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ABSTRACT

Proper orthogonal decomposition (POD) enables complex flow fields to be decomposed into linear modes according to their energy,
allowing the key features of the flow to be extracted. However, traditional POD requires high-quality inputs, namely, high-resolution spatio-
temporal data. To alleviate the dependence of traditional POD on the quality and quantity of data, this paper presents a POD method that is
strengthened by a physics-informed neural network (PINN) with an overlapping domain decomposition strategy. The loss function and con-
vergence of modes are considered simultaneously to determine the convergence of the PINN-POD model. The proposed framework is
applied to the flow past a two-dimensional circular cylinder at Reynolds numbers ranging from 100 to 10 000 and achieves accurate and
robust extraction of flow structures from spatially sparse observation data. The spatial structures and dominant frequency can also be
extracted under high-level noise. These results demonstrate that the proposed PINN-POD method is a reliable tool for extracting the key fea-
tures from sparse observation data of flow fields, potentially shedding light on the data-driven discovery of hidden fluid dynamics.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0138287

I. INTRODUCTION

The analysis of fluid dynamics often rests on the notion that the
evolution of a flow field is primarily facilitated by a small number of
coherent structures.1 Various methods for extracting these structures
from complex flow fields have been developed, such as proper orthog-
onal decomposition (POD),2 dynamic mode decomposition (DMD),3

Koopman analysis,4 global linear stability analysis,5 resolvent analysis,6

and their variants. The POD method is widely used because its modes
are linear, orthogonal, and ordered by eigenvalues. POD was first
introduced to the fluid dynamics/turbulence community by Lumley
et al.2 as a mathematical technique for extracting coherent structures
from turbulent flow fields. Delville et al.7 studied the large-scale struc-
tures in a plane turbulent mixing layer through POD and demon-
strated that streamwise-aligned vortices and quasi-two-dimensional
spanwise structures were contained in the first mode. Liberge et al.8

constructed a low-order dynamical system with POD to study fluid-
structure interaction problems, while Muld et al.9 decomposed the

flow field of a surface-mounted cube using POD and DMD and inves-
tigated the convergence of PODmodes. Liu et al.10 identified the dom-
inant coherent structures within cavitating flow around a hydrofoil
through POD and DMD and observed large-scale cavity–vortex struc-
tures and re-entrant jets. Muld et al.11 studied the wake field of a high-
speed train and found that the dominant POD mode converges faster
than the dominant DMD mode in broadband data. The near-wake
field of a finite-length cylinder has been investigated based on the
POD of particle image velocimetry (PIV) data,12 which demonstrated
that the wake is dominated by POD mode 1, corresponding to sym-
metrical vortex shedding. However, these previous applications typi-
cally required a high-resolution dataset from experimental or
numerical spatiotemporal flow fields. In practical engineering applica-
tions, it is difficult to obtain a complete high-resolution flow field.
The test equipment used for precise measurements of the flow field is
usually expensive, such as laser Doppler velocimetry,13 PIV,14 and
laser-induced fluorescence15 apparatus. High-resolution numerical
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simulations are also costly in terms of preprocessing, computation,
and storage.16,17 Furthermore, the traditional turbulence models used
in numerical simulations cannot accurately predict flow fields in which
separation occurs.18 Therefore, the application of POD to extract flow
structures is extremely limited. In contrast, measurements can easily
and cheaply be obtained from spatially sparse points in fluid mechan-
ics experiments. If the original flow field can be regressed from a small
amount of data, the application range of POD would be greatly
enlarged.

With the continuous development of machine learning, deep
learning techniques have been widely applied in the field of fluid
mechanics.19 Jin et al.20 proposed a convolutional neural network-
based data-driven method that establishes the relationship between
wake structures and the pressure experienced on the wall of a cylinder.
Xu et al.21 introduced a machine-learning-assisted Reynolds-averaged
Navier–Stokes equations (RANS) method to investigate the unsteady
cavitating flow around a hydrofoil. Ma et al.22 constructed a two-
branch deep neural network model that improved the high-fidelity
bubble migration results and reduced the dependence on the quantity
of experimental data. Zheng et al.23 explored active flow control strate-
gies in suppressing vortex-induced vibration through reinforcement
learning, resulting in an 82.7% reduction in the vibration amplitude.
Zhang et al.24 proposed a compressed sensing reduced-order modeling
framework that combined a long short-term memory model with
sparsity-promoting DMD, allowing unsteady flow fields to be reliably
predicted. Peng et al.25 developed an attention-enhanced neural net-
work model and obtained various statistics and instantaneous spatial
structures of turbulence, while Yuan et al.26 reported a deconvolutional
artificial neural network for subgrid-scale stress in the large-eddy sim-
ulation (LES) framework and showed that this network predicted
subgrid-scale stress better than the velocity gradient model and con-
ventional approximate deconvolution model.

Physics-informed deep learning exhibits excellent performance
in the regression of flow fields from sparse observations. This
approach has recently attracted extensive interest as a means of solving
systems of partial differential equations (PDEs). The framework was
first proposed by Lagaris et al.27 25 years ago, although it was only
recently that Raissi et al.28 refocused attention on this algorithm using
a machine learning framework. The core design involves embedding
physical laws into the framework of traditional deep learning to create
a physics-informed neural network (PINN). This can be achieved by
introducing the residual of the physical equations to the loss function
of the neural network. During the training of the neural network, the
PINN gradually approaches the solution of the physical equations as
the loss function is minimized. Raissi et al.28 took a two-dimensional
(2D) incompressible laminar case as an example, in which the original
fields were regressed from scattered data sampled throughout the spa-
tiotemporal domain. In subsequent research,29 the velocity and pres-
sure fields were directly extracted from a flow visualization, and the
PINN was extended to three-dimensional (3D) incompressible flow.
Cai et al.30 used a PINN to infer the instantaneous velocity and pres-
sure fields from temperature measurements of the flow over an
espresso cup, and Wang et al.31 obtained a high-resolution velocity
field from sparse PIV measurements using a PINN. Xu et al.32

employed a PINN to regress the flow field from sparse data and infer
missing data in a certain region, showing that the cosine annealing
algorithm exhibits excellent performance in accelerating the convergence

of the training stage. Qiu et al.33 developed a phase-field PINNmethod
for a 2D immiscible incompressible two-phase flow. This allowed them
to obtain the interface shape with excellent accuracy and capture the
dynamic behavior precisely. Compressible inviscid flows are alsowithin
the reach of PINNs. Mao et al.34 embedded the Euler equations into
a PINN to study supersonic aerodynamics, capturing the flow fields
from only a few scattered points clustered randomly around the
discontinuities.

Extensive studies have attempted to enhance the accuracy of
PINNs. Rao et al.35 proposed a PINN with a mixed-variable scheme to
simulate steady and transient laminar flows and showed that this
scheme improved the trainability and accuracy of the PINN. Zhu
et al.36 approached the Dirichlet boundary condition in a “hard”man-
ner and chose the weights of distinct components of the loss function.
Xu et al.37 treated the physical equations as a parameterized constraint
to explore the missing flow dynamics and unified the forms of the
RANS equations and LES equations through an undetermined param-
eter �eff . Cheng and Tang

38 used Resnet blocks to enhance the stability
of a PINN, while Sun et al.39 designed a data-free PINN for incom-
pressible flows and trained the network by minimizing the violation of
flow governing equations, showing that “hard” boundary enforcement
performs better than a “soft” boundary approach in data-free settings.
Jin et al.40 developed Navier–Stokes flow networks by encoding two
different forms of the Navier–Stokes equations into neural networks
and dynamically computed the data weights and components of the loss
function to accelerate training and improve accuracy. Jagtap et al.41 pro-
posed a space–time domain decomposition method for PINNs. This
extended PINN method efficiently lends itself to parallelized computa-
tion. The studies reviewed above prove that PINNs provide excellent
tools for regressing flow fields from sparse observation data.

Given the advantages of PINNs, this paper presents a PINN-
POD method that alleviates the dependence of POD on the quality
and quantity of data. In our framework, the PINN acts as a preproces-
sor. The original flow fields are regressed by PINN from sparse mea-
surements, and the regressed flow fields are then subjected to POD to
extract the flow field structures. To efficiently fit a large training set
formed by long-period observations, an overlapping temporal domain
decomposition method is proposed. In this way, every decomposed
time block is independently fitted by a subnet, with parallel training
applied to accelerate the process.

The remainder of this paper is organized as follows. Section II
introduces the detailed framework, settings, and parameters of the
PINN-POD method. The PINN-POD method is then applied to flow
fields with Reynolds numbers Re of 100, 3900, and 10 000 in Secs.
IIIA–III C, respectively. The influence of noise in the observation data
is investigated in Sec. IIID. Finally, the conclusions to this study and
prospects for future research are presented in Sec. IV.

II. METHODOLOGY

The framework of the PINN-POD method is illustrated in Fig. 1.
The original sparsely sampled data are divided into k blocks covering
equal periods of time. Each data block is then fitted by a subnet, and
the equations governing the flow are inferred by automatic differentia-
tion with backward propagation.28 The learning rate is determined by
the warm restart method.42 At the end of each decay period, the con-
vergence of the POD modes in the regressed flow fields and the value
of the loss function are simultaneously evaluated, and the results are
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used as stopping criteria for the training of the PINN-POD model.
Once the stopping criteria have been satisfied, the full-spatiotemporal
data can be regressed from the sparse measurements through the
trained PINN, and then, the hidden correlated flow structures can be
extracted from the regressed flow fields with POD.

A. Proper orthogonal decomposition

The POD method computes a series of dominant features and
trends, known as “modes.” The spatial modes correspond to coherent
flow structures, and the mode coefficients reflect their temporal evolu-
tion.11 The input to the POD method is a matrix U consisting of m
column vectors fu1; u2;…; umg. Each column vector ui 2 Rn is a
flattened snapshot of the flow field at n points from the ith moment in
time. Specifically, the elements of uiðxÞ are the fluctuating components
of the quantity of interest (in this paper, velocity) in the flow field
being studied at discrete spatial points x and discrete times ti.

POD decomposes the flow field qðx; tÞ into a set of basis func-
tions and mode coefficients11

U ¼ qðx; tÞ � �qðxÞ½ � ¼
X
j

ajðtÞ/jðxÞ; t ¼ t1; t2;…; tm; (1)

where ½qðx; tÞ � �qðxÞ� is the fluctuating component of the data vector
qðx; tÞ with its time-averaged value �qðxÞ removed, /jðxÞ are the spa-
tial basis functions or spatial modes, ajðtÞ are the mode coefficients, j
is the order of modes, and m is the number of snapshots. The POD

modes are orthonormal,43 which means that the inner product
between the modes satisfies

h/j;/ki ¼ 0; j 6¼ k;
1; j ¼ k;

�
(2)

where j and k denote the order of the modes. In this paper, the flow
field data are decomposed using the snapshot POD method,44 which
relies on solving the followingm�m eigenvalue problem

UTUwj ¼ kjwj; wj 2 Rm; (3)

where UTU is the temporal correlation matrix, and kj and wj denote
the eigenvalues and eigenvectors of UTU , respectively. The POD
modes /j and temporal coefficients ajðtÞ can be written as

/j ¼ Uwj
1ffiffiffi
k

p
j

2 Rn; j ¼ 1; 2;…;m; (4)

ajðtÞ ¼ h/j;Ui; (5)

or in matrix form as

U ¼ UWK�1=2 (6)

A ¼ UTU ; (7)

where K ¼ ½k1; k2;…; km� is a diagonal matrix, and the eigenvalues kj
are arranged in descending order. kj conveys how well the eigenvector
wj captures the original data in the L2 sense. As the focus of this paper

FIG. 1. Schematic of the PINN-POD framework. The blue parts show the route of the loss function, and the green parts show the route of POD. The learning rate is scheduled
according to the warm restart method. The convergence of the POD modes and the value of the loss function are simultaneously evaluated at the end of each decay period.
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is the velocity field, the PODmodes /j are arranged in order of kinetic
energy, meaning that the velocity field can be reconstructed by the first
rmodes

U �
Xr

j¼1

ajðtÞ/jðxÞ: (8)

Accordingly, the ratio of the kinetic energy in the reconstructed flow
field to that in the original input flow field is defined as

c ¼
Xr

j¼1

kj

�Xm
j¼1

kj; (9)

where kj is the eigenvalue of the jth-order mode, and m is the total
number of modes. When c is close to 1, the primary characteristics of
the original input flow field are well captured by the reconstructed
flow field.

B. Physics-informed neural network

The inputs to the PINN are the temporal and spatial coordinates
ðt; xÞ, and the outputs are the variables of the solution vector for a sys-
tem of PDEs, uðt; xÞ. A time-dependent PDE system can be written as

ut þN u½ � ¼ 0; x 2 X; t 2 0;T½ �; (10)

where N½�� denotes a nonlinear differential operator, x is the spatial
coordinate vector defined over the domain X; uðt; xÞ is the solution
vector of the PDE, and ut is its derivative with respect to time t.45 As
shown in the physics-informed part of Fig. 1, the governing equations
for the flow are the continuity equation and the 2D incompressible
Naiver–Stokes equations

ux þ vy ¼ 0; (11)

qðut þ uux þ vuy þ pxÞ � lðuxx þ uyyÞ ¼ 0; (12)

qðvt þ uvx þ vvy þ pyÞ � lðvxx þ vyyÞ ¼ 0: (13)

Thus, the inputs are (t, x, and y), and the outputs are (p, u, and
v). The outputs are calculated through forward propagation according
to the given inputs, which is the same as a classical fully connected
neural network. Subsequently, the derivatives of the outputs with
respect to the inputs can be calculated during backward propagation
through automatic differentiation.46 Therefore, the governing equa-
tions can be embedded into the loss function with the outputs and the
calculated derivatives

Loss ¼ Lossdata þ Losseqns; (14)

Lossdata ¼ 1
Ndata

XNdata

id¼1

juid � uidNN j2 þ jvid � vidNN j2
� �

; (15)

Losseqns ¼
X3
j¼1

1
Neqns

XNeqns

ie¼1

jejðtie ; xie ; yieÞj; (16)

where Lossdata is the mean squared error between the measured veloc-
ity and the output velocity given by the PINN, and Losseqns is the
residual of the governing equations calculated in the physics-informed
part. Lossdata is used to quantify the difference between the PINN pre-
dictions and the real data ftid ; xid ; yid ; uid ; vidgNdata

id¼1 measured by sen-
sors. Losseqns is a regularization mechanism that enforces the structure
imposed by the governing equations at a finite set of equation points
ftie ; xie ; yiegNeqns

ie¼1 . The number and position of the measuring points
and equation points can be completely different.

C. PINN-POD

The PINN-POD method proposed in this paper extracts the
POD modes from sparse velocity measurements. As shown in Fig. 1,
the sparse measurements in k time segments are fitted by k sub-
PINNs. High-resolution spatiotemporal data of the unsteady flow field
is then inferred by the trained PINN. At the end of each decay period
for the learning rate, the POD modes are extracted from the inferred
flow field to evaluate the convergence of the PINN-POD model and
the loss function. Once the stopping criteria are satisfied, the goal of
extracting the POD modes from sparse measurements has been
achieved.

PINN-POD provides excellent regression capabilities and obeys
the implicit frequency principle in the training process of the neural
network. That is, the target function is fitted from low to high frequen-
cies during the training process.47 Low-frequency features usually play
important roles in flow fields, and the low-order, high-energy POD
modes often have a low dominant frequency.9,11,12 Therefore, PINN-
POD has great potential to extract the main features of the flow field.
To capture the key flow structures and their long-term evolution, mul-
tiple snapshots should be used for POD. However, a large training set
that is formed by the long-term observations is difficult to train with a
single PINN. Consequently, time-domain decomposition is intro-
duced, as shown in the dashed gray box of Fig. 1, whereby k time
blocks are fitted in parallel by k subnets. Considering the size of the
observation data in this paper, k is set to 10.

To prevent poor performance by the PINN at the beginning and
end of each time block, adjacent time blocks are overlapped. As illus-
trated in Fig. 2, the first time block tblk1 has 120 snapshots. Sub-NN-1 is
trained using snapshots ½0; 120�, while only snapshots ½10; 110� are cho-
sen for POD. The second time block tblk2 overlaps with 20 snapshots at
the end of tblk1. The snapshots for training sub-NN-2 are ½100; 220�,
while only snapshots ½110; 210� are chosen for POD. After training, all
regressed snapshots are reconnected to form the POD input.

The PINN parameters are initialized using Xavier’s algorithm
and optimized through the Adam adaptive optimizer.48 The learning

FIG. 2. Time block overlap. The adjacent
time blocks used to train sub-PINNs share
20 snapshots. The middle 100 snapshots
of each time block are combined to calcu-
late POD modes.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 35, 037119 (2023); doi: 10.1063/5.0138287 35, 037119-4

Published under an exclusive license by AIP Publishing

 08 April 2024 03:20:47

https://scitation.org/journal/phf


rate is scheduled according to the warm restart method42 to accelerate
the convergence and improve the accuracy

gt ¼ gmin þ
1
2
ðgimax � gminÞ 1þ cos

Tmax

Ti
p

� �� �
; (17)

where gt is the learning rate of a certain epoch, i indicates the ith decay
period, gimax and gmin denote the maximum and minimum learning
rates in a decay period, Tmax is the number of epochs since the last
restart, and Ti is the number of epochs in the ith decay period. gimax
and Ti are determined by

giþ1
max ¼ Mmul � gimax; (18)

Tiþ1 ¼ Tmul � Ti: (19)

Following previous numerical experiments and Xu et al.,32

Mmul; Tmul; g0max; gmin, and T0 are set to 1.0, 2.0, 10
�3; 10�8, and 103,

respectively. The resulting learning rate for each epoch is shown in
Fig. 3.

To save computational resources, the convergence of POD
modes is only evaluated at the end of every decay period of the learn-
ing rate. The convergence of modes is evaluated using

ciN ¼ 1� 1
N

XN
M¼1

1
r

Xr

j¼1

h/j;k�M � /j;ki
" #

; (20)

where /j;k corresponds to the jth-order mode of snapshots of all k
time blocks, /j;k�M corresponds to the jth-order mode of snapshots of
the first k – M time blocks, h�i denotes the scalar product, r denotes
the first r modes, i corresponds to the ith decay period of the learning
rate, and N denotes the number of sets used to evaluate the conver-
gence. As POD provides an optimal low-rank approximation to a
matrix U, the scalar product of perfectly converged modes with differ-
ent snapshots should be 1. In practice, however, h/j;k�M � /j;ki only
approaches 1. Setting r and N to 6 and 3 in all examples means that
the first 6 modes of the first 700 snapshots, 800 snapshots, and 900
snapshots are compared with the 1000 snapshots of the reference set.
If ciN � 0, then sets with fewer than 700, 800, and 900 snapshots
resemble the full set with 1000 snapshots, and the modes are

considered to have converged. The convergent modes will not change,
even when the number of snapshots increases. The loss function Lossi

represents the fitting error between the observations and the governing
equations at the end of the ith decay period. The variation of ciN , Loss

i

in two adjacent decay periods of the learning rate is defined as

DciN ¼ ciN � ci�1
N ; (21)

DLossi ¼ Lossi � Lossi�1: (22)

As shown in Fig. 1, DciN and DLossi are evaluated at the end of every
decay period. When DciN and DLossi are less than eo; el for two con-
secutive decay periods, the PINN-POD model is considered to have
converged. The convergence criteria eo and el are set to 10�2, which
balances accuracy against computational efficiency.

The PINN-POD model was developed in the open-source deep-
learning framework TensorFlow. Considering the size of the time
block and the training efficiency, each subnet consisted of 10 hidden
layers and 50 neurons per layer. The training process of the 10 subnets
was distributed and run in parallel on 10 NVIDIA Tesla V100 GPUs.
Each subnet was assigned to a single GPU.

III. RESULTS AND DISCUSSION

The flow over a 2D circular cylinder was studied at Re¼ 100,
3900, and 10 000. The observation data used to train the PINN-POD
model were sampled from numerical simulations. The computational
domain, mesh, and measurement point distribution are shown in
Fig. 4. The diameter of the cylinder D¼ 1 m. To ensure that yþ is less
than 1 in all cases, the height of the first layer near the cylinder is set to
10�4 m. The left and right sides of the domain are set as a velocity inlet
and a pressure outlet, respectively, and the top and bottom of the
domain are assigned as symmetric boundaries. The cylinder wall is
assigned the no-slip condition. In Fig. 4, the crosses indicate the sparse
measuring points, which are arranged along the yellow dotted line.
The sampling time interval is 0.1 s, i.e., a sampling frequency of 10Hz,
which is easy to implement in experiments.

To verify the accuracy of the numerical simulations, Table I sum-
marizes the results for the flow around a cylinder observed in experi-
ments and given by numerical simulations at various Reynolds
numbers. The results obtained in the present study are broadly consis-
tent with the reference values, indicating that the sampled velocity
data from the wake can be used to train the PINN-POD model.

FIG. 3. Learning rate schedule. In each decay period, the learning rate decreases
from 10�3 to 10�8. The number of epochs contained in each decay period is dou-
bled in the next period.

FIG. 4. Computational mesh of flow around a cylinder and measuring point distri-
bution. Twenty-nine sensors, represented by crosses, are arranged over the
domain x 2 ½D; 9D�; y 2 ½�2D; 2D�.
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Moreover, the POD modes of the velocity fields given by the numeri-
cal simulations can be used as references to assess the accuracy of the
flow fields reconstructed by the proposed PINN-POD method.
Considering the inherent noise in real measurements, we add different
levels of Gaussian noise to the observation data in Sec. IIID.

To analyze the accuracy of the PINN-POD method quantita-
tively, the relative L2 error is introduced as

eðureg; uref Þ ¼

1
Ns

XNs

i¼1

uregðxiÞ � uref ðxiÞ
� �2

1
Ns

XNs

i¼1

uref ðxiÞ � 1
Ns

XNs

i¼1

uref ðxiÞ
" #2 ; (23)

where fxi : i ¼ 1;…;Nsg areNs points scattered in the whole domain
of interest, and ureg; uref are the velocities reconstructed by the first r
PINN-POD modes of the regressed fields and the traditional POD
modes of the numerical simulation, respectively. The above definition
has the favorable property that it is invariant under the shifting and

scaling of both the reconstructed and reference functions; i.e.,
eðbureg þ a; buref þ aÞ ¼ eðureg; uref Þ for any constants a and
b 6¼ 0.29

A. Case 1: Re¼ 100

First, a simple laminar flow over a cylinder at Re¼ 100 is studied.
The flow fields are generated by laminar numerical simulations, and the
velocities observed at various measuring points (yellow crosses in Fig. 4)
are shown in Fig. 5. The measured values have been shifted by certain
values for clarity. For each sensor, velocity data were collected over 1020
consecutive time steps. As illustrated in Fig. 2, the sampled data were
split into 10 blocks with 20 snapshots overlapping, corresponding to
NS
data ¼ 29 spatial points and NT

data ¼ 120 temporal points, and a total
of Ndata ¼ NS

data � NT
data ¼ 3480 data points in one time block.

Equation points were added to penalize the residual of the governing
equations. For every time block, the equation points were distributed
uniformly, with NS

eqns ¼ 5000 spatial points and NT
eqns ¼ 120 temporal

points, giving a total of Neqns ¼ NS
eqns � NT

eqns ¼ 6� 105 equation
points. The training set for each subnet included all the data points
ftid ; xid ; yid ; uid ; vidgNdata

id¼1 and equation points ftie ; xie ; yiegNeqns

ie¼1 in the
corresponding time block. Approximately 1.4 s was required to train the
model for one epoch using this training set.

The loss function with respect to the training epoch is shown in
Fig. 6. The loss value of the blue curve corresponds to the Re¼ 100
case. As shown in Fig. 6, the training process with Re¼ 100 terminates
after the fourth cycle of learning rate decay. To evaluate the accuracy
of the flow structures extracted from sparse data by PINN-POD, the
traditional POD modes of the CFD results are taken as references.
Comparisons are presented in Figs. 7–9.

Figure 7 compares kj and c from the PINN-POD modes and tra-
ditional PODmodes. According to the definition of kj and c in Eq. (9),
kj measures the kinetic energy of the jth-order mode, and c represents
the proportion of kinetic energy captured by the first r modes to the
total kinetic energy of the flow field. The results indicate that the
PINN-POD method captures the energy of the flow fields well, and
more than 99% of the total energy is captured by the first six modes.
In addition, the energy of each PINN-POD mode is basically in line
with the reference value.

TABLE I. Drag coefficient and Strouhal number of flow around a cylinder at various
Reynolds numbers.

Re Case Cd St

100 Exp. (Williamson49) � � � 0.160
CFD 3D DNS (Henderson50) 1.349 0.166
CFD 2D laminar (Rahman51) 1.245 0.164
Present CFD case 1 2D laminar 1.346 0.164

3900 Exp. (Norberg52) � � � 0.210
CFD 3D LES (Lysenko53) 0.970 0.209
CFD 2D k-e (Rahman51) 0.997 0.200
Present CFD case 2 2D k-e 0.922 0.208

10 000 Exp. (Norberg52) � � � 0.201
CFD 3D k-x SST (Rosetti54) 1.520 0.240
CFD 2D k-x SST (Stringer55) 1.555 0.236
Present CFD case 3 2D k-x SST 1.587 0.242

FIG. 5. Velocity at various measuring
points (Re¼ 100). The values have been
shifted by certain values.
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To evaluate the accuracy of the flow structures captured by
PINN-POD, Fig. 8 intuitively shows that the first six modes extracted
by the PINN-POD method are in good agreement with the traditional
POD modes. To analyze the accuracy of the PINN-POD method

quantitatively, the relative L2 error given by Eq. (23) is evaluated. As
the first six modes capture almost all of the energy in the velocity
fields, we compare the relative L2 error of the reconstructed flow fields
between the PINN-POD modes and traditional POD modes with

FIG. 6. Loss-epochs at different Reynolds numbers. The dotted line divides the
learning rate decay period. FIG. 7. Energy and ratio of cumulative energy to total energy of PINN-POD modes

and referenced CFD results at Re¼ 100.

FIG. 8. Comparison of POD modes and PINN-POD modes at Re¼ 100, first snapshot. The two columns on the left represent the streamwise velocity, and the two columns
on the right represent the transverse velocity. The first line represents the original flow field, and the remaining lines represent the modes of each order.
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r¼ 6 in Eq. (8). As illustrated in Fig. 9, the relative L2 error oscillates
around a small value. These results demonstrate that the PINN-POD
method successfully reconstructs the velocity fields and accurately
extracts the fine spatial structures at Re¼ 100.

The time coefficient represents the evolution of spatial structures.
As the time coefficients of the POD modes contain multiple frequen-
cies, the fast Fourier transform is applied to extract the dominant fre-
quency. To compare the Strouhal number (St) of the lift coefficient
(see Table II), the dominant frequency is converted to the dimension-
less frequency St ¼ fD=U1. For the first six modes, St is compared in
Table II. The comparison demonstrates that the frequency characteris-
tics of the spatial modes are accurately captured by the PINN-POD
modes. In addition, the frequency of the first two modes matches the
lift coefficient closely, which indicates that the first two modes are
related to the vortex shedding on the cylinder surface. This provides
further evidence that the first two modes capture the most significant
features of the flow field.

B. Case 2: Re¼3900

The turbulent flow over a cylinder at Re¼ 3900 is now studied.
The viscous model used for the numerical simulations is the k–e
model. The velocities observed at the same positions as for the
Re¼ 100 case are shown in Fig. 10. The sampling settings and training
set construction are the same as for the Re¼ 100 case. The orange
curve in Fig. 6 shows the change in the loss function with respect to
the epoch at Re¼ 3900. The training process of the Re¼ 3900 case ter-
minates after the fourth cycle of learning rate decay.

Similar to Sec. IIIA, the results of the proposed PINN-POD
method are compared with the reference traditional POD results. In
terms of energy, Fig. 11 demonstrates that the PINN-POD method

FIG. 9. Relative L2 error of regressed and reconstructed velocity fields at
Re¼ 100.The relative L2 error of the regressed velocity is obtained by comparing
the flow field of PINN regression with the flow field of CFD. The relative L2 error of
the reconstructed velocity compares the first six PINN-POD modes with the first six
POD modes. PINN-POD modes are obtained from 29 sensor measurements by
our PINN-POD method, while POD modes are obtained from full-spatiotemporal
CFD data.

TABLE II. Strouhal number of modes in various order. Inputs of traditional POD are
full spatiotemporal data, whereas inputs of PINN-POD are the sparse
measurements.

Re Origin Order of mode St

100 Traditional POD 1 and 2 0.166
3 and 4 0.332
5 and 6 0.498

PINN-POD 1 and 2 0.166
3 and 4 0.332
5 and 6 0.498

3900 Traditional POD 1 and 2 0.208
3 and 4 0.424
5 and 6 0.629

PINN-POD 1 and 2 0.208
3 and 4 0.424
5 and 6 0.629

10 000 Traditional POD 1 and 2 0.256
3 and 4 0.775
5 and 6 0.512

PINN-POD 1 and 2 0.256
3 and 4 0.775
5 and 6 0.512

FIG. 10. Velocity at various measuring
points (Re¼ 3900). The values have
been shifted by certain values.
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also performs well at Re¼ 3900. More than 99% of the total energy is
captured by the first six modes, and the energy of each PINN-POD
mode is in good agreement with that of the traditional POD. The flow
structures represented by the first six modes are shown in Fig. 12.

These results clearly show that the position and symmetry of the vorti-
ces are accurately captured.

Quantitative analysis of the accuracy of the velocity fields recon-
structed using the first six modes was performed using the relative L2
error. Figure 13 compares the relative L2 error of each time snapshot.
The results demonstrate that the PINN-POD method reconstructs the
velocity fields and extracts the flow structures well at Re¼ 3900. The
relative L2 error is slightly higher than that for case 1. As for the time
coefficient, Table II demonstrates that the frequency characteristics of
the spatial modes are accurately captured by the PINN-POD modes.
The frequency of the first two modes is consistent with the lift coeffi-
cient. Therefore, the first two modes are again the dominant structures
at Re¼ 3900. In summary, the main features of the flow field are accu-
rately captured, and the PINN-POD method achieves good perfor-
mance in the case of turbulent flow.

C. Case 3: Re ¼ 10 000

Finally, we consider the turbulent flow over a cylinder at Re
¼ 10 000. The viscous model used in the numerical simulations is the
k-x SST model, which is different from that used in case 2. The veloci-
ties observed at the same positions as for the Re¼ 100 case are shown
in Fig. 14. The sampling settings and training set construction are the

FIG. 11. Energy and ratio of cumulative energy to total energy of PINN-POD
modes and referenced CFD results at Re¼ 3900.

FIG. 12. Comparison of POD modes and PINN-POD modes at Re¼ 3900, 20th snapshot. The two columns on the left represent the streamwise velocity, and the two columns
on the right represent the transverse velocity. The first line represents the original flow field, and the remaining lines represent the modes of each order.
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same as for the Re¼ 100 case. The change in the loss function with
respect to the number of epochs at Re ¼ 10 000 is described by the
green curve in Fig. 6. The training process in the Re ¼ 10 000 case
stops after the fifth cycle of learning rate decay; thus, more epochs are
required for convergence than that with Re¼ 100 and Re¼ 3900.
Figure 6 shows that the loss value decreases slowly in the Re ¼ 10 000
case, and the final loss value is larger than that in the other two cases.
This is related to the implicit frequency property of the neural net-
work, as mentioned in Sec. I.

We now compare the modes extracted from the sparse measure-
ments by the trained PINN-POD model and the traditional POD
modes extracted from the original numerical simulation results by the
classical POD algorithm. In terms of energy, Fig. 15 shows that more
than 99% of the total energy is captured by the first six modes, and the
energy of each PINN-PODmode is relatively consistent with the refer-
ence values. The flow structures shown in Fig. 16 demonstrate that the

position and symmetry of the vortices are captured relatively well. In
the Re ¼ 10 000 case, the pattern is essentially different from that in
the Re¼ 100 and Re¼ 3900 cases in terms of the location, size, and
distribution of the vortex pairs. The vortex centers in the first- and
second-order modes with Re ¼ 10 000 are closer to the centerline,
while the third- and fourth-order modes have only two rows, indicat-
ing that the dissipation of the vortices through viscosity becomes
weaker as Re increases.

The relative L2 error of the velocity fields reconstructed from the
first six modes is illustrated in Fig. 17. These results demonstrate that
the PINN-POD method reconstructs the velocity fields and extracts
the flow structures well at Re ¼ 10 000. Although the training loss is
larger for Re ¼ 10 000 than that for Re¼ 3900, the relative L2 error
does not increase significantly compared with the lower-Re case. As
seen in Table II, the dominant frequency of the spatial modes is excel-
lently captured by the PINN-POD method. The frequency of the first
two modes remains at the same level as the lift coefficient. Therefore,
the proposed PINN-POD method achieves good accuracy in both
laminar and turbulent cases.

FIG. 13. Relative L2 error of regressed and reconstructed velocity fields at
Re¼ 3900. The relative L2 error of the regressed velocity is obtained by comparing
the flow field of PINN regression with the flow field of CFD. The relative L2 error of
the reconstructed velocity compares the first six PINN-POD modes with the first six
POD modes. PINN-POD modes are obtained from 29 sensor measurements by
our PINN-POD method, while POD modes are obtained from full-spatiotemporal
CFD data.

FIG. 14. Velocity at various measuring
points (Re ¼ 10 000). The values have
been shifted by certain values.

FIG. 15. Energy and ratio of cumulative energy to total energy of PINN-POD
modes and referenced CFD results at Re ¼ 10 000.
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D. Influence of noisy data

Noise is almost unavoidable in measurements conducted in
laboratory settings. Thus, to study the robustness of the proposed
PINN-POD method, its performance with various noise levels added
to the sensor measurements is now explored. The noise is assumed
to follow a Gaussian distribution with zero mean and r% standard
deviation.24 The samples obtained from the numerical simulations
in Secs. III A–III C had noise added to give the noisy training set.
Measurements with 20% noise added at various points are shown in
Fig. 18.

The training settings are consistent with those described in the
previous section. Compared with the cases without noise, the conver-
gence speed is slower in the presence of noise. The variation in the loss
during the training process for Re¼ 100, 3900, and 10 000 with vari-
ous noise levels is shown in Figs. 19–21. There is a clear upward trend
in the loss as the noise ratio increases. The accuracy of the captured
modes also decreases to some extent. Figure 22 shows the mean rela-
tive L2 error and the standard deviation of the velocity fields recon-
structed using the first six modes at various noise ratios. As the noise
ratio increases from 0% to 20%, the relative L2 error in the Re¼ 100
case rises sharply by roughly an order of magnitude; in the Re¼ 3900

FIG. 16. Comparison of POD modes and PINN-POD modes at Re ¼ 10 000, fourth snapshot. The two columns on the left represent the streamwise velocity, and the two col-
umns on the right represent the transverse velocity. The first line represents the original flow field, and the remaining lines represent the modes of each order.

FIG. 17. Relative L2 error of regressed and reconstructed velocity fields at
Re ¼ 10 000. The relative L2 error of the regressed velocity is obtained by compar-
ing the flow field of PINN regression with the flow field of CFD. The relative L2 error
of the reconstructed velocity compares the first six PINN-POD modes with the first
six POD modes. PINN-POD modes are obtained from 29 sensor measurements by
our PINN-POD method, while POD modes are obtained from full-spatiotemporal
CFD data.
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and 10 000 cases, the error increases only slightly. However, the rela-
tive L2 error remains lower in the Re¼ 100 case than that in the other
two cases. This is because low-order modes mainly capture low-
frequency features, while high-frequency features come to play a dom-
inant role as Re increases. The high-frequency features are harder to
capture by neural networks than low-frequency features.

The flow structures at Re¼ 100, 3900, and 10 000 with the high-
est noise ratio are illustrated in Figs. 23–25. Compared with the cases
without noise, the position of the vortex is broadly accurate, but the

errors in the velocity amplitude have increased. This is in line with the
relative L2 error. The noisy data do not affect the accuracy of the time
coefficient. Table III indicates that St corresponding to the dominant
frequency of the PINN-POD modes extracted from the noisy data is
in good agreement with that given by the traditional POD modes.
These results demonstrate that the PINN-POD method provides an
accurate and robust means of extracting the flow structures from noisy
observations for both simple laminar flows and complex turbulent
flows.

FIG. 18. Velocity at various measuring points with 20% noise for different Re. The first line represents the streamwise velocity, and the second line represents the transverse
velocity. The columns represent different Reynolds numbers. (a) Re¼ 100, (b) Re¼ 3900, and (c) Re¼ 10 000.

FIG. 19. Loss-epochs of Re¼ 100 with various noise ratios. The dotted line
divides the learning rate decay period.

FIG. 20. Loss-epochs of Re¼ 3900 with various noise ratios. The dotted line
divides the learning rate decay period.
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IV. CONCLUSIONS

The methodology proposed in this paper provides a way to
extract hidden flow structures from sparse measurements. This
method has been validated by examining flows at various Reynolds

numbers. In contrast to the traditional POD method, PINN-POD
requires only sparse observation data. The flow fields are regressed
from these sparse observation data by several sub-PINNs. To deter-
mine the convergence of the proposed method, the convergence of

FIG. 21. Loss-epochs of Re ¼ 10 000 with various noise ratios. The dotted line
divides the learning rate decay period. FIG. 22. Relative L2 error of reconstructed velocity fields at various noise ratios.

Values are expressed as mean6 standard deviation.

FIG. 23. Comparison of POD modes and PINN-POD modes with 20% noise ratio at Re¼ 100, first snapshot. The two columns on the left represent the streamwise velocity,
and the two columns on the right represent the transverse velocity. The first line represents the original flow field, and the remaining lines represent the modes of each order.
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the PINN-POD modes is considered alongside the common loss
function.

Unlike traditional POD, which requires high-resolution data, the
flow patterns of a cylinder wake can be obtained by the proposed
PINN-POD method from only 29 measuring points. The first two
modes are usually representative of the dominant structures.
Visualizations showed that the structures contained in the first six
PINN-POD modes match the traditional POD results. Moreover, as
the first six PINN-POD modes contain more than 99% of the energy
in the flow domain, the velocity fields reconstructed by PINN-POD
and traditional POD are highly consistent. The mean relative L2 errors
in u and v, as reconstructed by the first six modes, between PINN-
POD and traditional POD are 1:385� 10�3 and 3:166� 10�4 at
Re¼ 100, 1:577� 10�2 and 3:827� 10�3 at Re¼ 3900, and
1:946� 10�2 and 3:841� 10�3 at Re ¼ 10 000. As Re increases, the
mean relative L2 error gradually rises, which indicates that it is becom-
ing less easy to train the PINN-PODmodel.

All extracted flow structures under various noise levels were in
acceptable agreement with the traditional POD results. In the worst
case (Re ¼ 10 000 with a noise ratio of 20%), the mean relative L2

errors in u and v were 1:940� 10�2 and 7:490� 10�3, respectively.
In addition, the time coefficients of the PINN-POD modes are highly
consistent with the traditional POD modes. For the first- and second-
order PINN-POD modes, St is approximately equal to that of the lift
coefficient, indicating that the evolution of the dominant structures is
accurately captured by these PINN-POD modes. The training data
sampled for the Re¼ 100, 3900, and 10 000 cases were generated by
different viscosity models, demonstrating the robustness of the PINN-
POD framework.

In summary, the proposed PINN-POD method provides an
accurate and robust framework for extracting flow structures from
sparse observation data. Compared with the classical POD method,
the PINN-POD method has great potential for use in experimental
fluid mechanics due to its low dependency on data. Although only
2D incompressible cases have been considered in this work, the pro-
posed framework could be extended to a variety of flows, such as 3D
incompressible or compressible flows, by changing the physics-
informed part. The distribution of measurement points, learning
rate scheduling strategy, and hyperparameters of the neural net-
works could also be further optimized. However, for flows at high Re

FIG. 24. Comparison of POD modes and PINN-POD modes with 20% noise ratio at Re¼ 3900, 20th snapshot. The two columns on the left represent the streamwise
velocity, and the two columns on the right represent the transverse velocity. The first line represents the original flow field, and the remaining lines represent the modes of
each order.
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values, reducing the error of PINN-POD remains a challenging
issue.
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APPENDIX A: CONVERGENCE VALIDATION OF MODES

The POD method is sensitive to the number of snapshots; this
section studies the effect of snapshot numbers on convergence of
modes. The convergence of modes is evaluated by scalar product.9

The set of modes obtained from 1000 snapshots is selected as the
base set. Then, the scalar product between the set of modes
obtained from different snapshots and the base set is calculated to
evaluate the convergence. As long as the scalar product approaches
1 as the number of snapshots increases, the mode is convergent.
Figure 26 illustrates the change of scalar product of POD modes
and PINN-POD modes as the number of snapshots increases at

various Re. The results show that the convergence of POD modes
and PINN-POD modes gradually improves with the increase in
snapshots and reaches a good convergence after the number of
snapshots is greater than 600. In addition, the first- and second-
order mode converge fastest, and the higher order modes converge
slower. Therefore, 1000 snapshots are used for the cases in this
paper, which are sufficient to extract convergent modes.

APPENDIX B: CONVERGENCE CRITERIA OF PINN-POD

This section shows how the PINN-POD model meet the mode
convergence criteria and loss function criteria during training.
Tables IV–VI show the evaluation at the end of each learning rate
decay period at Re¼ 100, Re¼ 3900, and Re ¼ 10 000, respectively.

FIG. 26. Convergence of POD modes and PINN-POD modes with the number of snapshots at various Re: (a) Re¼ 100 POD modes, (b) Re¼ 3900 POD modes, (c)
Re¼ 10 000 POD modes, (d) Re¼ 100 PINN-POD modes, (e) Re¼ 3900 PINN-POD modes, and (f) Re¼ 10 000 PINN-POD modes.

TABLE IV. Criteria of mode convergence and loss function at the end of each learn-
ing rate decay period (Re¼ 100).

Noise ratio Criterion T1 T2 T3 T4 T5 T6

0% DciN < 10�2 � � � �

DLossi < 10�2 � � � �

1% DciN < 10�2 � � � �

DLossi < 10�2 � � � �

5% DciN < 10�2 � � � �

DLossi < 10�2 � � � �

10% DciN < 10�2 � � � �

DLossi < 10�2 � � � �

20% DciN < 10�2 � � � �

DLossi < 10�2 � � � �

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 35, 037119 (2023); doi: 10.1063/5.0138287 35, 037119-16

Published under an exclusive license by AIP Publishing

 08 April 2024 03:20:47

https://scitation.org/journal/phf


The maximum number of learning rate decay periods is 6, and the
criterion is satisfied if the value is less than 10�2 in this paper. The
mark � means that the criterion is met, and the mark � means that
the criterion is not met. When the criteria are met in two consecu-
tive decay periods, the PINN-POD model is considered to have
converged. If the criteria are still not satisfied after reaching the
maximum decay period (6 here), it means that the case is divergent.
The divergent case needs to be adjusted, such as resetting parame-
ters, increasing the number of sensors, etc.

APPENDIX C: INFLUENCE OF SENSOR PLACEMENT
AND NUMBER

The position and number of sensors do have a significant
impact on the accuracy of capturing the feature of wake flow.24 In
this paper, the PINN is employed to regress the full-spatiotemporal
flow fields. Therefore, accuracy of the regressed flow field is essen-
tial, which is closely related to the placement strategy of the sen-
sors.32 In this section, the accuracy of four groups of placement

TABLE V. Criteria of mode convergence and loss function at the end of each learn-
ing rate decay period (Re¼ 3900).

Noise ratio Criterion T1 T2 T3 T4 T5 T6

0% DciN < 10�2 � � � �

DLossi < 10�2 � � � �

1% DciN < 10�2 � � � � �

DLossi < 10�2 � � � � �

5% DciN < 10�2 � � � � �

DLossi < 10�2 � � � � �

10% DciN < 10�2 � � � � �

DLossi < 10�2 � � � � �

20% DciN < 10�2 � � � �

DLossi < 10�2 � � � �

FIG. 27. Various placement methods and quantities of sensor.

TABLE VI. Criteria of mode convergence and loss function at the end of each learn-
ing rate decay period (Re ¼ 10 000).

Noise ratio Criterion T1 T2 T3 T4 T5 T6

0% DciN < 10�2 � � � � �

DLossi < 10�2 � � � � �

1% DciN < 10�2 � � � � �

DLossi < 10�2 � � � � �

5% DciN < 10�2 � � � � �

DLossi < 10�2 � � � � �

10% DciN < 10�2 � � � � �

DLossi < 10�2 � � � � �

20% DciN < 10�2 � � � � � �

DLossi < 10�2 � � � � �
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strategy is studied, and each group has three quantities of sensors. As
illustrated in Fig. 27, the four placement strategies are diamond, cross,
Latin hypercube sampling (LHS), and rectangle, respectively. The rela-
tive L2 error of regressed velocity with various placement strategies and
numbers of sensor is compared in Fig. 28. The results show that the
accuracy of the regressed flow field improves with the increase in the
number of sensors generally. Moreover, the accuracy of diamond place-
ment is the best in most cases, and the accuracy will enhance stably with
the increase in measuring points, while the cross placement gets the
worst accuracy. Considering the need to test our PINN-POD framework
to explore hidden flow structure from the data as sparse as possible, the
diamond placement with 29 sensors is adopted in this paper.

APPENDIX D: TRAINING A PINN-POD MODEL USING
LES DATA

In this section, to investigate the performance of the PINN-
POD framework in dealing with more complex turbulence, the

PINN-POD model was trained by the wake flow field data obtained
from the LES of a circular cylinder at Re¼ 3900. The mesh and
computation settings are referenced from Jiang et al.56 However,
while LES are typically three-dimensional, our PINN-POD frame-
work has been designed to be two-dimensional at present. To
obtain a 2D wake field, the span-average of the target wake region
was performed. The streamwise velocity of the original and span-
averaged wake is shown in Fig. 29. The wake field obtained by
span-averaging the 3D LES data is more turbulent than that
obtained by simulating with a 2D k-e turbulent model in Sec. III B.
The velocity data sampled from span-averaged wake were employed
to train our PINN-POD model. To make a comparison with the
case at the same Re presented in Sec. III B, velocities at the same 29
positions were sampled for 1020 time instances, which were divided
into ten blocks with 20 snapshots overlapping between adjacent
blocks. The parameters of PINN-POD mode were consistent with
those of other cases in Sec. III B. The model reached convergence
after four annealing cycles.

FIG. 28. Relative L2 error of regressed velocity by PINN from different sensor placement strategies: (a) streamwise velocity u at Re¼ 100, (b) streamwise velocity u at Re¼ 3900, (c)
streamwise velocity u at Re¼ 10 000, (d) transverse velocity v at Re¼ 100, (e) transverse velocity v at Re¼ 3900, and (f) transverse velocity v at Re¼ 10 000.

FIG. 29. Streamwise velocity uLES and its span-averaged value uspan�average obtained from LES of the target wake region: (a) original 3D wake and (b) span-averaged wake.
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Figure 30 demonstrates that the first six modes obtained by
the PINN-POD method are in good concurrence with the tradi-
tional POD modes. The comparison between Fig. 30 and 12 shows
that the primary flow pattern of the Karman vortex shedding in the
wake of the cylinder at Re¼ 3900 is captured by the first and second
PINN-POD modes, regardless of whether the training data are
based on RANS or LES simulations. However, there are some differ-
ences in the higher-order modes, which is due to the fact that the
LES data contain abundant high-frequency fluctuations. LES is
capable of resolving smaller-scale vortices, unlike RANS data which
can only resolve large-scale vortices, the energy distribution of the
modes in the LES flow field is less concentrated than that in the
RANS data.

The energy and ratio of cumulative energy to total energy of
PINN-POD modes and referenced LES results are compared in Fig. 31.
The results indicate that the PINN-POD method captures the energy of
the flow fields well, with the first six modes accounting for over 90% of
the total energy, which is slightly lower than the 99% captured in case
2. However, the energy of each PINN-POD mode is basically in line
with the reference value. Furthermore, the relative L2 error of the veloc-
ity fields reconstructed from the first six modes is illustrated in Fig. 32.
The PINN-POD modes obtained from LES data reconstruct the veloc-
ity field well, but no better than those obtained from RANS data in

Sec. III B. This suggests that to explore the hidden flow structures from
more complex 3D turbulence, it is necessary to extend the proposed 2D
PINN-POD framework to 3D and to study in more detail the effects of
various parameters in 3D cases.

FIG. 30. Comparison of POD modes and PINN-POD modes from LES data at Re¼ 3900, 20th snapshot.

FIG. 31. Energy and ratio of cumulative energy to total energy of PINN-POD
modes and referenced LES results at Re¼ 3900.
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