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Abstract: A mass-conserved formulation for the Ffowcs-Williams–Hawkings (FW–H) integral is
proposed to suppress contributions of spurious mass flux to the far-field sound at very low Mach
numbers. The far-field condition and compact-source region assumptions are employed. By using
higher-order derivatives of Green’s function, an expansion of the integrand in the monopole term
is performed. This expansion transforms the mass-flux like monopole term into a series including
different orders of velocity moment. At very low Mach numbers, the zero-order term is exactly the
contribution from the spurious mass flux. The proposed mass-conserved formulation is confirmed
by using an unsteady dipole, a two-dimensional (2D) incompressible convecting vortex, a circular-
cylinder flow, and a co-rotating vortex pair. Additional spurious mass flux is added to the unsteady
dipole, 2D incompressible convecting vortex, and flows over a circular cylinder; and the spurious
mass flux of the co-rotating vortex pair comes from the residual of an incompressible-flow simulation.
The far-field sound is found to be sensitive to spurious mass flux in the unsteady dipole and 2D
incompressible convecting vortex cases. Then, the computation of the monopole-term expansion
with the flow over a circular cylinder is presented. Fast convergence performance was observed,
suggesting that the expansion requires little extra computational resources. Finally, FW–H boundary
dependence is observed in the co-rotating vortex-pair case and eliminated by using the proposed
mass-conserved formulation.

Keywords: aeroacoustics; monopole source term; mass-conserved; far-field asymptotics

1. Introduction

When predicting underwater noise generated from marine propellers [1], hydrofoils [2]
and submarines [3,4], the acoustic analogy is usually employed to decompose source
production and the sound radiation process. The Navier–Stokes equations are solved
numerically to obtain a flow field which provides sound sources. The far-field sound can
then be computed by integrating the contributions from different sources.

However, the choice of solution formulation for the sound radiation process may
result in different far-field sound. The sensitivity of vortex sound theory, including Pow-
ell’s analogy [5] and Möhring’s analogy [6] to the error of flow data, was examined by
Schram and Hirschberg [7] through prediction of the vortex-ring-pair generated sound.
Their results showed that the non-conserved kinetic energy leads to significant error. The
Ffowcs Williams and Hawkings equation (FW–H) [8] is an alternative to the sound vortex
theory, which replaces the volume integral with a surface integral by using the Heaviside
function-based variables. A thorough assessment of the FW–H integral was performed
by Cianferra et al. [9] through comparing the results of the porous formulation and direct
integration of the volume term. It was found that the FW–H porous formulation is sensitive
to the observer’s location and the selection of the integration domain. In contrast with
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the direct integration of the quadrupole sources, the sensitivity is suppressed. However,
direct integration of the quadrupole sources is only suitable for the compact-source region
corresponding to very low Mach numbers, owing to required computational storage. An
alternative approach is to model the quadrupole source flux through the end cap of the
integral surface based on the frozen hypothesis theory [10]. By adding the contribution
from the quadrupole sources flux to the far-field acoustic pressure, the compact-source
region assumption can be relaxed without significantly increasing the computational cost
and storage requirement [11,12]. The sensitivity to the end-cap position can also be sup-
pressed. A further reduction of the sensitivity to the end-cap position can be obtained by
employing the non-uniform correlation-based outlet velocity of the quadrupole sources [13].
The strategy to choose the FW–H surface was discussed in detail by Testa et al. [14]. The
end-cap problem, placement/sizing of the porous integral surface, suitability of the mesh
topology, and choice of open or closed integral surface were investigated. It was found that
tailed CFD mesh stretching assists in suppressing boundary reflection, ensuring accurate
noise predictions.

To the authors’ knowledge, the effects of the integral region position and nonlinear
source neglection on the far-field sound prediction have generated a lot of research atten-
tion [10,11,14–21]. The numerical error of the input data generated by computation fluid
dynamics was mentioned by Brentner and Farassat [22] when comparing the Kirchhoff
method and the FW–H in rotor-noise prediction. Their results show that the Kirchhoff
method will lead to significant errors when the source of the integral boundary does not
satisfy the wave equation. In contrast, the FW–H presents consistent results, which are un-
related to the integral boundary position. In this work, we examine the effects of numerical
error on the results of the FW–H equation based on our proposed expansion of Green’s
function. We focus on the sensitivity of far-field sound to the errors of mass conservation
at very low Mach numbers, where the compact-source region assumption is available.
The error in mass conservation corresponds to the non-zero velocity divergence of the
incompressible-flow simulation, which results in spurious mass flux through the integral
boundary. We will show the effects of the spurious mass flux for different amplitudes
on far-field sound. Moreover, a mass-conserved formulation for the FW–H is established
based on the compact-source region assumption.

The remainder of this paper is organized as follows. The frequency-domain FW–
H equation is briefly formulated in Section 1. The mass-conserved formulation of the
monopole term is provided in Section 2. The main component of the monopole term at
very low Mach numbers is shown with the multipole expansion of the monopole term.
The sensitivity of the porous formulation of the FW–H integral to the spurious mass flux
is discussed in Section 3 by referring to sound generated by an unsteady dipole, a 2D
incompressible convecting vortex, flow over a circular cylinder at low Reynolds numbers,
and a co-rotating vortex pair. Finally, conclusions are drawn in Section 4.

2. Acoustic Analogy Theory

The frequency-domain FW–H equation, written as follows, is used to compute the
acoustic pressure:(

(iω)2 + UiUj
∂2

∂xi∂xj
+2iωUi

∂

∂xi
− c2

0
∂2

∂xi∂xi

)
F
(

H( f )ρ′
)
=

∂2

∂xi∂xj
F
(
TijH( f )

)
−

∂

∂xi
F (Fiδ( f ))+

iωF (Qδ( f )),

(1)

where ω is the frequency, Ui and c0 are the freestream velocity and speed of sound, re-
spectively, and ρ′ is the density perturbation. F represents the Fourier transform, and
f = 0 defines the integral boundary outside f > 0 and inside f < 0. The norm vector
of the boundary is represented by n̂i, and H( f ) and δ( f ) are the Heaviside and Dirac
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functions, respectively. The quadrupole, dipole, and monopole source terms, Tij, Fi, and Q,
respectively, are written as follows:

Tij =ρuiuj + Pij − c2
0ρ′δij,

Fi =
(

Pij + ρ(ui −Ui)(uj + Uj) + ρ0UiUj
)
n̂j,

Q =(ρ(ui + Ui)− ρ0Ui)n̂i,

(2)

where ρ and ρ0 are the density in the source region and ambient flow, respectively; ui
is flow velocity in the source region; and Pij is the compressible stress tensor equal to
(p− p0)δij − τij, where p and p0 are the pressure in the source region and ambient flow,
respectively. Finally, τij is the viscous stress tensor. The solution to the FW–H equation is
computed by summing the contribution from the monopole term IT , dipole term IL, and
quadrupole term IQ as follows [23]:

IT(x, ω) = −
∫

f=0
iωQ(y, ω)G(x; y)dl, (3)

IL(x, ω) = −
∫

f=0
Fi(y, ω)

∂G(x; y)
∂yi

dl, (4)

IQ(x, ω)=−
∫

f>0
Tij(y, ω)

∂2G(x; y)
∂yi∂yj

dS, (5)

where x and y are the observer and source positions, respectively, and G is the two-
dimensional (2D) Green’s function for Equation (1). The differential dl is the limitation
of the discretized element on the integral boundary, which is a contour in the 2D case.
It is noted that the following derivation is based on 2D flows, which could be extended
to three-dimensional (3D) flows by replacing Green’s function. In this work, the integral
boundary and observer position are static, leading to a comparably simple formulation of
the solution, as shown in Equations (3)–(5). In addition, we focus on sound propagation
at very low Mach number flows, leading to a negligible quadrupole source term. The
calculation of the far-field acoustic pressure hence reduces to a simple summing of the
boundary integrals of the monopole and dipole terms.

3. Mass Conserved Formulation

At very low Mach numbers, the density is assumed to be constant in the source region
under the assumptions relating to a small disturbance. In addition, the compact-source
region assumption is used, leading to the monopole term for 2D flows as follows:

IT(x, ω) ≈ −iωρ0G(x; y0)
∫

f=0
uin̂idl, (6)

where y0 is required to be on the integral boundary. For 2D flows, the far-field asymptotic
of Green’s function is [24]

G(x; y) =
i
4

(
2

πk

) 1
2

R−
1
2 eϕ,

ϕ =i
(

Mk(x1 − y1)

1−M2 +
π

4
− kR

1−M2

)
,

R =

√
(x1 − y1)

2 + (1−M2)(x2 − y2)
2,

(7)

where M is the freestream Mach number and k the wave number defined as ω/c0. It can
be seen in Equation (6) that the monopole term corresponds to the mass flux crossing the
closed permeable integral boundary. However, at very low Mach numbers, the flow is
nearly incompressible, and the mass flux approaches zero theoretically. In addition, the
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mass flux at the source region cannot converge completely to zero, since it is limited by the
computing scheme and computational cost. Therefore, for a source region in a numerically
generated incompressible flow, the monopole term may be significantly affected by the
spurious mass flux owing to non-zero velocity divergence.

To eliminate the effect of the spurious mass flux, a direct method is to subtract the con-
tribution from the spurious mass flux (Equation (6)) from the monopole term (Equation (3))
as follows:

ITmc(x, ω) ≈ −
∫

f=0
iωQ(y, ω)G(x; y)dl + iωρ0G(x; y0)

∫
f=0

uin̂idl, (8)

where ITmc(x, ω) represents the mass-conserved formulation of the monopole term. The
three-dimensional formulation shares a similar formulation with Equation (8) by substitut-
ing the differential dl with dS.

To clarify the mass-conserved monopole term ITmc(x, ω), we expand the monopole
term (Equation (3)) as follows, using the higher-order derivatives of Green’s function, as
proposed by zhou et al. [20,24].

IT(x, ω) ≈−
∫

f=0
iωρ0uin̂i

G(x; y0) +
n

∑
j=1

1
j!

(
ym

∂ϕ

∂ym

∣∣∣∣
y=y0

)j

G(x; y0)

dl,

ϕ =i
(

Mk(x1 − y1)

1−M2 +
π

4
− kR

1−M2

)
,

R =

√
(x1 − y1)

2 + (1−M2)(x2 − y2)
2.

(9)

By substituting the expansion of the monopole to the mass-conserved formulation, we obtain

ITmc(x, ω) ≈ −
∫

f=0
iωρ0uin̂i

 n

∑
j=1

1
j!

(
ym

∂ϕ

∂ym

∣∣∣∣
y=y0

)j

G(x; y0)

dl. (10)

The number n of the expansion depends on the balance between accuracy and computa-
tional cost. By using the divergence theorem, Equation (10) can be further simplified to the
following form:

ITmc(x, ω) ≈ −
∫

f<0
iωρ0

∂

(
ui

(
n
∑

j=1

1
j

(
ym

∂ϕ
∂ym

∣∣∣
y=y0

)j
G(x; y0)

))
∂yi

dS. (11)

We assume that there is no solid boundary inside the FW–H surface f = 0, or the solid
boundary inside the FW–H surface is static. By substituting the definition of ϕ (Equation (7))
into Equation (11) and employing the incompressible continuity equation, the first order of
the mass-conserved monopole term is given by

ITmc1(x, ω) ≈ −iωρ0G(x; y0)

(
ikx1 + ikx2

R(x; y0)
− ikM

1−M2

) ∫
f<0

(u1 + u2)dS. (12)

Equation (12) shows that at very low Mach numbers, the monopole term is directly related
to momentum fluctuation within the compact-source region. Equation (12) can be further
simplified by taking the Mach number M to be zero, giving

ITmc1(x, ω) ≈ ω2ρ0G(x; y0)

c0

(
x1 + x2

R(x; y0)

) ∫
f<0

(u1 + u2)dS. (13)
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The 3D formulation is obtained by substituting the 2D Green’s function with the 3D Green’s
function as follows:

G(x; y) =
1

4πd
eϕ,

ϕ =i
(

Mk(x1 − y1)

1−M2 − kd
1−M2

)
,

d =

√
(x1 − y1)

2 + (1−M2)(x2 − y2)
2 + (1−M2)(x3 − y3)

2.

(14)

Since the derivation of the 3D formulation is similar to that of the 2D formulation, we
directly give the 3D formulation of Equation (13) as follows:

ITmc1(x, ω) ≈ ω2ρ0G(x; y0)

c0

(
x1 + x2 + x3

d(x; y0)

) ∫
f<0

(u1 + u2 + u3)dV. (15)

It is observed in Equations (13) and (15) that the momentum fluctuation can be decomposed
from the first order of the monopole term at very low Mach numbers.

4. Results and Discussion
4.1. Unsteady Dipole in a Steady Ambient Flow

The dipole consists of a source and sink separated by a small distance. The potential
function of the dipole in steady ambient flow is given by [25]

φ(x, t) =
∂
(

Ai
4 eiω0tH(2)

0

(
ω0
c0

√
x2

1 + x2
2

))
∂x1

, (16)

where A and ω0 are 0.02 m2/s and 2π rad/s, respectively, and H(2)
0 is the zeroth-order

Hankel function of the second kind. The perturbations of pressure, density, and velocity
are obtained as follows:

p′(y, ω) =− iωρ0φ(y, ω)

ρ′(y, ω) =
p′(y, ω)

c2
0

,

u′i(y, ω) =
∂φ(y, ω)

∂yi
,

(17)

where ρ0 and c0 are 1 kg/m3 and 340 m/s, respectively. The permeable FW–H boundary is
taken as a circle of diameter 2 m. To discuss the effects of the spurious mass flux on the
far-field sound, a spurious mass flux is defined on the FW–H boundary by adding extra
velocity ue (defined below), as shown in Figure 1:

ue = Ae sin(ωet)

 y1√
y2

1 + y2
2

,
y2√

y2
1 + y2

2

, (18)

where Ae and ωe are the amplitude and frequency of the extra velocity, respectively. The
spurious mass flux can be derived according to the extra velocity ue as

•
ms = πρ0DFWH Ae sin(ωet), (19)

where DFWH is the diameter of the FW–H boundary.
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Figure 1. Schematic of the unsteady dipole source with spurious mass flux on the FW–H boundary.

In this section, the frequency ωe, as distinct from the frequency of the unsteady
dipole ω0, is taken to be 5π rad/s. The amplitude Ae is defined to be 1× 10−6 m/s and
1× 10−5 m/s, corresponding to the maximum instantaneous mass fluxes 1.26× 10−5 kg/s
and 1.26 × 10−4 kg/s, respectively. Since the mass inside the closed FW–H bound-
ary is 12.56 kg, the maximum relative spurious mass change per second is 0.0001%
or 0.001%, depending on whether the averaged velocity divergence is 1 × 10−6 /s or
1× 10−5 /s, respectively.

Figure 2 shows the acoustic pressure at the observer’s location 100c0ω0
2π

(
cos
(

π
4
)
, sin

(
π
4
))

by using the formulation without filtering the spurious mass flux (Equation (3) + Equation (4)).
In Figure 2a, the computed acoustic pressure is represented by the red dash–dot line, while
the analytical result is the black solid line. The monopole term and the dipole are the blue
dashed line and purple dash–dot–dot line. The fictitious harmonics can be observed in
the acoustic pressure IT + IL and the monopole term IT, but are absent in the dipole term
IL. The results show that the far-field acoustic pressure is clearly affected by the monopole
term when Ae = 10−6 m/s, corresponding to a relative error of 17.4%. Further, when
Ae = 10−5 m/s, the acoustic pressure is dominated by the monopole term, as shown in
Figure 2b, corresponding to a relative error of 186.9%. This suggests that the spurious mass
flux will result in a spurious monopole term, thereby leading to a false acoustic pressure even
at an average velocity divergence of 1× 10−6 /s.

Figure 2. Acoustic pressure calculated by summing Equations (3) and (4) with spurious mass flux on
the integral boundary corresponding to (a) Ae = 10−6m/s and (b) Ae = 10−5m/s.

The far-field acoustic pressure computed by using the mass-conserved monopole
term, Equation (8), is shown in Figure 3; the observer position is 100c0ω0

2π

(
cos
(

π
4
)
, sin

(
π
4
))

.
With the spurious mass flux filtered, the results show good agreement with the analytical
solution for both cases. The maximum relative errors reduce to 0.2% and 1.8% at the peak
of the acoustic pressure fluctuation.
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Figure 3. Acoustic pressure calculated by summing Equations (8) and (4) with spurious mass flux on
the integral boundary corresponding to (a) Ae = 10−6m/s and (b) Ae = 10−5m/s.

4.2. 2D Incompressible Convecting Vortex

We use the 2D incompressible convecting vortex [13] to validate the proposed mass-
conserved formulation. The pressure and velocity field of the 2D incompressible convecting
vortex are given by

u1(y, τ) = Uc +
Γ

2πr
sin(θ),

u2(y, τ) =
−Γ
2πr

cos(θ),

p(y, τ) = p0 −
ρΓ2

8π2r2 ,

(20)

where Uc is the uniform freestream velocity. Γ is the circulation of the vortex. As is shown in
Figure 4, r is the distance from the observer to the moving vortex’s center, and θ represents
the angle with respect to the vortex’s center. p0 is the pressure in the ambient flow. The
density ρ is assumed to be ρ0. We take the uniform freestream velocity Uc to be 0.1 m/s, the
speed of sound to be 340 m/s, the circulation of the vortex to be Γ = 1 m2/s, the density in
the ambient flow to be ρ0 = 1 kg/m3, and the pressure in the ambient flow to be p0 = 0 Pa.
According to the reference [13], the far-field acoustic pressure approaches ero. Therefore,
the convecting vortex is suitable for investigating the effects of spurious mass flux across
the FW–H surface. We take the permeable FW–H surface to be a circle of diameter 20 m.
The spurious mass flux is given by adding extra velocity ue, which is consistent with the
unsteady dipole case, as follows:

ue = Ae sin(ωet)

 y1√
y2

1 + y2
2

,
y2√

y2
1 + y2

2

. (21)

ωe and Ae are the frequency and amplitude of the spurious mass flux. We take the frequency
ωe to be 5 πrad/s.

We compare the acoustic pressure at the observer location (30, 000
√

2 m, 30, 000
√

2 m)
with and without filtering the spurious mass flux, as is shown in Figure 5. The amplitude of
the spurious mass flux Ae for the cases shown in Figure 5a,b are 10−5 m/s and 2× 10−5 m/s,
respectively. The black solid line represents the result computed by using the formulation
without filtering the spurious mass flux (Equation (3) + Equation (4)). The red dash–dot
line represents the result computed by filtering the spurious mass flux (Equation (4) +
Equation (8)). It is observed that the spurious mass flux leads to an erroneous harmonic
signal of the far-field acoustic pressure, as is shown in Figure 5. Meanwhile, the erroneous
harmonic signal is significantly suppressed by filtering the spurious mass flux term. This
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result shows that the far-field acoustic pressure is sensitive to the spurious mass flux
with sound sources from incompressible flows, and the mass-conserved formulation is
applicable to prediction of sound generated from incompressible flows.

Figure 4. Schematic of the incompressible convecting vortex.

Figure 5. Comparison between the acoustic pressure with filtering the spurious mass flux
(Equation (4) + Equation (8)) and without filtering the spurious mass flux (Equation (3) + Equation (4))
on the integral boundary corresponding to (a) Ae = 10−5 m/s and (b) Ae= 2× 10−5 m/s.

4.3. Flows Over a Circular Cylinder

Flows over a circular cylinder at low Reynolds numbers have been widely used to
examine different sound prediction methods. In this section, we computed the acoustic
pressure radiated by flows over a circular cylinder at a Reynolds number of 150, which
was also examined using a direct numerical simulation [26], the FW–H integral [13], and a
tailored Green’s function [27]. To validate the proposed formulation, the far-field acoustic
pressure was computed by summing the dipole term, Equation (4); and the monopole terms,
Equations (3) and (10), with a permeable integral boundary, including spurious mass flux.
The results are compared with the computed acoustic pressure without adding spurious
mass flux. The results, with different numbers of expansion points in Equation (10) are
discussed to show the dominant term of the monopole equation at very low Mach numbers.

The flows over a circular cylinder were simulated by using an in-house CFD solver,
where the Naver–Stokes equations for incompressible flows were discretized with a second-
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order finite difference method. We have revised the manuscript by declaring the CFD
solver and the related paper [28]. The circular cylinder of diameter D, centered at the
origin, is shown in Figure 6. The freestream speed was U, the Reynolds number based on
D and U was 150, and the streamwise and vertical directions correspond to the y1 and y2
axes, respectively. In the simulation of flows over a circular cylinder, the Navier–Stokes
equations for incompressible flows are solved in the near field to obtain the sources of sound.
Therefore, the uniform flow is specified at the inlet. The free convection boundary condition
is applied at the outlet. The other two sides are slip walls. The immersed boundary method
is employed to implement the no-slip wall condition on the circular-cylinder’s surface.
The computation domain ranges from −10 to 15D and −12 to 12D along the y1 and y2
axes, respectively. The mesh size was set as 0.01D, and the time step was taken as 0.01D
or 0.001D/U according to the work of Wang et al. [28]. The time step and mesh size are
sufficiently small to provide reasonable pressure and velocity fields. The detailed numerical
resolution can be found in the work of Wang et al. [28].

Figure 6. Schematic of the flows over a circular cylinder at a Reynolds number of 150.

When the integral boundary is taken to be permeable, the monopole term, as Equation (3),
needs to be computed, and the spurious mass flux may result in significant error. To examine
the contribution from the spurious mass flux, a closed rectangular integral boundary was taken
from the source region. The upstream and downstream integral boundaries are y1 = −D and
y1 = 4D, respectively. The other two integral boundaries are y2 = ±D. The sampling step
for far-field sound computation was 0.027D/U. The speed of sound is 100U, which leads to
a characteristic sound wavelength of 100D. The source region is thus compact and nearly
incompressible. The observer was chosen to be 1000D away from the origin, ensuring the
far-field condition.

A spurious mass flux was defined by using Equation (16) on the integral boundary. The
frequency ωe was taken to be 2.5πU/D. The amplitude Ae was defined to be 2× 10−4U,
corresponding to the maximum instantaneous mass flux 4× 10−3ρ0UD. Since the mass
inside the closed FW–H boundary is 40ρ0D2, the maximum relative spurious mass change
in unit time is 0.02%, related to an averaged velocity divergence of 2× 10−4U/D. Such a ve-
locity divergence may appear in the turbulence simulation with a non-conservative scheme.

Figure 7 shows the acoustic pressure, computed by summing the monopole and
dipole terms, Equations (3) and (4), at the observer locations 1000D

(
cos
(

π
3
)
, sin

(
π
3
))

,
1000D

(
cos
(

π
2
)
, sin

(
π
2
))

, and 1000D
(
cos
( 2π

3
)
, sin

( 2π
3
))

, respectively. The red dash–dot
line is a result of the acoustic pressure with spurious mass flux. The result without the
spurious mass flux is plotted with the black solid line. Significant errors in acoustic pressure
prediction are present owing to the spurious mass flux. The maximum relative errors of
the acoustic pressure at the 60◦, 90◦, and 120◦ observer points are 78.1%, 65.4%, and 71.9%,
respectively. The observer point at the 90◦ direction is least affected by the spurious mass
flux. This is probably because the dipole term at 90◦ makes a greater contribution to the
acoustic pressure than at other angles.
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Figure 7. Acoustic pressure calculated by summing Equations (3) and (4) with spurious mass flux
on the integral boundary at the observer: (a) 1000D

(
cos
(

π
3
)
, sin

(
π
3
))

, (b) 1000D
(
cos
(

π
2
)
, sin

(
π
2
))

,

(c) 1000D
(

cos
(

2π
3

)
, sin

(
2π
3

))
.

Figure 8 shows the acoustic pressure computed by summing the dipole term Equation (4)
and the expansion of the mass-conserved monopole term Equation (10) for n = 1, 2, and 4.



Aerospace 2023, 10, 148 11 of 15

By using the mass-conserved formulation, Equation (10), the fictitious harmonics are clearly
filtered. The maximum amplitude errors reduce from 78.1%, 65.4%, and 71.9% to 28.4%, 26.0%,
and 25.6% at the observer locations of 60°, 90°, and 120°, respectively. The mass-conserved
formulation (Equation (4) + Equation (10)) converges when n = 1 at the observer location of
90°. At the 60° and 120° points, the mass-conserved formulation converges when n = 2, and
the first-order term still dominates the monopole term. The results show that the expansion
of the mass-conserved formulation can reduce the effects of spurious mass flux with little
extra cost. In addition, the results imply that the monopole term is nearly dominated by the
momentum flux, namely, the first-order term in Equation (10), at very low Mach numbers.
Further, Equations (10) and (13) suggest that the first-order term gives directivity to the dipole.
It is quite different from sound generated by high-lift wings at the freestream Mach number
0.2, where the mass flux is supposed to dominate the monopole term and the far-field acoustic
pressure [29].

4.4. Co-Rotating Vortex Pair

The co-rotating vortex pair is a classic simplified model for investigating jet noise
generated by coherent structures. The mechanism of vortex-pair sound radiation has been
clarified by Feng et al. [30] using spectral-acoustic analogy theory based on the direct
numerical simulation of two compressible Gaussian vortices: combinations of two co-
rotating vortices, including four stages, which can be observed by the far-field acoustic
pressure. Thus, by simulating a co-rotating vortex pair, a non-periodic source field can be
obtained. In this part, we applied the mass-conserved monopole term, Equation (10), to the
far-field sound prediction without adding extra spurious mass flux. The sensitivity of the
far-field acoustic pressure to the integral boundary position is also discussed.

We numerically solved the incompressible Navier–Stokes equation using the Nek5000
solver, to obtain the source field. According to the work of Mao et al. [31], the initial flow
field consists of two Guassian vortices, as in Figure 9.

Γ0 and U0 are the circulation and rotating velocity of each vortex. D0 and r0 are the
initial distance between vorticities and the radius of a vortex. The tangential velocity
distribution of a Guassian vortex is given by

uθ =
Γ0

2πr

(
1− e

− r2

r2
0

)
, (22)

where r is the distance between the source position and the vortex’s center. In this case, we
take Γ0 and D0 as the non-dimensionalized basis, r0 = 0.25D0, and the Reynolds number
based on Γ0 as 10,000. The streamwise and vertical directions correspond to y1 and y2 axes,
respectively, and the computational domain ranges from −5πD0 to 5πD0 and −5πD0 to
5πD0 along the y1 and y2 axes, respectively.

Figure 10 shows the far-field acoustic pressure computed by summing the monopole
and dipole terms, Equations (3) and (4), without filtering the spurious mass flux. The speed
of sound is 18Γ0/D0, and the observer’s location is at 1250D0

(
cos π

4 , sin π
4
)
. We sampled the

source region over 25D2
0
/18Γ0 with 1000 time steps. The solid black line, long red dashed

line, blue dash–dot line, and purple dash–dot–dot line correspond to the integral bound-
aries of [− 5

3 D0, 5
3 D0]× [− 5

3 D0, 5
3 D0], [−2.5D0, 2.5D0]× [−2.5D0, 2.5D0], [− 10

3 D0, 10
3 D0]×

[− 10
3 D0, 10

3 D0], and [− 25
6 D0, 25

6 D0] × [− 25
6 D0, 25

6 D0], which are represented by the side
lengths in Figure 10, respectively. It is observed that the far-field acoustic pressure con-
verges with the extension of the integral boundary. However, the acoustic pressure from
12.5 D2

0
/Γ0 to 25 D2

0
/Γ0 presents an obvious inconsistency related to the integral boundary

of [− 5
3 D0, 5

3 D0]× [− 5
3 D0, 5

3 D0], whereas during the rest time, there remains consistency.
This may result from the non-negligible residual of the continuity equation. To validate this,
we employed the mass-conserved formulation (Equation (4) + Equation (8)) to compute
the far-field acoustic pressure. The results are plotted in Figure 11. It is shown that the in-
consistency during [12.5 D2

0
/Γ0,25 D2

0
/Γ0] is eliminated by filtering the spurious mass flux.
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This implies that the integral boundary position dependence of far-field sound prediction
may result from the spurious mass flux, and our proposed mass-conserved formulation is
able to suppress the dependence by filtering the spurious mass flux.

Figure 8. Acoustic pressure calculated by summing Equations (4) and (10) for n = 1, 2, 4
with spurious mass flux on the integral boundary at the observer: (a) 1000D

(
cos
(

π
3
)
, sin

(
π
3
))

,

(b) 1000D
(
cos
(

π
2
)
, sin

(
π
2
))

, (c) 1000D
(

cos
(

2π
3

)
, sin

(
2π
3

))
, respectively.
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Figure 9. Schematic of the co-rotating vortex pair.

Figure 10. Acoustic pressure calculated by summing Equations (3) and (4) without filtering the
spurious mass flux at the observer 1250D0

(
cos
(

π
4
)
, sin

(
π
4
))

.

Figure 11. Acoustic pressure calculated by summing Equations (8) and (4) when filtering the spurious
mass flux at the observer 1250D0

(
cos
(

π
4
)
, sin

(
π
4
))

.
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5. Conclusions

The spurious mass flux was found to significantly affect the prediction of far-field
sound within the FW–H acoustic analogy. To filter the contribution from the spurious
mass flux, we have proposed a mass-conserved formulation of the monopole term in
the frequency-domain solution to the FW–H equation. The formulation is especially
suitable for predicting far-field acoustic pressure at very low Mach numbers with a static
permeable FW–H boundary. The contribution to the far-field acoustic pressure from the
spurious mass flux through the integral boundary is significantly suppressed by using the
proposed formulation. The compact-source region assumption is employed to calculate the
contribution from the spurious mass flux to the far-field acoustic pressure. The asymptotic
Green’s function’s higher-order derivatives are used to expand the monopole term after
eliminating the mass-flux-dominated term. From the expansion, we observe that the
first term can be simplified to a scaled momentum fluctuation of the fluid inside the
integral boundary.

The proposed mass-conserved formulation was validated by using an unsteady dipole,
a 2D incompressible convecting vortex, flows over a circular cylinder, and a co-rotating
vortex pair. The results of the dipole case show that a relative spurious mass flux of 0.001%
per unit time may result in a significant error of up to 186.9% in the far-field acoustic
pressure with direct use of FW–H surface integrals. By using the mass-conserved monopole
term, the relative error reduces to 1.8%. The expansion of the mass-conserved monopole
term was discussed with the circular-cylinder flow. By using the expansions of order
n = 1, 2, and 4, we found that the predicted acoustic pressure converges quickly, and
the expansion is dominated by the first term. Further simplifications show that the first
order of the expansion is the product of the total momentum fluctuation in the integral
boundary and a coefficient showing dipole directivity. This result suggests that at very
low Mach numbers, the monopole term may present a directivity of a dipole owing to
the incompressible condition. Finally, an incompressible-flow simulation of a co-rotating
vortex pair was performed without adding spurious mass flux. An inconsistency of
the predicted far-field sound was observed with different sizes of the permeable FW–H
boundary. By using the mass-conserved monopole term, the integral boundary dependence
is circumvented. In addition, although the cases mentioned above are all 2D, the 3D mass-
conserved formulation for the monopole term was still provided (using substitution in
Green’s function).
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