. 6(d). The critical strain values are listed
in rightmost graph of Fig. 6(c) and (d) for further analysis and it
must be noted that the critical values are identical for all cases. In
other words, the stress states for different cracks are completely same
when the symmetric geometry and boundary conditions are performed.
Therefore, the effects of stress shadow are excluded but the issue of
stability of multiple cracks propagation arises. Strictly, although the
listed critical strain values are the same, infinitesimal difference is
numerically inevitable which finally leads to randomly instable crack
propagation. Little relevant research is found except the contribution
in Bažant and Ohtsubo (1977) and Bažant et al. (1979), the stability
of multiple parallel cracks under geothermal conditions is analyzed
from theoretical perspective but no numerical results and the final
6

solution. To some extent, our research findings provide a reasonable
interpretation for instable crack propagation caused by the physical
perforations in practical engineering and further solution is proposed
in the following section.

6.2. Effects of the notches

As stated in Section 6.1 stress interference and instability should be
avoided to create as many simultaneous multiple hydraulic fractures
as possible in practical engineering. It is found in this study that the
initial notch length can strongly influence the propagation pattern of a
system of cracks to a certain extent. The same models are performed
in Fig. 7(a) and (c) and the notches with an additional element to
model the long initial length of the notches are also studied as shown
in Fig. 7(b) and (d). It is noted that for the short ones the numerical
results are random as same as the ones in the former section, but
for the long initial length indicated by red circle in Fig. 7 the crack
always propagates at the notches with long initial length. Namely, the
crack propagation is no longer dominated by the stress interaction and
instability but preferred to propagate from the notches with long initial
length. Therefore, the research results provide a practical solution to
overcome the effects of stress interaction and instability by introducing
proactive length to control the hydraulic fracturing in advance.

6.3. Effects of in-situ stresses

Now consider a cross-section of a vertical wellbore with size 5 m ×
5 m and a center hole of 0.1 m × 0.1 m as depicted in Fig. 8. The hor-
izontal minimum and maximum principal stress is 5 MPa and 10 MPa,
respectively. The fluid flow is injected from the center perforation with
the same pressure history as before. It is shown from the distribution
of the fluid pressure that the hydraulically induced crack propagates
perpendicular to the direction of the minimum horizontal principal
stress (Fig. 8(b)). The influence of the difference of the two-horizontal
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Fig. 6. Simulation of multiple simultaneous hydraulic fracturing with different number of perforations, boundary conditions and perforation spacing. (a) Finite cracks with three
perforations. (b) Finite cracks with five perforations. (c) Infinite cracks with three perforations. (d) Infinite cracks with five perforations.
stress is investigated and it is noted from Fig. 8(c) that the breakdown
pressure decreases with the increase of the horizontal stress difference.

6.4. Three-dimensional simulation of one hydraulic fracturing

A three-dimensional cubic block with size of 1.1 m × 1.1 m × 1.1 m
with one perforation at center is now studied to verifying the proposed
7

model for 3D cases. All boundaries are mechanically fixed, and the
other parameters are the same. The geostresses are 𝜎ℎ = 5 MPa, 𝜎𝐻 =
0 MPa, 𝜎𝑣 = 10 MPa as illustrated in Fig. 9(a). The distribution of fluid
pressure on the two vertical cuts of the block is shown in Fig. 9(b) and
one can observe clearly a penny-shaped crack and the propagation path
is perpendicular to the direction of the minimum horizontal geostress.
In order to show clearly the shape of the crack, the snapshots of the
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Fig. 7. Effects of the initial notch length with different numbers, boundary conditions and spacings (a) Finite cracks with short initial length. (b) Finite cracks with long initial
length. (c) Infinite cracks with short initial length. (d) Infinite cracks with long initial length.
Fig. 8. Effects of in-situ stresses. (a) Geometry and in-situ stresses. (b) Crack prop-
agation and distribution of the fluid pressure. (c) Influence of the difference of the
two-horizontal stress on breakdown pressure.

fluid pressure patterns on the different cuts at different time steps are
illustrated in Fig. 9(c). It is noted that with the increase of the fluid
pressure the crack propagates along the direction of the maximum
horizontal geostress with the oblate spheroid shape.

6.5. Three-dimensional simulation of three simultaneous horizontal well-
bore

A three-dimensional simulation with three simultaneous perfora-
tions is now considered and the geometry is shown in Fig. 10(a) with
the size of 8.3 m × 4.1 m × 4.1 m. Three perforation clusters with
the distance of 2 m are applied at the front side representing the
horizontal wellbore. A symmetric condition is prescribed at the side
8

Fig. 9. Three-dimensional simulation of one hydraulic fracturing. (a) Geometry and in
situ stresses. (b) Distribution of fluid pressure on the two vertical cuts of the block. (c)
Snapshots of the fluid pressure on different cuts at different time steps.

with perforation clusters and the other sides are all mechanically fixed.
The material parameters and the geostress are considered to be the
same. The distribution of the fluid pressure at two-time steps are shown
in Fig. 10(b) and (c). It can be observed that no crack develops at the
center perforation while two cracks form at the two outer perforations
at the primary stage which is basically the same as the 2D case. It
is worth noting that at the final stage the two outside cracks halt to
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Fig. 10. Three-dimensional simulation of three simultaneous horizontal wellbore. (a) Geometry and in situ stress. Crack propagation and distribution of the fluid pressure at (b)
primary stage. (c) final stage.
Fig. 11. Comparison with laboratory experiment of hydraulic fracturing. (a) Block of Colton sandstone. (b) Stress state. (c) Experimental results. (d) Simulation results
of Casas Theoktisto (2005). (e) Numerical model. (f) Fracture shape on a horizontal section. (g) Fracture shape on a vertical section. (h) Profile of fracture length and width.
propagate but the perforation at the center region starts to develop
horizontal crack. The reason of this phenomenon is that after the
two outer cracks propagate the fluid pressure inside cracks starts to
compress the region nearby the center perforation and the stress state
is gradually changed. This finally leads to deflect the direction of the
minimal principal stress of the center perforation and crack starts to
propagate horizontally. This result is totally agreed with the one in
the work of Olson (2008). It is therefore verified that the proposed
method is capable of studying the interactions of 3D multiply hydraulic
fracturing.

6.6. Comparison with laboratory tests

Knowing the restrictions of the former qualitative numerical ex-
amples, the numerical results of our proposed method is now briefly
compared with a published laboratory hydraulic fracturing test and the
detailed information is referred in the work of Casas Theoktisto (2005).
The laboratory test was performed on a large block of Colton sandstone
with a centralized hole with the stress state shown in Fig. 11(a) and
(b). The experimental results in Fig. 11(c) clearly show two nearly
symmetrical fracture wings on both sides of the wellbore and the
fracture length and height are directly measured from the fracture
profile. The numerical simulation in the work shows the modeled width
profile of the fracture which matches well with the one from the test
(see Fig. 11(d)).

In this paper it is modeled with the full block with the injection
section located in the center and all the sides are mechanically fixed.
The material parameters and the stress state take the same as the lab-
oratory experiment. The numerical prediction of the proposed method
is displayed in Fig. 11(e)(f)(g)(h) and note that the fluid pressure, the
fracture shape, radius and width at the borehole are well reproduced.
9

The fracture shape is visualized with a horizontal and a vertical cut
and one can observe two symmetric fracture wings in the vertical
cut. The fracture is transversely perpendicular to the direction of the
minimum principal stress which is basically the same as the laboratory
test. Fig. 11(h) shows the fracture shape with the measurement of the
fracture length and width which matches equally well with the results
of laboratory experiment. The numerical results also clearly show the
breakdown pressure of the present method (31.09 MPa) is well agreed
with the ones in the laboratory test (30.34 MPa). It also shows the
modeled length and width profile of the fracture which also matches
well with the one from the experiment test.

7. Conclusions

(1) This paper establishes an analogy between hydraulic fracturing
and heat conduction for simulating the fully coupled hydro-mechanical
behavior. Based on this analogy, a simple numerical tool is developed
in the framework of a commercial finite element package ABAQUS
with two user-defined subroutines to characterize the fully coupling
system. The proposed method is firstly verified by using the classical
2D-plain-strain KGD analytical solutions.

(2) It is then applied to study several typical hydraulic fracturing
problems and laboratory tests. In the case of multiple simultaneous
hydraulic cracking, it is found that stress interaction indeed has a strong
influence on the ability to initiate fractures for finite perforations, but
stability is the main reason for infinite ones. It is also noteworthy that
the induced initial length of the perforations strongly affects the effects
of stress interaction and stability.

(3) Since the development of the present method is restricted on
the material level, the introduction of the virtual crack method coupled
with elastic–brittle damage constitutive law is only the preliminary case
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and can be further extended to other constitutive models that featured
with coupled hydro-mechanical behavior. This method is expected to
be a useful numerical tool to study the hydraulic fracturing due to its
simplicity.

(4) Due to the limited space, there are still many issues in need
of improvement in the future work, such as large size of the domain,
effects of the mesh size, heterogeneity, etc. In the future, further investi-
gations should consider more complex hydraulic fracturing behaviors,
for example, the interaction between hydraulic fractures and natural
discontinuities, hydraulic fracture branching etc. It is worth mentioning
that the stepwise crack propagation behavior (Milanese et al., 2016)
can be captured by our model which will be discussed in details in our
future work.
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ppendix A. Virtual crack model

As a continuum approach for fracture mechanics, the virtual crack
n the element is imagined taking place in the normal direction of the
aximum principal strain exceeding the critical value. As the crack

ccurs, the element is assumed to be fully fractured in that direction
orresponding to the brittle failure state of the elastic–brittle constitu-
ive model, and thus the components of material stiffness matrix related
o that direction are modified to zero. Three orthogonal cracks may
ppear in one element at most and the crack system is fixed as normal
o the maximum principal strain at the time the cracks start to form
nd remain constant afterwards. However, the crack is assumed to be
ble to close and reopen according to the stress state, and the closed
rack is able to support compressive loading but no shear ones. The
aterial stiffness matrix is changed correspondingly as the crack opens

nd closes. The virtual crack method for shale formation is then fully
10

resented in the following in the framework of finite element analysis. i
Fig. A.1. Illustration of the crack states and evolution pattern for a 2D orthogonal
crack system.

Table A.1
State of 2D element and physical meaning with their opening and fracturing state.

State Physical meaning Opening state Fracturing state

1 Intact (0,0) (0,0)
2 Cracked in 1st direction (1,0) (1,0)
3 Closed in 1st direction (2,0) (1,0)
4 Cracked in 2nd direction (0,1) (0,1)
5 Cracked in 1st and 2nd direction (1,1) (1,1)
6 Closed in 1st and cracked in 2nd direction (2,1) (1,1)
7 Closed in 2nd direction (0,2) (0,1)
8 Cracked in 1st and closed in 2nd direction (1,2) (1,1)
9 Closed in 1st and 2nd direction (2,2) (1,1)

A.1. State of element and its stiffness matrix

The two-dimensional case is firstly introduced with the assumption
that all virtual cracks are parallel and normal to the coordinate axes.
As shown in Fig. A.1, a 2D rectangular element has 9 definitive states
with considering crack open and close. The state of each element is
indicated by two opening state variables (𝑠𝑡𝑎𝑡𝑒1, 𝑠𝑡𝑎𝑡𝑒2), in which the
state variables can be 0, 1 and 2 indicating intact, cracked and closed,
correspondingly. At the same time, each element has two fracturing
state variables (𝑤1, 𝑤2), in which 0 denotes no crack and 1 opened or
losed since the fluid is still allowed to flow within the closed crack.
he state of 2D element and their physical meaning with their opening
nd fracturing state are summarized in the Table A.1.

As the state of element is defined, the stiffness matrix corresponding
o certain state can be derived straightforward. Using the virtual crack
onception, the crack starts to form in the direction normal to the
rincipal strain exceeding the critical fracturing value. The stiffness
atrix corresponding to that direction is then modified according to the

lement state. Thus, the stiffness matrix of the element is also definitive
nd relates uniquely to the state of that element. For instance, the
lement in state 1 is intact, so the corresponding stiffness matrix is
ompletely same as the elastic stiffness matrix. The constitutive relation
s 𝜎𝑖 = 𝐷[0,0]

𝑖𝑗 𝜀𝑗 , 𝑖, 𝑗 = 1, 2,… , 6, in which 𝜎𝑖, 𝜀𝑗 are the stress and strain
components and 𝐷[0,0]

𝑖𝑗 is the stiffness matrix with the superscript [0, 0]

ndicating the element on state 1. The stiffness matrix for the element
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on state 1 is thus:

𝐷[0,0] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆 + 2𝜇 𝜆 𝜆 0 0 0
𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 𝜇 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.1)

As the critical fracturing strain has been reached, the state of
element evolves with the stiffness matrix. For instance, as the strain
in the 1st direction exceeds the critical fracturing value, the element
on state 1 will evolve to state 2 which means the stress of the element
in the 1st direction is zero as well as the shear stress relating to the
1st direction. Therefore, the constitutive relation becomes 𝜎𝑖 = 𝐷[1,0]

𝑖𝑗 𝜀𝑗
where 𝐷[1,0]

𝑖𝑗 is the stiffness matrix relating to the element on state 2
with superscript indicator [1, 0], and takes the form:

𝐷[0,0] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

◁0 ◁0 ◁0 0 0 0

◁0 𝜆 + 2𝜇 𝜆 0 0 0

◁0 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 ◁0 0 0
0 0 0 0 ◁0 0
0 0 0 0 0 𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.2)

in which the cancel lines eliminate the normal and shear components
corresponding to the fracturing direction. On the contrary, as the
change of the stress condition the crack becomes closed, the state of
the element will change from state 2 to state 3, which means that the
normal direction of the closed crack recovers its ability for compression
but not shear stress. Thus, the stiffness matrix of the element on state
3 becomes as follows:

𝐷[0,0] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆 + 2𝜇 𝜆 𝜆 0 0 0
𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 ◁0 0 0
0 0 0 0 ◁0 0
0 0 0 0 0 𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.3)

in which the blue one denotes the recovered components while the can-
cel lines eliminate the shear components. Following the same rules, the
stiffness matrices for other states of elements are given in Appendix B.

A.2. Evolution rules

As shown in Fig. A.1 that the nine states of element can be evolved
from one to another with the change of the stress state. However, it
must be pointed out that the evolution of 2D element states must follow
the rule (black arrow) shown in Fig. A.1. For example, the element can
evolve from state 1 to state 2, 4 and 5, while from state 5 to 6, 8 and
9. It seems complicated, but there are certain rules to follow. The state
of an element can only evolve from ‘‘intact’’ to ‘‘cracked’’ and then to
‘‘closed’’, and it can never change directly from ‘‘intact’’ to ‘‘closed’’.
However, the ‘‘cracked’’ and ‘‘closed’’ can be interconverted but never
back to ‘‘intact’’. The evolution rules can be clearly summarized in the
Table A.2.

A.3. Criterion of evolution

As the evolution rules are set, the main challenge is to determine
the criterion of evolution and determination of final state. As stated
above, three states i.e. intact, cracked and closed, are possible, so the
criterion of evolution is required to determine when the element will be
cracked and closed. Using the virtual crack conception, the maximum
principal strain criterion is adopted to determine whether the element
should start to crack, while the criterion for distinguishing ‘‘cracked’’
or ‘‘closed’’ can be only decided by the stress condition. As long as the
element is cracked in one direction, the normal stress relating to that
11
Table A.2
Evolution rules of 2D element.

Initial state Possible evolved state

1 2,4,5
2 3,5,6
3 2,5,6
4 5,7,8
5 6,8,9
6 5,8,9
7 4,5,8
8 5,6,9
9 5,6,8

direction is only possible to be less equal to zero. Thus, as the critical
strain corresponding to zero normal stress is determined, the state of
‘‘cracked’’ or ‘‘closed’’ can be then confirmed.

For example, the initial state of an intact element at the current
time is 1 which can be obtained from the opening state variables
(𝑠𝑡𝑎𝑡𝑒1, 𝑠𝑡𝑎𝑡𝑒2) = (0, 0), and the constitutive relations is 𝜎𝑖(0) = 𝐷[0,0]

𝑖𝑗 𝜀𝑗(0)
(subscript 0 denotes the current time). In order to decide the state
at subsequent time, the maximum principal strain criterion is firstly
applied to the two directions by checking if the known strains 𝜀1(𝑠), 𝜀2(𝑠)
(subscript s denotes subsequent time) at the subsequent time exceed the
critical strain 𝜀𝑐 . The procedure can be detailed in the following:

(1) if 𝜀1(𝑠) ≥ 𝜀𝑐 and 𝜀2(𝑠) < 𝜀𝑐 ⇒ state 2: (𝑠𝑡𝑎𝑡𝑒1, 𝑠𝑡𝑎𝑡𝑒2) =
(1, 0), (𝑤1, 𝑤2) = (1, 0)

(2) if 𝜀2(𝑠) ≥ 𝜀𝑐 and 𝜀1(𝑠) < 𝜀𝑐 ⇒ state 4: (𝑠𝑡𝑎𝑡𝑒1, 𝑠𝑡𝑎𝑡𝑒2) =
(0, 1), (𝑤1, 𝑤2) = (0, 1)

(3) if 𝜀1(𝑠) ≥ 𝜀𝑐 and 𝜀2(𝑠) ≥ 𝜀𝑐 ⇒ state 5: (𝑠𝑡𝑎𝑡𝑒1, 𝑠𝑡𝑎𝑡𝑒2) =
(1, 1), (𝑤1, 𝑤2) = (1, 1)

(4) other cases ⇒ remain state1: (𝑠𝑡𝑎𝑡𝑒1, 𝑠𝑡𝑎𝑡𝑒2) = (0, 0), (𝑤1, 𝑤2) =
(0, 0)

With such procedure the subsequent state of the element is well-
determined, and the state is recorded by the state variables (𝑠𝑡𝑎𝑡𝑒1,
𝑠𝑡𝑎𝑡𝑒2) until the state is changed. At the same time, the subsequent
constitutive relations are determined as 𝝈(𝑠) = 𝑫[𝑠𝑡𝑎𝑡𝑒1,𝑠𝑡𝑎𝑡𝑒2]𝜺(𝑠) where
𝑫[𝑠𝑡𝑎𝑡𝑒1,𝑠𝑡𝑎𝑡𝑒2] is the new stiffness matrix corresponding to the new state
of the element. It is worth noting that if the element is cracked the stress
is zero while if it is closed the stress will not. Following the critical
stress criterion, the state of element for either cracked or closed can
be well-defined. For example, to decide whether the element on state
2 evolves to state 3, the stress in the 1st direction at the subsequent
time is required to be checked. According to the constitutive relations
at the subsequent time i.e. 𝜎1(𝑠) = (𝜆 + 2𝜇)𝜀1(𝑠) + 𝜆𝜀2(𝑠) (𝜀3 ≡ 0 for plane
strain problem), the critical strain can be derived according to zero
stress criterion 𝜎1(𝑠) = 0 as 𝜀′1(𝑠) = −[𝜆∕(𝜆 + 2𝜇)]𝜀2(𝑠). In other words,
the element is closed only if 𝜀1(𝑠) ≤ 𝜀′1(𝑠), otherwise it remains open.
Similarly, the critical strain for the 2nd direction is 𝜀′2(𝑠) = −[𝜆∕(𝜆 +
2𝜇)]𝜀1(𝑠).

The state of the element at the current time is firstly obtained from
the current state variable and the state of the element at the subsequent
time is then determined with fracturing criterion and critical strain
criterion according to the above procedure. According to the stated
criterion, as the initial state of the element is specific, the subsequent
state can be definitively determined. The state variables and the stresses
coupled with the variables of the solid problems can be then updated
for solving the fluid–solid coupled problems.

A.4. Extension to 3D case

For a 3D element, there are 27 states with ‘‘intact’’, ‘‘cracked’’
and ‘‘closed’’ states in each dimension as can be seen from Fig. A.2.
Similarly, the state of a 3D element can be indicated by three state
variables denoting via (𝑠𝑡𝑎𝑡𝑒1, 𝑠𝑡𝑎𝑡𝑒2, 𝑠𝑡𝑎𝑡𝑒3), in which 0 indicates for
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Fig. A.2. Illustration of the crack states and evolution pattern for 3D orthogonal crack
system.

intact, 1 for cracked and 2 for closed. Correspondingly, the fracture
state can be specifies using (𝑤1, 𝑤2, 𝑤3), in which 0 signifies intact and
1 for cracked/closed. The physical meaning of the state of element and
fracture is exactly the same as the 2D case. It is noted that the evolution
of the state of 3D element also follows the specific rules.

For example, the element is initially at state 1 (intact), the consti-
tutive relation can be expressed as 𝝈 = 𝑫[0,0,0]𝜺, in which 𝑫[0,0,0] is the
stiffness matrix corresponding to state 1. Differently from 2D case, three
state variables are required to indicate the state of 3D element. Simi-
larly, the constitutive relation of a specific element is determined by
changing the stiffness matrix according to the state of the element. For
example, eliminate the normal and shear components corresponding to
the cracked direction and recover the normal components relating to
closed direction. The complete form of stiffness matrix corresponding
to each state of element is detailed in Appendix B.

The evolution of 3D element is much more complicated comparing
the 2D case. The element at state 1 has 7 possible states to evolve,
i.e. 2, 4, 5, 10, 11, 13, 14. Similarly, the element at state 14 has
7 possible states as well, i.e. 15, 17, 18, 23, 24, 26, 27. However,
the evolution is still systematic. The state of element in one direction
can only evolve from ‘‘intact’’ to ‘‘cracked’’ and then to ‘‘closed’’. It
is not possible from ‘‘intact’’ to ‘‘closed’’, but ‘‘cracked’’ and ‘‘closed’’
can be exchanged mutually. Meanwhile, as the element is cracked, it
is not allowed ‘‘cracked’’ or ‘‘closed’’ back to ‘‘intact’’. Therefore, the
evolution of 3D element can be systematized in Table A.3.

The criterion to determine whether the element is ‘‘intact’’,
‘‘cracked’’ or ‘‘closed’’ is based on the strain as same as the 2D cases.
The maximum principal strain criterion can be used to check if the
crack starts to form. In other words, it is used to distinguish the state
of ‘‘intact’’ and ‘‘cracked’’. On the other hand, the state of ‘‘cracked’’ and
‘‘closed’’ can be only determined by the stress condition. Specifically,
as the element has been cracked, the normal stress in the cracked
direction can be only zero or negative which means only compressive
and shear loads is allowed as the state of ‘‘cracked’’ changes to ‘‘closed’’.
Therefore, the critical condition for stress equals to zero can be used to
determine the critical state of ‘‘cracked’’ and ‘‘closed’’.
12
Table A.3
Evolution rules of 2D element.

Initial state Possible evolved states

1 2,4,5,10,11,13,14
2 3,5,6,11,12,14,15
3 2,5,6,11,12,14,15
4 5,7,8,13,14,16,17
5 6,8,9,14,15,17,18
6 5,8,9,14,15,17,18
7 4,5,8,13,14,16,17
8 5,6,9,14,15,17,18
9 5,6,8,14,15,17,18
10 11,13,14,19,20,22,23
11 12,14,15,20,21,23,24
12 11,14,15,20,21,23,24
13 14,16,17,22,23,25,26
14 15,17,18,23,24,26,27
15 14,17,18,23,24,26,27
16 13,14,17,22,23,25,26
17 14,15,18,23,24,26,27
18 14,15,17,23,24,26,27
19 10,11,13,14,20,22,23
20 11,12,14,15,21,23,24
21 11,12,14,15,20,23,24
22 13,14,16,17,23,25,26
23 14,15,17,18,24,26,27
24 14,15,17,18,23,26,27
25 13,14,16,17,22,23,26
26 14,15,17,18,23,24,27
27 14,15,17,18,23,24,26

For example, the element at state 1 at the current time can be
decided according to the current state variables (0, 0, 0) denoting (𝑠𝑡𝑎𝑡𝑒1,
𝑠𝑡𝑎𝑡𝑒2, 𝑠𝑡𝑎𝑡𝑒3) with the current constitutive relation 𝝈(0) = 𝑫[0,0,0]𝜺(0)
(subscript 0 signifying current time). In order to determine the state
of the element at the subsequent time, it is required to check if crack
occurs in any direction. For the case of cracks normal or along to the
axes, it is necessary to check if the strain components 𝜀1(𝑠), 𝜀2(𝑠), 𝜀3(𝑠)
(𝑠 represents the subsequent time) corresponding to the axes at the
subsequent time exceeds the critical fracture strain 𝜀𝑐 to determine the
state of the element at the subsequent time. For the element at state 1,
the state at subsequent time can be determine as follows:

(1) 𝜀1(𝑠) ≥ 𝜀𝑐 , 𝜀2(𝑠) < 𝜀𝑐 , 𝜀3(𝑠) < 𝜀𝑐 ⇒ state 2: 𝑠𝑡𝑎𝑡𝑒 = (1, 0, 0), 𝑤 =
(1, 0, 0)

(2) 𝜀1(𝑠) < 𝜀𝑐 , 𝜀2(𝑠) ≥ 𝜀𝑐 , 𝜀3(𝑠) < 𝜀𝑐 ⇒ state 4: 𝑠𝑡𝑎𝑡𝑒 = (0, 1, 0), 𝑤 =
(0, 1, 0)

(3) 𝜀1(𝑠) ≥ 𝜀𝑐 , 𝜀2(𝑠) ≥ 𝜀𝑐 , 𝜀3(𝑠) < 𝜀𝑐 ⇒ state 5: 𝑠𝑡𝑎𝑡𝑒 = (1, 1, 0), 𝑤 =
(1, 1, 0)

(4) 𝜀1(𝑠) < 𝜀𝑐 , 𝜀2(𝑠) < 𝜀𝑐 , 𝜀3(𝑠) ≥ 𝜀𝑐 ⇒ state 10: 𝑠𝑡𝑎𝑡𝑒 = (0, 0, 1), 𝑤 =
(0, 0, 1)

(5) 𝜀1(𝑠) ≥ 𝜀𝑐 , 𝜀2(𝑠) < 𝜀𝑐 , 𝜀3(𝑠) ≥ 𝜀𝑐 ⇒ state 11: 𝑠𝑡𝑎𝑡𝑒 = (1, 0, 1), 𝑤 =
(1, 0, 1)

(6) 𝜀1(𝑠) < 𝜀𝑐 , 𝜀2(𝑠) ≥ 𝜀𝑐 , 𝜀3(𝑠) ≥ 𝜀𝑐 ⇒ state 13: 𝑠𝑡𝑎𝑡𝑒 = (0, 1, 1), 𝑤 =
(0, 1, 1)

(7) 𝜀1(𝑠) ≥ 𝜀𝑐 , 𝜀2(𝑠) ≥ 𝜀𝑐 , 𝜀3(𝑠) ≥ 𝜀𝑐 ⇒ state 14: 𝑠𝑡𝑎𝑡𝑒 = (1, 1, 1), 𝑤 =
(1, 1, 1)

(8) otherwise⇒ remain state 1: 𝑠𝑡𝑎𝑡𝑒 = (0, 0, 0), 𝑤 = (0, 0, 0)

With such procedure, the state of the element at subsequent time
can be definitively determined with the corresponding stiffness matrix
simply obtaining from the state variables, and the constitutive relation
is thus

𝝈(𝑠) = 𝑫[𝑠𝑡𝑎𝑡𝑒1,𝑠𝑡𝑎𝑡𝑒2,𝑠𝑡𝑎𝑡𝑒3]𝜺(𝑠).
It is noteworthy that whether the element is ‘‘cracked’’ or ‘‘closed’’

should be further investigated if the element has been cracked. For
example, to determine whether the element at state 2 evolves to state
3 or not, it is required to utilize the critical stress condition to prejudge
the state at subsequent time. From the critical stress condition, one has
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Fig. A.3. Illustration of arbitrary crack propagation path.

𝜎1(𝑠) = 0 in the 1st direction which can be expressed as the constitutive
relation as 𝜎1(𝑠) = (𝜆 + 2𝜇)𝜀1(𝑠) + 𝜆(𝜀2(𝑠) + 𝜀3(𝑠)) and the critical strain
can be deduced as 𝜀′1(𝑠) = −[𝜆∕(𝜆 + 2𝜇)](𝜀2(𝑠) + 𝜀3(𝑠)). In other words,
in the case of no crack on the other two directions, the crack in the
1st direction is closed if 𝜀1(𝑠) ≤ 𝜀′1(𝑠), otherwise, it is open. It must be
pointed out that the state of ‘‘open’’ or ‘‘closed’’ of an element in one
direction depends on the state of the element on other two directions.
For example, to determine whether the element on the state 2 evolves
to state 5 or 6, one must find the critical strain on the condition that
the element is cracked in the 2nd direction. Namely, the stress in the
2nd direction is zero, i.e. 𝜎2(𝑠) = (𝜆 + 2𝜇)�̃�2(𝑠) + 𝜆(𝜀1(𝑠) + 𝜀3(𝑠)) = 0, in
which �̃�2(𝑠) is the trial strain which also determines the critical state in
the 1st direction, i.e. 𝜎1(𝑠) = (𝜆+2𝜇)𝜀1(𝑠)+𝜆(�̃�2(𝑠)+𝜀3(𝑠)) = 0. In this case,
the state of element in the 1st direction can be derived from these two
critical conditions as 𝜀′′1(𝑠) = −𝜈𝜀3(𝑠) and then determine the subsequent
state of the element at the state 2 initially. Specifically, it will evolve
to state 5 if 𝜀1(𝑠) ≥ 𝜀′′1(𝑠), and state 6 otherwise.

Similarly, the state of each element at the subsequent time can be
definitively determined as well as the corresponding stiffness matrix
with such procedure. With the definitive constitutive relation, the
mechanical behaviors of the solid can be obtained and ready to be used
in the coupling problems.

A.5. Arbitrary crack propagation path

For the sake of simplicity, the former criterion for both 2D and 3D
is limited for the case that the crack propagates along/normal to the
axes. However, it is easy to extend to the general case of arbitrary
propagation path regardless the axes (Fig. A.3). For the general case,
the crack forms normal to the maximum principal strain direction and
the modified stiffness matrix is thus referring to the local coordinate
axes corresponding to the principal strain direction. Therefore, the local
stiffness matrix must be transformed to the global coordinates taking
the form:

𝑫𝐺 = 𝑻𝑫𝐿𝑻 𝑇 (A.4)

where 𝑫𝐺 is the global stiffness matrix, 𝑫𝐿 the local stiffness matrix
and 𝑻 the rotation matrix which is a function of principle direction.
The explicit form of the rotation matrix can be found in Appendix C.

Appendix B. Stiffness matrix of cracked element

B.1. Stiffness matrices of 2D element

The stiffness matrices of 2D element are definitively defined ac-
cording to the 9 states and each stiffness matrix matches one certain
state of the element with the indicator of the superscript [𝑠𝑡𝑎𝑡𝑒1, 𝑠𝑡𝑎𝑡𝑒2].
As longs as the state of the element is well-determined by the state
variables, the stiffness matrix can be retrieved with the superscripts
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accordingly. The complete form of the stiffness matrices is listed as
follows:

𝐷[0,0] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆 + 2𝜇 𝜆 𝜆 0 0 0
𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 𝜇 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.1)

𝐷[1,0] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
0 𝜆 + 2𝜇 𝜆 0 0 0
0 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.2)

𝐷[2,0] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆 + 2𝜇 𝜆 𝜆 0 0 0
𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.3)

𝐷[0,1] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆 + 2𝜇 0 0 0 0 0
0 0 0 0 0 0
𝜆 0 𝜆 + 2𝜇 0 0 0
0 0 0 0 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.4)

𝐷[1,1] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 𝜆 + 2𝜇 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.5)

𝐷[2,1] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆 + 2𝜇 0 𝜆 0 0 0
0 0 0 0 0 0
𝜆 0 𝜆 + 2𝜇 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.6)

𝐷[0,2] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆 + 2𝜇 𝜆 𝜆 0 0 0
𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 0 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.7)

𝐷[1,2] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
0 𝜆 + 2𝜇 𝜆 0 0 0
0 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.8)

𝐷[2,2] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

𝜆 + 2𝜇 𝜆 𝜆 0 0 0
𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

(B.9)
⎣ 0 0 0 0 0 0⎦
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B.2. Stiffness matrices of 3D element

The stiffness matrices of 3D element are definitively defined ac-
cording to the 27 states and each stiffness matrix matches one certain
state of the element with the indicator of the superscript [𝑠𝑡𝑎𝑡𝑒1, 𝑠𝑡𝑎𝑡𝑒2,
𝑡𝑎𝑡𝑒3]. Some of the matrices corresponding to different state of element
ake the same form due to the analogy of the crack system, and
he stiffness matrices are listed in the same equation for the sake of
oncision but with different indicators. As longs as the state of the
lement is well-determined by the state variables, the stiffness matrix
an be retrieved with the superscripts accordingly. The complete form
f the stiffness matrices is listed as follows:

[0,0,0] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆 + 2𝜇 𝜆 𝜆 0 0 0
𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 𝜇 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.10)

𝐷[1,0,0] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
0 𝜆 + 2𝜇 𝜆 0 0 0
0 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.11)

[0,1,0] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆 + 2𝜇 0 0 0 0 0
0 0 0 0 0 0
𝜆 0 𝜆 + 2𝜇 0 0 0
0 0 0 0 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.12)

[1,1,0] = 𝐷[1,1,2] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 𝜆 + 2𝜇 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.13)

[2,1,0] = 𝐷[2,1,2] = 𝐷[0,1,2] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆 + 2𝜇 0 𝜆 0 0 0
0 0 0 0 0 0
𝜆 0 𝜆 + 2𝜇 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.14)

[0,2,0] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆 + 2𝜇 𝜆 𝜆 0 0 0
𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 0 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.15)

[1,2,0] = 𝐷[1,0,2] = 𝐷[1,2,2] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
0 𝜆 + 2𝜇 𝜆 0 0 0
0 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.16)

[2,2,0] [2,0,2] [0,2,2] [2,2,2]
14

𝐷 = 𝐷 = 𝐷 = 𝐷 T
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆 + 2𝜇 𝜆 𝜆 0 0 0
𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.17)

𝐷[0,0,1] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆 + 2𝜇 𝜆 0 0 0 0
𝜆 𝜆 + 2𝜇 0 0 0 0
0 0 0 0 0 0
0 0 0 𝜇 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.18)

[1,0,1] = 𝐷[1,2,1] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
0 𝜆 + 2𝜇 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.19)

[2,0,1] = 𝐷[0,2,1] = 𝐷[2,2,1] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆 + 2𝜇 𝜆 0 0 0 0
𝜆 𝜆 + 2𝜇 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.20)

[0,1,1] = 𝐷[2,1,1] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆 + 2𝜇 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.21)

[1,1,1] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.22)

[0,0,2] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆 + 2𝜇 𝜆 𝜆 0 0 0
𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 𝜇 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.23)

[2,0,0] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆 + 2𝜇 𝜆 𝜆 0 0 0
𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.24)

ppendix C. Rotation matrix of crack system

As long as the maximum principal strain is found and the first
rack forms, the crack system is fixed to be three mutually orthogonal
irections even though the other two cracks does not exist. In other
ords, the other two cracks are only possible to form in the directions
rthogonal to the first one and mutually orthogonal to each other.

he directions of the crack system are the direction of the principle
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w
s
t
t
t

d

𝑻

strain when the first crack occurs, and the direction 𝒏𝑘 = 𝑛𝑘𝑖𝒆𝑖 can be
expressed as:

𝑛𝑘𝑖 =
⎡

⎢

⎢

⎣

𝑛11 𝑛12 𝑛13
𝑛21 𝑛22 𝑛23
𝑛31 𝑛32 𝑛33

⎤

⎥

⎥

⎦

(C.1)

hich determines the local coordinate axes corresponding to the crack
ystem. The stiffness matrices listed previously are naturally according
o the local coordinate axes. Thus, for the constitutive relations in
he arbitrary cases, the local stiffness matrices must of course be
ransformed to the global coordinates, taking the form 𝝈 = 𝑫𝐺𝜺, in

which 𝑫𝐺 = 𝑻𝑫𝐿𝑻 𝑇 and 𝑫𝐺 is the global stiffness matrix and 𝑫𝐿 is
the local one. The rotation matrix 𝑻 is the function of the crack system
irections and the general form can be expressed as:

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑛211 𝑛212 𝑛213 𝑛11𝑛12 𝑛11𝑛12 𝑛12𝑛13

𝑛221 𝑛222 𝑛223 𝑛21𝑛22 𝑛21𝑛23 𝑛22𝑛23

𝑛231 𝑛232 𝑛233 𝑛31𝑛32 𝑛31𝑛33 𝑛32𝑛33

2𝑛11𝑛21 2𝑛12𝑛22 2𝑛13𝑛23 𝑛12𝑛21 + 𝑛11𝑛22 𝑛13𝑛21 + 𝑛11𝑛23 𝑛13𝑛22 + 𝑛12𝑛23

2𝑛11𝑛31 2𝑛12𝑛32 2𝑛13𝑛33 𝑛12𝑛31 + 𝑛11𝑛32 𝑛13𝑛31 + 𝑛11𝑛33 𝑛13𝑛32 + 𝑛12𝑛33

2𝑛21𝑛31 2𝑛22𝑛32 2𝑛23𝑛33 𝑛22𝑛31 + 𝑛21𝑛32 𝑛21𝑛33 + 𝑛23𝑛31 𝑛22𝑛33 + 𝑛23𝑛32

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(C.2)
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