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A B S T R A C T

Mixtures of binary spheres represent prototypes of amorphous solids and can model metallic, granular, and
colloidal glasses. However, the effects of the size ratio 𝜆 on amorphous structures are not well understood.
Here, we revisit the controversial noncubic scaling law and the local sphere packing by systematically changing
𝜆. Our simulations clarify the existence and mechanism of the noncubic scaling law for mean atomic volume,
𝑣a ∝ 𝑞−𝑑1 , where 𝑞1 is the position of the first diffraction peak and 𝑑 is a constant less than the space dimension
𝐷. We find that the scaling law holds at each 𝜆 in binary hard-sphere glasses and metallic glasses, but the
exponent satisfies a universal power law, 𝑑 ∼ (𝜆 − 𝜆c)−𝛾 , instead of being a constant. The decreasing trend of
𝑑(𝜆), the abnormal 𝑑 > 𝐷 and the divergence of 𝑑 when 𝜆 approaches 1 are theoretically explained. Moreover,
𝑑 begins to fluctuate at 𝜆 < 1.2, indicating less stable glasses. Large and small spheres are better dispersed
with more disordered structures at 𝜆 > 1.2. At 𝜆 = 1.2, various structural parameters change, and the number
of icosahedral packing reaches the maximum. The results cast light and pose new challenges on amorphous
structures of binary glasses.
1. Introduction

Glasses, i.e. amorphous solids, are usually produced by cooling [1]
or densifying [2] liquids when crystallization is precluded. The mix-
ing of different-sized spheres can effectively frustrate crystallization,
and this approach is often used in glass productions [3–6]. Mix-
tures of binary spheres are one of the simplest types of glasses, and
can model many granular, colloidal and metallic glasses (MGs). Bi-
nary glassy systems in granular matters [7,8], colloids [9–12] and
alloys [3,13–17] have been intensively studied. These studies have
focused on the slow dynamics [9,10,18–21], locally favoured structures
[13,22], and medium-range order [9,12] in the supercooled regime;
jamming transitions close to the high density limit [2,23]; and glass-
forming ability [3,14,15,17]. However, the effects of the size ratio 𝜆
and the fraction of large spheres 𝑥 on the glass structure have not
been well understood. Here, we clarify the open problem about the
noncubic scaling law, which has been mainly studied in MGs [24–28],
by systematically changing the 𝜆 and 𝑥 of binary hard-sphere glasses.
Moreover, various structural parameters exhibit prominent changes at
the special value of 𝜆 = 1.2.

In crystals, the first peak position 𝑞1 of the structure factor 𝑆(𝑞) is in-
versely proportional to the lattice constant, that is, 𝑞1 ∝ 1∕𝑎. Therefore
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the mean volume per atom must satisfy 𝑣a ∝ 𝑎𝐷 ∝ 𝑞1−𝐷 for a D-
dimensional crystal. However, diffraction experiments and simulations
showed that various MGs follow a noncubic scaling law:

𝑣a ∝ 𝑞−𝑑1 (1)

with a fractional exponent 𝑑 ≃ 2.5 < 𝐷 = 3 under compositional
and pressure changes [24–26]. Recently, we found that this scaling
law holds for glasses composed of hard and soft particles under pres-
sure changes at fixed composition, whereas exponent 𝑑 varies in two
dimensions [29]. Whether Eq. (1) with 𝑑 ≃ 2.5 generally holds in
three-dimensional (3D) glasses remains controversial [26–28]. 𝑆(𝑞1)
contains structural information spanning broad length scales in real
space. Therefore, the scaling law concerning 𝑞1 in a reciprocal space
is difficult to connect to certain structural changes in real space. The
anomalous scaling law with 𝑑 < 𝐷 has been attributed to fractal
packing at the atomic level [25] or at the medium range [24]. However,
further studies questioned if the noncubic scaling law can be attributed
to the fractal structure [28,30,31]. Thus, the mechanism of noncubic
scaling law remains elusive, and which factor affects the scaling law
remains unclear. Here, we clarify that this scaling law holds in binary
MGs and hard-sphere glasses under compositional changes at fixed
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Fig. 1. Noncubic scaling laws in MGs under composition change. (a) 𝑣a increases linearly with the fraction of Zr content in Zr𝑥Cu1−𝑥 MGs. Inset: Zr0.5Cu0.5 at 300 K and 0 Pa.
Blue and yellow spheres denote Zr and Cu atoms, respectively. (b) Structure factor 𝑆(𝑞) at different compositions. The arrow shows the shift in 𝑞1. (c) Measured partial radial
distribution functions of the first-neighbour shell for Zr0.5Ni0.5, Zr0.5Cu0.5, and Al0.5Ni0.5. (d) Zr–Ni (triangles), Zr–Cu (squares) and Al–Ni (circles) MGs exhibit 𝑣a ∝ 𝑞−𝑑1 (dashed
lines in the log–log plot) with 𝑑 = 2.03, 2.32, and 3.44, respectively. The errors are smaller than the symbols. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
pressure, but breaks down when both pressure and composition change;
Instead of a constant, the 𝑑 of the scaling law varies with 𝜆 following
a power law.

The measured scaling laws are compared with those for MGs in
previous experiments [24,32,33] and simulations [28]. The results are
in contrast with two previously held beliefs: (1) 𝑑 < 𝐷 based on
real-space fractal mechanisms, and (2) a general 𝑑 ≃ 2.5 without 𝜆
dependence. We further observe various structure changes at 𝜆 = 1.2,
which can partly explain the observed stability change.

2. Glass models

We perform molecular dynamics simulations [34] for MGs and
event-driven molecular dynamics simulations [35] for hard-sphere
glasses (see Supplementary for the details). Each glass sample contains
𝑁 = 10,000 binary spheres in a cubic box under periodic boundary
conditions. 𝜆 = 𝜎A∕𝜎B > 1, where 𝜎 is the diameter of the large (A) or
small (B) spheres.

2.1. Metallic glass

Simulations for metallic glasses (MGs) are conducted using Large-
scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [34]
with the embedded-atom method (EAM) potentials [36–38]. The stan-
dard potential files are downloaded from https://www.ctcms.nist.gov/
potentials/system/. The complicate many-body attractive EAM poten-
tials are well tuned to fit a large set of atomic configurations, cohesive
energies, atomic forces and stress tensors derived from ab initio calcula-
tions [36–38], and have been widely used in recent studies of MGs [15,
17,25,28,39–45]. The Fast Inertial Relaxation Engine algorithm [46] is
used to minimize the energy of the system and prevent particle overlap.
Samples are first melted and relaxed at 2,000 K for 10 ns with a time
step of 1 fs in an NPT (constant particle number 𝑁 , pressure 𝑃 , and
2

temperature 𝑇 ) ensemble. The melts are then cooled to 300 K at 0
Pa at a fast-cooling rate of 1012 K/s to prevent crystallization. Such
high cooling rate is sufficient to produce Al–Ni glasses as reported in
Refs. [17,28], although Al–Ni is a poor glass former [15]. The resulting
sample is relaxed further for 5 ns and 1,000 snapshots are extracted
from the last 1 ns for structural analysis.

2.2. Hard-sphere glass

The hard-sphere potential is defined as

𝑈 (𝑟) =
{

∞ for 𝑟 ≤ 𝜎𝑖𝑗
0 for 𝑟 > 𝜎𝑖𝑗 ,

(2)

where 𝑟 is the particle separation, 𝜎𝑖𝑗 is the sum of the particle radii.
The diameter of small (B) spheres 𝜎BB = 𝜎 serves as the length unit,
and the diameter of large (A) spheres is 𝜎AA = 𝜆𝜎. 𝜎AB = (𝜎A + 𝜎B)∕2 is
the interaction distance between large and small spheres. The phase
behaviours of hard-sphere systems are determined by their volume
fraction (i.e. density) rather than by the temperature. The volume
fraction of A𝑥B1−𝑥 is calculated using

𝜙 = 𝑁
𝑉

𝜋𝜎3

6
(𝑥𝜆3 + 1 − 𝑥), (3)

where 𝑉 is the volume of the simulation box.
All results are averaged over ten samples for MGs and over five

samples for hard-sphere glasses to give sufficient statistics. Note that
all of the samples remain disordered glasses because they comprise
of less than 1% crystalline particles according to polyhedral template
matching method [47].

3. Results

We simulate typical MGs including Zr–Ni, Zr–Cu, Al–Ni, Zr–Cu–Al,
and Zr–Cu–Ag alloys with different composition 𝑥. Fig. 1a shows that 𝑣
a
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Fig. 2. Noncubic scaling laws in hard-sphere glasses. (a) Changing 𝑥 from 0.3 to 0.7 at a fixed 𝜆 (symbol) gives 𝑣a ∝ 𝑞−𝑑1 (dashed lines in the log–log plot). (b) Linear 𝑣a(𝑥) at
each 𝜆. Inset: Slopes of the linear 𝑣a(𝑥). (c) Volume fraction 𝜙 increases with 𝑥 and is greater than the glass transition point 𝜙g ≈ 0.585 for hard-sphere systems [1,11]. (d) 𝑞1(𝑥)
at different 𝜆 values fitted with 𝑞1 ∼ (𝑐 + 𝑥)−1∕𝑑 (dashed curves) intersect at 𝑥 ≈ 0.13 (red star).
of Zr𝑥Cu1−𝑥 increases linearly with 𝑥, indicating the linear additivity of
the volumes of Zr and Cu which is common in MGs [32,33]. In addition,
the higher number of large Zr atoms increases the mean interatomic
separation in real space, which reduces the first peak position 𝑞1 of
𝑆(𝑞) in the reciprocal space (Fig. 1b). Here, the structure factor: 𝑆(𝑞) =
⟨

∑𝑁
𝑗=1 𝑒

𝑖𝐪⋅𝐫𝑗 ∑𝑁
𝑘=1 𝑒

−𝑖𝐪⋅𝐫𝑘
⟩∕𝑁 is calculated from the particle’s position 𝐫.

The value of 𝑞1 is measured from the Lorentzian fit of the first peak of
𝑆(𝑞) [29].

3.1. Noncubic scaling laws in MGs

Three types of binary MGs at 300 K and 0 Pa are compared in
Fig. 1. Zr–Ni, Zr–Cu, and Al–Ni MGs possess different 𝜆 as shown by
their partial radial distribution functions in the first-neighbour shell in
Fig. 1c. Each peak denotes the typical interatomic distance [15,17]. The
atomic diameters measured from peak positions agree with the values
in the previous simulations [15,17]. Their size ratios 𝜆 are therefore
1.32, 1.27 and 1.18, respectively.

Fig. 1d shows that 𝑑 = 3.44 > 𝐷 for Al–Ni alloys. Such abnormal
𝑑 > 𝐷 behaviour has only been reported in a simulation of Al–Ni MGs
in the Supplementary material of Ref. [28], but it was interpreted as
evidence for the breakdown of the universal scaling law. Fig. 1d shows
that the composition-induced noncubic scaling law holds well but has
different exponents 𝑑 = 2.03, 2.32, 3.44 in Zr–Ni, Zr–Cu, and Al–Ni
MGs, respectively. By contrast, previous simulations and experiments
fitted the mixed data of various MGs with different 𝑥, 𝑃 or 𝜆 [24,26,28];
thus, they either cannot be well fitted with a single scaling law [28] or
the fitted exponents are slightly inconsistent. Consequently, the validity
of the scaling law with a universal 𝑑 ≃ 2.5 is controversial. Here we
find that 𝑑 is not a universal constant and depends on 𝜆 (Fig. 1d). The
above results represent only three 𝜆 values in a narrow range and are
therefore not sufficient to reveal how size ratio affects the scaling law.
We next study the effect of 𝜆 using binary hard-sphere glasses whose 𝜆
can be continuously tuned in a broad range.
3

Fig. 3. Composition-induced noncubic scaling law is independent of conditions at a
fixed 𝜆. The log–log plots of 𝑣a(𝑞1) for hard-sphere glasses with 𝜆 = 1.22 at different
compression rates (𝑟c), 𝑇 , and 𝑃 follow almost the same scaling law (dashed lines).

3.2. Noncubic scaling laws in hard-sphere glasses

Composition-induced scaling law has not been explored in hard-
sphere glasses. We prepare the hard-sphere glasses by compressing
liquids to a constant pressure 𝑃 = 5.5 (Supplementary Fig. S1a).
Systems under this pressure are dense enough to be in the glass regime
with volume fractions 𝜙 > 0.585 [1]. In Fig. 2a, hard-sphere glasses
follow the scaling laws very well at 1.10 ≤ 𝜆 < 1.34, but less well at
𝜆 < 1.10 and 𝜆 > 1.34, because of the crystallization and the separation
of large and small spheres, respectively [48]. The noncubic scaling
law [Eq. (1)] in hard-sphere glasses is robust at different (𝑃 , 𝑇 ) and
compression rates (Fig. 3).

The linear 𝑣a(𝑥) (Fig. 2b) reflects the simple additivity of volumes
of binary hard spheres, similar to the behaviour of the MG in Fig. 1a.
𝑣 (𝑞 ) and 𝑣 (𝑥) in Fig. 2a and b yield 𝑞 ∼ [𝑐(𝜆) + 𝑥]−1∕𝑑(𝜆), where
a 1 a 1
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Fig. 4. Power law 𝑑(𝜆). (a) All scaling exponents fall onto 𝑑 ∼ (𝜆− 𝜆𝑐 )−𝛾 (black curve)
with fitted 𝜆c = 1.034±0.005 (vertical line) and 𝛾 = 0.853±0.038. Coloured open symbols
represent the results of MG simulations, and the half-filled symbols are extracted from
the experimental literature [24,32,33] (Supplementary Fig. S3). (b) Standard deviations
of 𝑑. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

𝑐 is a constant for each 𝜆. Such a functional form fits 𝑞1(𝑥) well in
Fig. 2d, and all fitted curves for different 𝜆 values intersect at 𝑥 ≈
0.13, implying that the 𝜆−induced size mismatch is indiscernible for
𝑞1 at 𝑥 ≤ 0.13. Therefore, more than 13% large spheres are needed
to produce the considerable structural mismatch for glass formation,
which is consistent with the report that more than 11% Zr atoms are
needed to form Zr–Cu MGs [3,49].

The linear 𝑣a(𝑥) in Fig. 2b shows that the volume additivity is
independent of 𝜆, thus 𝑣a(𝑥) contributes little to the 𝜆 dependence of
the scaling law in Fig. 2a. Therefore, the 𝜆 dependence of the scaling
law (Fig. 2a) is derived solely from the 𝜆 dependence of 𝑞1(𝑥) in Fig. 2d.
This finding can be qualitatively explained as follows: 𝑞1(𝑥) obviously
decreases with 𝑥, because the presence of more large spheres increases
the mean real-space interparticle distance, which leads to the decrease
in 𝑞1 in the reciprocal space. Such an effect is more prominent at larger
𝜆 values, resulting in the steeper slope of 𝑞1(𝑥) in Fig. 2d and the smaller
𝑑 in Fig. 2a.

3.3. General power law for exponent 𝑑

The exponents 𝑑 of the scaling laws, i.e., the slopes in Figs. 1d
and 2a, vary with 𝜆. Interestingly, they collapse into a power law:

𝑑 ∝ (𝜆 − 𝜆c)−𝛾 , (4)

where 𝛾 = 0.853 and 𝜆c = 1.034 (Fig. 4a). This increasing trend in 𝑑
indicates that when compositional change causes a finite change in 𝑣a,
𝑞1 changes little approaching 𝜆 = 1.034. This result is very close to
Egami’s prediction of the glass forming regime 𝜆e > 1.04 for binary-
sphere model [50]. Note that the glasses are below the close-packing
density, and the gaps between particles can slightly reduce Egami’s
threshold, making it closer to our fitted 𝜆c (see Supplementary S7).

The power law behaviour [Eq. (4)] in Fig. 4a remains robust un-
der thermal fluctuations as shown in Supplementary Fig. S1b. The 𝜆-
dependent scaling law also holds for hard-sphere glasses at other (𝑃 , 𝑇 )
4

and compression rate (Fig. 3). 𝑣a and 𝑞1 slightly change concurrently
under different compression rates, but 𝑑 is barely affected (Fig. 3).
Moreover, a quantitative prediction of Eq. (1) from the Ornstein–
Zernike relation with the Percus–Yevick approximation [51,52] (see
Supplementary S10 for the details) deviates from the simulation and
experimental results (Fig. 4a and supplementary Fig. S8), indicating
that the noncubic scaling law is indeed a non-trivial relation.

In Fig. 4a, 𝑑 > 𝐷 when 𝜆 < 1.2, which is in accordance with
our simulated value of 𝑑 = 3.44 for Al–Ni MGs in Fig. 1d, whose
𝜆 = 1.18. Remarkably, the 𝑑 values from our simulations in Fig. 1d and
the available experimental results in the literature for MGs all follow
this general power law precisely as shown in Fig. 4a. In addition, our
simulations show that the noncubic scaling law also holds for ternary
Zr𝑥Cu0.9−𝑥Al0.1 and Zr𝑥Cu0.9−𝑥Ag0.1 MGs, and that their 𝑑 values agree
well with the power law in Fig. 4a. The third type of atom (i.e., Al or
Ag) has a fixed, low concentration; thus, the scaling law arises from
changes in Zr and Cu concentrations. Here, 𝜆 is the ratio between the
effective diameters of Zr and Cu atoms weighted by Al or Ag atoms (see
Supplementary S6 for the details).

Our measured size ratios of the binary atoms perfectly agree with
those in Refs. [15,17] using the same EAM potentials, but slightly larger
than the experimental values [3,49,53]. Nevertheless, EAM potentials
are one of the most accurate models for metallic glasses by now.
Moreover, the noncubic scaling law is robust for experimental MG data
and simulation data with the EAM potentials, indicating its robustness
for different interaction potentials. Note that the noncubic scaling only
holds for each 𝜆 under a fixed 𝑃 at different 𝑥, or at a fixed 𝑥 under
different 𝑃 . A single scaling law cannot well fit the data under different
𝑃 and 𝑥, see Supplementary S8 and Fig. S5.

3.4. Theoretical proof of the divergence of 𝑑

As the fraction of large particle 𝑥 increases in a series of MG samples
under a constant pressure (e.g., Supplementary Fig. S9), the concurrent
changes of 𝑣a(𝑥) and 𝑞1(𝑥) yield the noncubic scaling law of Eq. (1).
According to Eq. (1),

𝑑 = −
dln𝑣a
dln𝑞1

. (5)

The volume additivity in binary glasses under a constant pressure [32,
33] leads to the linear relation 𝑣a = c0 + c1𝑥, where c0,1 are constant.
Thus,

𝑑 = −
dln𝑣a
d𝑥

dln𝑞1
d𝑥

= −

c1
𝑣a
d𝑞1
𝑞1d𝑥

≃ −
c1

𝑣a𝛥𝑞1
𝑞1𝛥𝑥

. (6)

Next, we show that the denominator can approach 0 so that 𝑑 can
be infinity. Replacing 𝛥𝑥 fraction of small particles with large ones
increases the mean interparticle distance and thus reduces 𝑞1. 𝑞1 is less
affected by 𝛥𝑥 when 𝜆 is small. When 𝜆 approaches 1, the small and
large particles have almost the same size, and thus 𝛥𝑞1 is infinitely
small by replacing a fixed 𝛥𝑥 fraction of particles. Therefore, 𝑑 diverges
as 𝜆 → 1 since 𝑞1 and 𝑣a in the denominator of Eq. (6) are finite. As
the intermediate steps of the above derivation, the linear 𝑣a(𝑥) and
the lower slope of 𝑞1(𝑥) at small 𝜆 are confirmed in Figs. 1a and 2d,
respectively. The above analysis only gives the lower bound of 𝜆 for
the divergent 𝑑, thus in accordance with the fitted 𝜆 = 1.03 in Fig. 4a.
It is also possible that the fitting Eq. (4) does not work well when 𝜆 is
very close to 1.03.

3.5. Effect of 𝜆 on glass stability

We find that 𝑑 is stable at 𝜆 ≥ 1.2 (i.e., 𝑑 < 3 regime) and fluctuates
strongly at 𝜆 < 1.2 (i.e., 𝑑 > 3 regime), especially for small 𝜆 as
shown in Fig. 4b. This result implies stronger structural fluctuations
at 𝜆 < 1.2 (also shown in Supplementary Fig. S6), which can promote
devitrification. Therefore, glasses with 𝜆 < 1.2 are less stable. This
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Fig. 5. Structural changes at 𝜆 = 1.2 for systems at 𝑥 = 0.5 and 𝜙 = 0.59. (a) Particles’ aggregation propensity 𝛥𝛼 = 𝛼(𝜆) − 𝛼(1.1) for AB (B-type particles around A-type particles),
BA, AA, and BB bonds, respectively. (b) ⟨𝑞6⟩ decreases with 𝜆. Insets: The glass with 𝜆 = 1.28 contains more disordered (i.e., low 𝑞6) particles than that with 𝜆 = 1.12. (c) Average
local packing capability parameter 𝛺. Inset: A local tetrahedron composed of two large (blue) and two small (red) spheres. (d) Fractions of disordered, crystalline (FCC and HCP),
and icosahedral structures. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
finding agrees with the anomalously slower crystal growth and better
glass-forming ability of Zr–Cu than those of Al–Ni in Ref. [15] because
𝜆 > 1.2 for Zr–Cu and 𝜆 < 1.2 for Al–Ni. Besides the structure
fluctuation, interatomic potential also takes significant role on the glass
forming ability [15]. The Al–Ni peak position deviates from the average
of the Ni–Ni and Al–Al distances in Fig. 1c, indicating a strong Al–
Ni interaction and non-additivity in particle size [15]. This effect can
reduce the glass forming ability [15].

3.6. Effects of 𝜆 on glass structure

The systematic adjustment of 𝜆 in hard-sphere glasses enables the
measurement of its effects on the noncubic scaling law and other
structural properties, such as neighbouring pairs [54], local crystalline
order [55], local packing capability [21], and icosahedral packing [47].

3.6.1. Short-range order
For binary systems, the neighbouring pair or chemical short-range

order is characterized by the Warren–Cowley parameter [54],

𝛼AB = 1 −
𝑍AB
𝑥B𝑍A

, (7)

where 𝑍A is the coordination number of A-type particle; 𝑍AB is the
number of B-type particles neighbouring around A, and 𝑥B is the
fraction of B-type particles. 𝛼AB = 0, > 0 and < 0 correspond to random
mixture, favoured and unfavoured AB bonds, respectively. 𝛥𝛼 ≡ 𝛼(𝜆) −
𝛼(𝜆 = 1.1) in Fig. 5a shows that 𝛥𝛼AB,BA > 0 and 𝛥𝛼AA,BB < 0, indicating
that the differently sized particles have a high affinity than the same
sized particles. This trend increases (i.e., particles are better mixed) as
𝜆 increases. 𝛥𝛼AB and 𝛥𝛼BA bifurcate at 𝜆 ≥ 1.2 in Fig. 5a, implying
that a small particle surrounded by large ones occurs more often than
a large particle surrounded by small ones at 𝜆 > 1.2. Such tendency of
aggregation between large particles becomes more prominent at 𝜆 > 1.2
(see Supplementary Fig. S7), which enhances the stability as shown in
Fig. 4b.
5

3.6.2. Bond-orientational order
The modified bond-orientational order parameter 𝑞6 [5,55] is ap-

plied to characterize the local crystalline order of each particle 𝑖,

𝑞6 =

√

√

√

√

√

4𝜋
2𝑙 + 1

𝑙
∑

𝑚=−𝑙
|

𝑛
∑

𝑗=1

𝐴𝑗

𝐴
𝑌𝑙𝑚(𝜃𝑖𝑗 , 𝜙𝑖𝑗 )|

2

(8)

𝜃𝑖𝑗 and 𝜙𝑖𝑗 are the spherical angles of the vector from particle 𝑖 to
its 𝑗th nearest neighbour. 𝐴𝑗 is the area of the Voronoi facet to the
𝑗th neighbour and 𝐴 is the total surface area of the Voronoi cell. 𝑌𝑙𝑚
is a spherical harmonic function of degree 𝑙 and order 𝑚. Thus, each
neighbour of particle 𝑖 is properly weighted by the corresponding facet
of the Voronoi cell in 𝑞6 [55]. A lower value of 𝑞6 represents a more
disordered structure around particle 𝑖 [56]. Fig. 5b shows that the
averaged 𝑞6 decreases with 𝜆 and exhibits a slope change at 𝜆 = 1.2.
The high ⟨𝑞6⟩ at 𝜆 < 1.2 is in accordance with the faster crystal growth
observed in Al–Ni alloy [15], whose 𝜆 < 1.2, which corresponds to the
large structural fluctuation at 𝑑 > 3.0 in Fig. 4b.

3.6.3. Local packing capability
The basic 3D building block is a tetrahedron packed by four spheres

which is closely related to the dynamics of hard-sphere glass [6].
Tong et al. recently proposed the local packing capability of parti-
cle 𝑜, 𝛺𝑜, to measures its deviation from the reference close-packing
tetrahedra [21]:

𝛺𝑜 =
1

𝑁 tetra
𝑜

∑

⟨𝑜𝑖𝑗𝑘⟩
𝜔
⟨𝑜𝑖𝑗𝑘⟩, (9)

with

𝜔
⟨𝑜𝑖𝑗𝑘⟩ =

∑

⟨𝑎𝑏⟩ |𝑟𝑎𝑏 − 𝜎𝑎𝑏|
∑

⟨𝑎𝑏⟩ 𝜎𝑎𝑏
, (10)

where 𝑁𝑜
tetra is the total number of tetrahedra surrounding particle

𝑜, and the summation runs over all these tetrahedra. 𝜔 measures

⟨𝑜𝑖𝑗𝑘⟩
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the irregularity of the tetrahedron ⟨𝑜𝑖𝑗𝑘⟩ formed by particles 𝑜, 𝑖, 𝑗 and
, with ⟨𝑎𝑏⟩ running over its six edges; 𝑟𝑎𝑏 is the measured distance
etween particles 𝑎 and 𝑏; and 𝜎𝑎𝑏 is the ideal distance between 𝑎 and
in the reference tetrahedron. 𝛺 can detect disorderness in an order-

gnostic manner especially in non-monodispersed systems without a
rior knowledge of the preferred local structure or symmetry. The
arger 𝛺 values indicate stronger deviations from sterically favoured

tetrahedra and hence higher disorder. 𝛺 is effective in revealing the
dynamic slowing down of binary hard-sphere fluids [21]. Here we use
it to characterize the glass structure at different size ratios. In Fig. 5c,
the averaged 𝛺(𝜆) increases, indicating a higher degree of disorder
at a larger size ratio. 𝛺(𝜆) exhibits two linear regimes with a slope
change at 𝜆 = 1.2. These results indicate that better dispersed large
and small spheres at large 𝜆 distort the locally favoured packing from
the reference tetrahedron (Fig. 5c).

3.6.4. Disordered, crystalline and icosahedral structures
Icosahedral, face-centred cubic (FCC), and hexagonal close-packed

(HCP) structures are the equally densest packings for a sphere and its
12 monodispersed first-layer neighbours [13,57,58]. An icosahedron of
13 spheres interacting through a Lennard–Jones potential has a lower
energy than structure of FCC or HCP, and it is therefore common
in liquids [57]. The five-fold symmetry of icosahedra is incompatible
with the crystalline order; thus, glasses can easily form. For example,
icosahedra have been observed in various binary glasses [13,22,59].
Each particle is classified as disordered, crystalline (i.e., FCC and
HCP), or icosahedral by polyhedral template matching method [47].
We set the cutoff of a structure deviation [47] as 0.15 to make the
crystalline and icosahedral structures prominent. As 𝜆 increases, the
fraction of disordered particles increases and the fraction of crystalline
particles decreases in Fig. 5d. Interestingly, the fraction of icosahedral
structure peaks at 𝜆 = 1.2 as shown in Fig. 5d. Icosahedral structures
play remarkable roles in glassy behaviours for binary Lennard–Jones
system [60], but exhibit negligible effects in colloidal glasses [61].
Our finding reconciles this discrepancy as spheres are bidispersed with
𝜆 = 1.2 in Ref. [60] and polydispersed in Ref. [61].

4. Summary and conclusions

We demonstrate that composition-induced noncubic scaling laws
hold well in binary MGs and hard-sphere glasses by systematically
changing 𝜆 of binary-sphere systems. Surprisingly, the exponent 𝑑 can
be larger than the space dimension 3, which rules out the mechanism of
the noncubic scaling law based on real-space fractal structures. This is
consistent with Refs. [28,30,31] which also suggested that the noncubic
scaling law does not arise from real-space fractal structures. In addition,
we find that 𝑑 obeys the power law in Eq. (4) instead of being a
constant of 2.5 [25,26] as previous works assumed. The decreasing 𝑑(𝜆)
in Fig. 4a arises from the linear 𝑣a(𝑥) and the steeper slope of 𝑞1(𝑥)
for larger 𝜆. This mechanism sets no upper limit, such as 𝐷, for 𝑑.

e theoretically show that 𝑑 should diverge when 𝜆 → 1 in binary
lasses with different mixing ratios under a constant pressure. Note
hat the exponent 𝑑 > 𝐷 = 3 in small-𝜆 systems (Fig. 4a) is measured
n the reciprocal space based on all particles, which does not conflict
ith the real-space fractals with 𝑑 < 3 formed by a certain subset
f particles (e.g., particles with icosahedral neighbours) observed in
Gs [25,31,62,63]. The fractal formed by a subset of particles is
easured from the structure of a single MG sample [25,31,62,63],
hile the noncubic scaling law of Eq. (1) is about the changing rate
f 𝑣a(𝑥) and 𝑞1(𝑥) in a series of samples with different 𝑥, instead of

about certain structure in a single sample. The exponent 𝑑 depends on
the relative change between 𝑣a(𝑥) and 𝑞1(𝑥) (Fig. 2a,b,d) and is not
relevant to space dimension. We suggest to conduct an experimental
search for the previously unexpected 𝑑 > 𝐷 by using Al–Ni MGs
in a broad composition range because their 𝜆 is small enough. The
divergence of 𝑑 has not been observed experimentally or numerically
6

before because the currently available experimental and numerical
data about changing mixing ratio in binary glasses are obtained from
systems with 𝜆 > 1.15 as we summarized in Fig. 4a. Cu and Ni atoms
have similar sizes in alloys, thus Cu–Ni MGs should have a large 𝑑.
However, Cu–Ni systems have a very weak glass forming ability and
can easily crystallize [3] under the currently available cooling rate,
thus their 𝑑 value has not been measured. This is consistent with the
bservations that the amorphous structure becomes less stable when
< 1.2.

Besides the noncubic scaling law, we find that small particles are
etter dispersed (small 𝛥𝛼BB in Fig. 5a) at 𝜆 > 1.2, and the associ-
ted structure is more disordered (Fig. 5a–d) with a higher stability
Fig. 4b). We observe a special value of 𝜆 = 1.2 for binary hard-
phere glasses, which has not been reported before. It is special in
he following aspects: (1) 𝑑 = 𝐷 = 3 at 𝜆 = 1.2, indicating that
he composition and pressure have the same effect on the noncubic
caling law (Fig. 4a; Supplementary S8 and Fig. S5). (2) The structural
arameters in Fig. 5a–d exhibit slope changes. (3) The number of
cosahedral packing peaks at 𝜆 = 1.2 when 𝑥 ≥ 0.5 (see Supplementary
ig. S10), which reconciles the observations that icosahedral structures
re important in some glasses [60] but not in others [6,61].
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