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A B S T R A C T

The eXtended Finite Element Method (X-FEM) is a versatile tool to model cracks and interfaces
where sharp gradients and even discontinuity of deformation across the interface may occur.
The enrichment functions are introduced to depict possible discontinuity and singularity known
from analytical solutions. For bimaterials, the gradients of the displacements are discontinuous
across the interface, which can be modeled by ramp functions. In this work, we check the role
of the enrichment strategies with and without ramp functions for the accuracy of enriching
schemes, and also compare three different methods, i.e. the Interaction Integral Method (IIM),
Contour Integration Method (CIM), and Displacement Correlation Method (DCM), to extract the
Stress Intensity Factors (SIFs). Both planar and non-planar examples are employed to examine
the enriching strategies and the three SIF extraction methods. We find that the enriched ramp
functions can improve the accuracy in terms of strain energy, but do not significantly affect the
SIFs. The IIM is the best choice to extract SIFs and the DCM can provide enough accuracy
with a careful choice of extraction parameters. This work can help a reader when choose
the enriching strategies and the extraction methods of the SIFs for interface cracks between
dissimilar materials.

. Introduction

With the increasing demands on multi-functional needs in mechanical, aerospace and biomedical applications, the development
f multi-layered material systems has come to the forefront. The overall mechanical behaviors and responses of layered systems hinge
n the mechanical properties and fracture behaviors of the interfaces. The interface crack therefore is one of the most commonly
ncountered failure modes in composites and can cause severe safety problems.

Numerical models of the interface crack are significant to understand and describe the behaviors of the bimaterials. The Finite
lement Method (FEM), as one of the most widely used numerical techniques, requires very fine meshes conforming to the interface
oundary to obtain acceptable results [1,2]. The singularity of the displacement field should be carefully considered, such as using
ingular elements [3–5]. Alternatively, the X-FEM [6–8] incorporates additional functions into the standard polynomial space on
he basis of partition of unity method [9]. The crack thus can be independent with the meshes of the physical domain.

In terms of the angle between crack and the interface, the X-FEM was first implemented to the scenario that the crack is
erpendicular to the material interface [10]. When cracks lie along the material interfaces, Sukumar et al. [11] proposed the
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enrichment functions considering the analytical solution of the displacement field and these enrichment functions were also used
by Huynh and Belytschko [12],Jung et al. [13],Yu et al. [14],Dimitri et al. [15]. When a crack terminates at the material interface
with arbitrary angles, Bouhala et al. [16] proposed various enrichment functions for different crack angles. Since most cracks
propagate along the interface, we here only consider the situation that the crack lies along the material interface. There are
two features for this situation, i.e. the jump and singularity of the displacement caused by the crack, and the strain discontinuity
(discontinuous spatial gradients of displacement) caused by the material interface. Since we can attain the analytical solution of
the displacement for the case that the crack locates at the interface of the bimaterial, the enrichment functions can be directly
derived according to the solution [15,17,18]. Moreover, the weak discontinuities can be modeled by signed distance functions with
discontinuous gradients and incorporated into the enrichment schemes [12,19]. We here first aim to compare these two enrichment
strategies (with or without signed distance functions) in terms of the convergence rate and accuracy.

Though there are many criteria to determine the fracture strength and deflection [20–22], the Stress Intensity Factors (SIFs)
f interface cracks are the most widely-used indicators for the fracture mechanics. It is therefore paramount to obtain accurate
stimations of SIFs in order to evaluate the overall structural responses and design reliable layered structures. Contrary to
omogeneous materials, bimaterial interface cracks always induce both opening and shear deformations even under pure mode
oading [23]. Furthermore, the near-tip displacement and singular stress fields of interface cracks are oscillatory, which can be
haracterized by a complex-valued SIF K = 𝐾𝐼 +i𝐾𝐼𝐼 [24]. The real numbers 𝐾𝐼 and 𝐾𝐼𝐼 denote the Mode I and II SIFs, respectively.
hile some analytical solutions for the complex SIF are available in the literature [24,25], they are invariably limited to simple

eometries and loading conditions due to inherent mathematical complexities. Various numerical methods have been suggested to
valuate the complex SIFs of interface cracks. These methods can be grouped into direct approaches that correlate the numerical
esults of near-tip displacements or stresses with analytical solutions [26,27] and energy approaches which are based on energetic
uantities like Strain Energy Release Rates (SERRs).

The Displacement Correlation Method (DCM) is one of the simplest direct approaches to extract SIFs [28–30]. While the DCM
s a straightforward method for SIF extraction since it involves sampling data computed behind the crack tip only, it requires a
igh-fidelity displacement field to return accurate and robust results. Some improvements have been proposed to compute highly
ccurate SIFs using the DCM [31–33]. The most well-known energy approaches used for interface cracks include the Interaction
ntegral Method (IIM) [34–37] which is an extended version of the J-integral [38] or its domain variant [39], the Contour Integral
ethod (CIM) based on the Betti’s law [40,41]. While additional post-processing steps are often required by energy methods, in

eneral they do yield more accurate and robust results than the direct correlation methods [18]. Within the X-FEM context, the
IM has been predominately used for the SIFs estimation of interface cracks due to its high accuracy and excellent convergence
roperty [12,19,37,42]. In order to obtain the individual modes of SIFs, this method relies on the proper definition of auxiliary
olutions and is sensitive to the accuracy of the selected auxiliary fields. The CIM is a superconvergent technique for the extraction
f SIFs proposed by Szabo and Babuška [41]. This method is based on the computation of functionals from numerical solutions and
he so-called extraction functions. The extraction functions are developed for isotropic materials [43–45] and for bimaterials [46,47].
t is a superconvergent technique since the computed quantities converge to their true values at least as fast as the strain energy.

e here second aim to compare these three extraction schemes of SIFs (DCM, IIM and CIM) in terms of the accuracy.
In this work, we focus on the case that the crack lies along the material interface. Various enrichment schemes and extraction

ethods for the SIFs are quantitatively compared to find the most efficient and accurate schemes within the framework of the
-FEM. The paper is organized as follows. Section 2 describes the problem setting, enrichment schemes for the X-FEM and special

reatment to curve cracks. Section 3 presents the different extraction methods of the SIFs. Section 4 demonstrates the results.
ection 5 concludes the paper with remarking conclusions.

. Problem setting and displacement approximation

In this section, we first review the analytical solution of displacement near the crack tip of bimaterials for completeness, and
hen give two approximations of displacement in the X-FEM.

.1. Displacement field for the case that one crack lies along the interface of bimaterials

As illustrated in Fig. 1, a two-dimensional bimaterial domain 𝛺 with an external boundary 𝛤 is considered here. The solid
onsists of two dissimilar isotropic materials. We label the material above the interface as material 1 and below as material 2.
urface tractions �̄� are applied on Neumann boundaries 𝛤𝑡, whereas prescribed displacements �̄� are imposed on the complementary
irichlet boundaries 𝛤𝑢, with 𝛤𝑡 ∩ 𝛤𝑢 = ∅ and 𝛤𝑡

⋃

𝛤𝑢 = 𝛤 . We assume that the traction-free crack denoted as 𝛤𝑐 is along the
imaterial interface. The unbroken interface is denoted as 𝛤intf . A local polar coordinate system with origin at the crack tip is
efined as (𝑟, 𝜃).

The coefficients 𝐸𝑚 and 𝜈𝑚 denote the Young’s modulus and the Poisson’s ratio of the 𝑚th material 𝑚 = (1, 2), respectively. The
orresponding shear modulus 𝜇𝑚 and Kolosov constant 𝜅𝑚 are given by

𝜇𝑚 =
𝐸𝑚

( ) and 𝜅𝑚 =

{

3 − 4𝜈𝑚 for plane strain
3−𝜈𝑚 for plane stress , 𝑚 = 1, 2 . (1)
2

2 1 + 𝜈𝑚 1+𝜈𝑚
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Fig. 1. An interface crack 𝛤𝑐 between two dissimilar isotropic materials.

For the interface crack 𝛤𝑐 , the Cartesian components {𝑢, 𝑣} of the corresponding asymptotic displacement field 𝒖 are [17,48]:

𝒖 =
{

𝑢
𝑣

}

=
∞
∑

𝑛=1

𝑟𝑛∕2
√

2𝜋

[

Re
(

K𝑛𝑟i𝜀𝑛
)

{

𝑢I𝑛(𝜃)
𝑣I𝑛(𝜃)

}

+ Im
(

K𝑛𝑟i𝜀𝑛
)

{

𝑢II𝑛 (𝜃)
𝑣II𝑛 (𝜃)

}]

, (2)

where

𝜀𝑛 =

{

𝜀 = 1
2𝜋 log 𝜇2𝜅1+𝜇1

𝜇1𝜅2+𝜇2
, 𝑛 = 1, 3, 5,…

0, 𝑛 = 2, 4, 6,…
. (3)

Re(⋅) and Im(⋅) here denote the real and imaginary parts of a complex number, respectively. K𝑛 are complex numbers reflecting the
orders of SIFs, and the 𝜀𝑛 is a constant or zero depending on the material properties. 𝑟i𝜀𝑛 is oscillatory with an expansion as

𝑟i𝜀𝑛 = 𝑒i𝜀𝑛 log 𝑟 = cos
(

𝜀𝑛 log 𝑟
)

+ i sin
(

𝜀𝑛 log 𝑟
)

, (4)

where i is the imaginary unit and i =
√

−1. In view of (3), it is clear that only the odd terms in the displacement expansions give
rise to oscillatory behaviors. The 𝑛th order angular functions

(

𝑢I𝑛, 𝑣
I
𝑛
)

and
(

𝑢II𝑛 , 𝑣
II
𝑛
)

are in terms of 𝜃 and given as follows [18,48]:

1. 𝑛 is odd (1, 3, 5,…)

𝑢I𝑛(𝜃) = − 1
2𝜇

(

𝑛2 + 4𝜀2
)

cosh(𝜋𝜀)

{

𝑛
[

𝑒𝜀(𝛱−𝜃) − 𝜅𝑒−𝜀(𝛱−𝜃)] cos 𝑛
2
𝜃+

(

𝑛2 + 4𝜀2
)

𝑒−𝜀(𝛱−𝜃) sin 𝜃 sin 𝑛 − 2
2

𝜃 + 2𝜀
[

𝑒𝜀(𝛱−𝜃) + 𝜅𝑒−𝜀(𝛱−𝜃)] sin 𝑛
2
𝜃
}

,
(5a)

𝑣I𝑛(𝜃) =
1

2𝜇
(

𝑛2 + 4𝜀2
)

cosh(𝜋𝜀)

{

𝑛
[

𝑒𝜀(𝛱−𝜃) + 𝜅𝑒−𝜀(𝛱−𝜃)] sin 𝑛
2
𝜃−

(

𝑛2 + 4𝜀2
)

𝑒−𝜀(𝛱−𝜃) sin 𝜃 cos 𝑛 − 2
2

𝜃 − 2𝜀
[

𝑒𝜀(𝛱−𝜃) − 𝜅𝑒−𝜀(𝛱−𝜃)] cos 𝑛
2
𝜃
}

,
(5b)

𝑢II𝑛 (𝜃) =
1

2𝜇
(

𝑛2 + 4𝜀2
)

cosh(𝜋𝜀)

{

𝑛
[

𝑒𝜀(𝛱−𝜃) + 𝜅𝑒−𝜀(𝛱−𝜃)] sin 𝑛
2
𝜃+

(

𝑛2 + 4𝜀2
)

𝑒−𝜀(𝛱−𝜃) sin 𝜃 cos 𝑛 − 2
2

𝜃 − 2𝜀
[

𝑒𝜀(𝛱−𝜃) − 𝜅𝑒−𝜀(𝛱−𝜃)] cos 𝑛
2
𝜃
}

,
(5c)

𝑣𝛱𝑛 (𝜃) = 1
2𝜇

(

𝑛2 + 4𝜀2
)

cosh(𝜋𝜀)

{

𝑛
[

𝑒𝜀(𝛱−𝜃) − 𝜅𝑒−𝜀(𝛱−𝜃)] cos 𝑛
2
𝜃−

(

𝑛2 + 4𝜀2
)

𝑒−𝜀(𝛱−𝜃) sin 𝜃 sin 𝑛 − 2
2

𝜃 + 2𝜀
[

𝑒𝜀(𝛱−𝜃) + 𝜅𝑒−𝜀(𝛱−𝜃)] sin 𝑛
2
𝜃
}

.
(5d)

2. 𝑛 is even (2, 4, 6,…)

𝑢I𝑛(𝜃) =
1

𝜇𝑛(1 + 𝜔)

[

(𝜅 + 1) cos 𝑛
2
𝜃 − 𝑛 sin 𝜃 sin 𝑛 − 2

2
𝜃
]

, (6a)

𝑣I𝑛(𝜃) =
1

𝜇𝑛(1 + 𝜔)

[

(𝜅 − 1) sin 𝑛
2
𝜃 − 𝑛 sin 𝜃 cos 𝑛 − 2

2
𝜃
]

, (6b)

𝑢II𝑛 (𝜃) =
1

𝜇𝑛(1 + 𝜔)

[

(𝜅 − 1) sin 𝑛
2
𝜃 + 𝑛 sin 𝜃 cos 𝑛 − 2

2
𝜃
]

, (6c)

𝑣II(𝜃) = 1 [

−(𝜅 + 1) cos 𝑛 𝜃 − 𝑛 sin 𝜃 sin 𝑛 − 2 𝜃
]

. (6d)
3

𝑛 𝜇𝑛(1 + 𝜔) 2 2
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Fig. 2. A typical grid in the X-FEM with enriched nodes for a bimaterial interface crack.

The values of 𝛱 and the material constants 𝜇, 𝜅 and 𝜔 are defined as:

𝛱 = 𝜋, 𝜇 = 𝜇1, 𝜅 = 𝜅1, 𝜔 =

(

𝜅1 + 1
)

𝜇2
(

𝜅2 + 1
)

𝜇1
for Material 1

𝛱 = −𝜋, 𝜇 = 𝜇2, 𝜅 = 𝜅2, 𝜔 =

(

𝜅2 + 1
)

𝜇1
(

𝜅1 + 1
)

𝜇2
for Material 2

. (7)

It is reminded that we here only consider the displacement with low-order singularity (i.e. 𝑛 = 1) and have K1 = 𝐾I + i𝐾II. It
s also important to realize that no specific length or load is specified for the displacement fields [20]. Singular fields are sought
o satisfy continuity of traction and displacement vectors across the bonded portion of the interface, as well as the traction-free
ondition along the crack faces.

.2. Approximation of displacement field within X-FEM

As shown in Fig. 2, the nodes in the grid of the X-FEM can be grouped into several sets according to the relative locations with
he crack.  , cr , tip and intf are the sets of all nodes, Heaviside function enriched nodes, crack tip function enriched nodes
nd ramp function enriched nodes of bimaterial, respectively.

The approximations of displacement for elastic materials in terms of different enrichments using the partition of unity are:

𝒖ℎstd(𝒙) =
∑

𝐼∈
𝑁𝐼 (𝒙) 𝒖𝐼 , (8)

𝒖ℎcr (𝒙) =
∑

𝐼∈cr

𝑁𝐼 (𝒙)
[

𝐻 (𝒙) −𝐻
(

𝒙𝐼
)]

𝒂𝐼 , (9)

𝒖ℎtip(𝒙) =
∑

𝐼∈tip

𝑁𝐼 (𝒙)
12
∑

𝛼=1

[

𝐵𝛼 (𝒙) − 𝐵𝛼
(

𝒙𝐼
)]

𝒃𝛼𝐼 , (10)

𝒖ℎintf (𝒙) =
∑

𝐼∈intf

𝑁𝐼 (𝒙)𝐺(𝒙)𝒄𝐼 , (11)

here 𝑁𝐼 (𝒙) are finite element shape functions, while 𝒖𝐼 , 𝒂𝐼 , 𝒃𝛼𝐼 and 𝒄𝐼 are the unknowns. 𝐻 (𝒙) is the generalized Heaviside
unction to capture the displacement jump across the crack surface, and defined as:

𝐻(𝒙) =
{

+1 above 𝛤𝑐
−1 below 𝛤𝑐

. (12)

he asymptotic crack tip enriched functions 𝐵𝛼 (𝒙) (𝛼 = 1, 2,… , 12) are characteristic functions derived from the analytical solution
f the displacement shown in (2) [11]:

[

𝐵𝛼(𝒙)
]

𝛼=1,2,…,12 =
[

√

𝑟 cos(𝜀 log 𝑟)e−𝜀𝜃 sin 𝜃
2
,
√

𝑟 cos(𝜀 log 𝑟)e−𝜀𝜃 cos 𝜃
2
,
√

𝑟 cos(𝜀 log 𝑟)e𝜀𝜃 sin 𝜃
2
,

√

𝑟 cos(𝜀 log 𝑟)e𝜀𝜃 cos 𝜃
2
,
√

𝑟 cos(𝜀 log 𝑟)e𝜀𝜃 sin 𝜃
2
sin 𝜃,

√

𝑟 cos(𝜀 log 𝑟)e𝜀𝜃 cos 𝜃
2
sin 𝜃,

√

𝑟 sin(𝜀 log 𝑟)e−𝜀𝜃 sin 𝜃
2
,
√

𝑟 sin(𝜀 log 𝑟)e−𝜀𝜃 cos 𝜃
2
,
√

𝑟 sin(𝜀 log 𝑟)e𝜀𝜃 sin 𝜃
2
,

√

𝑟 sin(𝜀 log 𝑟)e𝜀𝜃 cos 𝜃 ,
√

𝑟 sin(𝜀 log 𝑟)e𝜀𝜃 sin 𝜃 sin 𝜃,
√

𝑟 sin(𝜀 log 𝑟)e𝜀𝜃 cos 𝜃 sin 𝜃
]

.

(13)
4

2 2 2
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Note that the bimaterial constant is 𝜀 = 0 for homogeneous materials. In this situation, the 12 branching functions degrade to 4
ndependent functions as follows:

[

𝐵𝛼(𝒙)
]

𝛼=1,2,3,4 =
[

√

𝑟 sin 𝜃
2
,
√

𝑟 cos 𝜃
2
,
√

𝑟 sin 𝜃
2
sin 𝜃,

√

𝑟 cos 𝜃
2
sin 𝜃

]

. (14)

These functions are widely used to capture the asymptotic features at the crack tip of homogeneous materials [6,7].
The approximation of displacement insofar is complete [11,15,17,18], as:

𝒖ℎ(𝒙) = 𝒖ℎstd(𝒙) + 𝒖ℎcr (𝒙) + 𝒖ℎtip(𝒙). (15)

Remind that the weak discontinuity along the material interface can be modeled by a ramp enrichment function 𝐺(𝒙) defined as [49]:

𝐺(𝒙) =
∑

𝐼∈intf

|

|

𝛹𝐼 ||𝑁𝐼 (𝑥) −
|

|

|

|

|

|

∑

𝐼∈intf

𝛹𝐼𝑁𝐼 (𝑥)
|

|

|

|

|

|

, (16)

where 𝛹𝐼 is the shortest signed distance of the node 𝐼 to the material interface and ‖ ⋅ ‖ is the Euclidean norm. The shortest signed
distance is defined as:

𝛹 (𝒙) = sign (𝒏 ⋅ (𝒙 − �̄�)) min
�̄�∈𝛤intf

‖𝒙 − �̄�‖, (17)

where 𝒏 is the outward normal to the interface 𝛤intf and sign(⋅) is the sign operator. Therefore, there is another enriching scheme
as [12,19]:

𝒖ℎ(𝒙) = 𝒖ℎstd(𝒙) + 𝒖ℎcr (𝒙) + 𝒖ℎtip(𝒙) + 𝒖ℎintf (𝒙). (18)

We here first examine the effect of the 𝒖ℎintf (𝒙).

2.3. Computation 𝜃 for curved fractures

We should keep in mind that 𝜃 = 𝜋 and 𝜃 = −𝜋 require to represent the positive and negative surface of the crack even with
curvature. As shown in Fig. 3, the blue solid curve represents a crack. For a given point 𝐴, if we directly determine its 𝑟 and 𝜃 in terms
of the local Cartesian coordinate system, it may introduces inconsistency. Specifically, if the 𝐴 lies on the curved crack, 𝜃 cannot
maintain ±𝜋. Such inconsistency may severely impair the accuracy and convergence of the X-FEM. In order to use the enrichment for
cracks with arbitrary geometries, the polar coordinate 𝜃 should be determined in a curvilinear coordinate system that satisfies two
conditions: (i) 𝜃 takes the values 𝜋 on the upper crack surface or −𝜋 on the lower crack surface; (ii) it can automatically degenerate
to a Cartesian reference system in case of straight cracks [50]. To fulfill both conditions, the signed-distance function to the crack
𝜓 , can be read

𝜓(𝒙) = sign (𝒏 ⋅ (𝒙 − �̄�)) min
�̄�∈𝛤𝑐∪𝛤𝑐𝑒

‖𝒙 − �̄�‖, (19)

where 𝒏 is the outward normal to the crack surface, 𝛤𝑐 is the crack surface and 𝛤𝑐𝑒 is the tangential extension of the crack surface.
This signed distance can determine the location of crack surface, but we need one more function 𝜑(𝒙) to locate the crack front,
which is defined as:

𝜑(𝒙) = sign
(

𝒕 ⋅
(

𝒙 − 𝒙𝑡
))

√

𝑟2 − 𝜓2, (20)

where 𝒕 is the unit vector tangent to the crack surface at the crack tip holding the position of 𝒙𝑡, 𝑟 is the distance between the given
point and the crack tip. The angle 𝜃(𝒙) thus can be calculated as:

𝜃(𝒙) = arctan
(

𝜓(𝒙)
𝜑(𝒙)

)

. (21)

Once 𝜃 is determined, the curvilinear coordinate system for the point can be given as follows. As shown in Fig. 3, we first calculate
𝜓 and 𝜑 at point 𝐴 according to (19) and (20), where 𝐴𝐴′ = 𝐴𝐴′′ and 𝐴𝐴′′ ⟂ 𝑇𝐴′′. We then rotate 𝐴𝑇 with −𝜃 at point 𝑇 to obtain
the 𝑥1 axis. The corresponding coordinate system for the point 𝐴 thus can be computed.

As an example, we consider a quarter of a circle. Fig. 4 shows the distributions of 𝜓(𝒙), 𝜑(𝒙), and 𝜃(𝒙). We can see that 𝜃 jumps
rom −𝜋 to +𝜋 across the true crack surface. We further applied the above algorithm to two types of curves with different levels of
ontinuity: a curve composed of line segments and a curve in sine form. The computed 𝜃 comes out as expected. In this sense, the
lgorithm is applicable to continuous curved cracks, and smoothness is not a requirement..

. SIFs computation

As reviewed in the introduction, there are mainly three extraction methods of SIFs, e.g. IIM, CIM and DCM. In this section, we
escribe these methods.
5
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Fig. 3. Signed distances for a given point 𝐴 and its coordinate system at the crack tip.

Fig. 4. Contours for a circular arc crack represented by black lines: (a) 𝜓(𝒙), (b) 𝜑(𝒙), and (c) 𝜃(𝒙).

3.1. The interaction integral method

To start, a general two-dimensional contour integration, called as J-integral, is defined as [38]:

𝐽 = ∫𝛤𝐴
𝑃1𝑗𝑛𝑗 d𝛤𝐴, (22)

where 𝑃1𝑗 =
1
2𝜎𝑖𝑘𝜀𝑖𝑘𝛿1𝑗 − 𝜎𝑖𝑗𝑢𝑖,1, with 𝜎𝑖𝑗 and 𝜀𝑖𝑗 representing the components of stress and strain tensors, respectively, the subscript

1 representing the 𝑥-direction in two-dimensional, 𝛿1𝑗 representing the Kronecker symbol, and 𝑢𝑖,1 representing the gradient along
𝑥-axis of the displacement. We here adopt the convention of Einstein summation. 𝛤𝐴 is an arbitrarily closed path around the crack
tip and 𝑛𝑗 denotes the outward normal vector along 𝛤𝐴. It is well-known that the J-integral is path-independent for cracks in
homogeneous materials, and for heterogeneous material, this conclusion is still valid when the crack lies along the interface [51],
which is the studied case. The J-integral therefore can be employed to extract SIFs in this work.

In the IIM, auxiliary fields are required to be introduced and superposed on the actual fields that arise from the solution of the
boundary-value problem. By judicious choice of the auxiliary fields, the interaction integral can be directly related to the SIFs. One
of the choices for the auxiliary state is the displacement and stress fields in the vicinity of the interface crack-tip as shown in (2).
The J-integral for the sum of the two states can be defined as:

𝐽 = 𝐽 act + 𝐽 aux + 𝐼, (23)

where 𝐽 act and 𝐽 aux are associated with the actual and auxiliary states, respectively, and 𝐼 is the interaction integral defined as [52]:

𝐼 = ∫𝛤𝐴

(

𝜎𝑖𝑘𝜀
aux
𝑖𝑘 𝛿1𝑗 − 𝜎𝑖𝑗𝑢

aux
𝑖,1 − 𝜎aux𝑖𝑗 𝑢𝑖,1

)

𝑛𝑗 d𝛤𝐴, (24)

where 𝑢aux
𝑖 , 𝜀aux

𝑖𝑗 and 𝜎aux
𝑖𝑗 are the auxiliary displacement, strain and stress fields, respectively. The interaction integral is related

to the SIFs 𝐾𝐼 and 𝐾𝐼𝐼 through the relation [52]:

𝐼 = 2 [

𝐾𝐼𝐾
aux
𝐼 +𝐾𝐼𝐼𝐾aux

𝐼𝐼
]

, (25)
6
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Fig. 5. Domain integral representation. Domain 𝐴 is enclosed by 𝛤𝐴, 𝐶+, 𝐶− and 𝛤0.

where 𝐾aux
𝐼 and 𝐾aux

𝐼𝐼 are local auxiliary SIFs for the auxiliary fields, respectively, and 𝐸∗ is the effective Young’s modulus given by

𝐸∗ =
2𝐸′

1𝐸
′
2

𝐸′
1 + 𝐸

′
2

where 𝐸′ =

{

𝐸
1−𝑣2 plane strain
𝐸 plane stress .

(26)

The SIFs 𝐾𝐼 and 𝐾𝐼𝐼 can be computed using a proper choice of 𝐾aux
𝐼 and 𝐾aux

𝐼𝐼 . For example, by selecting 𝐾aux
𝐼 = 1 and 𝐾aux

𝐼𝐼 = 0, we
can obtain the auxiliary displacement fields as shown in (2) and the corresponding distribution of stresses. We further can compute
𝐼 at this state (denoted by 𝐼1) according to (24) and 𝐾𝐼 therefore can be computed according to (25), as:

𝐾𝐼 =
𝐸∗ cosh2(𝜋𝜀)

2
𝐼1. (27)

In an analogous manner, we compute 𝐼 at the state with 𝐾aux
𝐼 = 0 and 𝐾aux

𝐼𝐼 = 1, denoted by 𝐼2. We thus have:

𝐾𝐼𝐼 =
𝐸∗ cosh2(𝜋𝜀)

2
𝐼2. (28)

In a numerical implementation, as shown in Fig. 5, (24) is converted into a volume integration by multiplying the integrand by
a sufficiently smooth weighting function 𝑞(𝒙) which takes a value of unity on an open set containing the crack tip and vanishes on
an outer prescribed contour 𝛤0. In this manner, the interaction integral along boundaries is first extended into:

𝐼 = ∫𝐶

(

𝜎𝑖𝑘𝜀
aux
𝑖𝑘 𝛿1𝑗 − 𝜎𝑖𝑗𝑢

aux
𝑖,1 − 𝜎aux𝑖𝑗 𝑢𝑖,1

)

𝑞𝑚𝑗 d𝐶, (29)

where the contour 𝐶 = 𝛤𝐴 +𝐶+ +𝐶− +𝛤0 and 𝑚𝑗 is the unit outward normal to the contour 𝐶. By using the divergence theorem and
considering the equilibrium equation of the auxiliary fields, it gives the following equation for the interaction integral in a domain
form [39]:

𝐼 = −∫𝐴

(

𝜎𝑖𝑘𝜀
aux
𝑖𝑘 𝛿1𝑗 − 𝜎𝑖𝑗𝑢

aux
𝑖,1 − 𝜎aux𝑖𝑗 𝑢𝑖,1

)

𝑞,𝑗 d𝐴, (30)

where we have used the relations 𝑚𝑗 = −𝑛𝑗 on 𝛤𝐴 and 𝑚𝑗 = 𝑛𝑗 on 𝐶+, 𝐶− and 𝛤0. Note that the domain region 𝐴 can be only related
to the outer contour 𝛤0 by taking the limit as the contour 𝛤𝐴 is shrunk to the crack tip.

3.2. The contour integral method

In line with the formulations derived by Hong and Stern [46] and Yang and Kuang [47], as illustrated in Fig. 6, the bimaterial
SIFs of cracks lying at the interface of two dissimilar isotropic materials are given by:

𝐾𝐼 = ∫𝛤2

(

𝑡𝑖�̃�
I
𝑖 − 𝑡

I
𝑖𝑢𝑖

)

d𝛤 + ∫𝛤3
𝑡𝑖�̃�

I
𝑖d𝛤 + ∫𝛤4

𝑡𝑖�̃�
I
𝑖d𝛤 , (31)

𝐾𝐼𝐼 = ∫𝛤2

(

𝑡𝑖�̃�
II
𝑖 − 𝑡I𝑖𝑢𝑖

)

d𝛤 + ∫𝛤3
𝑡𝑖�̃�

II
𝑖 d𝛤 + ∫𝛤4

𝑡𝑖�̃�
II
𝑖 d𝛤 , (32)

where 𝛤2 is a circular contour of radius 𝜌2 centered on the crack tip that begins at one crack surface and end on the other and is
away from the crack tip, 𝛤3 and 𝛤4 are the contours on the upper and lower crack surfaces, respectively. �̃�I𝑖 and 𝑡I𝑖 are complementary
displacement and traction vectors associated with 𝐾𝐼 , �̃�II𝑖 and 𝑡II𝑖 that associated with 𝐾𝐼𝐼 . 𝑡𝑖 is the applied traction vector on crack
surfaces and is zero in the case of stress-free crack surfaces. 𝑡𝑖 and 𝑢𝑖 are traction and displacement vectors computed by any
numerical technique, such as the X-FEM in this paper. For bimaterial, the complementary terms, so-called extraction functions, are
listed in Appendix. Note that the integrals along curves are computed via the Gaussian quadrature scheme [43].
7
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Fig. 6. Extraction path and local coordinate system for CIM.

3.3. The displacement correlation method

The DCM directly relates SIFs to the jump of displacements across the crack surface. For a bimaterial interface crack, the
displacement field in the vicinity of the crack tip, i.e. (2), is reformulated as:

(𝑣 + i𝑢)𝜃=𝜋 =
(𝐾𝐼 + i𝐾𝐼𝐼 )(1 + 𝜅1)𝑟

1
2+i𝜀

2
√

2𝜋𝜇1(1 + 2i𝜀) cosh(𝜋𝜀)
+ 𝑐1𝑟

3
2+i𝜀 + 𝑂(𝑟

5
2+i𝜀), (33)

(𝑣 + i𝑢)𝜃=−𝜋 =
(𝐾𝐼 + i𝐾𝐼𝐼 )(1 + 𝜅2)𝑟

1
2+i𝜀

2
√

2𝜋𝜇2(1 + 2i𝜀) cosh(𝜋𝜀)
+ 𝑐2𝑟

3
2+i𝜀 + 𝑂(𝑟

5
2+i𝜀). (34)

The parameters 𝑐1 and 𝑐2 depend on the material properties, boundary conditions and the geometry of the domain. By introducing
a new parameter 𝑐, the displacement jump thus is:

𝛥𝑣 + i𝛥𝑢 = (𝑣 + i𝑢)𝜃=𝜋 − (𝑣 + i𝑢)𝜃=−𝜋 =
(𝐾𝐼 + i𝐾𝐼𝐼 )𝑟

1
2+i𝜀

2
√

2𝜋(1 + 2i𝜀) cosh(𝜋𝜀)
(
1 + 𝜅1
𝜇1

+
1 + 𝜅2
𝜇2

) + 𝑐𝑟
3
2+i𝜀 + 𝑂(𝑟

5
2+i𝜀). (35)

We further define:

K∗(𝑟) ∶=
2
√

2𝜋(1 + 2i𝜀) cosh(𝜋𝜀)

𝑟
1
2+i𝜀

𝜇1𝜇2
(

1 + 𝜅1
)

𝜇2 +
(

1 + 𝜅2
)

𝜇1
(𝛥𝑣 + i𝛥𝑢) = 𝐾 + 𝑐𝑟 + 

(

𝑟2
)

, (36)

where K = 𝐾𝐼 + i𝐾𝐼𝐼 . Using two points along the crack surface with 𝑟𝑏 > 𝑟𝑎, we have

K𝑟𝑎 = K∗ (𝑟𝑎
)

= K + 𝑐𝑟𝑎, K𝑟𝑏 = K∗ (𝑟𝑏
)

= K + 𝑐𝑟𝑏. (37)

Thus, K is approximated with an error of 
(

𝑟2
)

as

K =
𝑟𝑏

𝑟𝑏 − 𝑟𝑎

(

K𝑟𝑎 −
𝑟𝑎
𝑟𝑏
K𝑟𝑏

)

. (38)

In practice, we separate the real and imaginary parts in (35) and (36) to obtain
{

𝛥𝑢
𝛥𝑣

}

= 𝐶
[

−2𝜀 cos(𝑄) + sin(𝑄) cos(𝑄) + 2𝜀 sin(𝑄)
cos(𝑄) + 2𝜀 sin(𝑄) 2𝜀 cos(𝑄) − sin(𝑄)

]{

𝐾𝐼
𝐾𝐼𝐼

}

+

{

𝑐𝑟
3
2 sin(𝑄) + sin(𝑄)𝑂(𝑟

5
2 )

𝑐𝑟
3
2 cos(𝑄) + cos(𝑄)𝑂(𝑟

5
2 )

}

, (39)

where

𝐶 =
𝜇1

(

1 + 𝜅2
)

+ 𝜇2
(

1 + 𝜅1
)

2𝜇1𝜇2
(

1 + 4𝜀2
)

cosh(𝜋𝜀)

√

𝑟
2𝜋
, 𝑄 = 𝜀 ln(𝑟), (40)

and
{

𝐾∗
𝐼 (𝑟)

𝐾∗
𝐼𝐼 (𝑟)

}

∶= 𝐷
[

−2𝜀 cos(𝑄) + sin(𝑄) cos(𝑄) + 2𝜀 sin(𝑄)
cos(𝑄) + 2𝜀 sin(𝑄) 2𝜀 cos(𝑄) − sin(𝑄)

]{

𝛥𝑢
𝛥𝑣

}

=
{

𝐾𝐼
𝐾𝐼𝐼

}

+
{

𝑐𝑟 sin(𝑄) + 𝑂(𝑟2)
𝑐𝑟 cos(𝑄) + 𝑂(𝑟2)

}

, (41)

where

𝐷 =
2𝜇1𝜇2 cosh(𝜋𝜀)

𝜇1
(

1 + 𝜅2
)

+ 𝜇2
(

1 + 𝜅1
)

√

2𝜋
𝑟
. (42)

We then can approximate K using two points as shown in (37) and (38). Note that some improvements increasing accuracy include
averaging scheme and linear least square extrapolation scheme. Details can be found in Gupta et al. [31].
8



Engineering Fracture Mechanics 281 (2023) 109060M. Ru et al.
Fig. 7. Edge interface crack: (a) geometry and boundary conditions, (b) grid with 21 × 21 cells with enrichment of ramp functions (sch1), and (c) grid with
21 × 21 cells without enrichment of ramp functions (sch2). Red solid line: crack; Black dash line: interface; Red squares: nodes enriched with singular functions;
Blue circles: nodes enriched with the Heaviside function; and Orange triangles: nodes enriched with the ramp function.

4. Numerical experiments

In this section, we consider three different models. The first one is the edge-crack, which has analytical solutions of the
displacement field. We then conduct simulations of the slated-crack. The last example to study the non-planar crack, i.e. a circular-arc
crack. For all models, we compare the enrichment schemes and the methods to extract SIFs.

4.1. An edge crack in a bimaterial sample

As shown in Fig. 7(a), we first consider an edge crack with length 𝑎 = 1 in a square sample 𝛺 with a length of 𝐿 = 2. The sample
consists of two dissimilar materials, and the upper is labeled as 1 and the lower 2. Elastic material parameters are: 𝐸1 = 1, 𝐸2 = 2,
and 𝜈1 = 𝜈2 = 0.3. The crack lies on the interface. Dirichlet boundary conditions are imposed on the whole boundary as: 𝒖(𝒙) = �̄�(𝒙)
∀𝒙 ∈ 𝜕𝛺, where �̄�(𝒙) is calculated by (2) setting 𝐾𝐼 = 𝐾𝐼𝐼 = 1. We thus can obtain the analytical displacement field for the whole
domain 𝒖𝑒(𝒙) ∀𝒙 ∈ 𝛺 given as (2) and the exact solution of SIFs 𝐾𝑒

𝐼 = 𝐾𝑒
𝐼𝐼 = 1. Note that the plane-strain assumption is adopted

here. We here use rectangular cells to discretize the domain, and the cell size is denoted as ℎ.

4.1.1. Enrichment schemes
We first check the effects of different enrichment schemes. As shown in Fig. 7(b–c), enrichment schemes with and without the

ramp function along the interface are compared, while constantly keep one layer of elements around the crack tip enriched with
singular functions. The enrichment with ramp function is denoted to ‘‘sch1’’, and without ramp function to ‘‘sch2’’. Four different
mesh sizes, i.e. 21 × 21, 51 × 51, 101 × 101 and 151 × 151 elements, are employed to conduct convergence analyses. Relative error in
energy norm, condition number of the stiffness matrix, and relative error in SIFs are compared for different schemes.

1. Error of energy. The relative error in the energy norm is defined as [11,18]:

𝐸𝛺 =

√

√

√

√

∫𝛺
(

𝜺𝑒 − 𝜺ℎ
)T 𝐂

(

𝜺𝑒 − 𝜺ℎ
)

d𝛺

∫𝛺 (𝜺𝑒)T 𝐂 (𝜺𝑒) d𝛺
, (43)

where 𝜺 denotes the strain fields and the superscripts 𝑒 and ℎ refer to the exact and numerical solutions, respectively; 𝐂 is
the elasticity matrix that relates the strains with the stresses.

2. Condition number. To assess the conditioning of the X-FEM system matrix 𝐊, the scaled condition number  is adopted [18,
53]:

 (𝐊) = �̂�2
(

𝐃T𝐊𝐃
)

, (44)

where 𝐃 is a diagonal matrix defined as 𝐃 =
√

diag (𝐊)−1 and �̂�2 (⋅) denotes the condition number based on ‖ ⋅‖2 vector norm.
In this manner, the scaled condition number is smaller than the original one.

3. Error of SIFs. We here employ the IIM to calculate SIFs for different enriching schemes. Discussions of computation of SIFs
will be given in the next subsection.

As results, Table 1 summarizes the indicators comparing the different enriching schemes. We can see that sch1 is more accurate
than sch2 in terms of the energy norm, but the two enrichment schemes are almost identical for condition numbers and SIFs. This
reflects that the enrichment with ramp functions can improve the accuracy at regions far from the tip, which is expected.

Additionally, we visualize the convergence rates in Fig. 8, which shows the relative error in the energy norm 𝐸𝛺 and scaled
condition numbers  𝐊 as functions of the element size. The same conclusions can be drawn via these figures.
9
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Table 1
Indicators for the edge interface crack problem.
Scheme Mesh Relative error 𝐸𝛺 Condition number  𝐾𝐼 𝐾𝐼𝐼

sch1

21 × 21 0.118859 1.2134 × 108 0.999611 0.988451
51 × 51 0.0740368 2.1428 × 108 0.999673 0.99573
101 × 101 0.0515229 3.0446 × 108 0.999647 0.998044
151 × 151 0.0416404 3.6675 × 108 0.999632 0.998787

sch2

21 × 21 0.141145 1.2120 × 108 1.00032 0.988296
51 × 51 0.0922902 2.1403 × 108 0.999074 0.992934
101 × 101 0.0664553 3.0412 × 108 0.998567 0.994113
151 × 151 0.0547566 3.6634 × 108 0.998397 0.994432

Fig. 8. Comparisons of (a) error of energy norm and (b) scaled condition number for different enrichment schemes.

4.1.2. Extraction of the SIFs
Since sch1 is more accurate than sch2 for the edge problem, we employ the sch1 for the enriching scheme and now compare

the computational methods for the SIFs. As adopted in Gupta et al. [31], the extraction parameter 𝜌 is individually defined as:

1. IIM: 𝜌 = 𝑟𝑑∕ℎ, where 𝑟𝑑 is contour domain radius and ℎ is the crack tip element size;
2. CIM: 𝜌 = 𝜌2∕ℎ, where 𝜌2 is the outer radius of the extraction domain as shown in Fig. 6;
3. DCM: 𝜌 = 𝑟𝑎∕ℎ, where 𝑟𝑎 and 𝑟𝑏 (𝑟𝑎 < 𝑟𝑏) are the locations of the extracting points as shown in (38).

We compare the numerical results and the exact values in a relative manner, as:

𝑒𝑟 =
|

|

|

|

Numerical − Exact
Exact

|

|

|

|

. (45)

Fig. 9 compares the relative error of SIFs with 𝜌 for different methods, i.e. IIM, CIM and DCM, where 𝛥 = 𝑟𝑏 − 𝑟𝑎 = 0.1ℎ holds for
the DCM. We can see that the IIM is the most accurate and robust method to extract SIFs (both for the 𝐾𝐼 and 𝐾𝐼𝐼 ). Conversely,
we should carefully choose the extraction parameters for the DCM. To some extent, the CIM is not so sensitive to 𝜌 and provides
not so accurate but acceptable results.

We next discuss the choice of the parameters for the DCM considering the distance between the extracting points 𝛥 and
interpolation strategies. Fig. 10 shows the sensitivities of 𝛥 to the SIFs. We can see that both the maximum errors and oscillations
of the SIFs decrease with 𝛥 increasing. Fixed the beginning and ending extraction points, we then use 11 points to extract the SIFs.
The averaging scheme and linear scheme [31] (using an extrapolation based on the moving least square method to obtain the value
at 𝑟 = 0) are compared with the two points method. As shown in Fig. 11, the averaging scheme using multiple points can improve
the accuracy of the DCM.

In a summary, we set 𝜌 = 3 and 𝜌 = 4.5 for the IIM and the CIM, respectively. 𝛥 = 0.1ℎ, 𝜌 = 10, and an averaging scheme using
11 extracting points are adopted to the DCM.

Using these optimized extraction parameter, we compute the SIFs with different ratios of moduli, e.g. 𝐸2∕𝐸1 = 2, 10 and 100. As
shown in Table 2, the calculated results are in agreement with the exact solutions.

4.2. A center crack in a slanted bimaterial sample

We now adopt the parameters optimized in the last example to check their effectiveness to a plane crack problem. As shown
in Fig. 12(a), a center slanted crack embedded a finite bimaterial sample is employed, and the sample is subjected to a uniaxial
uniform tension 𝜎. The crack also lies on the interface (represented by the red dot line) of two dissimilar materials. The width and
10
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Fig. 9. The relative errors of SIFs (a) 𝐾𝐼 and (b) 𝐾𝐼𝐼 with the characteristic length of the extraction zone 𝜌 for different methods.

Fig. 10. Sensitivities of the distance between sampling points to the SIFs.

Fig. 11. Strategies of extraction methods of the DCM.

eight of the sample is 2𝐿 and 4𝐿, respectively, and the length of the crack is 𝑎 = 0.5𝐿. We here set 𝐿 = 1 and 𝜎 = 1. The material
constants are 𝐸1∕𝐸2 = 10, and 𝜈1 = 𝜈2 = 0.3. The slope angle 𝛼 can vary from 0◦ to 90◦.

.2.1. Validation of the X-FEM code for planar cracks
We first validate our X-FEM code, which is developed on the platform of dealii [54]. The same configuration with 𝛼 = 15◦ is

dopted to simulate using the ABAQUS software based on the FEM. We compare our results with the results of the ABAQUS in terms
f the displacement along 𝑦-direction. As shown in Fig. 13, we can see the distributions of the displacement are identical.
11
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Table 2
SIFs for the edge crack problem with different ratios of moduli.
𝐸1∕𝐸2 𝐾𝐼 𝐾𝐼𝐼

Exact IIM CIM DCM Exact IIM CIM DCM

2 1 0.999647 1.00645 0.999143 1 0.998044 0.995419 1.00208
10 1 0.998196 0.998536 1.00069 1 0.999836 0.998175 1.00539
100 1 0.997626 0.99727 1.00555 1 1.00162 0.997433 0.993239

Fig. 12. A center crack embedded in a slanted bimaterial sample: (a) geometry and boundary conditions; (b) enriched nodes.

Fig. 13. Comparison of displacement fields along 𝑦 direction for a slanted crack problem (a) ABAQUS and (b) X-FEM.

4.2.2. Enrichment schemes
We here further check the effects of different enriching schemes, i.e. with and without ramp functions. The slope angle is fixed

at 𝛼 = 15◦. Four different mesh sizes, e.g. 11 × 21, 21 × 41, 41 × 81, 51 × 101 and 81 × 161 elements, are employed to conduct
convergence analyses. The relative error of displacement is measured as:

𝐸𝐿2
=

‖

‖

𝒖𝑟 − 𝒖ℎ‖
‖

‖𝒖𝑟‖
, (46)

where ‖𝒖𝑟‖ is the 𝐿2 norm of reference solution and ‖

‖

𝒖ℎ‖
‖

is that of the approximated solution. Since there is no analytical solution
for this problem, we here use results with finest meshes as the exact solution of displacements. This treatment is reasonable since
12
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Fig. 14. Relative error in 𝐿2 norm using different enrichment schemes.

Fig. 15. Normalized SIFs at the (a) left and (b) right crack tip of the center crack problem with 𝐸1∕𝐸2 = 10.

the relative error in 𝐿2 norm of the two enrichment schemes with the finest meshes (81 × 161 elements) is less than 0.5%. Fig. 14
compares the convergence rate of different enrichment schemes. As expected, the enrichment with ramp functions holds faster
convergence rate and lower relative error than enrichment without ramp functions.

4.2.3. Extraction of the SIFs
As discussed above, we adopt the first enrichment scheme to conduct simulations. As shown in Fig. 12(b), we here enrich the

nodes among the nearest two layer of elements at the crack tip with singular functions to obtain accurate SIFs. The computed SIFs
is normalized for comparisons, as:

𝐹1 =
𝐾I

𝜎
√

𝜋𝑎
, 𝐹2 =

𝐾II

𝜎
√

𝜋𝑎
. (47)

Fig. 15 plots the curves of the nondimensional SIFs with the inclination angle 𝛼 for different extraction methods. The reference
solution is reported in [35]. We can see that using the optimized extraction parameters, all three extraction methods can reflect
the relationship of SIFs with the slope angle. It is noted that we employ the singular functions with an accuracy of

√

𝑟 and only
one-order shape functions. It may introduce an error to the displacement field, especially for coarse cells. The displacement jump
across the crack surface may be affected by the approximation, which influences the accuracy of DCM. The energy-based methods
(i.e., the CIM and the IIM) are not so sensitive to the accuracy of displacement. In practice, we approximate the contours of CIM as
line segments, and such discretization may introduce errors. The IIM therefore is still the most accurate approach.

We also perform calculations by considering two materials of great difference in modulus, e.g. 𝐸1∕𝐸2 = 100. The calculated SIFs
are compared with those reported in the Ref. [55], as seen in Fig. 16. We can see the two computational results agree well.

4.3. A circular arc crack in an infinite bimaterial sample

As the last example, we consider a non-planar crack. A circular arc crack lying along the interface of a disk embedded in an
infinite domain subjected to a biaxial extension 𝜎 is widely employed in literature [55,56]. As shown in Fig. 17(a), the length of the
13
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Fig. 16. Normalized SIFs at the (a) left and (b) right crack tip of the center crack problem with 𝐸1∕𝐸2 = 100.

Fig. 17. A circular arc crack: (a) geometry and boundary conditions; (b) numerical model; and (c) enriching strategy.

square is 𝑊 = 20 and the radius of the circle is 𝑅 = 1. We here set 𝑊 = 20𝑅 to avoid the boundary effects. As shown in Fig. 17(b),
we only model the right half of the sample due to the symmetry of the problem and introduce the symmetric boundary conditions.
The half arc-angle 𝛽 varies at 30◦, 45◦, 60◦ and 90◦. The Poisson ratios are identical as 𝜈1 = 𝜈2 = 0.3, but we study the ratio 𝐸1∕𝐸2
from 1 to 100. Fig. 17(c) shows the enriching scheme with the ramp functions.

4.3.1. Validation of the X-FEM code for curved cracks
We again validate our X-FEM code via comparisons with FEM. Fig. 18(a) shows the displacement along 𝑦-axis obtained by the

ABAQUS by setting a singular element at the crack tip within the framework of FEM. Fig. 18(b) is the result for our code. We can
see the distributions of the displacement are almost identical.

4.3.2. Enrichment schemes
We also first check the effects of enriching schemes. Four mesh sizes, e.g. 10×20, 20×40, 30×60, 40 × 80 and 50 × 100 elements,

are employed. As mentioned above, we use the solution of the finest grid as reference. Fig. 19 plots the convergence curves for the
case of 𝛽 = 90◦. The convergence rate of sch1 is 1.657 while that of sch2 is 1.126. Similar to the planar crack problems, sch1 is
still more accurate than sch2 for the curve crack problems. Note that the non-planar crack is discretized by a set of straight line
segments.

4.3.3. Extraction of SIFs
We first point out that only the IIM and DCM are employed to extract SIFs for the curve crack lying on the interface of bimaterials,

abandoning the CIM since more efforts should be paid for the derivations and implementations, which is rarely reported in the
literature. However, we can find reference SIFs for various angles as comparisons [56,57]. For the IIM, the extraction parameter is
still set to 𝜌 = 3, while for the DCM, we set 𝛥 = 0.5ℎ,𝑁 = 11, 𝜌 = 0.3𝑙𝑐∕ℎ with 𝑙𝑐 representing the length of the discretized line
segment for the crack.
14
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Fig. 18. Comparison of displacement fields along 𝑦 direction for a circular arc crack problem (a) ABAQUS and (b) X-FEM.

Fig. 19. Relative error in 𝐿2 norm using different enrichment schemes.

Table 3
Normalized SIFs for the arc-shaped crack problem in homogeneous materials.

𝛽 30◦ (Error %) 45◦ (Error %) 60◦ (Error %) 90◦ (Error %)

Exact 𝐹1 0.6401 0.6776 0.6447 0.4714
𝐹2 0.1715 0.2807 0.3722 0.4714

IIM 𝐹1 0.6437 (0.5655) 0.6862 (1.2741) 0.6550 (1.5913) 0.4810 (2.0335)
𝐹2 0.1755 (2.3434) 0.2706 (3.5914) 0.3672 (1.3479) 0.4610 (2.2123)

DCM 𝐹1 0.6458 (0.8861) 0.6879 (1.5196) 0.6454 (0.1140) 0.4706 (0.1720)
𝐹2 0.1765 (2.9015) 0.2885 (2.7752) 0.3823 (2.7257) 0.4721 (0.1589)

Similar to (47), we define two types of non-dimensional SIFs:

𝐹1 =
𝐾I

𝜎
√

𝜋𝑅
, 𝐹2 =

𝐾II

𝜎
√

𝜋𝑅
, (48)

and

|𝐾| =

√

𝐾2
𝐼 +𝐾

2
𝐼𝐼

𝜎
√

𝜋𝑅
. (49)

For homogeneous materials, 𝐸1 equals to 𝐸2 and we use (48) to compare the computational results with the reference
results [50,58,59], as shown in Table 3 and Fig. 20. We can see that both the IIM and the DCM can obtain acceptable SIFs for
various 𝛽.
15
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m

Fig. 20. Normalized SIFs for the arc-shaped crack problem in homogeneous materials.

Table 4
Normalized SIFs for the arc-shaped crack problem in inhomogeneous materials.
𝛽 𝐸1∕𝐸2 30◦ (Error %) 60◦ (Error %) 90◦ (Error %)

Ref

1 0.663 0.744 0.667
5 0.876 1.068 1.029
20 0.911 1.134 1.140
100 0.918 1.149 1.171

IIM

1 0.6672 (0.6335) 0.7509 (0.9274) 0.6662 (0.1199)
5 0.8605 (1.7695) 1.0891 (1.9747) 1.0389 (0.9592)
20 0.9165 (0.6010) 1.1097 (2.1473) 1.1946 (4.7868)
100 0.9278 (1.0649) 1.1097 (3.4212) 1.2157 (3.8173)

DCM

1 0.6695 (0.9804) 0.7502 (0.8330) 0.6667 (0.0500)
5 0.8711 (0.5564) 1.0985 (2.8577) 1.0178 (1.0865)
20 0.9300 (2.0899) 1.1607 (2.3536) 1.1860 (4.0377)
100 0.9434 (2.7632) 1.1826 (2.9199) 1.2159 (3.8301)

For inhomogeneous materials, it is hardly to decompose the mixed patterns to modes I and II, and we therefore use (49) to
easure the SIFs. We conduct simulations for different cases with 𝐸1∕𝐸2 = 5, 20 and 100, as well as 𝛽 = 30◦, 60◦ and 90◦. The results

are summarized in Table 4. The SIFs are in good agreement with the reference solution [56] and the discrepancies between numerical
solutions and the reference solutions can narrow within 5% for any case. However, we should point that the error increases with
the ratio of elastic moduli, which is also observed in [42]. This may be caused by the fact that (13) will be inaccurate for large
ratio of the moduli. We also compare the condition numbers and find that they increase with the ratio. Larger conditions numbers
may introduce larger errors for the same convergence criterion of the solver of the linear system. The normalized SIFs |𝐾| vary with
respect to 𝛽 with different ratios of elastic moduli as shown in Fig. 21.

5. Conclusions

In this work, we performed a comprehensive exploration on existing numerical techniques developed for X-FEM to compute the
SIFs of cracks lying on the interface of two dissimilar materials. Two different enriching schemes, with and without ramp functions,
to describe the interface are investigated. Three routines to calculate the SIFs are explored, including the IIM, CIM, and DCM. To
assure the robustness of conclusions, we further considered their applications to interface cracks of a variety of geometrical features,
such as edge-crack, slated-crack, and circular-arc crack. We obtain the following conclusions.

1. The ramp functions can improve the solution in terms of strain energy, but do not significantly affect the condition numbers
of the stiffness matrix and the SIFs.

2. Among three methods to extract SIFs, the IIM seems to be the most accurate one. The DCM can supply reasonable accuracy,
conditioned on the right choice of the extraction parameter and the adoption of interpolation schemes.

3. The relative error of SIFs for curved crack increases with the discrepancies in elastic properties between the dissimilar
materials, but falls within 5% in present exploration.

To conclude, we hope a reader interested in X-FEM to explore the SIFs of interface cracks may find it helpful in choosing the
16
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Fig. 21. Normalized SIFs for the arc-shaped crack problem in inhomogeneous materials.
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Appendix. Complementary functions in the CIM

The complementary functions are given as follows [47].

(

𝜎11
)

𝑗 =𝑀1

{

𝑐1
[

𝑓 I
11𝜔𝑗 − 𝜔

−1
𝑗 cos(2𝜃 − 𝛩)

]

+ 𝑐2
[

𝑓 II
11𝜔𝑗 − 𝜔

−1
𝑗 sin(2𝜃 − 𝛩)

]}

, (A.1)

(

𝜎22
)

𝑗 =𝑀1

{

𝑐1
[

𝑓 I
22𝜔𝑗 + 𝜔

−1
𝑗 cos(2𝜃 − 𝛩)

]

+ 𝑐2
[

𝑓 II
22𝜔𝑗 + 𝜔

−1
𝑗 sin(2𝜃 − 𝛩)

]}

, (A.2)

(

𝜎12
)

𝑗 =𝑀1

{

𝑐1
[

𝑓 I
12𝜔𝑗 − 𝜔

−1
𝑗 sin(2𝜃 − 𝛩)

]

+ 𝑐2
[

𝑓 II
12𝜔𝑗 + 𝜔

−1
𝑗 cos(2𝜃 − 𝛩)

]}

, (A.3)

(

�̃�1
)

𝑗 =𝑀2

[

𝑐1
(

−𝜅𝑗𝜔𝑗 ℎ̃11 + 𝜔−1
𝑗 ℎ̃12 + 𝜔𝑗 ℎ̂13

)

+ 𝑐2
(

𝜅𝑗𝜔𝑗 ℎ̃21 − 𝜔−1
𝑗 ℎ̃22 + 𝜔𝑗 ℎ̃23

)]

, (A.4)

(

�̃�2
)

𝑗 =𝑀2

[

𝑐1
(

𝜅𝑗𝜔𝑗 ℎ̃21 − 𝜔−1
𝑗 ℎ̃22 − 𝜔𝑗 ℎ̃23

)

+ 𝑐2
(

𝜅𝑗𝜔𝑗 ℎ̃11 − 𝜔−1
𝑗 ℎ̃12 + 𝜔𝑗 ℎ̃13

)]

, (A.5)

where

𝛩 = 1 𝜃 + 𝜀 ln 𝑟, (A.6)
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𝜔𝑗 =

{

e−𝜀(𝜋−𝜃) 𝑗 = 1
e𝜀(𝜋+𝜃) 𝑗 = 2,

(A.7)

𝑀1 =
1

2
√

2𝜋𝑟3
, (A.8)

𝑀2 =
1

2𝐺𝑗
√

2𝜋𝑟
, (A.9)

𝑓 I
11 = 3 cos 𝜃 cos(2𝜃 + 𝛩) + 2𝜀 sin 𝜃 cos(2𝜃 + 𝛩), (A.10)

𝑓 II
11 = −3 cos 𝜃 sin(2𝜃 + 𝛩) − 2𝜀 sin 𝜃 sin(2𝜃 + 𝛩), (A.11)

𝑓 I
22 = cos(𝜃 + 𝛩) − 2𝜀 sin 𝜃 cos(2𝜃 + 𝛩) + 3 sin 𝜃 sin(2𝜃 + 𝛩), (A.12)

𝑓 II
22 = − sin(𝜃 + 𝛩) + 2𝜀 sin 𝜃 sin(2𝜃 + 𝛩) + 3 sin 𝜃 cos(2𝜃 + 𝛩), (A.13)

𝑓 I
12 = sin(𝜃 + 𝛩) + 2𝜀 sin 𝜃 sin(2𝜃 + 𝛩) + 3 sin 𝜃 cos(2𝜃 + 𝛩), (A.14)

𝑓 II
12 = cos(𝜃 + 𝛩) + 2𝜀 sin 𝜃 cos(2𝜃 + 𝛩) − 3 sin 𝜃 sin(2𝜃 + 𝛩), (A.15)

ℎ̃11 =
(cos𝛩 − 2𝜀 sin𝛩)

(

1 + 4𝜀2
) , (A.16)

ℎ̃12 =
[cos(𝜃 − 𝛩) + 2𝜀 sin(𝜃 − 𝛩)]

(

1 + 4𝜀2
) , (A.17)

ℎ̃13 = sin 𝜃 sin(𝜃 + 𝛩), (A.18)

ℎ̃21 =
(sin𝛩 + 2𝜀 cos𝛩)

(

1 + 4𝜀2
) , (A.19)

ℎ̃22 =
[− sin(𝜃 − 𝛩) + 2𝜀 cos(𝜃 − 𝛩)]

(

1 + 4𝜀2
) , (A.20)

ℎ̃23 = sin 𝜃 cos(𝜃 + 𝛩). (A.21)

Thus the particular complementary solution leading to the representation formula (31) for 𝐾𝐼 results if the arbitrary constant 𝑐1
and 𝑐2 in above equations are chosen to be

𝑐1 =
4𝐺1𝐺2

𝐺2(𝜅1 + 1) + 𝐺1(𝜅2 + 1)
, (A.22)

𝑐2 = −
8𝜀𝐺1𝐺2

𝐺2(𝜅1 + 1) + 𝐺1(𝜅2 + 1)
, (A.23)

whereas (32) for 𝐾𝐼𝐼 results from

𝑐1 =
8𝜀𝐺1𝐺2

𝐺2(𝜅1 + 1) + 𝐺1(𝜅2 + 1)
, (A.24)

𝑐2 =
4𝐺1𝐺2

𝐺2(𝜅1 + 1) + 𝐺1(𝜅2 + 1)
. (A.25)
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