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We extend two adaptive step-size methods for solving two-dimensional or multi-dimensional generalized nonlinear
Schrödinger equation (GNLSE): one is the conservation quantity error adaptive step-control method (RK4IP-CQE), and the
other is the local error adaptive step-control method (RK4IP-LEM). The methods are developed in the vector form of fourth-
order Runge–Kutta iterative scheme in the interaction picture by converting a vector equation in frequency domain. By
simulating the supercontinuum generated from the high birefringence photonic crystal fiber, the calculation accuracies and
the efficiencies of the two adaptive step-size methods are discussed. The simulation results show that the two methods have
the same global average error, while RK4IP-LEM spends more time than RK4IP-CQE. The decrease of huge calculation
time is due to the differences in the convergences of the relative photon number error and the approximated local error
between these two adaptive step-size algorithms.
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1. Introduction
Coupling an ultrashort laser pulses into an optical fiber, a

wealth of nonlinear effects will take place due to the disper-
sion and the nonlinear effect of the fiber. The phenomenon
has been widely used in optical fiber communication, ultra-
fast optical, supercontinuum generation, optical coherence to-
mography, etc.[1–4] The propagation of the low power ultra-
short pulses in the fiber could be described by a mathematical
model of the nonlinear Schrödinger equation (NLSE) which
contains the group velocity dispersion (GVD) and self-phase
modulation (SPM) terms.[2] To evaluate the high peak power
femtosecond pulses, the generalized nonlinear Schrödinger
equation (GNLSE) with the high order dispersion and non-
linear terms was adopted.[5] Although the NLSE could be
analytically solved by the inverse scattering and self-similar
method,[6,7] the GNLSE can only be calculated numerically. A
common numerical solution to the GNLSE has been obtained
by the split–step Fourier method (SSFM).[2] In the SSFM
scheme, the dispersion and nonlinearity were integrated re-
spectively in each step and the accuracy of the global error was
of the second-order.[8] While the accuracy could be improved
by the symmetric split–step Fourier method (S-SSFM)[9–13] or
high order split–step schemes such as the fourth-order scheme
of Blow and Wood,[14] the global accuracy was not better than
that of the nonlinear step integration. In order to further im-

prove the accuracy, a number of methods have been developed:
A Runge–Kutta in the interaction picture (RK4IP) method was
extended to solve the GNLSE and stimulate the pulse prop-
agation and supercontinuum generation in the optic fiber by
Hult.[15] The RK4IP exhibits a fifth order local accuracy and
high calculation efficiency in the fixed step methods. The con-
servation quantity error adaptive step-control algorithm based
on RK4IP (RK4IP-CQE) was introduced to solve the GNLSE
by Heidt in 2009.[16] The RK4IP-CQE, an effective and accu-
rate numerical method of GNLSE solution, reduced more than
50% computational time than the local error adaptive step-
control method.[17] Furtherly, the RK4IP-CQE in frequency
domain was also introduced to solve the GNLSE by Rieznik
et al.[18] and the numerical results seems impressive.

Recently multimode optical fibers and micron waveg-
uides have reemerged as a viable platform to observe the
novel linear and nonlinear physical phenomena.[19–23] The
additional spatial degrees of freedom of the new fibers and
waveguides offer further opportunities to investigate the in-
teresting phenomena and processes such as the vector soliton
fission, the vector modulation instability, the intermodal mod-
ulational instability, and the soliton capture appeared.[24–33]

Understanding the ultrashort pulse propagation dynamics
mechanism behind these complex physics phenomena and
processes needs to solve the numerical modeling of the
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so-called coupled-generalized nonlinear Schrodinger equa-
tions (C-GNLSE) or the multimode generalized nonlinear
Schrödinger equations (MM-GNLSE).

Although the MM-GNLSE can be easily handled with the
SSFM and S-SSFM, the accuracies and y efficiencies of the
two methods need to be enhanced. To obtain accurate and ef-
fective numerical simulations, the fixed step method of RK4IP
is extend to solve MM-GNLSE.[34–36] In order to improve the
calculation speed of FFT, the GPU-accelerated method has
been adopted.[37] Practically, an algorithm with various adap-
tive step sizes such as RK4IP-CQE or local error adaptive step-
control method used in GNLSE simulation may be more ef-
fective and useful than the fixed step method. However, to
our knowledge, the adaptive step-size algorithm has not been
extended to the solution of MM-GNSLE.

In this work we extend the adaptive step-size algorithm
to C-GNLSE to verify the effectiveness. By mapping the C-
GNLSE in the normal picture into the interaction picture in
frequency domain and converting the coupled equations into
a vector equation, the RK4IP-CQE and the local error adap-
tive step-control method are introduced to solve C-GNLSE.
The two adaptive step-control algorithms are used to solve C-
GNLSE to simulate the SC generation in high birefringence
PCF. The simulation results are the same as those calculated
by fixed step algorithm RK4IP, which proves the accuracies
of the two algorithms. The calculation efficiency of RK4IP-
LEM and RK4IP-CQE are displayed and the large difference
in computational time between the two algorithms at the same
global error is explained.

2. Coupled generalized nonlinear Schrödinger
equations
To simplify our numerical simulations, RK4IP-CQE and

RK4IP-LEM are used for solving the two-dimensional C-
GNLSE in instead of MM-GNLSE. The process and the meth-
ods can be fully extended to solve the n-dimensional MM-
GNLSE with n dimensions. The typical coupled general-
ized nonlinear Schrödinger equations (C-GNLSE) can be ex-
pressed as[38–40]

∂An

∂ z
+(−1)n+1

δβ1
∂An

∂T
+ ∑

m≥2

im−1βmn

m!
∂ mAn

∂T m

= iγn

(
1+ iτSHOCK,n

∂

∂T

)
{G(T,An,A3−n)}, (1)

with

G(T,An,A3−n)

=
[
An ·

∫ T

−∞

R1 (T − τ) |An (τ)|2 dτ

+An ·
∫ T

−∞

R2 (T − τ) |A3−n (τ)|2 dτ

+A3−n ·
∫ T

−∞

R3 (T − τ)(AnA∗3−n +A3−nA∗n

× exp
(
−2i(−1)n+1

∆β z
)
)dτ
]
, (2)

where An is the pulse envelope for the polarization n, the
asterisk denotes the complex conjugate, the time T = t −
z(β11 +β12)/2 is in a reference frame moving at a group ve-
locity, βmn = ∂βn/∂ω|

ω=ωn
is the m-th term of the Taylor

series expansion for the propagation constant βn (ω), δβ1 =

(β11 − β12)/2, ∆β = β01 − β02, γn = n2ω0/cAeff,n, c is the
speed of light in vacuum, Aeff,n is the effective area for the
polarization n, and ω0 is the carrier frequency. The express of
shock term is τSHOCK,n = 1/ω0. R1 (T ), R2 (T ), and R3 (T ) are
the response functions of the fiber which is expressed as

R1 (T ) = (1− fR)δ (T )+ fR f1(T ),

R2 (T ) =
1
3
(1− fR)δ (T )+ fR f2(T ),

R3 (T ) =
1
3
(1− fR)δ (T )+ fR f3(T ), (3)

where fR = 0.18 is the Raman response contribution to the
Kerr effect. f1 (t) and f3 (t) are related to the parallel
and orthogonal Raman gain respectively, and can be mea-
sured experimentally.[41,42] In the simulations, the expres-
sions of f1 (t), f2 (t), and f3 (t) are f1 = (τ2

1 + τ2
2 )/τ1τ2

2 ×
exp(−t/τ2)sin(t/τ1), f2 = f1 − 2 f3, and f3 = [(2τb −
t)/τ2

b )]exp(−t/τb) respectively and the values of τ1, τ2, and
τb are 12.2 fs, 32 fs, and 96 fs respectively. The C-GNLSE
shown in Eq. (1) can be converted to the form indicated in
Refs. [31,32,43] if the vertical and the parallel Raman gain
functions are omitted.

Equation (1) can be translated to the frequency domain by
Fourier transform as follows:

∂ Ãn(ω,z)
∂ z

= −i
[
(−1)n+1

δβ1(ω−ω0)− ∑
m≥2

βmn
(ω−ω0)

m

m!

]
Ãn

+ iγn[1+ τSHOCK,n(ω−ω0)]

×FT{G(T,An,A3−n)}, (4)

where FT stands for Fourier transform, and for numerical in-
tegration, it is useful to re-express Eq. (4) into the following
form

∂ Ãn

∂ z
= ˜̂DnÃn +

˜̂NnÃn, (5)

where ˜̂Dn and ˜̂Nn are dispersion and nonlinear operators in the
frequency domain

˜̂DnÃn = −i
[
(−1)n+1

δβ1(ω−ω0)

− ∑
m≥2

βmn
(ω−ω0)

m

m!

]
Ãn,
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˜̂NnÃn = iγn[1+ τSHOCK,n(ω−ω0)]

×FT{G(T,An,A3−n,(−1)n+1
∆β )}. (6)

3. Algorithm
3.1. Fourth-order Runge–Kutta in interaction picture

method

Equation (5) can be changed into the vector form,

∂ Ã
∂ z

= ˜̂DÃ+ ˜̂NÃ, (7)

where ˜̂DÃ =
( ˜̂D1Ã1

˜̂D2Ã2
)
, and ˜̂NÃ =

( ˜̂N1Ã1
˜̂N2Ã2

)
. The

vector equation (7) is the normal picture form of C-GNLSE in
the frequency domain. Let Ã′ = exp(− ˜̂Dz)Ã, we obtain

∂ Ã′

∂ z
= exp(− ˜̂Dz) ˜̂N(exp( ˜̂Dz)Ã′). (8)

The vector equation (8) has the same representation as the
scalar GNLSE in Ref. [16] and can be solved by RK4IP. The
specific iterative scheme of RK4IP is shown in the following
vector equation:

ÃI(z,ω) = exp
(

h
2

˜̂D
)

Ã(z,ω) ,

k1 = exp
(

h
2

˜̂D
)[

h ˜̂N
(
Ã(z,ω)

)]
Ã(z,ω) ,

k2 = h ˜̂N
(
ÃI + k1/2

)[
ÃI + k1/2

]
,

k3 = h ˜̂N
(
ÃI + k2/2

)[
ÃI + k2/2

]
,

k4 = h ˜̂N
(

exp
(

h
2

˜̂D
)(

ÃI + k3
))

× exp
(

h
2

˜̂D
)[

ÃI + k3
]
,

Ã(z+h,ω)

= exp
(

h
2

˜̂D
)[

ÃI + k1/6+ k2/3+ k3/3
]
+ k4/6. (9)

The final solution of C-GNSLE can be obtained by the inte-
gration of each step using the iterative scheme of RK4IP at
the fifth-order local accuracy. However, the error of RK4IP
method in integration step cannot be predetermined unless the
step is small enough. In order to control the error and change
the step within the error in the stimulations, the local error
adaptive step method and conservation quantity error adaptive
step method based on RK4IP will be introduced.

3.2. RK4IP-LEM

For the C-GNSLE in Eq. (8), if the complex field is
discretized into the frequency grid points and an integration
method with RK4IP in Eq. (9) is uesed, there exists a constant
for each grid point so that the calculated field can be expressed
as

Ãcalc (z+h,ω) = Ãture (z+h,ω)+ k(ω)hη +o(hη+1), (10)

where Ãture (z+h,ω) is an exact solution. Here, η = 5 for
RK4IP scheme, for it exhibits a five-order local error. The rel-
ative local amplitude error is now defined as

δA =
||Ãcalc− Ãture||
||Ãture||

, (11)

where ||A|| = [
∫
(|A1(ω)|2 + |A2(ω)|2)dω]1/2 is the norm of

vector A. Obviously, δA is dependent on a power of the step
size hη , and it can be restricted to a certain range (δG,2δG)

by adjusting the step size h and the global error can also be
controlled under a predefined goal error.

During the calculation, Ãture is unknown, therefore, the
algorithm estimates the local error by first taking a full step to
compute a coarse solution Ãcoarse and then independently tak-
ing two half steps towards a fine solution Ãfine and the truly
relative local error δA in Eq. (11) can be approximated by

δ =
||Ãcoarse− Ãfine||
||Ãfine||

. (12)

3.3. RK4IP-CQE

The optical photon number P during the propagation can
be given by

P = ∑
n=1,2

∫
neff,nAeff,n

|An(z,ω)|2

ω0 +∆ω
dω, (13)

where ∆ω = ω −ω0, if neff and Aeff are constant in Eq. (13),
the photon number P change with the propagation z can be
expressed as

∂P
∂ z

= neffAeff
∂

∂ z

∫ |A1(z,ω)|2 + |A2(z,ω)|2

ω0 +∆ω
dω

= neffAeff

∫ {[
∂A1(z,ω)

∂ z
A1(z,ω)∗

+
∂A2(z,ω)

∂ z
A2(z,ω)∗)

]
+ c.c

}
dω

ω0 +∆ω
. (14)

With the expressions of ∂A1(z,ω)/∂ z and ∂A2(z,ω)/∂ z in
Eq. (4) and assuming γ1 = γ2 = γ , we will obtain ∂P/∂ z = 0,
which means that the photon number P is conserved during the
transmission.

If neff, Aeff,n, and γn change with the frequency, the pho-
ton number P will beconserved if the nonlinear coefficient is
defined as γn = 3χ

(1)
xxxxωω0/8c2βn(ω)Aeff,n.[44] The detailed

derivation of ∂P/∂ z = 0 is shown in Appendix A.
Since the C-GNLSE conserves the photon number, the

photon number P(z) is equal to the true photon number
Ptrue(z+h) after one computational step

Ptrue(z+h) = P(z). (15)

It is therefore possible to calculate the relative photon number
error as

δPh =
∆Ph

Pture
, (16)
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where

∆Ph = |Pcalc(z+h)−Pture(z+h)|
= |Pcalc(z+h)−P(z)|

=

∣∣∣∣ ∑
n=1,2

∫
neff,nAeff,n

|Acalc,n(z+h,ω)|2

ω0 +∆ω
dω

− ∑
n=1,2

∫
neff,nAeff,n

|Ature,n(z,ω)|2

ω0 +∆ω
dω

∣∣∣∣
=

∣∣∣∣ ∑
n=1,2

∫
(|neff,nAeff,n|Acalc,n(z+h,ω)|2

−neff,nAeff,n|Ature,n(z,ω)|2) dω

ω0 +∆ω

∣∣∣∣. (17)

4. Results and discussion
In this section, the performance of adaptive step algo-

rithms described in the above section is compared and dis-
cussed.

To prove the accuracy of the methods for C-GNLSE,
a typical example of the supercontinuum generation in high
birefringence photonic crystal fiber (PCF) is first simulated by
using a constant step size of RK4IP. The input pulse is a hy-
perbolic secant with a full width at half maximum (FWHM)
duration TFWHM = 50 fs. The peak power of the input pulse
is 20 kW, and the center wavelength is 680 nm. The angle
between the polarization and the fast axis of the high birefrin-
gence PCF is π/4. The length of high birefringence PCF is
0.1 m, and the Taylor expansion coefficients for the dispersion
curve are taken from Martins et al.[39] The nonlinear coeffi-
cient is γ1 = γ2 = 0.045 W−1·m−1. In the stimulation, the time
window is 5 ps and discretized into 213 grids.

Figure 1 illustrates a temporal and spectral evolution of
the supercontinuum generation process over 0.1-m length of
high birefringence PCF with the step size of 40 µm in the
stimulation using the constant step-size method of RK4IP. A
logarithmic density scale is used which is truncated at−80 dB
relative to the maximum value. As shown in Figs. 1(a)–1(d),
the orthogonally polarized pulses traveling at different group
velocities in the slow axial direction and the fast axial direc-
tion are completely separated in time after a few-mm propaga-
tion distance. After the orthogonally polarized pulses transmit
apart, both of them break into a series of pulses at about 1.5 cm
and 2 cm far in the slow axial direction and fast axial direction
respectively, which is known as the vector soliton fission.[30]

The fundamental solitons emerge one by one in the slow ax-
ial direction and the fast axial direction and subsequently shift
to longer wavelengths due to the intrapulse Raman scattering.
Therefore, the energy is transferred to a narrow band reso-
nance in the normal GVD regime, associated with the emer-
gence of a dispersive wave. The spectra of the different red
moving solitons and dispersion waves are formed as an oc-
tave supercontinuum. The simulations of the supercontinuum

generated in high birefringence PCF are similar to the results
obtain by Martins et al.[39]
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Fig. 1. Numerical simulation of supercontinuum generation in 0.1-m-
high birefringence PCF. (a) Temporal evolution and (b) spectral evo-
lution of pulse along slow axis; (c) temporal evolution and (d) spec-
tral evolution of pulse along fast axis, with retarded time frame of the
reference travelling at envelope group velocity of input pulse used in
panels (a) and (b).

To exhibit the errors changing with propagation distance,
figure 2 shows the approximate local error and the relative
photon number error between the values of the two consecu-
tive computational steps with the pulse transmitting in the high
birefringence PCF. The calculation is run with RK4IP method
in the vector form in steps of 40 µm. The approximated lo-
cal error and the relative photon number error are calculated
with Eqs. (11) and (16). As shown in Figs. 2(a) and 2(b), the
approximated local error curve is similar to the relative pho-
ton number error curve, where they both have a large error
peak located in a range from 0 m to 0.01 m and a small er-
ror peak located at about 0.02 m. To further understand the
details of the error variance, the y axes of the approximated
local error curve and relative photon number error curve are
enlarged as indicated in the insets, respectively, in Figs. 2(a)
and 2(b). The details of two curves are also similar to each
other and they both fluctuate heavily during the propagation in
a distance of 0 m–0.05 m; while the propagating distance is
more than 0.05 m, the two error curves rise monotonically.

The oscillations of the two error curves ranging from 0 m
to 0.05 m are mainly due to the vector soliton fission process.
Many different frequency photons are created and annihilated
in the vector soliton fission process, which makes the spectrum
of the pulse change and the photon number error increase. At
the same time, the time waveform of the pulse breaks into a
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series of solitons, which increases the local error. When the
propagation distance is larger than 0.05 m, the vector soliton
fission and photons creation and annihilation become weak.
Therefore the photon number error and local error vary slowly.
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Fig. 2. Plots of propagation distance-dependent error estimations be-
tween two consecutive computational steps for (a) approximate local error
(Eq. (11)), and (b) relative photon number error (Eq. (16)) in a constant step
of 40 µm, with inset showing enlarged section to compare the small scale
errors, and error estimations depicted with the same x axis to facilitate graph
comparison.

From the above analysis, it can be concluded that when
the waveforms in the time domain and in frequency domain
change dramatically, the approximate local error curve and rel-
ative photon number error become large, so, the step should be
reduced to produce a small error; otherwise, when the approx-
imated local error and relative photon number error become
small, step should be increased to reduce the simulation time.

Supercontinuum generation in a high-birefringence pho-
tonic crystal fiber (PCF) is also simulated with the same pa-
rameters by RK4IP-LEM with a relative local error ηG = 10−6

and RK4IP-CQE with a relative photon number error ηP =

10−14. Figure 3 shows the calculation results. The output
spectra calculated by three different methods are completely
the same, which means that RK4IP-LEM and RK4IP-CQE are
reliable.
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Fig. 3. Slow and fast axis output spectra of high birefringence PCF calcula-
tion by RK4IP, RK4IP-LEM, and RK4IP-CQE methods.

To make a comparison of accuracy and efficiency be-
tween the RK4IP-LEM method and the RK4IP-CQE method,

the computational time value with the global error of the two-
adaptive step-control algorithm is shown in Fig. 4. The global
average error in Fig. 4 is defined as

δ =
||Ãcal− Ãacc||
||Ãacc||

, (18)

where the complex field Ãcal is calculated by the RK4IP-LEM
method and the RK4IP-CQE method, Ãaccis calculated by the
RK4IP in steps of 0.1 µm.

It can be seen from Fig. 4 that the computational time
taken by each of the RK4IP-LEM method and the RK4IP-
CQE method generally decreases with the global average er-
ror increasing. However, the computational time taken by the
RK4IP-LEM method is much more than that by the RK4IP-
CQE method, which is 30 times more than that by the RK4IP-
CQE method when the global average error is less than 10−7,
and is about 20 times more than that by the RK4IP-CQE
method when the global average error is more than 10−7.
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against global average error, normalized by the time required to eval-
uate 103 FFT, for the supercontinuum generation process in high-
birefringence PCF.

The RK4IP-LEM method uses one more FFTs than the
RK4IP-CQE at each step as indicated in the above section. If
the step sizes of two methods in each iteration process are the
same, the computational time of RK4IP-LEM will be twice
longer than that of the RK4IP-CQE method. In order to ex-
plain the difference in computational time between the RK4IP-
LEM method and the RK4IP-CQE method, the error estima-
tions between the two consecutive steps for the approximate
local error and relative photon number error are calculated by
the RK4IP method in different step sizes, furthermore, the val-
uations of the step size and the error between two consecutive
steps in calculation process of the RK4IP-LEM method and
the RK4IP-CQE method under different error limits are also
calculated. The results are shown in Figs. 5–7, respectively.

Figure 5 shows the approximate local error and relative
photon number error between two consecutive steps calculated
by the RK4IP method in steps of 10 µm, 20 µm, 40 µm, and
80 µm. As shown in Fig. 5(a), the approximate local error
curves are similar when the step size is 40 µm and 80 µm,
respectively. They both fluctuate heavily in a propagation dis-
tance range of 0 m–0.05 m. When the pulse propagating dis-
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tance is more than 0.05 m, the two error curves rise monoton-
ically. The reason of the fluctuations can be found in Fig. 2.
While the step size decreases to 10 µm and 20 µm, the fluctu-
ation between 0 m–0.05 m disappear, which is different from
that in steps of 40 µm and 80 µm. As shown in Fig. 5(b),
except for different error amplitudes, the relative photon num-
ber curves are all nearly the same in steps of 80 µm, 40 µm,
20 µm, and 10 µm. They all fluctuate heavily in the propa-
gation distance of 0 m–0.05 m and rise monotonically for the
propagation distance large than 0.05 m.
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Fig. 5. Variations of (a) approximated local error (Eq. (11)) and (b)
relative photon number error (Eq. (17)) with different propagation dis-
tances, calculated by RK4IP method in steps of 10 µm, 20 µm, 40 µm,
80 µm, with y axis being logarithmic.

Figure 6 shows the variations of step size with the prop-
agation distance in the process by using the RK4IP-LEM
method and the RK4IP-CQE method under different approxi-
mate local error limits ηG and the relative photon number error
limits ηP respectively. In Fig. 6(a), except small oscillations
near 0.01 m and 0.02 m, the step size increases until the prop-
agation distance reaches 0.05 m at the approximate local error
limit ηG = 10−5. The step size decreases monotonically af-
ter 0.05 m. The small oscillations near 0.01 m and 0.02 m
disappear gradually and the step size increases monotonically
before 0.05 m and then decreases monotonically as the ηG de-
creases to 10−6, 10−7, and 10−8. The smaller the ηG, the more
gently the change of the step size is. It is shown in Fig. 6(b)
that the step size curves with different relative photon number
limits ηP = 10−12; 10−13; 10−14, 10−15 all oscillate heavily
in a propagation distance range of 0 m–0.03 m; the step size
increases monotonically in 0.03 m–0.05 m and the step size
decreases monotonically in 0.05 m–0.1 m.
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Fig. 6. Step sizes versus propagation distances obtained by (a) RK4IP-
LEM) and (b) RK4IP-CQE under different error limits.

Figure 7 is the approximated local error (Fig. 7(a)) and the
relative photon number error (Fig. 7(b)) between the consecu-
tive computational steps varying with the propagation distance
in solving the C-GNLSE by the RK4IP-LEM method and the
RK4IP-CQE method with different error limits. In Fig. 7(a)
the approximate local errors are all under the presetting error
limits at ηG equating 10−5, 10−6, 10−7, and 10−8. The fluctu-
ations of the approximate local error curves become gentle as
the change time of the step (ηG) decreases. In Fig. 7(b), ex-
cept within the propagation distance between 0.01 m–0.02 m,
the relative photon number errors are all under the presetting
error limits at ηP equating 10−12, 10−13, 10−14, and 10−15.
The fluctuations of the relative photon number error are nearly
the same as those as the ηP decreases, which means that the
change of the step is independent of the value of ηP.
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Fig. 7. (a) Approximated local error of RK4IP-LEM and (b) relative
photon number error of RK4IP-CQE between consecutive computa-
tional steps under different error limits.

From the above analyses, the difference between com-
putational time taken by the RK4IP-LEM method and the
computational time taken by the RK4IP-CQE method at the
same global average error level in Fig. 4 can be qualitatively
explained by the results of Figs. 5–7. Owing to the non-
conserved qualitatively approximated local error, the approxi-
mated local error curves under different step sizes are not sim-
ilar (see Fig. 5(a)), which means that convergence rate of the
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approximated local error is much different from the error limit
ηG at every step of the propagation distance. The different
convergence rates make the change of step size and approxi-
mated local error in the process of RK4IP-LEM different (see
Figs. 6(a) and 7(a)). The non-similarity of the change of the
step size makes global average error of RK4IP-LEM not uni-
formly converge. However, the relative photon number error
curves under different step sizes are similar because the rela-
tive photon number error is conserved quantity (see Fig. 5(b)),
and the change of step size and the relative photon number
in the process of RK4IP-CQE method under different error
limits are similar (see Figs. 6(b) and 7(b)). The similarity of
the changing of the step size makes the global average error
of RK4IP-CQE method converge uniformly. The difference
between the convergences of the relative photon number er-
ror and the approximated local error induces the large differ-
ence in computational time at the same global average error in
Fig. 4.

5. Conclusions
By mapping the C-GNLSE in the normal picture into the

interaction picture in the frequency domain, the conservation
quantity error adaptive step-control method and the local error
adaptive step-control method are developed based on a vec-
tor form of the fourth-order Runge–Kutta in interaction pic-
ture. To prove the efficiency of the adaptive step-control meth-
ods, the two adaptive step-control methods and the RK4IP
method are used to simulate the SC generation in the high
birefringence PCF. The calculation accuracy and efficiency for
each of these two adaptive step-control methods are discussed.
At the same global average error, the computational time of
RK4IP-CQE has been improved 20 times compared with that
of RK4IP-LEM due to the convergences of the relative photon
number error and the approximated local error. The methods
will be useful for simulating the vector pulses transmission
and the supercontinuum generation in the nonlinear fiber and
waveguides, the pulse propagating in the multimode optical
fiber, and the interaction between different pulses.

Appendix A

Let An be the pulse envelope for the polarization n, then
the photon number P during propagation will be defined as

P = ∑
n=1,2

∫
neff,nAeff,n

|An(z,ω)|2

ω0 +∆ω
dω. (A1)

Then the photon number change with propagation z can
be expressed as

∂P
∂ z

=
∫ {

neff1Aeff1

[
∂A1(z,ω)

∂ z
A1(z,ω)∗

+
∂A1(z,ω)∗

∂ z
A1(z,ω)

]
+ neff2Aeff2

[
∂A2(z,ω)

∂ z
A2(z,ω)∗

+
∂A2(z,ω)∗

∂ z
A2(z,ω)

]}
dω

ω0+∆ω
. (A2)

If nonlinear coefficients are defined as

γn = 3χ
(1)
xxxxωω0/8c2

βn(ω)Aeff,n,

βn(ω) = 2π/λ = neff,nω/c,

and with expression of ∂A1(z,ω)/∂ z and ∂A2(z,ω)/∂ z in
Eq. (4), the following equation is obtained:

∂P
∂ z

=
3iχ(1)

xxxx

8c

{∫
{FT{G(t,A1,A2)}A1(z,ω)∗dω

+
∫
{FT{G(T,A2,A1)}A2(z,ω)∗dω

−
∫

(FT{G(t,A1,A2)}A1(z,ω)∗)∗dω

−
∫

(FT{G(T,A2,A1)}A2(z,ω)∗)∗dω}. (A3)

Calculating each integral term in Eq. (A3), the following equa-
tion are obtained:

∫
FT{G(T,A1,A2)}A∗1(ω)dω

=
∫∫∫ +∞

−∞

R1(ω−ω1)A1(z,ω1)A1(z,ω2)A∗1(z,ω2 +ω1−ω)A∗1(ω)dω1 dω2 dω

+
∫∫∫ +∞

−∞

R2(ω−ω1)A1(z,ω1)A2(z,ω2)A∗2(z,ω2 +ω1−ω)A∗1(ω)dω1 dω2 dω

+
∫∫∫ +∞

−∞

R3(ω−ω1)A2(z,ω1){A1(z,ω2)A∗2(z,ω2 +ω1−ω)

+A∗1(z,ω2)A2(z,ω2 +ω1−ω)exp(−2i∆β z)}A∗1(ω)dω1 dω2 dω, (A4)∫
FT{G(T,A2,A1)}A∗2(ω)dω

=
∫∫∫ +∞

−∞

R1(ω−ω1)A2(z,ω1)A2(z,ω2)A∗2(z,ω2 +ω1−ω)A∗2(ω)dω1 dω2 dω

+
∫∫∫ +∞

−∞

R2(ω−ω1)A2(z,ω1)A1(z,ω2)A∗1(z,ω2 +ω1−ω)A∗2(ω)dω1 dω2 dω
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+
∫∫∫ +∞

−∞

R3(ω−ω1)A1(z,ω1)A∗2(ω){A2(z,ω2)A∗1(z,ω2 +ω1−ω)

+A∗2(z,ω2)A1(z,ω2 +ω1−ω)exp(2i∆β z)}dω1 dω2 dω, (A5)∫
(FT{G(T,A1,A2)})∗A1(ω)dω

=
∫∫∫ +∞

−∞

R∗1(ω−ω1)A∗1(z,ω1)A∗1(z,ω2)A1(z,ω2 +ω1−ω)A1(ω)dω1 dω2 dω

+
∫∫∫ +∞

−∞

R∗2(ω−ω1)A∗1(z,ω1)A∗2(z,ω2)A2(z,ω2 +ω1−ω)A1(ω)dω1 dω2 dω

+
∫∫∫ +∞

−∞

R∗3(ω−ω1)A∗2(z,ω1){A∗1(z,ω2)A2(z,ω2 +ω1−ω)

+A1(z,ω2)A∗2(z,ω2 +ω1−ω)exp(2i∆β z)}A1(ω)dω1 dω2 dω, (A6)∫
(FT{G(T,A2,A1)}A∗2(ω))∗dω

=
∫∫∫ +∞

−∞

R1(ω−ω1)
∗A∗2(z,ω1)A∗2(z,ω2)A2(z,ω2 +ω1−ω)A2(ω)dω1 dω2 dω

+
∫∫∫ +∞

−∞

R2(ω−ω1)
∗A2(z,ω1)

∗A1(z,ω2)
∗A1(z,ω2 +ω1−ω)A2(ω)dω1 dω2 dω

+
∫∫∫ +∞

−∞

R3(ω−ω1)
∗A1(z,ω1)

∗{A∗2(z,ω2)A1(z,ω2 +ω1−ω)

+A2(z,ω2)
∗A1(z,ω2 +ω1−ω)exp(−2i∆β z)}A2(ω)dω1 dω2 dω. (A7)

Let Ω = ω1, Ω1 = ω , Ω2 = ω2 +ω1−ω and use the expression of Rn(Ω1−Ω) = R∗n(Ω −Ω1), then equations (A4) and
(A5) will change into Eqs. (A8) and (A9), i.e.,∫

FT{G(T,A1,A2)}A∗1(ω)dω

=
∫∫∫ +∞

−∞

R∗1(Ω −Ω1)A1(z,Ω)A1(z,Ω2 +Ω1−Ω)A∗1(z,Ω2)A∗1(z,Ω1)dΩ1 dΩ2 dΩ

+
∫∫∫ +∞

−∞

R∗2(Ω −Ω1)A1(z,Ω)A2(z,Ω2 +Ω1−Ω)A∗2(z,Ω2)A∗1(Ω1)dΩ1 dΩ2 dΩ

+
∫∫∫ +∞

−∞

R∗3(Ω −Ω1)A2(z,Ω){A1(z,Ω2 +Ω1−Ω)A∗2(z,Ω2)

+A∗1(z,Ω2 +Ω1−Ω)A2(z,Ω2)exp(−2i∆β z)}A∗1(Ω1)dΩ1 dΩ2 dΩ , (A8)∫
FT{G(T,A2,A1)}A∗2(ω)dω

=
∫∫∫ +∞

−∞

R∗1(Ω −Ω1)A2(z,Ω)A2(z,Ω1 +Ω2−Ω)A∗2(z,Ω2)A∗2(Ω1)dΩ1 dΩ2 dΩ

+
∫∫∫ +∞

−∞

R∗2(Ω −Ω1)A2(z,Ω)A1(z,Ω1 +Ω2−Ω)A∗1(z,Ω2)A∗2(Ω1)dΩ1 dΩ2 dΩ

+
∫∫∫ +∞

−∞

R∗3(Ω −Ω1)A1(z,Ω){A2(z,Ω1 +Ω2−Ω)A∗1(z,Ω2)

+A∗2(z,Ω1 +Ω2−Ω)A1(z,Ω2)exp(2i∆β z)}A∗2(Ω1)dΩ1 dΩ2 dΩ . (A9)

Substituting Eqs. (A6)–(A9) into Eq. (A3), then the expression of ∂P/∂ z = 0 is obtained.
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