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Abstract
Bayesian optimization is a powerful tool in the kinematic design of bio-inspired flight,
where expensive high-fidelity numerical simulations are required. However, the tra-
ditional single acquisition strategy cannot adapt to all design problems, which have
various input–output characteristics. The hybrid acquisition strategy improves the
robustness by utilizing three types of acquisition functions, and each acquisition func-
tion is assigned three different balance parameters. The kinematics of a gliding flat
plate that oscillates along the spanwise direction has been optimized to enhance the
power efficiency by using the Bayesian optimization method. The power factor under
the optimal spanwise oscillation is 1.97 times as large as that without spanwise oscil-
lation, which indicates the good capability of the optimization method for bio-inspired
locomotion.
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1 Introduction

The optimization design problem can be formulated as maxξ∈χ f (ξ), where ξ is the
design vector in space χ , and f : χ → R is the objective function to be optimized. In
particular, we focus on the complex black-box system (Audet and Kokkolaras 2016),
which features the implicit relation and the expensive target evaluations from the input
to the output. A global efficient optimization is required to solve this kind of problem,
which occurs in the design of unmanned aerial vehicles for optimal or compromised
aerodynamic performances (Hassanalian and Abdelkefi 2017) and other aerospace
scenarios (Borggaard and Burns 1997; Duraisamy et al. 2019; Hebbal et al. 2021;
Nadarajah and Tatossian 2010).

Different optimization methods have been developed to find the best solution.
Gradient-based methods have fast convergence but conduct local searches. Although
the use of multiple start points allows the exploitation of more local regions, it causes
an increasing computational burden. Evolutionary algorithms globally search the
design space but need a large enough population size and generation size to con-
verge. The unaffordable computational cost of the two methods described above can
be significantly reduced by replacing the original physical model with the surrogate
model (Marsden et al. 2004; Singh et al. 2017). The probabilistic surrogate model,
which has remarkable advantages to expensive black-box problems, is used in the
framework of Bayesian optimization (Hebbal et al. 2021; Shahriari et al. 2015). On
the basis of a few sampled points, Bayesian optimization visualizes input–output rela-
tionships, estimates the optimum as well as its location, and suggests points to use for
improving the next estimation by an acquisition strategy. However, different acquisi-
tion strategies have different effects in a given application. Despite limited experience,
the choice of the acquisition strategy is still difficult when a new optimization task
appears.

A feasible solution that avoids this choice is the hybrid acquisition strategy (Liu
et al. 2021). The idea of this strategy is to incorporate several well-established acqui-
sition functions into a portfolio and select the one with the best adaptability. Hoffman
et al. (2011) proposed a full-information hedging strategy and demonstrated its supe-
riority over the individual acquisition strategy through tests for standard functions,
sampled functions, and a real physical problem. Vasconcelos et al. (2019) modified
the algorithm by incorporating the memory factor and reward normalization. This
method is expected to show high efficiency and robustness for a new biolocomotive
application, where high fidelity numerical simulations are used to evaluate the aero-
dynamic performance. The aim of this work is to utilize the optimization method with
high efficiency and robustness to find the optimal spanwise oscillating parameters for
the power efficiency of a gliding rectangular flat plate.

The remainder of this paper is organized as follows. The Bayesian optimization
with hybrid acquisition strategy is presented in Sect. 2. The optimization framework is
applied to optimize the kinematics of the spanwise oscillating wing in Sect. 3. Finally,
conclusions are drawn in Sect. 4.
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2 Portfolio allocation framework of the Bayesian optimization
method

2.1 Gaussian process model

The Gaussian process GP (μ0, k) is constructed from the prior mean function μ0 :
χ �→ R and the positive-semidefinite covariance function k : χ × χ �→ R (Shahriari
et al. 2015). In thiswork,we adopt the smooth squared exponential covariance function

k
(
ξ , ξ ′) = σ f

2 exp
(
− 1

2l2

∥∥ξ − ξ ′∥∥2
)
, where σ f

2 is the maximum covariance and l

is the length parameter that controls the effect of the distance between the two design
vectors ξ and ξ ′. The basic assumptions for the GP model can be written as

f |ξ1:n, ξ∗
1:m ∼ N (m,K) , (1)

q|f, ε ∼ N
(
f, σ 2I

)
, (2)

where ξ i is the known design vector (training point) and ξ∗
i is the unknown design

vector (prediction point). Here, f andq are vectors consisting of unknown object values
and noisy observation values on n training points ξ1:n and m prediction points ξ∗

1:m ,
respectively; m is the prior mean vector with elements mi = μ0

(
ξ̂ i

)
, where ξ̂ i is a

training point or a prediction point; K is the prior covariance matrix with elements

Ki, j = k
(
ξ̂ i , ξ̂ j

)
; and ε is the noise vector with its elements εi , which follow the

Gaussian distributionN (
0, σ 2

)
. For ease of expression, some items in the relations (1)

and (2) are expanded into partitioned forms, as shown below:
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K =
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Kn×n K ∗

n×m
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m×n K ∗∗

m×m

]
∈ R

(n+m)×(n+m), (4)

where f , q,m and ε are decomposed into the training and prediction subvectors andK
is divided into three components Kn×n , K ∗

n×m (K ∗
m×n is the transpose of K ∗

n×m),
and K ∗∗

m×m interpreting the correlation of all pairs of points in
{(

ξ i , ξ j

)}
i, j=1:n ,{(

ξ i , ξ
∗
j

)}
i=1:n, j=1:m , and
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ξ∗

i , ξ
∗
j

)}
i, j=1:m , respectively.

Combining the relations (1) and (2) together with substituting Eqs. (3) and (4), we
obtain

[
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f ∗

1:m

]
+

[
ε1:n
ε∗

1:m

])
|ξ1:n, ξ∗

1:m

∼ N
([

m1:n
m∗

1:m

]
,

[
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(5)
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Then, we apply the property of conditioning Gaussians, resulting in the following
distribution:

q∗
1:m |q1:n, ξ1:n, ξ∗

1:m ∼ N (
μ∗

1:m, �∗
m×m

)
, (6)

where μ∗
1:m is the posterior mean vector and �∗

m×m is the posterior covariance
matrix. They are expressed as

μ∗
1:m = m∗

1:m + K ∗
m×n

(
Kn×n + σ 2 In

)−1
(q1:n − m1:n) , (7)

�∗
m×m =

(
K ∗∗

m×m + σ 2 Im
)

− K ∗
m×n

(
Kn×n + σ 2 In

)−1
K ∗

n×m . (8)

Once the training setD1:n = {(
ξ i , qi

)}
i=1:n is given, the best estimate for q∗

1:m and
its uncertainty are calculated throughEqs. (7) and (8), respectively, which is themodel-
ing of the GP. In particular, when only one prediction point is considered (m = 1), we
can derive the posterior mean functionμ (ξ) and variance function σ 2 (ξ) (or the stan-
dard deviation functionσ (ξ)). It is noted thatwehaveused type IImaximum likelihood
(empirical Bayes) to optimize the covariance function hyperparameters for improving
the prediction of the surrogate model. The hyperparameter optimization is handled by
the efficient L-BFGS-B algorithm with given bounds for each hyperparameter.

2.2 Hybrid acquisition strategy

After the probabilistic surrogate model is built, we use the statistical information
provided by the model to create the acquisition function reflecting the acquisition
strategy. Maximizing this acquisition function can help to search for the promising
optimal point, which forms the suboptimization problem that is formulated as

ξn+1 = argmaxξ∈χα (ξ ;D1:n). (9)

Here, we employ three confidence information-assisted strategies, including prob-
ability of improvement (PI), expected improvement (EI), and upper confidence bound
(UCB). For an arbitrary design vector ξ , these acquisition functions are expressed as
follows:

αP I (ξ ; D1:n) = prob ( f (ξ) ≥ τ + ζP I ) = 	

(
μ (ξ) − τ − ζP I

σ (ξ)

)
, (10a)

αE I (ξ ; D1:n) =

⎧
⎪⎪⎨

⎪⎪⎩

(μ (ξ) − τ − ζE I ) · 	
(

μ(ξ)−τ−ζE I
σ(ξ)

)

+σ (ξ) · φ
(

μ(ξ)−τ−ζE I
σ(ξ)

)
σ (ξ) > 0

0 σ (ξ) = 0

, (10b)

αUCB (ξ ; D1:n) = μ (ξ) + ζUCB · σ (ξ) , (10c)

where τ is the incumbent optimal target, 	(�) is the standard normal cumulative
distribution function, and φ (�) is the standard normal probability density function.
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In addition, ζP I , ζE I , and ζUCB denote the balance parameters used in the tradeoff
between global exploration and local exploitation.

Different acquisition criteria have different adaptability to a model with specific
spatial characteristics. Moreover, the preferred strategy may change with the advance-
ment of sequential optimization. Therefore, compared with using the single constant
acquisition function, a better alternative is to dynamically pick a superior function
from the prescribed portfolio. The robust strategy is leveraged in this study. We define
an acquisition function portfolio that contains the PI, EI, and UCB. Each type of acqui-
sition function is assigned three different balance parameters, i.e. {0.00, 0.01, 0.10}
for PI, {0.00, 0.01, 0.10} for EI, and {1.00, 1.50, 2.00} for UCB.

2.3 Framework integration

The GP-Hedge algorithm (Hoffman et al. 2011) and its modification (Vasconcelos
et al. 2019) adopt the portfolio allocation framework to improve the robustness of the
Bayesian optimization. The frame structure is detailed as follows. The superscript n
represents the iteration index (n = 0 means objects generated in the initialization)
and the subscript j represents the acquisition function index ( j = 1, 2, · · · , 9). The
coarse optimization landscape is needed to find a reasonable acquisition function in
the beginning and ensure a sufficient optimization efficiency, so we incorporate the
design of experiments (DOE) based on a space-filling sampling criterion into the
initialization. The technique used here is the optimal Latin hypercube method where
the space-filling sampling criterion makes sampling points evenly distributed in the
design space. For the design vector with two variables, that is, ξ i = [

Ai ki
]T , 20

points are sampled by the DOE technique and evaluated by the CFD simulations,
resulting in the initial training set D0 = {(

ξ i , qi
)}

i=1:n0 (n0 = 20). Then, we create

the initial surrogate model GP0 (its posterior mean function and covariance function
areμ0 (ξ) and σ 0 (ξ), respectively) and the corresponding acquisition functions α0

j (ξ)

by Gaussian process regression (GPR). As in the original algorithm, the initial gains
G0

j are set to 0.
The aforementioned initialization is followed by a loop composed of ‘suggest’,

‘evaluate’, and ‘update’ steps. The first step is used to query the potential point ξ jbest
n

from the candidates ξ j
n ( j = 1, 2, · · · , 9) according to the specified criterion, the

second step is used to evaluate the selected point ξ jbest
n(ξn0+n) through the numerical

simulation (CFD) for obtaining its target value qn0+n , and the third step is used to
sequentially update the data-set Dn , the surrogate model GPn , the acquisition func-
tions α j

n , and the gains G j
n . It needs to be emphasized that differences exist between

iterations n = 1 and n > 1. In the ‘suggest’ step, the criterion to select ξ jbest
n when n =

1 is maximizing the initial posterior mean function μ0 (ξ), while the point ξ jbest
n can

be found with the probability Pj
n = exp

(
η · g j

n−1
)/∑9

j ′=1 exp
(
η · g′

j
n−1

)
, where

hyperparameter η = 4.0 and normalized gains g j
n−1 = [G j

n−1 − max j
(
G j

n−1
)]/

[max j
(
G j

n−1
) − min j

(
G j

n−1
)], when n > 1. In the ‘update’ step, the gainsG j

n are
equal to the current rewards r j n = μn

(
ξ j

n) for n = 1, while G j
n = r j n +m ·G j

n−1

for n > 1. Here, the memory factor m of 0.70 is used to reduce the effect of the
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Fig. 1 Validation of the Bayesian optimization framework. a Contour of the cosine mixture function used
to test the framework. b Convergence history of the test function optimization

past rewards. In this study, the loop stops when the given number of iterations is
reached. Alternatively, the automated stopping criterion based on several properties
may be better for the trade-off between optimization accuracy and computational cost.
In addition, the manual stopping mode can also be optional to increase the flexibility
of operation, especially when problem-specific expert knowledge is involved.

The setup of the framework is tested by the cosine mixture function f (ξ) =
0.1 [cos (5πξ1) + cos (5πξ2)]−

(
ξ1

2 + ξ2
2
)
(see Fig. 1a), a benchmark function with

comparable optimization complexity for the numerical example in next section. The
convergence history shown in Fig. 1b verifies the validity of the method. Furthermore,
when the optimization loop iterates only 15 times, the incumbent maximum has a
value of 0.199836. Therefore, the maximum number of iterations is set to 15, which
is considered sufficient in the current study.

3 Spanwise oscillating optimization of a gliding flat-plate wing

We consider a simplified geometric model in typical flight conditions as follows. A
rectangular flat plate with an aspect ratio (AR = 2) glides forward at a constant
speed U and angle of attack (AoA = 25◦), as shown in Fig. 2a. At the same time,
different spanwise oscillations characterized by oscillation amplitude and frequency
are imposed on the plate. Following the definition of spanwise motion in Wang et al.
(2015), the center of the plate changes its position with time in harmonic form as

y (t) = A sin (2kt) , (11)

where y is the coordinate in the spanwise direction, t is the time, A is the oscillation
amplitude, and k is the reduced frequency (the four variables are non-dimensional).
We define a design space χ with two design variables of A and k. Each design variable
is set between 0 and 1 in the current work.
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Fig. 2 Schematic of the gliding flat plate with spanwise oscillation (a) and the vortex structures around it
(b). In subplot b, the flow structures at the equilibrium position ① and the positive maximum displacement
position ② are identified by a Q-criterion of 0.75

The evaluation of the unsteady aerodynamic target function is based on the
incompressible Navier–Stokes equations in the following dimensionless form:

∇ · u = 0, (12)
∂u
∂t

+ u · ∇u = −∇ p + 1

Re
∇2u + fb, (13)

where u is the flow velocity vector and p is the static pressure. Re is the Reynolds
number based on the chord length and the freestream velocity. We investigate the flow
underRe = 300 because the unsteady effect dominates the flow. fb is the Eulerian force
density used for the immersed boundary method (Wang and Zhang 2011). Numeri-
cally, the time advancement and the spacial discretization are implemented by the
second-order Runge–Kutta scheme and the second-order finite volume formulation,
respectively. The flow around the flat-plate wing can be fully resolved by the above
strategies. The numerical treatment and mesh are reported at great length in previous
work (Wang et al. 2015; Wang and Zhang 2011). Accordingly, we can obtain the time
history of the drag coefficient (CD(t)), the lift coefficient (CL(t)), and the side-force
coefficient (CS(t)). The efficiency of endurance is considered here. The derived power
factor is the objective function measuring the efficiency. Its expression is

PF = CL (t)
1.5

CD (t) + 1
T

∫ T
0 CS (t) 2Ak (− cos (2kt)) dt

, (14)

where the overbar denotes the period-averaged force coefficient and T is the dimen-
sionless oscillating period. Briefly, the aerodynamic optimization problem can be
formulated such that (1) the design variables are the oscillating amplitude A and the
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Fig. 3 Distribution of the power factor in the spanwise oscillating parameter space (k, A). a Mean
(Initialization).bUncertainty (Initialization). cMean (The 15th iteration).dUncertainty (The 15th iteration)

oscillating frequency k, and (2) the objective function to be maximized is the power
factor PF .

The iteration process advances with two processes: searching for the optimum and
refining the model. Figure3a and c show the estimation for the power factor at the
initialization and the 15th iteration, respectively. The optimization locates themaximal
power factor of 1.65 (which is 1.97 times as large as that under the pure glide condition)
at the point where A = 1.00 and k = 0.49. The vortex structures under the optimal
parameter configuration are identified with the Q-criterion, as is shown in Fig. 2b. The
estimation uncertainty of the power factor is exhibited in Fig. 3b and d. The standard
deviation interpreting the uncertainty decreases from the range (0.02, 0.03) to the range
(0.00, 0.01) in the most part of investigated region when the GP model develops from
the initialization to the 15th iteration. This indicates that the accuracy of the model
improves with the involvement of additional points.

The Bayesian optimization method also has advantages explained by the following
examples. Figure4shows the simulated distribution of the power factor. The power
factor values on the scattered points come from the evaluation of the GP model, and
these displayed contours are drawn with the hypothesis that the evaluation values are
true values. The contour lines are far from smoothness in Fig. 4a, where 81 sampled
points are evaluated. The increase of the sampled points to 289 improves the smooth-
ness of the contour lines, as shown in Fig. 4b. It is seen that simple parameter studies
require more sample points (only 35 sample points are used in Fig. 3c and d) to obtain
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Fig. 4 Design points (gray circles) obtained by uniform sampling and corresponding power factor contours.
a Sparse sampling (9 × 9 sampled points). b Dense sampling (17 × 17 sampled points)

comparative information about the power factor distribution and to find the approxi-
mate optimal value. This highlights the efficiency of exploring the design space based
on the present optimization method.

4 Conclusion

The Bayesian optimization method with the hybrid acquisition strategy is pioneered to
be applied in the bio-inspired locomotion. The hybrid acquisition strategy improves the
robustness of the method with three types of acquisition functions and three different
balance parameters for each type of acquisition function. The portfolio allocation
framework is used to design the spanwise oscillation of a gliding flat plate with the
objective ofmaximizing the power factor. Amaximumpower factor of 1.65 is obtained
at the non-dimensional oscillating amplitude of 1.00 and the reduced frequency of 0.49.
The results show that the Bayesian optimization method is applicable to optimize the
kinematics of the bio-inspired flight. The more complex kinematics of bio-inspired
micro air vehicles is expected to be designed by this Bayesian optimization method.
Intelligent hybrid acquisition strategies with different memory modes for past rewards
will be investigated in the next work, because certain suggested design points at the
iterations far from the latest iteration may have an important effect on the optimization
process. Another future research focus is developing the multi-objective optimization
capabilities of the current framework.
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