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High-resolution flow field reconstruction is prevalently recognized as a difficult task in the field of experimental fluid
mechanics, since the measured data are usually sparse and incomplete in time and space. Specifically, due to the limitations of
experimental equipment or measurement techniques, the expected data cannot be measured in some key areas. In this paper, a
practical approach is proposed to reconstruct flow field with imperfect data based on the physics informed neural network
(PINN), which integrates those known data with the physical principles. The wake flow past a circular cylinder is taken as the
test case. Two kinds of the training set are investigated, one is the velocity data with different sparsity, and the other is the
velocity data missing in different regions. To accelerate training convergence, the learning rate schedule is discussed, and the
cosine annealing algorithm shows excellent performance. Results reveal that the proposed approach not only can reconstruct
the true velocity field with high accuracy, but also can predict the pressure field precisely, even when the data sparsity reaches
1% or the core flow area data are truncated away. This study provides encouraging insights that the PINN can serve as a
promising data assimilation method for experimental fluid mechanics.
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1. Introduction

In recent years, with the continuous development of the
machine learning community and the widespread attention
received by artificial neural network, the universality of
deep learning is attracting more and more scholars to apply
this algorithm to related research fields [1]. In terms of fluid
mechanics, neural networks have been widely used to model
heat transfer [2-4], turbomachinery [5,6], boundary layer
[7,8], and turbulence [9-11], etc. over the past three decades.
However, limited by the demand of deep neural network for
a relatively large amount of offline data, it has few practical
applications in the field of computational fluid dynamics

with variable boundary conditions and complex grid gen-
eration, nor in the field of experimental fluid mechanics with
sparse and noisy data.
Based on the research of Lagaris et al. [12] using neural

networks to solve differential equations, Raissi et al. [13]
proposed physics informed neural network (PINN), which
effectively solved the aforementioned problem by combin-
ing data points obtained through observation (simulating or
measuring) and free equation points obtained based on the
idea that any point in the physics field should satisfy the
governing equations. Thus, the training set can be composed
by a relatively small number of data points and an arbitrarily
large number of equation points, which cleverly solves the
problem of overfitting caused by too little data that often
occurs in deep learning applications. The emergence of
PINN inspires a new way for machine learning to be applied
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to physical sciences, and has attracted extensive attention
and active exploration of many researchers, including for-
ward [14-19] and inverse [20-24] problems. PINN is also
combined with Bayesian neural networks to study un-
certainty quantification [25-28].
In terms of problems with specific controlling equations,

many researchers are trying to take advantage of PINN’s
fusion with the physical law, thus physical quantities are
coupled by the control equation. Based on this concept,
PINN is adopted for non-invasive measurement of flow
fields. Cai et al. [29] indirectly calculated the velocity and
pressure field by measuring the temperature field with to-
mographic background oriented schlieren. Raissi et al. [30]
obtained accurate velocity, pressure, and shear force dis-
tribution of ideal vessel flow by learning concentration
distribution of passive scalar. Similar studies [31,32] adopt
PINN to predict the physical quantities that are difficult to
measure using data of physical quantities that are easy to
measure as a training set. Another approach of solving
forward problems is trying to take advantage of PINN’s low
dependence on the amount of real data [33-35]. In fact,
Raissi et al. [13] achieved an accurate prediction of the
Burgers equation without providing any real data to PINN,
indicating that PINN not only has the excellent fitting ability
of conventional machine learning methods, but also has the
real computing ability for physical field by introducing
partial differential equations. Sun et al. [36] studied the re-
construction of ideal vascular flow field using continuous
time data on sparse grid points as training set. Further, Sun
et al. [37] used PINN to accurately calculate the ideal vas-
cular flow without any simulation data, proving that PINN is
a promising complement to traditional computational fluid
dynamics (CFD) methods. Xu et al. [38] used PINN to
predict the unknown region in the flow field, and in the case
of turbulent flow, the computing power of PINN for the
unknown region was well explored. And further research is
needed for the quantification of the fitting accuracy and the
impact of unknown regions such as size and location on the
fitting accuracy.
It is noticed that on one hand, the well-posed conditions

for Navier-Stokes (N-S) equations still remain an unsolved
problem in academia. For more general flows, it is hard to
determine the exact form of initial condition and boundary
condition that should be appointed to PINN. The develop-
ment of PINN at this stage should not be to study its re-
placement of traditional CFD methods with decades of
research experience in stability and convergence, but to
study its flexibility for processing small amount of data. On
the other hand, there are presently many scholars conducting
research on reconstructing flow field with sparse data. For
example, Wang et al. [39] conducted sparse data research on
the natural convection problem and found that the Ra
number can still be predicted with an error of 0.9% using

PINN when the amount of data is only 1.48%. However,
their sparse data are randomly sampled in the entire spa-
tiotemporal domain, which cannot be instructive in the
configuration of measurement points during the experiment.
For the purpose of direct guidance of data acquisition, the
regularity of the distribution of experimental points should
be emphasized. Therefore, in this paper, focusing on the
great potential of PINN applying in experimental fluid
mechanics and considering the feasibility of actual experi-
mental measurements, sparse and incomplete data were
studied respectively for the specific task of flow field re-
construction. Although the current framework of solving
forward and inverse problems with PINN is still immature,
it can still be considered a novel data assimilation method
[40]. For traditional data assimilation method, the gap (or
vacant) of data can be solved or inferred by utilizing the N-S
equations. Sciacchitano et al. [41] filled the gaps in particle
image velocimetry (PIV) data through finite volume ap-
proach by taking as input the measured velocity values at the
gap boundary. Schneiders et al. [42] solved the vorticity
transport equation by incorporating time-resolved volu-
metric particle tracking velocimetry (PTV) measurements
using vortex-in-cell method. Compared with the above
methods, PINN exhibits a more flexible and convenient
property and requires less coding since the constraints of the
N-S equation are only posed in the loss function. Through
the existing practical algorithms developed by machine
learning community, the velocity and pressure fields of the
original flow were accurately predicted while only part of
the velocity data was provided to the PINN. By training
PINN with sparse data, the practical value and application
potential of PINN in reconstructing flow field in experi-
mental fluid mechanics were strongly illustrated. By training
PINN with incomplete data, an effective way to widen the
window size for PIV measurement was provided.

2. Methodology

2.1 PINNs

Previously, of all the machine learning algorithms applied in
the field of fluid mechanics, it can be roughly divided into
methods based on observation biases and methods based on
inductive biases [40]. The former takes reducing the de-
viation between the predicted output of the network and the
actual observation value as a single optimization objective,
so as to build a machine learning model that satisfies the
functional relationship between input and output. Such
methods often adopt machine learning models as surrogate
models [43,44], and are widely used in aerodynamic shape
optimization [45-47]. Whereas the latter is devoted to the
construction of specific neural network models, which im-
plicitly include the symmetry or conservation of the physical
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problem [48,49]. A representative example is Ling et al. [50]
embedding tensor invariants as prior information into neural
networks in turbulence modeling. The application of PINN
extends methods based on learning biases, the core idea of
which is to embed the information of partial differential
governing equations into the neural network. Distinct from
methods based on inductive biases which usually impose
physical symmetry or conservation as hard constraints in
neural networks, PINN sets the partial differential governing
equations as soft constraints in the loss function, making
data fitting more flexible and data assimilation less com-
plicated.
Physical laws are usually described in the form of partial

differential equations, which can be generally described as

F U x t( , , ) = 0, (1)
where the operator F represents the evolution of U corre-
sponds to space x and time t. The key to introducing Eq. (1)
in neural networks lies in the correct calculation of partial
derivatives U U U U{ , , , }x xx t tt . By setting the input layer as
the spatiotemporal independent variables x t{ , } and the
output layer as the physical dependent variables U{ }, PINN
then utilizes automatic differentiation [51], which is avail-
able in most machine learning frameworks, to obtain the
numerical derivatives, as shown in Fig. 1. Then the residual
error R is defined by the calculated derivatives:

R F U x t= ( , , ). (2)
For a given physical field controlled by F, the expected

value for R is 0. Unlike general deep learning, which takes
the prediction deviation of the network e U U= as the

only optimization goal, PINN takes both the deviation of the
data e and the residual error of the equation R as the com-
mon optimization goal:

Loss MSE e MSE R= ( ) + ( ), (3)

where MSE denotes mean square error on training set. is a
tunable parameter that controls the weights of prediction
deviation and residual error. A larger value of means more
emphasis on the importance of the governing equation
constraints in the weight update process of the neural net-
work. The tuning of has an important influence upon the
convergence of the network, and a better selected can
efficiently reduce the training time. Wang et al. [52] pro-
posed a dynamic weight strategy during network training
which intends to let the network adaptively learn the weights
along the deepest gradient of the loss function. For simpli-
city, is chosen to be 1 for all cases in this paper. During the
training of a PINN, other important tunable hyperparameters
include the hidden layers of the neural networks Nl, the
neurons in each layer N i l ( = 1,  2,  ...,  )ei , and the learning
rate schedule. A general understanding about Nl and Nei is
that the wider and deeper a network is, the more expressive
the network can be. However, more neurons and layers in
the network mean more complex computational graph thus
leading to a significant increase in the training time during
backpropagation. Currently, the efficient tuning of Nl and
Nei is still an unsolved problem and researchers in related
fields empirically determine the network’s architecture by
balancing the expressivity and trainability [30]. In this pa-
per, Nl is set to be 8 and Nei is set to be 20 for each layer.

Figure 1 PINN. The loss function consists of both the prediction deviation and the residual error of the control equation. denotes the activation function in

the neural network.
x t, are calculated through automatic differentiation.
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The tuning of learning rate schedule will be discussed in
Sect. 2.2.
During the training process, the two terms on the right

side of Eq. (3) will gradually decrease, thus effective re-
duction of the loss function means not only the matching of
predicted data and real data, but also the satisfaction of
physical laws controlled by partial differential equation.

2.2 Cosine annealing algorithm

In pursuit of the theoretically infinite nonlinear fitting ability
of deep neural network, it is critical to know how to effec-
tively train the neural network. Although for related appli-
cations of fluid mechanics, it is usually not concerned with
the specific training details but with the relevant data or
physical laws. However, a wisely chosen training method
means not only less computation time but also higher fitting
accuracy, which is extremely important in terms of flow
field reconstruction by PINN. Luckily, the machine learning
community has extensive research on efficient training of
deep networks over the years and has developed many
practical training methods which could be directly adopted.
For example, batch normalization [53] was adopted to build
the airfoil aerodynamic model learned from multi-fidelity
data [54], which greatly speed up the training efficiency of
the model.
Among all hyperparameter tuning of neural networks, a

reasonable choice of learning rate is considered to be the
most important [55]. In fact, in the pioneering work [30], a
step learning rate schedule has already been explored when
learning velocity and pressure field through concentration
distribution by PINN. According to the research by Losh-
chilov et al. [56], an adaptivelearning rate is a good warm
restart in gradient-based optimization, as shown in Eq. (4).

T
T= + 1

2( ) 1 + cos , (4)t imin max min
cur

where t denotes the learning rate of a certain epoch, max
denotes the initial learning rate (also the maximum learning
rate), min denotes the minimum learning rate and is gen-
erally set to zero, Tcur is the number of epochs since the last
restart and Ti is the number of epochs between two warm
restarts.
Tested by many practical applications, the cosine an-

nealing algorithm proposed by Loshchilov shows excellent
performance in accelerating convergence. The learning rate
schedules of cosine annealing are shown in Fig. 2. Two
important parameters controlling the value of Ti are the
number of iterations for the first restart, namely T0, and the
factor increases Ti after a restart, namely Tmult

T T T( = )i i+1 mult . As suggested by Loshchilov et al. [56], in
order to improve anytime performance, it is better to start

with an initially small Ti and increase it by a factor of Tmult at
every restart. Therefore, in this paper, T0 is chosen to be 50
and Tmult is chosen to be 2.
In this paper, the cosine annealing algorithm was adopted

both in the training with sparse and incomplete data. In
contrast with fixed learning rate, cosine annealing learning
rate schedule efficiently reduced training epochs from
100000 or even divergence (failed to reduce loss function to
a required value) to 3000.

3. Numerical dataset used for training and
validation

Flow past a circular cylinder is a classical unsteady problem
in fluid mechanics, and the vortex shedding pattern has long
been studied by academia [57-59]. As a pioneer in the re-
search of PINN, Raissi et al. [60] first applied the algorithm
to fluid mechanics and studied the inverse problem for two-
dimensional wake flow past a circular cylinder, as shown in
Fig. 3.
For the purpose of illustrating the potential of reconstructing

Figure 2 Different learning rate schedules. “fix_lr” denotes a fixed
learning rate of 5 × 10−3; “step_lr” denotes the learning rate schedule
adopted by Raissi et al. [30]. “cosa_lr_1” and “ cosa_lr_2” denote cosine
annealing algorithm with T = 500 , T = 2, 3mult (a larger value of Tmult means
a slower decreasing rate) [56] respectively.

Figure 3 Vorticity distribution of two-dimensional wake flow past a
circular cylinder at Re = 100 [60].
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flow field by PINN and the comparability of our algorithm,
the two-dimensional data open sourced in Github (rectan-
gular area in Fig. 3) were adopted in this paper. The original
dataset has 1 million pieces of data, consisting of 200 time-
step data on 5000 grid points. Further, for a two-dimensional
incompressible flow, the continuity equation can be auto-
matically satisfied by introducing flow function . In ad-
dition, the energy equation can be decoupled, so in order to
solve velocity and pressure, only the momentum equations
need to be constrained in PINN, as shown in Fig. 4.
In this paper, only part of the original data
x y t u v{( , , ) ( , )}was selected as “data points”, and another

1 million “equation points” { }x y t f f( , , ) ( , )x y were
obtained by LHS (Latin hypercube sampling) method. The
data points and equation points together make up the
training set. Unlike commonly used “train-validation-test”
division of dataset, for PINN, there is no need to build va-
lidation set since the ability for generalization is usually not
required. The ultimate goal of hyperparameter tuning is the
correct fitting and prediction of flow field. Therefore, the
test set of the present work is the original 1 million pieces of

x y t u v p{( , , ) ( , , )} data.
To emphasize, values of and p in the output layer of the

neural network are not included in the training set, which is
extremely different from conventional neural network ap-
plications. The initial values of and p are calculated by
the randomly initialized (in this paper, Xavier initialization)
neural network and have no actual physical meaning.
However, due to the constraints of matching original data
and satisfying partial differential equations, as the loss
function decreases, the weights of the neural network are
updated so the calculated value of and p will gradually
change towards a value that satisfies those constraints.

4. Results and discussion

4.1 Training PINN with sparse data

The main purpose of our research is to reconstruct fluid flow

with experimental data. According to the existing mea-
surement methods and instrument accuracy, for general
cases, the obtained data are usually dense in temporal do-
main but sparse in spatial domain (Fig. 5). Meanwhile, it is
relatively easy to measure physical quantities at fixed po-
sition. Therefore, in order to simulate real experimental
measurements, continuous time data at fixed spatial points
were provided to PINN, as shown in Fig. 6. To illustrate,
100%, 20%, 5% and 1% of original velocity data were fit
and predicted respectively.
It needs to be stated that, the selection of training set

containing only velocity information is based on our
knowledge that nonlinearity of the flow field is caused by the
velocity transport, hence the properties of the N-S equation
are primarily characterized by velocity data. After a suc-
cessful fitting of the momentum equation shown in Fig. 4,
the value of the partial derivative of pressure p is trained to
satisfy the constraint, thus p calculated by PINN should also
be consistent with the original data. However, since no in-
formation about pressure is presented in the training set and
only the spatial gradient of pressure is required in the N-S
equation, thus the calculated pressure field differs from the
original pressure field by a different constant at each tem-
poral snapshot. For the purpose of quantitative comparison,

Figure 4 PINN for incompressible flow. The velocities u and v are not explicitly present in the output layer of the neural network but calculated through
flow function . Different from traditional neural network, the data of and p are not included in the training set.

Figure 5 Illustration of sensor locations (circles) of a typical wake flow
past a circular cylinder [61].
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in this paper, the revision of the pressure field is shown in
Eq. (5) with the pressure information p x y t( , , )0 0 of a single
point at x y( , ) = (1.5, 0)0 0 . x y( , )0 0 is randomly selected in the
core region of the wake flow.

[ ]p x y t p x y t p x y t p x y t( , , ) = ( , , ) ( , , ) ( , , ) . (5)corrected 0 0 0 0

To fit the target flow field, an 8-hidden-layer neural net-
work with 20 neurons per hidden layer was adopted. Note
that the commonly used ReLU activation function in neural
networks cannot be used in PINN solving N-S equations
since the second derivative of the ReLU function is zero,
thus the tanh(x) function was adopted as the activation
function. As for the training procedure, the importance of
adaptive learning rate for neural networks has already been
explained in the previous content. The Adam optimizer [62]
together with the classic cosine annealing algorithm with
T = 500 , T = 2mult was utilized, that is, the learning rate de-
cays with a cosine function and resets to the initial value
after every n n50 × ( = 1, 2, ...) epochs. The mini-batch size
is between 5000-6000 on a case-by-case basis, depending on
the amount of data in the training set. The total number of
training epochs is 3000. For one million data points and one
million equation points case, every 10 epochs of the opti-
mizer take around 48 s on a single NVIDIA TeslaV100-
SXM2 GPU card.
After fitting the wake flow of a circular cylinder with

100% original velocity data as training set, it is confirmed
the adopted neural network architecture and training strat-
egy are suitable for the target flow field. Subsequently, the
same architecture and the same training strategy were
adopted to other training set with different sparsity of original

data. The comparison of predicted flow field and original
flow field is shown in the last three columns in Fig. 7.
It can be observed from Fig. 7 that the predicted flow field

using different sparsity data as training set shows good
consistency with the original flow field even if the sparsity
reaches 1% of the original data. Further, to quantitatively
compare the deviation of the predicted flow field and the
original flow field in the entire temporal domain, the com-
monly used relative L2 norm RL2 was introduced here, as
defined in Eq. (6).

R
U U

U= , (6)L2

where U U is the L2 norm of the prediction deviation of
interested quantity u v p( , , ) at a certain time, U denotes the
L2 norm of the original quantity at that time. RL2 gives good
quantification of the prediction accuracy at a certain time.
The comparison in Fig. 8 verifies the correctness of our

research purpose to reconstruct the flow field with sparse
data. The average RL2 between predicted flow field and
original flow field at different times with 100% velocity data
as training set is 3.9×10−3 (streamwise velocity u), 1.2×10−2

(spanwise velocity v), 3.5×10−2 (pressure p), respectively,
indicating the fitting of the wake flow by PINN is suc-
cessful. Meanwhile, the values of RL2 are quite close. In
terms of streamwise velocity u, the RL2 of 1% data (average
8.7×10−3) is slightly higher than 5% data (average 5.5×10−3),
5% data is slightly higher than 20% data (average 4.1×10−3)
and 20% data is slightly higher than 100% data, demon-
strating the fitting of the flow field by PINN has a rather low

Figure 6 Training sets composed of different proportions of raw velocity data. a 100% data (CFD benchmark data); b 20% data; c 5% data; d 1% data. The
selected data points are dense in time but sparse in space. The equation points of the four training sets are consistent, all of which are 1 million points sampled
through LHS over the entire spatial-temporal domain. Data points are where data loss is calculated whereas equation points are where the residual loss is
calculated.
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dependency on the amount of data, and even though the data
amount is only 1% of original data, with a suitable neural
network architecture and an efficient training strategy, the
flow field can be precisely predicted. Therefore, through
PINN, the flow field can be reconstructed with relatively
sparse data.
The above results are amazing yet interpretable. Distinct

from conventional neural network, when applying PINNs,
more information is added through imposing constraints of
physical equations in the loss functions, and the bias of data
and the bias of the equation are coupled to each other during
the back propagation process. Therefore, the existence of
control equations speeds up the fitting of given data, whereas
simultaneously, the existence of given data also guides the
residuals of control equations to decrease in a more rapid
direction. The fitting of PINN is not mere the match of given
data, but the calculation of flow field constrained by those

given data and physical laws (control equations). That is, so
long as the target flow field is objectively determined and
the loss function is efficiently reduced, the trained neural
network all represent the same flow field no matter how
little data (but with too little data another solution for N-S
equation might be found) are fed to PINN. In addition, as
can be seen in Fig. 9, when training PINN with different
sparsity data, as long as the loss function drops to the same
level, it can be roughly considered that the reconstruction of
the flow field has reached a similar accuracy.
The above analysis indicates another excellent property of

PINN that it is less likely to overfit, which explains why the
same neural network architecture and the same training
strategy on training sets with very different amounts of data
can be adopted but very close predictions can be obtained,
and supports why PINN can be used to reconstruct flow
field with sparse data.

Figure 7 Comparison of predicted data with 100% (second column), 20% ( third column), 5% ( forth column), 1% (fifth column) original velocity data as
training set and CFD benchmark data (first column) at a temporal snapshot t = 3.3. a Streamwise velocity component u; b spanwise velocity component v; c
pressure p, the predicted pressure field is off by a constant which can be revised by the pressure value at a certain point in the flow field and already subtracted
in the image.

Figure 8 Relative L2 norm between predicted flow field and original flow field. a Streamwise velocity component u; b spanwise velocity component v; c
pressure p with different sparsity data used as training set. A lower value of RL2 denotes a more precise prediction of the original flow field. A much higher
value of RL2 is observed at t = 0 and t = 19.9 where data in the training set are no longer continuous in time. RL2 of spanwise velocity v is larger than that of
streamwise velocity u, for the magnitude of v is much smaller than the magnitude of u in the core region of the wake flow. RL2 of pressure p is the largest since
no data of p is presented in the training set.
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4.2 Training PINN with incomplete data

Under certain circumstances, the obtained experimental data
could also be incomplete (Fig. 10) because data in certain
regions are difficult to measure. Meanwhile, the results in
the above content show that when applying PINN, only the
velocity data are needed to deduce other information in the
flow field, which is naturally consistent with the PIV [63]
method. Based on this, another numerical experiment was
conducted to demonstrate the potential of adopting PINN to
reconstruct flow field.
To simulate incomplete data, four training sets from the

same CFD benchmark data mentioned in Sect. 3 were di-
vided, namely small hole, large hole, small truncation and
large truncation, where different amounts of data of the core
region in the wake flow are not included in the training set,
as shown in Fig. 11.
According to the analysis in Sect. 4.1, it is not necessary to

change the neural network architecture and training strategy
since the original data adopted in this paper are the same.

Qualitatively, as can be seen from Fig. 12, as the area of
missing data gets larger, the matching degree of different
predicted flow fields and the benchmark flow field does not
change, and they are all accurate predictions of the bench-
mark flow field.
Intuitively, when the incompleteness of training set is

limited to “small hole”, we have a relatively high degree of
confidence to reconstruct the original flow field since the
amount of missing data is relatively small. When it comes to
“large hole”, we are not so certain, and further for “small

Figure 9 Loss value during training, with a 100% data, b 20% data, c 5% data, d 1% data as training set, all of which are trained with the same neural
network architecture and same training strategy. The spikes of the loss value are caused by the warm restart of the cosine annealing algorithm, where the
learning rate is set to the initial value at the spikes. The effect of original data in the training set can be considered as accelerating the convergence of neural
network, where with only 1% data, the convergence is significantly more difficult than other three cases (during 1500-2000 epochs, as shown in d). But with
reasonable training strategy, it is still trainable and struggles its way to similar accuracy.

Figure 10 Illustration of an experimental flow field where the middle part
is blocked and cannot be observed [64].
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truncation”, we will even get doubtful because the missing
region has caused a complete spatial truncation and a large
discontinuity in the streamwise direction. However, as
shown in Fig. 13, even though the size of missing region is
as large as “large truncation”, PINN still successfully pre-
dicted the rectangular flow field where no data is provided.
Quantitatively, it can be discovered that the relative L2

norm of four different incomplete training sets is almost the

same as that predicted by 100% original data (which is
trained formerly in Sect. 4.1) at any given time (Fig. 14),
with an average of 3.9 × 10−3 (streamwise velocity u), 1.2 ×
10−2 (spanwise velocity v), 3.5 × 10−2 (pressure p), respec-
tively, which means the least accurate prediction of these
training sets is almost the same. Therefore, the flow field
predicted by the incomplete training set missing “small
hole”, “large hole”, “small truncation” and “large truncation”

Figure 11 Training sets composed of different types of incomplete velocity data. a Small hole; b large hole; c small truncation; d large truncation, where
data in the blank area are not included in the training set. The equation points of the four training sets are consistent, all of which are 1 million points sampled
through LHS over the entire spatial-temporal domain. Data points are where data loss is calculated whereas equation points are where the residual loss is
calculated.

Figure 12 Comparison of predicted data with different incomplete dataset: small hole (second column), large hole (third column), small truncation (forth
column) and large truncation (fifth column) as training set and CFD benchmark data (first column) at a temporal snapshot t = 3.3. a Streamwise velocity
component u; b spanwise velocity component v; c pressure p. The predicted pressure field is off by a constant, which can be revised by the pressure value at a
certain point in the flow field and already subtracted in the image. The rectangular areas are where the data are missing.
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can all be considered to be completely consistent with the
flow field predicted by 100% of original data.
The inspiring result in Fig. 14 and the loss function shown

in Fig. 15 once again validate the previous analysis in Sect.
4.1, that the fitting of PINN is not mere the match of given
data, but the calculation of target flow field. And for a
certain flow field, the calculated results under the constraints
of the N-S equations should be the same. Therefore, the final
accuracy that PINN can achieve is not determined by the
amount of real data but by the ability of the neural network
architecture to fit (express) the overall flow field. Unlike
conventional neural network application, for PINN, the ef-
fect of real data in the training set should be considered as
extra information to accelerate the convergence of neural
network, thus generally the more the real data, the faster the
convergence. And for the above four different incomplete
datasets, their sparsity is relatively low compared with that
in Sect. 4.1, thus after 3000 epochs of efficient training, they

all rapidly reached the same accuracy expressed by the 8-
hidden layer neural network.
According to the above numerical experiment and ana-

lysis, it is practical to use incomplete data to reconstruct
flow field. Moreover, considering that only velocity in-
formation is utilized in the training set, the proposed PINN
method is naturally a match with PIV measurement. Sup-
pose velocity information in different regions of the flow
field is obtained using PIV method, then the velocity in-
formation can be fed to PINN to reconstruct the original
flow field with high prediction precision, thus combing
PINN and PIV, a larger window size can be obtained to
measure the target flow field.

4.3 Training PINN with further limited data

Apart from the above analysis, the following section will discuss
the performance of PINN under two different circumstances

Figure 13 Comparison of predicted flow field and CFD benchmark flow field in the rectangular area where no data is provided in the training set at a
temporal snapshot t = 3.3. Left: streamwise velocity u. Middle: spanwise velocity v. Right: pressure p. The truncation size is [2.0, 4.0] × [ 2.0, 2.0] whereas
the original flow field size is [1.0, 8.0] × [ 2.0, 2.0].

Figure 14 Relative L2 norm between predicted flow field and original flow field a streamwise velocity component u; b spanwise velocity component v; c
pressure p with different incomplete data used as training set. A lower value of RL2 denotes a more precise prediction of the original flow field. A much higher
value of RL2 is observed at t = 0 and t = 19.9 where data in the training set are no longer continuous in time.
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where the accessible data are further limited.

4.3.1 Training with extremely sparse or incomplete data
To further illustrate and analysis the potential of adopting
PINN in case of extremely limited data, numerical experi-
ment using a much less training data (Fig. 16) compared
with Sects. 4.1 and 4.2 is conducted.
As can be seen in Figs. 17a and 18, though the total loss

value after 3000 epochs is declined to the order of 1 × 10−4,
the reconstructed flow field using only velocity data at 4
points as training set differs a lot from the original field.
This is because the reconstruction problem under extremely
sparse data is no longer posed, thus the information con-
tained in those four points is not sufficient to recover the full
details of the original flow field. Meanwhile, it can be seen
in Fig. 17a that under this circumstance, PINN exhibits an
obvious feature of overfitting: the data loss is much smaller
than the equation loss, which indicates the trained neural
network has a perfect prediction only on the four given
points and a rather poor prediction in the rest region.
Whereas for the case of enormous truncation, which is an

extension of large truncation in Sect. 4.2 but only the ve-
locity data of the first and last column are presented in the

training set, the reconstruction is still acceptable, as can be
seen in Figs. 18 and 19. The average RL2 between predicted
flow field and original flow field is 2.2 × 10−2 (streamwise
velocity u), 7.8 × 10−2 (spanwise velocity v), 1.6 × 10−1

(pressure p), respectively. Though the average RL2 is greater
than that of “large truncation”, PINN using enormous
truncation data still manages to recover most of the details
(Fig. 18) of original flow field.

4.3.2 Training with spatially and temporally sparse data
In Sect. 4.1, it is discussed that with spatially sparse and
temporally dense data, PINN can reconstruct the original
data with even 1% data. However, during realistic experi-
ments, the measuring frequency of sensors is limited.
Therefore, the temporal information may also be sparse. The
influence of temporal sparsity in terms of 1% spatially
sparse data is illustrated in Fig. 20.
For 100% time data, the interval between two time steps

in the training set is 0.1 s, thus 50% temporally sparse data
corresponds to a time interval of 0.2 s, 20% corresponds to
0.5 s and 10% corresponds to 1.0 s. As can be seen in Fig.
20, the average RL2 of 100% time data and 50% time data is
approximately the same, with an average value of 9 × 10−3

Figure 15 Loss value during training, with incomplete data a small hole, b large hole, c small truncation, d large truncation as training set, all of which are
trained with the same neural network architecture and same training strategy. The spikes of the loss value are caused by the warm restart of the cosine
annealing algorithm, where the learning rate is set to the initial value at the spikes.
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Figure 17 Loss value during training, with a 0.08% data, b enormous truncation as training set, both of which are trained with the same neural network
architecture and same training strategy.

Figure 18 Comparison of predicted data with 100% (second column), 0.8% (third column), enormous truncation (forth column) of original velocity data as
training set and CFD benchmark data (first column) at a temporal snapshot t = 3.3. a Streamwise velocity component u; b spanwise velocity component v; c
pressure p.

Figure 16 Training sets with extremely limited data. a 0.08% data, with only the velocity data of four points are available in the training set; b enormous
truncation data, with only the velocity data of the first and the last column are available in the training set.
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(streamwise velocity u), the average RL2 of 20% time data is
1.2 × 10−2 (streamwise velocity u), the average RL2 of 10%
time data is 1.5 × 10−2 (streamwise velocity u), demon-
strating that though not as precise as that of 100% time data,
reconstruction with sparsity both spatially and temporally is
still successful. Also, the above results reveal that the re-
construction based on PINN has a rather low sensitivity on
temporal sparsity of data.

5. Conclusion and outlook

Aiming at reconstructing the flow field with sufficient ac-
curacy from imperfect initial data (spatially sparse data or
missing data in certain area), this paper successfully pro-
vides a practical way to achieve this goal with the use of
PINN. The training process of the neural network has been
greatly accelerated through the cosine annealing algorithm.
It took only 3000 epochs to accurately fit the original flow
field when 100% of benchmark data is available, with
average RL2 of 3.9 × 10

−3 (streamwise velocity u), 1.2 × 10−2

(spanwise velocity v), 3.5 × 10−2 (pressure p), respectively.
When studying the training data with different sparsity (i.e.,
100%, 20%, 5%, and 1%), the average RL2 of the streamwise
velocity all less than 1 × 10−2, and spanwise velocity all less

than 2 × 10−2, the average RL2 of pressure all less than 1 ×
10−1, indicating the flow field reconstructed with even 1%
data is still an accurate prediction of the original flow field.
When studying data missing in different regions (i.e., small
hole, big hole, small truncation, big truncation in the core
wake region), the average RL2 of the streamwise velocity is
all about 3.9 × 10−3, the average RL2 of the spanwise velocity
all about 1.2 × 10−2, and the average RL2 of pressure all
about 3.5 × 10−2, indicating the reconstructed flow field can
reach the same accuracy as that of 100% benchmark data
even when the core flow area data are missing.
Through quantitative and systematic research with PINN,

it is discovered that the fitting of PINN is not mere the
match of given data, but the calculation of target flow field,
which strongly supports our reconstruction of the flow field
with imperfect data. The high agreement between the pre-
dicted flow field and the real flow field provides encoura-
ging insight into two aspects: (1) regularly select very few
points for measurement and build a training set with the
measured data on these points, PINN can be used to re-
construct the flow field with high precision due to its
compliance with the physical principles, which can provide
a promising data assimilation method for experimental fluid
mechanics; (2) when the available data are incomplete,
PINN can still accurately predict the flow field where data

Figure 19 Relative L2 norm between predicted flow field and original flow field. a Streamwise velocity component u; b spanwise velocity component v; c
pressure p with extremely limited data used as training set.

Figure 20 Relative L2 norm between predicted flow field and original flow field. a Streamwise velocity component u; b spanwise velocity component v; c
pressure p with different temporally sparse data (in terms of 1% spatial sparsity) used as training set.
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are missing, indicating that PIV can be used to measure the
flow field of different regions, and PINN can then be
adopted to predict the flow field of the missing area, so as to
effectively expand the size of the PIV measurement window.
Also, the discussion when PINN is loaded with extremely
limited data and spatially and temporally sparse data in-
dicates that: (1) when the data sparsity reaches an extremely
low value, the training of PINN will exhibit an obvious
feature of overfitting, whereas with extremely incomplete
data, it is still acceptable to reconstruct the flow field with
PINN; (2) PINN has a rather low sensitivity on temporal
sparsity of data.
However, for the purpose of illustration, this paper only

studied incompressible flow at a low Reynolds number. For
more general cases, turbulence equations are needed to de-
scribe the flow so as to impose more accurate constraints in
the neural network. Therefore, how to subtly add auxiliary
equations in the neural network to effectively introduce
turbulence models is a difficult problem to be solved in the
follow-up research, which is also a subject that we are
currently working on.
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通过融合物理神经网络重构稀疏或不完整数据流场的实用方法

许盛峰, 孙振旭, 黄仁芳, 郭迪龙, 杨国伟, 鞠胜军

摘要 高分辨率流场重构被普遍认为是实验流体力学领域的一项艰巨任务,因为测量数据在时间和空间上通常是稀疏或不完整的.具
体而言, 由于实验设备或测量技术的限制, 某些关键区域的数据无法测量. 本文提出了一种基于融合物理神经网络(PINN)的不完美数

据重建流场的实用方法, 该网络将已知数据与物理原理相结合. 通过圆柱体的尾流作为测试算例. 研究了两种不完美数据训练集, 一种

是不同稀疏度的速度数据, 另一种是不同区域缺失的速度数据. 为了加速训练收敛, 本文采用了余弦退火算法以提高PINN的计算效率.
计算结果表明, 该方法不仅可以高精度地重建真实的速度场, 而且即使在数据稀疏度达到1%或核心流动区域数据被截断的情况下, 也
可以精确地预测压力场. 这项研究提供了令人鼓舞的结论, 即PINN可以作为实验流体力学的有潜力的数据同化方法.
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