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ABSTRACT

Thermocapillary migration of a deformed droplet in the combined vertical temperature gradient and thermal radiations with uniform and
non-uniform fluxes is first analyzed. The creeping flow solutions show that the deformed droplet has a slender or a cardioid shape, which
depends on the form of the radiation flux. The deviation from a sphere depends not only on the viscosity and the conductivity ratios of two-
phase fluids but also on capillary and thermal radiation numbers. Moreover, in the roles of interfacial rheology on thermocapillary migration
of a deformed droplet, only the surface dilatational viscosity and the surface internal energy can reduce the steady migration velocity, but the
surface shear viscosity has not any effects on the steady migration velocity. The surface shear and dilatational viscosities affect the deforma-
tion of the droplet by increasing the viscosity ratio of two-phase fluids. The surface internal energy directly reduces the deformation of the
droplet. However, the deformed droplet still keeps its original shape without the influence of interfacial rheology. Furthermore, it is found
that, based on the net force balance condition of the droplet, the normal stress balance at the interface can be used to determine the steady
migration velocity, which is not affected by the surface deformation in the creeping flow. From the expressions of the normal/the tangential
stress balance, it can be proved that the surface shear viscosity does not affect the steady migration velocity. The results could not only pro-
vide a valuable understanding of thermocapillary migration of a deformed droplet with/without the interfacial rheology in a vertical tempera-
ture gradient controlled by thermal radiation but also inspire its potential practical applications in microgravity and microfluidic fields.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0142144

I. INTRODUCTION

The migration of a droplet in an external fluid caused by the
non-uniform surface tension distribution along the interface between
two immiscible fluids under reduced gravity is termed thermocapillary
droplet migration. Based on the practical applications of space explo-
ration, studies on the physical mechanism of thermocapillary droplet
migration become more and more important. To generate the non-
uniform surface tension, two different thermal sources are transmitted
through the bulk liquid to the droplet surface. On the one hand, a ver-
tical temperature gradient is added in the bulk liquid by providing the
non-uniform temperature distribution along the interface. Young
et al.1 studied the thermocapillary migration of a droplet in a vertical
temperature gradient field and obtained the droplet migration velocity
in zero limits of Reynolds (Re) and Marangoni (Ma) numbers. At
small Re and Ma numbers, Bratukhin,2 Balasubramaniam, and Chai,3

and Haj-Hariri et al.4 analyzed the deformation of a droplet in the

thermaocapillary migration process and found an ellipsoidal shape
with the axis of rotation in the flow direction, the amplitude of which
mainly depends on the Weber (We) number and the density ratio of
two-phase fluids. With the aid of the vertical temperature gradient in
the bulk liquid, the thermocapillary droplet migration at small Re and
Ma numbers and its physical mechanisms are understood very well.5

At moderate and large Ma(Re) numbers, Zhao et al.,6 Alhendal et al.,7

Capobianchi et al.,8 and Kalichetty et al.9,10 numerically simulated
thermocapillary migration of a deformed/non-deformed droplet and
found that the steady migration velocity decreases as Ma increases in
both the ranges of moderate and large Ma numbers. However,
Yin et al.11 numerically simulated the thermocapillary migration of a
non-deformed droplet and found that as Ma increases, the steady
migration velocity decreases/increases in the range of moderate/
large Ma numbers. This result is consistent with that obtained numeri-
cally by solving the steady governing equations.12 The qualitative
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differences of theoretical, numerical, and experimental results on ther-
mocapillary drop migration at large Ma numbers and their possible
reasons are summarized in Ref. 13. On the other hand, the thermal
radiation to the droplet surface is another method to provide the non-
uniform temperature distribution along the interface. Oliver and
DeWitt14 analyzed the thermocapillary droplet migration under the
thermal radiation with a uniform thermal flux at zero limits of Re and
Ma numbers and obtained the steady migration velocity. Meanwhile,
Rednikov and Ryazantsev15 independently derived the same results
and determined the deformation of the droplet, which depends on the
Capillary (Ca) number, the viscosity, and the conductivity ratios of
two-phase fluids. At finite Re and Ma numbers, Lopez et al.16 and
Rendondo et al.17 experimentally investigated thermocapillary droplet
migration driven by a laser beam and found the accelerating and
steady migration processes of the droplet. Under various forms of illu-
mination with a laser beam, Ryazantsev et al.18 experimentally con-
trolled the movement of a droplet to push, pull, and hold the
stationary droplet. In terms of numerical simulation, Zhang et al.19

and Gao and Wu20 found that the steady migration velocity of the
droplet decreases as Ma increases. It is clear that, in principle, the laser
radiation technology can produce the similar effects by adding the ver-
tical temperature gradient on thermocapillary droplet migration.

In general, the deformation of the moving droplet depends on a
lot of factors, such as pressure, viscous stress, interface tension, interfa-
cial rheology, and so on. The above works omit an explicit consider-
ation of the interfacial rheology on interface boundary conditions for a
small surface-to-volume ratio. However, when the fluid surface-to-vol-
ume ratio increases, the interface is regarded as material in nature. In
this case, the interfacial rheology will affect the deformation of the
droplet through the force balance on the interface and its terminal
velocity.21 By introducing the interface rheology, Scriven22 added the
effects of the surface dilatational and shear viscosities in the surface
stress tensors and derived a general formulation of the dynamics of a
Newtonian fluid interface of two-phase fluids. Based on the influence
of the stretching and shrinking of surface elements on the temperature
of the interfacial layer, Harper et al.23 and Torres and
Herbolzheimer24 introduced the surface internal energy into the inter-
facial thermal flux balance and indicated that the effect is significant
for the movement of a bubble/drop in low-viscosity liquids at small Re
and Peclet (Pe) numbers. By considering the effects of interfacial rhe-
ology, Khattari et al.25 and Balasubramaniam and Subramanian26 ana-
lyzed thermocapillary droplet migration processes at small Re and
Ma numbers and found that the surface shear viscosity has not
to influence on the steady migration velocities. In recent works, due
to the consideration of the complex transport of surfactants along
the surface, the movement of a droplet under the influence of interfa-
cial rheology received more attention. Schwalbe et al.,27 Das and
Chakraborty,28 and Narsimhan29 show that interfacial rheology can
modify the dynamics of a spherical droplet in a plane Poiseuille flow
or a Stokes flow and found that the droplet migration velocity is unaf-
fected by the shear viscosity, whereas the dilatational viscosity has a
significant effect. Subsequently, Jadhav and Ghosh30 studied the effect
of interfacial kinetics on the settling of a drop in a viscous medium at
small Re and Ma numbers and found that stresses originating from
interfacial rheology tend to decrease the settling velocity.

Recently, in view of the mechanism of the varied surface tension
with temperature, some topics on applications of thermocapillary

convection in a confined regime under the laser heating are concerned
with the fluid-handling microtechnology.31,32 Basically, with the
decreasing of the length scale in microfluidic devices, the effects of
interfacial phenomena become dominant and the local changes of sur-
face tension can be effective to control the growth and movement of
droplets. Rybalko et al.,33 Baroud et al.,34 Muto et al.,35 and Xiao
et al.36 proposed the non-contact manipulation techniques of droplets
by the light irradiation and applied to move a drop forward and back-
ward/sorting drops in the micro-channels. This is due to a local tem-
perature gradient given by the irradiation of heating light to generate
the Marangoni convection around the drop. In terms of the thermoca-
pillary flow at the zero limits of Re and Ma numbers, the forces acting
on drops were determined to reveal correspondent physical mecha-
nisms. In the microgravity environment, the action of laser radiation
may be taken as the thermal radiation technology to control the ther-
mocapillary droplet migration in the vertical temperature gradient
field. It was found that a nonconservative integral thermal flux across
the interface exists in the steady migration process, which leads to an
unsteady process of thermocapillary droplet migration in the vertical
temperature gradient field at large Ma numbers.37 By adding the ther-
mal radiation on the droplet, the conservative integral thermal flux
across the interface in the steady thermocapillary migration at large
Ma numbers is reached to show that the steady migration velocity
increases with the increasing of Ma number.38 Based on the manipula-
tion of varied radiation forms, Wu39 theoretically analyzed and
numerically investigated the thermocapillary migration of a non-
deformed droplet in a vertical temperature gradient controlled by uni-
form and non-uniform thermal radiations. The steady migration
velocity decreases/increases with the increase of the Ma number/
thermal radiation (Tr) number. However, some interesting topics on
thermocapillary migration of a deformed droplet in the combined ver-
tical temperature gradient and thermal radiation, such as the effects of
uniform and non-uniform thermal radiations on the shape of a drop-
let, effects of the interfacial rheology on the steady migration velocity,
and the shape of droplet, remain to be studied with respect to their
physical mechanisms.

In this paper, we first show creeping flow solutions of thermoca-
pillary migration of a deformed droplet in the combined vertical tem-
perature gradient and thermal radiation and determine the
dependence of the droplet shape on the physical parameters of two-
phase fluids. Then, we investigate the effects of interfacial rheology on
the steady migration velocity of the deformed droplet and the shape of
the droplet. Section II determines analytical solutions of thermocapil-
lary migration of a deformed droplet in the combined vertical temper-
ature gradient and thermal radiation at zero limits of Re and Ma
numbers. Effects of interfacial rheology on thermocapillary migration
of a deformed droplet are analyzed in Sec. III. Finally, in Sec. IV, con-
clusions and discussions are given.

II. CREEPING FLOW SOLUTIONS
OF THERMOCAPILLARY MIGRATION
OF A DEFORMED DROPLET

Consider a single droplet with a radius R0ðcmÞ placed in a
continuous-phase fluid of unbounded extend under a uniform vertical
temperature gradient GðK=cmÞ and a thermal radiation flux
XðW=cm2Þ, as illustrated in Fig. 1. The direction of the incident radia-
tion is antiparallel to the uniform vertical temperature gradient G.
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The thermal radiation fluxX [¼ Hf ð�rbÞ] is assumed as a uniform or a
wave function with the amplitude HðW=cm2Þ. The droplet surface
and the continuous-phase fluid are assumed as a gray body and
transparent to radiation, respectively. Since the gravity is ignored, the
droplet moves up due to the non-uniform surface tension r ¼ r0
þrTðT � T0Þ, where r0ðdyn=cmÞ and rTðdyn=cmKÞ are the surface
tension coefficient at the undisturbed temperature T0ðKÞ and the
changing rate of the interfacial tension between the droplet and
the continuous-phase fluid with temperature T(K), respectively. In the
modeling assumptions, both fluids are immiscible, and the physical
properties are constant. The equations of states for density qiðg=cm3Þ,
viscosity liðdyns=cm2Þ, heat conduction kiðW=cmKÞ, and heat diffu-
sivity jiðcm2=sÞ are written as follows:

dqi
dt

¼ dli
dt

¼ dki
dt

¼ dji
dt

¼ 0: (1)

Symbols with subscripts 1 and 2 denote physical variables and coeffi-
cients of the continuous-phase fluid and the droplet, respectively.

By taking the radius of the droplet R0, the velocity v0
¼ �rTGR0=l1 and GR0 as the reference quantities to make coordi-
nates, velocity and temperature dimensionless, the continuity,
momentum and energy equations for the continuous-phase fluid, and
the droplet are derived in the Appendix and written in the non-
dimensional form as

r � vi ¼ 0;

qi
@vi
@t

þ qivi � rvi ¼ �rpi þ li
Re

Dvi;

@Ti

@t
þ vi � rTi ¼ ji

Ma
DTi;

(2)

where the symbols vi; pi;Ti represent the velocity, pressure, and tem-
perature of the continuous fluid and the droplet, respectively. The
physical coefficients are non-dimensionlized by the quantities of
continuous-phase fluid. Re, Ma, Tr, and Ca numbers are, respectively,
defined as

Re ¼ q1v0R0

l1
; Ma ¼ v0R0

j1
; Tr ¼ H

Gk1
; and Ca ¼ v0l

r0
: (3)

In the following, unless otherwise specified, all physical coefficients,
physical quantities, governing equations, and boundary conditions are
provided in the non-dimensional form.

At zero limits of Re and Ma numbers, the momentum and
energy equations in Eq. (2) are derived in the Appendix and written in
an axisymmetric spherical coordinate system (r; h) moving with the
droplet velocityV1

liDvi ¼ Rerpi or E4wi ¼ 0;

DTi ¼ 0;
(4)

where

E2 ¼ @2

@r2
þ sin2h

r2
@2

@ðcos hÞ2 (5)

and wi is the stream functions of the continuous fluid and the droplet.
Since a small deformation of the interface in the steady migration pro-
cess is assumed as RðhÞ ¼ 1þ CanðhÞ and Ca � 1, all boundary con-
ditions in the spherical coordinates transformed from the curve
coordinates of the interface2,40 can be truncated at the first order O
(Ca). At the place far from the droplet, the velocity and temperature of
the continuous-phase fluid should satisfy

v1ðr ! 1; hÞ ! ð�V1 cos h;V1 sin hÞ;
T1ðr ! 1; hÞ ! r cos h:

(6)

At the droplet surface, the velocities inside and outside the droplet
must meet the continuous and impermeable conditions described
below

vr;1ð1; hÞ ¼ vr;2ð1; hÞ ¼ 0;

vh;1ð1; hÞ ¼ vh;2ð1; hÞ:
(7)

Meanwhile, the temperatures and the heat fluxes inside and outside
the droplet must be continuous and in balance with the thermal radia-
tion as given below, respectively,

T1ð1; hÞ ¼ T2ð1; hÞ (8)

and

@T1

@r
ð1; hÞ þ Trf ðhÞ cos h ¼ k2

@T2

@r
ð1; hÞ; h 2 0; p=2½ �;

@T1

@r
ð1; hÞ ¼ k2

@T2

@r
ð1; hÞ; h 2 p=2;p½ �:

(9)

The differences of the tangential and normal stresses between the con-
tinuous-phase fluid and the droplet are balanced by the surface tension
and its interfacial gradient as written below, respectively,

Prh;1ð1; hÞ �Prh;2ð1; hÞ ¼ � 1
Re

@r
@h

(10)

FIG. 1. A schematic of the thermocapillary droplet migration system under a verti-
cal temperature gradient G and a thermal radiation flux X.
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and

Prr;1ð1; hÞ �Prr;2ð1; hÞ ¼ 2Hr
Re

; (11)

where r ¼ 1
Ca� T1ð1; hÞ; 2H ¼ 2R2þ3R02�RR00

ðR2þR02Þ3=2 � ctgh R0

RðR2þR02Þ1=2 ¼ 2

�Cað2nþ ctghn0 þ n00Þ, and Prh;i ¼ li
Re ½r @

@r
vh;i
r

� �þ 1
r
@vr;i
@h �, Prr;i

¼ �pi þ 2li
Re

@vr;i
@r . The deformed droplet in the steady migration process

is required to satisfy the following two facts. On the one hand, the vol-
ume of the droplet remains unchanged, which demands thatðp

0
nðhÞ sin hdh ¼ 0: (12)

On the other hand, the center of mass of the droplet is always fixed at
the origin of coordinates, which demands thatðp

0
nðhÞ sin h cos hdh ¼ 0: (13)

The shape of the droplet can be, thus, written as

RðhÞ ¼ 1þ CanðhÞ ¼ 1þ Ca
X1
n¼2

AnPnðcos hÞ; (14)

where Pnðcos hÞ is the Legendre polynomial of order n and An is an
unknown parameter.

In Subsections IIA–II C, the thermal radiation fluxes Trf ðhÞ with
the uniform thermal radiation f1 ¼ 1 and the non-uniform thermal
radiations f2 ¼ cos h and f3 ¼ sin2h are taken to analyze creeping
flow solutions of thermocapillary migration of a deformed droplet in

the combined vertical temperature gradient and thermal radiation,
respectively.

A. Uniform thermal radiation [f1ðhÞ51]

Following the methods for solving the problems for low Re num-
ber hydrodynamics,39,41,42 the solutions of the governing equation (4)
satisfying the boundary conditions (6)–(10) with the uniform thermal
radiation [f1ðhÞ ¼ 1] can be determined as

w1¼
V1
2

ðr2�r�1Þsin2hþ
X1

n¼3;odd

Dnðr3�n�r1�nÞC�1=2
n ðcoshÞ;

w2¼
3V1
4

ðr4�r2Þsin2hþ
X1

n¼3;odd

Dnðr2þn�rnÞC�1=2
n ðcoshÞ;

(15)

and

T1 ¼ Tr
4
r�1 þ r þ 2� 2k2 þ Tr

2ð2þ k2Þ r�2

� �
cos h

þ
X1

n¼2;even

anr
�ðnþ1ÞPnðcos hÞ;

T2 ¼ Tr
4
þ 6þ Tr
2ð2þ k2Þ r cos hþ

X1
n¼2;even

anr
nPnðcos hÞ;

(16)

where an ¼ ð�1Þðn�2Þ=2ð2nþ1ÞTr
2½ð1þk2Þnþ1�ðn�1Þðnþ2ÞP

n=2
j¼1

2j�1
2j ðn � 2; evenÞ, Dn

¼ nðn�1Þ
2ð2n�1Þð1þl2Þ an�1 ðn � 3; oddÞ. C�1=2

n ðsÞ ¼ Ð 1
s Pn�1ðxÞdx is the

Gegenbauer polynomial of order n. As an example shown in Fig. 2(a),

FIG. 2. Streamlines in velocity fields/isotherms in temperature fields described by the Gegenbauer/Legendre polynomial in Eqs. (15), (22), and (29)/Eqs. (16), (23), and (30)
truncated at the order n¼ 5/4 for thermocapillary droplet migration in the combined vertical temperature gradient and the thermal radiations (a) Trf1ðhÞ, (b) Trf2ðhÞ, and (c)
Trf3ðhÞ at the zero limits of Re and Ma numbers under k2 ¼ l2 ¼ 0:5 and Tr¼ 1.
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when the external streamlines go around the droplet, the Hill’s spheri-
cal vortex is formed inside the droplet. At the top of the droplet, the
heat absorbed by the interface is transported to the continuous-phase
fluid and the droplet through heat conduction. The temperature of
both fluids near the top of the droplet is, thus, significantly higher than
that of other parts. The isotherms at the top of the droplet tend to
bend. Moreover, by integrating the radial momentum equations in Eq.
(4), both the pressure fields of the continuous-phase fluid and the
droplet are as follows:

p1 ¼ � 1
Re

X1
n¼3;odd

2ð2n� 3Þ
n

DnPn�1ðcos hÞr�n;

p2 ¼ l2
Re

"
p0 � 15V1r cos h

�
X1

n¼3;odd

2ð2nþ 1Þ
n� 1

DnPn�1ðcos hÞrn�1

#
:

(17)

The normal stress balance at the interface of Eq. (11) can be
rewritten as

�p1 þ 2
Re

@vr;1
@r

þ p2 � 2l2
Re

@vr;2
@r

¼ 2H
Re

1
Ca

� T1ð1; hÞ
� �

: (18)

By substituting the solutions in Eqs. (15)–(17), Eq. (18) is derived as

� 6V1 cos h�
X1

n¼3;odd

6
n
DnPn�1ðcos hÞ

þ l2 p0 � 9V1 cos h�
X1

n¼3;odd

6
n� 1

DnPn�1ðcos hÞ
" #

¼ 2
1
Ca

� Tr
4
� 6þ Tr
2ð2þ k2Þ cos h�

X1
n¼2;even

anPnðcos hÞ
"

þ
X1
n¼2

ðn� 1Þðnþ 2Þ
2

AnPnðcos hÞ þ OðCaÞ
#
; (19)

where the first-order term O(Ca) can be truncated. In Eq. (19), the
Legendre polynomial coefficients of the same order n on both sides of
the equation must be equal. Based on this rule, the following results
can be derived from Eq. (19)

p0 ¼ 2
Ca

� Tr
2

ðn ¼ 0Þ;

V1;1 ¼ 6þ Tr
3ð2þ k2Þð2þ 3l2Þ

ðn ¼ 1Þ;

An ¼ nþ 2þ ðn� 1Þl2
ðn� 1Þðnþ 2Þð2nþ 1Þð1þ l2Þ

an ðn � 2; evenÞ;

An ¼ 0 ðn � 2; oddÞ;

(20)

where an ! Oðn�2Þ and An ! Oðn�4Þ if nð� 2; evenÞ ! 1. It
reveals that An monotonously decreases as nð� 2; evenÞ increases.
The shape of the deformed droplet can be, thus, written as

R1ðhÞ ¼ 1þ CanðhÞ ¼ 1þ Ca
X1

n¼2;even

AnPnðcos hÞ

� 1þ ð4þ l2ÞCaTr
64ð3þ 2k2Þð1þ l2Þ

P2ðcos hÞ: (21)

It is noted that the deformed droplet attains a slender sphere
½nð0Þ ¼ nðpÞ > 0 and nðp=2Þ < 0�, as shown in Fig. 3. The slender
sphere in the ðr; hÞ coordinate plane has a mirror symmetry about the
line h ¼ p=2. Meanwhile, under the uniform thermal radiation
Trf1 ¼ 1, the steady migration velocity V1;1 is increased by 16.6% as
an example given in Table I.

B. Non-uniform thermal radiation [f2ðhÞ5cos h]

Using the above methods, the solutions of the governing equation
(4) satisfying the boundary conditions (6)–(10) with the non-uniform
thermal radiation [f2ðhÞ ¼ cos h] can be determined as

FIG. 3. The shape RiðhÞ of the deformed droplet vs h 2 ½0; p� for thermocapillary
migration in the combined vertical temperature gradient and the thermal radiation
TrfiðhÞ at the zero limits of Re and Ma numbers under k2 ¼ l2 ¼ 0:5, Ca¼ 0.1,
and Tr¼ 1. The uniform radiation function f1 ¼ 1 and the non-uniform radiation
functions f2 ¼ cos h and f3 ¼ sin2h are denoted by the red, green, and blue lines,
respectively.

TABLE I. The steady migration velocity Vi;1 of the droplet in the vertical tempera-
ture gradient without/with the thermal radiation TrfiðhÞ (f1 ¼ 1; f2 ¼ cos h, and
f3 ¼ sin2h) at the zero limits of Re and Ma numbers under k2 ¼ l2 ¼ 0:5 and
Tr¼ 0/1. The effects of interfacial rheology with js ¼ Es ¼ 0:2 on Vi;1 are also
included for the comparison. The number in parentheses/square brackets after entry
is the incremental percentage based on the droplet migration velocity without/with
the thermal radiation (Tr¼ 0/1 and js ¼ Es ¼ 0).

V1;1 V2;1 V3;1

Tr¼ 0, js ¼ Es ¼ 0 0.229 0.229 0.229
Tr¼ 1, js ¼ Es ¼ 0 0.267 (16.6) 0.257 (12.2) 0.244 (6.6)
Tr¼ 1, js ¼ Es ¼ 0:2 0.230 [�13.9] 0.222 [�13.6] 0.210 [�13.9]
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w1 ¼
V1
2

ðr2 � r�1Þ sin2hþ D3ð1� r�2ÞC�1=2
3 ðcos hÞ

þ
X1

n¼4;even

Dnðr3�n � r1�nÞC�1=2
n ðcos hÞ;

w2 ¼
3V1
4

ðr4 � r2Þ sin2hþ D3ðr5 � r3ÞC�1=2
3 ðcos hÞ

þ
X1

n¼4;even

Dnðr2þn � rnÞC�1=2
n ðcos hÞ;

(22)

and

T1 ¼ Tr
6
r�1 þ r þ 8� 8k2 þ 3Tr

8ð2þ k2Þ r�2

� �
cos h

þ Tr
3ð3þ 2k2Þ r

�3P2ðcos hÞ

þ
X1

n¼3;odd

anr
�ðnþ1ÞPnðcos hÞ;

T2 ¼ Tr
6
þ 3ð8þ TrÞ

8ð2þ k2Þ r cos hþ
Tr

3ð3þ 2k2Þ r
2P2ðcos hÞ

þ
X1

n¼3;odd

anr
nPnðcos hÞ;

(23)

where an ¼ ð�1Þðnþ1Þ=2ð2nþ1ÞTr
½ð1þk2Þnþ1�ðn�2Þðnþ1Þðnþ3ÞP

ðn�1Þ=2
j¼1

2j�1
2j ðn � 3; oddÞ, D3

¼ Tr
5ð3þ2k2Þð1þl2Þ ; and Dn ¼ nðn�1Þ

2ð2n�1Þð1þl2Þ an�1 ðn � 4; evenÞ. As an

example shown in Fig. 2(b), the velocity fields are similar to those
for the uniform thermal radiation f1. However, the temperature of
both fluids near the top of the droplet is lower than that for the uni-
form thermal radiation f1 due to the non-uniform radiation f2.
Moreover, by integrating the radial momentum equations in Eq.
(4), both the pressure fields of the continuous-phase fluid and the
droplet are as follows:

p1 ¼ � 1
Re

"
2D3P2ðcos hÞr�3

þ
X1

n¼4;even

2ð2n� 3Þ
n

DnPn�1ðcos hÞr�n

#
;

p2 ¼ l2
Re

"
p0 � 15V1r cos h� 5D3P2ðcos hÞr2

�
X1

n¼4;even

2ð2nþ 1Þ
n� 1

DnPn�1ðcos hÞrn�1

#
:

(24)

The normal stress balance at the interface of Eq. (11) can be
rewritten as

�p1 þ 2
Re

@vr;1
@r

þ p2 � 2l2
Re

@vr;2
@r

¼ 2H
Re

1
Ca

� T1ð1; hÞ
� �

: (25)

By substituting the solutions in Eqs. (22)–(24), Eq. (25) is derived as

� 6V1 cos h� 2D3P2ðcos hÞ �
X1

n¼4;even

6
n
DnPn�1ðcos hÞ

þ l2

"
p0 � 9V1 cos h� 3D3P2ðcos hÞ

�
X1

n¼4;even

6
n� 1

DnPn�1ðcos hÞ
#

¼ 2
1
Ca

� Tr
6
� 3ð8þ TrÞ

8ð2þ k2Þ cos h�
Tr

3ð3þ 2k2Þ P2ðcos hÞ
�

�
X1

n¼3;odd

anPnðcos hÞ þ
X1
n¼2

ðn� 1Þðnþ 2Þ
2

AnPnðcos hÞ

þOðCaÞ
�
; (26)

where the first-order term O(Ca) can be truncated. In Eq. (26), the
Legendre polynomial coefficients of the same order n on both sides of
the equation must be equal. Based on this rule, the following results
can be derived from Eq. (26):

p0 ¼ 2
Ca

� Tr
3

ðn ¼ 0Þ;

V2;1 ¼ 8þ Tr
4ð2þ k2Þð2þ 3l2Þ

ðn ¼ 1Þ;

A2 ¼ ð4þ l2ÞTr
60ð3þ 2k2Þð1þ l2Þ

ðn ¼ 2Þ;

An ¼ nþ 2þ ðn� 1Þl2
ðn� 1Þðnþ 2Þð2nþ 1Þð1þ l2Þ

an ðn � 3; oddÞ;

An ¼ 0 ðn � 3; evenÞ;

(27)

where an ! Oðn�3Þ and An ! Oðn�5Þ, if nð� 3; oddÞ ! 1. It
reveals that An monotonously decreases as nð� 3; oddÞ increases. The
shape of the deformed droplet can be, thus, written as

R2ðhÞ ¼ 1þ CanðhÞ

¼ 1þ CaA2P2ðcos hÞ þ Ca
X1

n¼3;odd

AnPnðcos hÞ

� 1þ ð4þ l2ÞCaTr
60ð3þ 2k2Þð1þ l2Þ

P2ðcos hÞ: (28)

It is noted that the deformed droplet attains a slender sphere ½nð0Þ
¼ nðpÞ > 0 and nðp=2Þ < 0� as shown in Fig. 3. The slender sphere
in the ðr; hÞ coordinate plane has a mirror symmetry about the line
h ¼ p=2. Meanwhile, under the non-uniform thermal radiation
Trf2 ¼ cos h, the steady migration velocity V1;2 is increased by 12.2%
as an example given in Table I.

In comparison between the uniform thermal radiation f1 ¼ 1
and the non-uniform thermal radiation f2 ¼ cos ðhÞ, they have a simi-
lar heat flux distribution absorbed by the upper interface of the drop-
let. As shown in Fig. 4, the higher/lower heat flux is concentrated on
the arc of h 2 ½0;p=4�/h 2 ½p=4;p=2�. It produces the similar defor-
mation of the droplet for thermocapillary migration in the combined
vertical temperature gradient and thermal radiation.
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C. Non-uniform thermal radiation [f3ðhÞ5sin2
h]

Following the above derivations, the solutions of the governing
equation (4) satisfying the boundary conditions (6)–(10) with the
non-uniform thermal radiation ½f3ðhÞ ¼ sin2h� can be determined as

w1 ¼
V1
2

ðr2 � r�1Þ sin2hþ D4ðr�1 � r�3ÞC�1=2
4 ðcos hÞ

þ
X1

n¼5;odd

Dnðr3�n � r1�nÞC�1=2
n ðcos hÞ;

w2 ¼
3V1
4

ðr4 � r2Þ sin2hþ D4ðr6 � r4ÞC�1=2
4 ðcos hÞ

þ
X1

n¼5;odd

Dnðr2þn � rnÞC�1=2
n ðcos hÞ;

(29)

and

T1 ¼ Tr
8
r�1 þ r þ 5� 5k2 þ Tr

5ð2þ k2Þ r�2

� �
cos h

� Tr
5ð4þ 3k2Þ r

�4P3ðcos hÞ

þ
X1

n¼4;even

anr
�ðnþ1ÞPnðcos hÞ;

T2 ¼ Tr
8
þ 15þ Tr
5ð2þ k2Þ r cos h�

Tr
5ð4þ 3k2Þ r

3P3ðcos hÞ

þ
X1

n¼4;even

anr
nPnðcos hÞ;

(30)

where an ¼ ð�1Þn=2ðn�2Þðnþ3Þð2nþ1ÞTr
2½ð1þk2Þnþ1�ðn�3Þðn�1Þðnþ2Þðnþ4ÞP

n=2
j¼1

2j�1
2j ðn � 4; evenÞ; D4

¼ � 6Tr
35ð4þ3k2Þð1þl2Þ ; and Dn ¼ nðn�1Þ

2ð2n�1Þð1þl2Þ an�1ðn � 5; oddÞ. As an

example shown in Fig. 2(c), the velocity fields are similar to those for the
uniform/non-uniform thermal radiation f1/f2. However, the temperature

of both fluids near the top of the droplet is further reduced. Compared
with the uniform/non-uniform thermal radiation f1/f2, the isotherms at
the top of the droplet tend to be straight. Moreover, by integrating the
radial momentum equations in Eq. (4), both the pressure fields of the
continuous-phase fluid and the droplet are as follows:

p1 ¼ � 1
Re

"
5
2
D4P3ðcos hÞr�4

þ
X1

n¼5;odd

2ð2n� 3Þ
n

DnPn�1ðcos hÞr�n

#
;

p2 ¼ l2
Re

"
p0 � 15V1r cos h� 6D4P3ðcos hÞr3

�
X1

n¼5;odd

2ð2nþ 1Þ
n� 1

DnPn�1ðcos hÞrn�1

#
:

(31)

The normal stress balance at the interface of Eq. (11) can be
rewritten as

�p1 þ 2
Re

@vr;1
@r

þ p2 � 2l2
Re

@vr;2
@r

¼ 2H
Re

1
Ca

� T1ð1; hÞ
� �

: (32)

By substituting the solutions in Eqs. (29)–(31), Eq. (32) is derived as

� 6V1 cos h� 3
2
D4P3ðcos hÞ �

X1
n¼5;odd

6
n
DnPn�1ðcos hÞ

þ l2

"
p0 � 9V1 cos h� 2D4P3ðcos hÞ

�
X1

n¼5;odd

6
n� 1

DnPn�1ðcos hÞ
#

¼ 2

"
1
Ca

� Tr
8
� 15þ Tr
5ð2þ k2Þ cos hþ

Tr
5ð4þ 3k2Þ P3ðcos hÞ

�
X1

n¼4;even

anPnðcos hÞ þ
X1
n¼2

ðn� 1Þðnþ 2Þ
2

� AnPnðcos hÞ þ OðCaÞ
#
; (33)

where the first-order term O(Ca) can be truncated. In Eq. (33), the
Legendre polynomial coefficients of the same order n on both sides of
the equation must be equal. Based on this rule, the following results
can be derived from Eq. (33),

p0 ¼ 2
Ca

� Tr
4

ðn ¼ 0Þ;

V3;1 ¼ 2ð15þ TrÞ
15ð2þ k2Þð2þ 3l2Þ

ðn ¼ 1Þ;
A2 ¼ 0 ðn ¼ 2Þ;

A3 ¼ � ð5þ 2l2ÞTr
350ð4þ 3k2Þð1þ l2Þ

ðn ¼ 3Þ;

An ¼ nþ 2þ ðn� 1Þl2
ðn� 1Þðnþ 2Þð2nþ 1Þð1þ l2Þ

an ðn � 4; evenÞ;
An ¼ 0 ðn � 4; oddÞ;

(34)

FIG. 4. Heat fluxes TrfiðhÞ cos h absorbed by the upper interface of the droplet vs
h 2 ½0; p=2� at Tr¼ 1 for the uniform thermal radiation f1 ¼ 1 and the non-uniform
thermal radiations f2 ¼ cos h and f3 ¼ sin2h are denoted by the red, green, and
blue lines, respectively.
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where an ! Oðn�2Þ and An ! Oðn�4Þ, if nð� 4; evenÞ ! 1. It
reveals that An monotonously decreases as nð� 4; evenÞ increases.
The shape of the deformed droplet can be, thus, written as

R3ðhÞ ¼ 1þ CanðhÞ

¼ 1þ CaA3P3ðcos hÞ þ Ca
X1

n¼4;even

AnPnðcos hÞ

� 1� ð5þ 2l2ÞCaTr
350ð4þ 3k2Þð1þ l2Þ

P3ðcos hÞ: (35)

It is noted that the deformed droplet attains a cardioid sphere ½nð0Þ
¼ �nðpÞ < 0 and nðp=2Þ ¼ 0� as shown in Fig. 3. The cardioid
sphere in the ðr; hÞ coordinate plane has a central symmetry about the
point ðr; hÞ ¼ ð1;p=2Þ. Meanwhile, under the non-uniform thermal
radiation Trf3 ¼ sin2h, the steady migration velocity V1;3 is increased
by 6.6% as an example given in Table I.

To compare with the uniform thermal radiation f1 ¼ 1 and the
non-uniform thermal radiation f2 ¼ cos ðhÞ, the non-uniform thermal
radiation f3 ¼ sin2ðhÞ has a different heat flux distribution absorbed by
the upper interface of the droplet. As shown in Fig. 4, the higher/lower
heat flux is concentrated on the arc of h 2 ½p=4;p=2�/h 2 ½0; p=4�. It
causes the different deformation of the droplet for thermocapillary migra-
tion in the combined vertical temperature gradient and thermal radiation.
In comparison among the uniform thermal radiation f1 and the non-
uniform thermal radiations f2 and f3, the deformation of the droplet
depends not only on the viscosity ratio l2 and the conductivity ratio k2 of
the two-phase fluids but also on Ca and Tr numbers. Meanwhile, the
thermal radiation flux Trfi can significantly increase the steady migration
velocity Vi;1 of the droplet as an example given in Table I. Moreover,
based on the net force balance condition of the droplet
(Fz ¼ 4pD2 ¼ 0), the normal stress balance at the interface in Eq. (11), i.
e., the matched Legendre polynomial coefficients of P1ðcos hÞ on both
sides of Eqs. (19), (26), and (33), can be used to determine the steady
migration velocityVi;1. In other words, considering the droplet deforma-
tion does not affect the steady migration velocity Vi;1. This result is
agreement with those obtained in the investigating thermocapillary
migration of a deformed droplet in a vertical temperature gradient/under
the thermal radiation at the zero limits of Re2–4 andMa numbers.15

III. EFFECTS OF INTERFACIAL RHEOLOGY
ON THERMOCAPILLARY MIGRATION
OF A DEFORMED DROPLET

From the analysis by Happer et al.23 and Scriven,22 the interfacial
rheology can affect both the heat flux and the stress balances at the
interface. The heat fluxes inside and outside the droplet must be con-
tinuous and in balance with the thermal radiation and the interfacial
rheology (accommodating the stretching and shrinkage of the inter-
face related to the surface internal energy es per unit area and the sur-
face tension r) as follows:

@T1

@r
ð1;hÞ þTrf ðhÞ cosh¼ k2

@T2

@r
ð1;hÞ þ Es

sinh
@

@h

� vhð1;hÞ sinh½ �; h 2 0;p=2½ �;
@T1

@r
ð1;hÞ ¼ k2

@T2

@r
ð1;hÞ þ Es

sinh
@

@h

� vhð1;hÞ sinh½ �; h 2 p=2;p½ �;

(36)

where Esð¼ es � rÞ, which is non-dimensionalized by �l1k1=rT , is
assumed as a positive constant over the droplet surface. The differ-
ences of the tangential and normal stresses at the interface are bal-
anced by the surface tension, its interfacial gradient, and the interfacial
rheology (considering effects of the surface viscosity) as written below,
respectively,

Prh;1ð1; hÞ �Prh;2ð1; hÞ
¼ � 1

Re
@r
@h

� 2ls
Re

vhð1; hÞ � js þ ls
Re

@

@h

� 1
sin h

@

@h
vhð1; hÞ sin h½ �

� �
(37)

and

Prr;1ð1;hÞ �Prr;2ð1;hÞ ¼ 2Hr
Re

þ 2js
Re

1
sinh

@

@h
vhð1;hÞ sinh½ �; (38)

where ls and js, which are non-dimensionalized by l1R0, denote the
surface shear and dilatational viscosities, respectively.

In Subsections IIIA–IIIC, the thermal radiation fluxes Trf ðhÞ
with the uniform thermal radiation f1 ¼ 1 and the non-uniform ther-
mal radiations f2 ¼ cos h and f3 ¼ sin2h are taken to investigate the
effects of interfacial rheology on thermocapillary migration of a
deformed droplet in the combined vertical temperature gradient and
thermal radiation, respectively.

A. Uniform thermal radiation [f1ðhÞ51]

Following the methods for solving the problems for low Re num-
ber hydrodynamics,39,41,42 the solutions of the governing equation (4)
satisfying the boundary conditions (6)–(8), (36), and (37) with the uni-
form thermal radiation [f1ðhÞ ¼ 1] can be determined as

w1 ¼
V1
2

ðr2 � r�1Þ sin2hþ
X1

n¼3;odd

Dnðr3�n � r1�nÞC�1=2
n ðcos hÞ;

w2 ¼
3V1
4

ðr4 � r2Þ sin2hþ
X1

n¼3;odd

Dnðr2þn � rnÞC�1=2
n ðcos hÞ;

(39)

and

T1 ¼ Tr
4
r�1 þ r þ 2� 2k2 þ Tr � 6EsV1

2ð2þ k2Þ r�2

� �
cos h

þ
X1

n¼2;even

anr
�ðnþ1ÞPnðcos hÞ;

T2 ¼ Tr
4
þ 6þ Tr � 6EsV1

2ð2þ k2Þ r cos hþ
X1

n¼2;even

anr
nPnðcos hÞ;

(40)

where Dn¼ ð�1Þðn�1Þ=2nðn�1Þð2n�1ÞTr
4f½k2ðn�1Þþn�knþnðn�1ÞEsgðn�2Þðnþ1ÞP

ðn�1Þ=2
j¼1

2j�1
2j ðn�3;oddÞ;

kn¼ð2n�1Þð1þl2Þþnðn�1Þjsþðn�2Þðnþ1Þls; and an¼ 2knþ1
nðnþ1Þ

�Dnþ1ðn�2;evenÞ. As an example shown in Fig. 5(a), the steady
velocity and temperature fields are similar to those in Fig. 2(a), which
reveals that the influence of the interfacial rheology on them is
not obvious. Through the net force balance condition [Fz¼2p
�Ð p

0 ½Prr;1ð1;hÞcosh�Prh;1ð1;hÞsinh�sinhdh¼0] and the shear
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stress balance condition at the interface in Eq. (37), the steady migra-
tion velocity is then obtained and written as

Vir
1;1 ¼ 6þ Tr

3 ð2þ k2Þð2þ 3l2 þ 2jsÞ þ 2Es½ � : (41)

The normal stress balance at the interface of Eq. (38) can be
rewritten as

� p1 þ 2
Re

@vr;1
@r

þ p2 � 2l2
Re

@vr;2
@r

¼ 2H
Re

1
Ca

� T1ð1; hÞ
� �

þ 2js
Re

1
sin h

@

@h
vhð1; hÞ sin h½ �: (42)

By substituting the solutions in Eqs. (39) and (40) and the correspond-
ing pressure fields pi [having the same expressions in Eq. (17)], Eq.
(42) is derived as

� 6V1 cos h�
X1

n¼3;odd

6
n
DnPn�1ðcos hÞ

þ l2 p0 � 9V1 cos h�
X1

n¼3;odd

6
n� 1

DnPn�1ðcos hÞ
" #

¼ 2

�
1
Ca

� Tr
4
� 6þ Tr � 6EsV1

2ð2þ k2Þ cos h�
X1

n¼2;even

anPnðcos hÞ

þ
X1
n¼2

ðn� 1Þðnþ 2Þ
2

AnPnðcos hÞ þ OðCaÞ
�

þ 2js 3V1 cos hþ 2
X1

n¼3;odd

DnPn�1ðcos hÞ
" #

; (43)

where the first-order term O(Ca) can be truncated. In Eq. (43), the
Legendre polynomial coefficients of the same order n on both sides of
the equation must be equal. Based on this rule, the following results
can be derived from Eq. (43),

p0 ¼ 2
Ca

�Tr
2

ðn¼ 0Þ;

Vir
1;1 ¼ 6þTr

3 ð2þ k2Þð2þ 3l2 þ 2jsÞ þ 2Es½ � ðn¼ 1Þ;

An ¼ ðn� 1Þl2 þ ðnþ 2Þ 1þ 2ðn� 1Þls½ �
knþ1ðn� 1Þðnþ 2Þ an ðn� 2; evenÞ;

An ¼ 0 ðn� 2;oddÞ;

(44)

where an ! Oðn�2Þ and An ! Oðn�4Þ if nð� 2; evenÞ ! 1. It
reveals that An monotonously decreases as nð� 2; evenÞ increases.
Thus, the shape of the deformed droplet is written as

Rir
1 ðhÞ ¼ 1þ CanðhÞ

¼ 1þ CaA2P2ðcoshÞ þ Ca
X1

n¼4;even

AnPnðcoshÞ

� 1þ 5ð4þ l2 þ 8lsÞCaTr
64fð3þ 2k2Þ 5ð1þ l2Þ þ 6js þ 4ls½ � þ 6EsgP2ðcoshÞ:

(45)

It is noted that the steady migration velocity Vir
1;1 and the shape

Rir
1 ðhÞ of the deformed droplet return V1;1 and R1ðhÞ in Eqs. (20) and

(21), respectively, when the surface shear viscosity ls, the surface dila-
tational viscosity js and the surface internal energy Es are zero. Only

FIG. 5. Streamlines in velocity fields/isotherms in temperature fields described by the Gegenbauer/Legendre polynomial in Eqs. (39), (46), and (53)/Eqs. (40), (47), and (54)
truncated at the order n¼ 5/4 for thermocapillary migration of a droplet associated with interfacial rheology in the combined vertical temperature gradient and the thermal radia-
tions (a) Trf1ðhÞ, (b) Trf2ðhÞ, and (c) Trf3ðhÞ at the zero limits of Re and Ma numbers under k2 ¼ l2 ¼ 0:5; ks ¼ ls ¼ Es ¼ 0:2, and Tr¼ 1.
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the surface dilatational viscosity js and the surface internal energy Es
can reduce the steady migration speed Vir

1;1, but the surface shear vis-
cosity ls does not affect the steady migration velocity Vir

1;1. As an
example given in Table I, under the effects of interfacial rheology,
Vir
1;1 is decreased by 13.9%. Moreover, the surface shear viscosity ls

and the surface dilatational viscosity js affect the deviation value nðhÞ
from a sphere by increasing the viscosity ratio l2 of two-phase fluids.
The surface internal energy Es directly reduces the deviation value
nðhÞ from a sphere. However, the deformed droplet still attains a slen-
der sphere as shown in Fig. 6.

B. Non-uniform thermal radiation [f2ðhÞ5cos h]

Using the above methods, the solutions of the governing equa-
tion (4) satisfying the boundary conditions(6)–(8), (36), and (37)
with the non-uniform thermal radiation [f2ðhÞ ¼ cos h] can be
determined as

w1 ¼
V1
2

ðr2 � r�1Þ sin2hþ D3ð1� r�2ÞC�1=2
3 ðcos hÞ

þ
X1

n¼4;even

Dnðr3�n � r1�nÞC�1=2
n ðcos hÞ;

w2 ¼
3V1
4

ðr4 � r2Þ sin2hþ D3ðr5 � r3ÞC�1=2
3 ðcos hÞ

þ
X1

n¼4;even

Dnðr2þn � rnÞC�1=2
n ðcos hÞ;

(46)

and

T1 ¼ Tr
6
r�1 þ r þ 8� 8k2 þ 3Tr � 24EsV1

8ð2þ k2Þ r�2

� �
cos h

þTr � 6EsD3

3ð3þ 2k2Þ r
�3P2ðcos hÞ

þ
X1

n¼3;odd

anr
�ðnþ1ÞPnðcos hÞ;

T2 ¼ Tr
6
þ 3ð8þ Tr � 8EsV1Þ

8ð2þ k2Þ r cos h

þTr � 6EsD3

3ð3þ 2k2Þ r
2P2ðcos hÞ þ

X1
n¼3;odd

anr
nPnðcos hÞ;

(47)

where D3 ¼ Tr
ð3þ2k2Þk3þ6Es

; Dn ¼ ð�1Þn=2nðn�1Þð2n�1ÞTr
2f½k2ðn�1Þþn�knþnðn�1ÞEsgðn�3Þnðnþ2Þ

�Pðn�2Þ=2
j¼1

2j�1
2j ðn � 4; evenÞ; kn ¼ ð2n� 1Þð1þ l2Þ þ nðn� 1Þjs

þðn� 2Þðnþ 1Þls; and an ¼ 2knþ1

nðnþ1ÞDnþ1 ðn � 3; oddÞ. As an exam-

ple shown in Fig. 5(b), the steady velocity and temperature fields are
similar to those in Fig. 2(b), which reveals that the influence of the inter-
facial rheology on them is not obvious. Through the net force balance
condition {Fz ¼ 2p

Ð p
0 ½Prr;1ð1;hÞcosh�Prh;1ð1;hÞ sinh� sinhdh¼ 0}

and the shear stress balance condition at the interface in Eq. (37), the
steady migration velocity is then obtained and written as

Vir
2;1 ¼ 8þ Tr

4 ð2þ k2Þð2þ 3l2 þ 2jsÞ þ 2Es½ � : (48)

The normal stress balance at the interface of Eq. (38) can be
rewritten as

� p1 þ 2
Re

@vr;1
@r

þ p2 � 2l2
Re

@vr;2
@r

¼ 2H
Re

1
Ca

� T1ð1; hÞ
� �

þ 2js
Re

1
sin h

@

@h
vhð1; hÞ sin h½ �: (49)

By substituting the solutions in Eqs. (46) and (47) and the correspond-
ing pressure fields pi [having the same expressions in Eq. (24)], Eq.
(49) is derived as

� 6V1 cosh� 2D3P2ðcoshÞ�
X1

n¼4;even

6
n
DnPn�1ðcoshÞ

þl2

"
p0 � 9V1 cosh� 3D3P2ðcoshÞ

�
X1

n¼4;even

6
n� 1

DnPn�1ðcoshÞ
#

¼ 2

"
1
Ca

�Tr
6
� 3ð8þTr� 8EsV1Þ

8ð2þ k2Þ cosh�Tr� 6EsD3

3ð2þ 2k2Þ P2ðcoshÞ

�
X1

n¼3;odd

anPnðcoshÞþ
X1
n¼2

ðn� 1Þðnþ 2Þ
2

AnPnðcoshÞþOðCaÞ
#

þ 2js 3V1 coshþ 2D3P2ðcoshÞþ 2
X1

n¼4;even

DnPn�1ðcoshÞ
" #

;

(50)

FIG. 6. The shape Rir
i ðhÞ of the deformed droplet vs h 2 ½0;p� for thermocapillary

migration in the combined vertical temperature gradient and the thermal radiation
TrfiðhÞ at the zero limits of Re and Ma numbers under k2 ¼ l2 ¼ 0:5; js ¼ ls
¼ Es ¼ 0:2, Ca¼ 0.1, and Tr¼ 1. The uniform radiation function f1 ¼ 1 and the
non-uniform radiation functions f2 ¼ cos h and f3 ¼ sin2h are denoted by the red,
green, and blue lines, respectively.
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where the first-order term O(Ca) can be truncated. In Eq. (50), the
Legendre polynomial coefficients of the same order n on both sides of
the equation must be equal. Based on this rule, the following results
can be derived from Eq. (50)

p0 ¼ 2
Ca

� Tr
3

ðn¼ 0Þ;

Vir
2;1 ¼ 8þ Tr

4 ð2þ k2Þð2þ 3l2 þ 2jsÞ þ 2Es½ � ðn¼ 1Þ;

A2 ¼ 4þ l2 þ 8ls
12

D3 ðn¼ 2Þ;

An ¼ ðn� 1Þl2 þ ðnþ 2Þ 1þ 2ðn� 2Þls½ �
knþ1ðn� 1Þðnþ 2Þ an ðn� 3;oddÞ;

An ¼ 0 ðn� 3; evenÞ;

(51)

where an ! Oðn�3Þ and An ! Oðn�5Þ if nð� 3; oddÞ ! 1. It
reveals that An monotonously decreases as nð� 3; oddÞ increases.
Thus, the shape of the deformed droplet is written as

Rir
2 ðhÞ ¼ 1þ CanðhÞ

¼ 1þ CaA2P2ðcoshÞ þ Ca
X1

n¼3;odd

AnPnðcos hÞ

� 1þ ð4þ l2 þ 8lsÞCaTr
12fð3þ 2k2Þ 5ð1þ lsÞ þ 6js þ 4ls½ � þ 6EsgP2ðcoshÞ:

(52)

It is noted that the steady migration velocity Vir
2;1 and the shape

Rir
2 ðhÞ of the deformed droplet return V2;1 and R2ðhÞ in Eqs. (27) and

(28), respectively, when the surface shear viscosity ls, the surface dila-
tational viscosity js, and the surface internal energy Es are zero. Under
the effects of interfacial rheology, the steady migration velocity Vir

2;1 is
reduced. As an example given in Table I, Vir

1;2 is decreased by 13.6%.
The effects of the interfacial rheology parameters on the steady migra-
tion velocity Vir

2;1 and the shape Rir
2 ðhÞ of the deformed droplet for

the non-uniform thermal radiation f2 are similar to those for the uni-
form thermal radiation f1. Meanwhile, although the deviation value
nðhÞ from a sphere is changed, the deformed droplet still attains a
slender sphere as shown in Fig. 6.

C. Non-uniform thermal radiation [f3ðhÞ ¼ sin2
h]

Following the above derivations, the solutions of the governing
equation (4) satisfying the boundary conditions (6)–(8), (36), and (37)
with the non-uniform thermal radiation ½f3ðhÞ ¼ sin2h� can be deter-
mined as

w1 ¼
V1
2

ðr2 � r�1Þ sin2hþ D4ðr�1 � r�3ÞC�1=2
4 ðcos hÞ

þ
X1

n¼5;odd

Dnðr3�n � r1�nÞC�1=2
n ðcos hÞ;

w2 ¼
3V1
4

ðr4 � r2Þ sin2hþ D4ðr6 � r4ÞC�1=2
4 ðcos hÞ

þ
X1

n¼5;odd

Dnðr2þn � rnÞC�1=2
n ðcos hÞ;

(53)

and

T1 ¼ Tr
8
r�1 þ r þ 5� 5k2 þ Tr � 15EsV1

5ð2þ k2Þ r�2

� �
cos h

�Tr þ 10EsD4

5ð4þ 3k2Þ r�4P3ðcos hÞ þ
X1

n¼4;even

anr
�ðnþ1ÞPnðcos hÞ;

T2 ¼ Tr
8
þ 15þ Tr � 15EsV1

5ð2þ k2Þ r cos h

�Tr þ 10EsD4

5ð4þ 3k2Þ r3P3ðcos hÞ þ
X1

n¼4;even

anr
nPnðcos hÞ;

(54)

where D4 ¼ � 6Tr
5½ð4þ3k2Þk4þ12Es�, Dn

¼ ð�1Þðn�1Þ=2ðn�3Þðn�1Þnðnþ2Þð2n�1ÞTr
4f½k2ðn�1Þþn�knþnðn�1ÞEsgðn�4Þðn�2Þðnþ1Þðnþ3ÞP

ðn�1Þ=2
j¼1

2j�1
2j ðn� 5;oddÞ,

kn¼ð2n�1Þð1þl2Þþnðn�1Þjsþðn�2Þðnþ1Þls, and an
¼ 2knþ1

nðnþ1ÞDnþ1ðn� 4;evenÞ. As an example shown in Fig. 5(c), the

steady velocity and temperature fields are similar to those in Fig. 2(c),
which reveals that the influence of the interfacial rheology on them
is not obvious. Through the net force balance condition {Fz
¼ 2p

Ð p
0 ½Prr;1ð1;hÞcosh�Prh;1ð1;hÞsinh�sinhdh¼ 0} and the shear

stress balance condition at the interface in Eq. (37), the steady migra-
tion velocity is then obtained and written as

V1 ¼ 2ð15þ TrÞ
15 ð2þ k2Þð2þ 3l2 þ 2jsÞ þ 2Es½ � : (55)

The normal stress balance at the interface of Eq. (38) can be
rewritten as

� p1 þ 2
Re

@vr;1
@r

þ p2 � 2l2
Re

@vr;2
@r

¼ 2H
Re

1
Ca

� T1ð1; hÞ
� �

þ 2js
Re

1
sin h

@

@h
vhð1; hÞ sin h½ �: (56)

By substituting the solutions in Eqs. (53) and (54) and the correspond-
ing pressure fields pi [having the same expressions in Eq. (31)], Eq.
(56) is derived as

� 6V1 cosh� 3
2
D4P3ðcoshÞ�

X1
n¼5;odd

6
n
DnPn�1ðcoshÞ

þl2

"
p0 � 9V1 cosh� 2D4P3ðcoshÞ

�
X1

n¼5;odd

6
n� 1

DnPn�1ðcoshÞ
#

¼ 2

�
1
Ca

�Tr
8
� 15þTr� 15EsV1

5ð2þ k2Þ coshþTrþ 10EsD4

5ð4þ 3k2Þ P3ðcoshÞ

�
X1

n¼4;even

anPnðcoshÞþ
X1
n¼2

ðn� 1Þðnþ 2Þ
2

AnPnðcoshÞþOðCaÞ
�

þ 2js 3V1 coshþ 2D4P3ðcoshÞþ 2
X1

n¼5;odd

DnPn�1ðcoshÞ
" #

;

(57)

where the first-order term O(Ca) can be truncated. In Eq. (57), the
Legendre polynomial coefficients of the same order n on both sides of
the equation must be equal. Based on this rule, the following results
can be derived from Eq. (57)
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p0 ¼ 2
Ca

� Tr
4

ðn¼ 0Þ;

Vir
3;1 ¼ 2ð15þ TrÞ

15 ð2þ k2Þð2þ 3l2 þ 2jsÞ þ 2Es½ � ðn¼ 1Þ;

A2 ¼ 0 ðn¼ 2Þ;

A3 ¼ 5þ 2l2 þ 20ls
60

D4 ðn¼ 3Þ;

An ¼ ðn� 1Þl2 þ ðnþ 2Þ 1þ 2ðn� 2Þls½ �
knþ1ðn� 1Þðnþ 2Þ an ðn� 4; evenÞ;

An ¼ 0 ðn� 4;oddÞ;

(58)

where an ! Oðn�2Þ and An ! Oðn�4Þ if nð� 4; evenÞ ! 1. It
reveals that An monotonously decreases as nð� 4; evenÞ increases.
Thus, the shape of the deformed droplet is written as

Rir
3 ðhÞ ¼ 1þ CanðhÞ

¼ 1þ CaA3P3ðcos hÞ þ Ca
X1

n¼4;even

AnPnðcos hÞ

� 1� ð5þ 2l2 þ 20lsÞCaTr
50fð4þ 3k2Þ 7ð1þ l2Þ þ 12js þ 10ls½ � þ 12Esg

� P3ðcos hÞ: (59)

It is noted that the steady migration velocity Vir
3;1 and the shape

Rir
3 ðhÞ of the deformed droplet return V3;1 and R3ðhÞ in Eqs. (34) and

(35), respectively, when the surface shear viscosity ls, the surface dila-
tational viscosity js, and the surface internal energy Es are zero. In
terms of the effects of the interfacial rheology, the steady migration
velocity Vir

3;1 is decreased by 13.9% as an example given in Table I.
The effects of the interfacial rheology parameters on the steady migra-
tion velocity Vir

3;1 and the shape Rir
3 ðhÞ of the deformed droplet for

the non-uniform thermal radiation f3 are similar to those for the uni-
form thermal radiation f1 or the non-uniform thermal radiation f2.
Meanwhile, although the deviation value nðhÞ from a sphere is
changed, the deformed droplet still attains a cardioid sphere as shown
in Fig. 6.

It is further confirmed that even under the influence of inter-
facial rheology, based on the net force balance condition of the
droplet (Fz ¼ 4pD2 ¼ 0), the normal stress balance at the inter-
face in Eq. (38), i.e., the matched Legendre polynomial coefficients
of P1ðcos hÞ on both sides of Eqs. (43), (50), and (57), can be still
used to determine the steady migration velocity Vir

i;1. In other
words, considering the droplet deformation does not affect the
steady migration velocity Vir

i;1. This result is in agreement with
those obtained in the investigating thermocapillary migration of a
deformed droplet with the interfacial rheology in a vertical tem-
perature gradient at the zero limits of Re and Ma numbers.26,40

Meanwhile, from the above fact, it is easy to understand the effects
of the interfacial rheology in the steady migration velocity Vir

i;1.
On the one hand, since the surface shear viscosity ls is not
involved in the normal stress balance at the interface in Eq. (38), it
cannot affect the steady migration velocity Vir

i;1. On the other
hand, due to the interfacial rheology, the tangential stress balance
at the interface in Eq. (37) is derived as

Prh;1ð1; hÞ �Prh;2ð1; hÞ þ 1
Re

@r
@h

¼ � 2ls
Re

vhð1; hÞ � js þ ls
Re

@

@h
1

sin h
@

@h
vhð1; hÞ sin h½ �

� �

¼ 3js
Re

V1 sin hþ 2
Re

X1
n¼3

nðn� 1Þjs þ ðnþ 1Þðn� 2Þls½ �

� DnC
�1=2
n ðcos hÞ= sin h; (60)

where the surface shear viscosity ls disappears in the coefficient of the
second-order Gegenbauer polynomial C�1=2

2 ðcos hÞ= sin h ¼ sin h=2
on the right-hand side. The surface shear viscosity ls does not affect
the steady migration velocity Vir

i;1, which is determined by matching
the second-order Gegenbauer polynomial coefficients of both sides in
Eq. (60).

In the interfacial rheology parameters, only the surface dilata-
tional viscosity js and the surface internal energy Es have significant
roles on the steady migration speed Vir

i;1. These results are in agree-
ment with those obtained in the investigating influence of the interfa-
cial rheology on the thermocapillary droplet migration process,26 the
surfactant-laden droplet dynamics without/with the temperature field
in Poiseuille flow27,28 and in the Stokes flow.29 As an example in Fig. 5
and Table I, the effects of interfacial rheology are not obvious to
change the topological properties of the velocity and temperature fields
but can significantly decrease the steady migration velocity of the
droplet.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, first, the thermocapillary migration of a deformed
droplet in a vertical temperature gradient and thermal radiations with
uniform and non-uniform fluxes at zero limits of Re and Ma numbers
is analyzed. In the creeping flow solutions, the deformed droplet has a
slender or a cardioid shape, which depends on the form of the thermal
radiation. For the uniform thermal radiation f1 ¼ 1 and the non-
uniform radiation f2 ¼ cos h, the shape of the deformed droplet is a
slender. For the non-uniform radiation f3 ¼ sin2h, the shape of the
deformed droplet is a cardioid. The deviation from a sphere depends
not only on the viscosity and the conductivity ratios of two-phase flu-
ids but also on Ca and Tr numbers.

Moreover, the roles of interfacial rheology on thermocapillary
migration of a deformed droplet are shown. Only the surface dilata-
tional viscosity and the surface internal energy can reduce the steady
migration velocity, but the surface shear viscosity has not any effect on
the steady migration velocity. The surface shear and the dilatational
viscosities affect the deformation of the droplet by increasing the vis-
cosity ratio of two-phase fluids. The surface internal energy directly
reduces the deformation of the droplet. However, the deformed drop-
let still keeps its original shape without the influence of interfacial
rheology.

Furthermore, it is found that, based on the net force balance
condition of the droplet, the normal stress balance at the interface
can be used to determine the steady migration velocity, which is
not affected by the surface deformation in the creeping flow. From
the expressions of the normal/the tangential stress balance, it can
be proved that the surface shear viscosity does not affect the steady
migration velocity.
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Up to now, the droplet migration experiments under adding the
vertical temperature field or the action of laser radiation have been
summarized in the introduction, where any experiments in the com-
bined two actions are not found. However, to eliminate the qualitative
differences among the theoretical, numerical, and experimental results
of thermocapillary droplet migration with the vertical temperature
gradient at large Ma numbers and understand their physical mecha-
nisms, some proposals from the theoretical and numerical works
(such as controlling thermocapillary droplet migration in a vertical
temperature gradient by the thermal radiation to quickly reach the
steady-state migration in the limited test zones43,44) can be useful
explorations to provide possible implementation approaches and pre-
dict results for the experiments of thermocapillary droplet migration
in the combined two actions. Meanwhile, in the absence of the experi-
mental validation, some analytical results under the combined two
actions in the paper are qualitatively consistent with the previous
results under two separate actions, which can be used as an auxiliary
proof to validate the results.

Overall, these findings not only improve the understanding
of thermocapillary migration of a deformed droplet with/without
the interfacial rheology in the combined vertical temperature gra-
dient and thermal radiation but also pave the way for optimizing
the form of the thermal radiation to control thermocapillary
migration of a deformed droplet, which is of great significance for
potential practical applications in the microgravity and microflui-
dic fields.
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APPENDIX: NON-DIMENSIONALIZATION
OF THE CONTINUITY, MOMENTUM, AND ENERGY
EQUATIONS FOR THE CONTINUOUS-PHASE FLUID
AND THE DROPLET

The continuity, momentum, and energy equations for the
continuous-phase fluid and the droplet in a laboratory coordinate
system rðcmÞ are written as

@qi
@t

þr � ðqiviÞ ¼ 0;

@qivi
@t

þr � ðqiviviÞ ¼ �rpi þr � liðrvi þrvTi Þ
� 	

;

@Ti

@t
þr � ðviTiÞ ¼ ji

ki
r � ðkirTiÞ;

(A1)

where the symbols viðcm=sÞ; piðdyn=cm2Þ;TiðKÞ represent the
velocity, pressure, and temperature, respectively. By taking the
radius of the droplet R0, the velocity v0 ¼ �rTGR0=l1, and GR0 as
the reference quantities, the coordinates r, velocity vi, and tempera-
ture Ti are non-dimensionalized as

r	 ¼ r=R0; v	i ¼ vi=v0; T	
i ¼ Ti=ðGR0Þ: (A2)

Meanwhile, the physical coefficients (density qi, dynamic viscosity li,
thermal conductivity ki, and thermal diffusivity ji) are non-
dimensionlized by the quantities of continuous-phase fluid and written as

q	i ¼ qi=q1; l	i ¼ li=l1; k	i ¼ ki=k1; j	i ¼ ji=j1: (A3)

Under the assumption of constant physical coefficients in Eq. (1),
Eq. (A1) is rewritten in the non-dimensional form as

r	 � v	i ¼ 0;

q	i
@v	i
@t	

þ q	i v
	
i � r	v	i ¼ �r	p	i þ

l	i
Re

D	v	i ;

@T	
i

@t	
þ v	i � r	T	

i ¼ j	i
Ma

D	T	
i ;

(A4)

where t	 ¼ t=ðR0=v0Þ; r	 ¼ R0r; p	i ¼ pi=ðq1v20Þ; r	 � ðq	i v	i v	i Þ
¼ q	i ½ðr	 � v	i Þv	i Þ þ ðv	i � r	Þv	i � ¼ q	i v

	
i � r	v	i , r	 � ½l	i ðr	v	i

þr	v	Ti Þ� ¼ l	i r	2v	i ¼ l	i D
	v	i .

At zero limits of Re and Ma numbers, the momentum and
energy equations in Eq. (A4) are simplified in the coordinate system
moving with the droplet as

Rerpi ¼ liDvi;

DTi ¼ 0:
(A5)

Since then, the asterisks “ 	 ” for the non-dimensional quantities are
omitted for convenience. Under the axisymmetric assumption,
stream function wiðr; hÞ in a spherical coordinate system (r; h;/)
with a constant / is introduced to generate the velocity field

vi ¼ ðvr;i; vh;i; v/;iÞ ¼ � 1
r2 sin h

@w
@h

;
1

r sin h
@wi

@r
; 0


 �
; (A6)

which satisfies the continuous equation in Eq. (A4). The curl of the
velocity field vi is derived as

r� vi ¼ 0; 0;
1

r sin h
E2wi


 �
; (A7)

where the operator E2 is defined as

E2 ¼ @2

@r2
þ 1
r2

@2

@h2
� coth

r2
@

@h
¼ @2

@r2
þ sin2h

r2
@2

@ðcos hÞ2 : (A8)

By using the continuous equation in Eq. (A4), the momentum
equation in Eq. (A5) can be rewritten as
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Rerpi ¼ liDvi ¼ �lir� ðr � viÞ; (A9)

where Dvi ¼ r2vi ¼ rðr � viÞ � r � ðr � viÞ. By taking the curl
on both sides of Eq. (A9) to eliminate the pressure term and
substituting Eq. (A7), the following equation can be finally
obtained,

E4wi ¼ 0: (A10)
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