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A kinetic model is proposed for the nonequilibrium flow of dense gases composed of
hard-sphere molecules, which significantly simplifies the collision integral of the Enskog
equation using the relaxation-time approach. The model preserves the most important
physical properties of high-density gas systems, including the Maxwellian at rest as
the equilibrium solution and the equation of state for hard-sphere fluids; all the correct
transport coefficients, namely, the shear viscosity, thermal conductivity, and bulk viscosity;
and inhomogeneous density distribution in the presence of a solid boundary. The collision
operator of the model contains a Shakhov model-like relaxation part and an excess part in
low-order spatial derivatives of the macroscopic flow properties; this latter contribution is
used to account for the effect arising from the finite size of gas molecules. The density in-
homogeneity in the vicinity of a solid boundary in a confined flow is captured by a method
based on the density-functional theory. Extensive benchmark tests are performed, including
the normal shock structure and the Couette, Fourier, and Poiseuille flow at different reduced
densities and Knudsen numbers, where the results are compared with the solutions from
the Enskog equation and molecular dynamics simulations. It is shown that the proposed
kinetic model provides a fairly accurate description of all these nonequilibrium dense gas
flows. Finally, we apply our model to simulate forced wave propagation in a dense gas
confined between two plates. The inhomogeneous density near the solid wall is found to
enhance the oscillation amplitude, while the presence of bulk viscosity causes stronger
attenuation of the sound wave. This shows the importance of a kinetic model to reproduce
density inhomogeneity and correct transport coefficients, including bulk viscosity.

DOI: 10.1103/PhysRevFluids.8.013401

I. INTRODUCTION

The Boltzmann equation determines the basic thermofluid properties of gaseous systems com-
posed of a myriad of discrete molecules by providing information on the probability distribution of
molecular states at all times. The theory was first developed by Maxwell [1] and Boltzmann [2] and
has demonstrated its practical significance since the 1950s last century with the advent of modern
aerospace vehicles traveling through the outer atmosphere. The maturation of the theory, especially
that the transport coefficients (e.g., shear viscosity, thermal conductivity, and diffusivity) predicted
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by the Chapman-Enskog expansion of the Boltzmann equation are in good agreement with the
experimental data for monatomic gases [3], makes it successful in describing the nonequilibrium gas
dynamics encountered in a variety of engineering applications, such as high-altitude flights, nano-
and microelectromechanical systems, unconventional natural gas production, vacuum science, and
so forth.

However, the Boltzmann equation is only appropriate for dilute gas systems where the in-
termolecular potential is of a sufficiently short range. So the effective interaction diameter of a
molecule approaches zero, while the mean free path of gas molecules remains finite. As such
molecular collisions take place, only binary collisions are important, which can be regarded as
being localized in the spatial space [4]. However, when the gas is compressed to the level that the
interaction diameter and the mean free path become comparable, the effect of the finite size of
the interaction diameter should be taken into account; thus, the Boltzmann equation is inaccurate.
Meanwhile, the traditional Navier-Stokes equations are also inapplicable due to the shrinking of
the flow system size, i.e., the Knudsen number (the ratio of the molecular mean free path to
the characteristic flow size) is not small. Such systems can be found in many applications, e.g.,
high-pressure shock tubes [5], shale gas flows [6–8], gas-liquid mixing in high-pressure injection
systems [9], and evaporation and condensation of liquids [10,11].

To describe the gas dynamics at high densities, the Boltzmann equation was first extended by
Enskog [12] for rigid spherical molecules. This phenomenological theory, often named the standard
Enskog theory, was later modified by van Beijeren and Ernst [13]. The revised Enskog theory was
developed to circumvent the defect that, when the original Enskog equation is generalized to model
hard-sphere mixtures, it is not consistent with the laws of irreversible thermodynamics. Extension of
the Enskog equation was also made for dense granular flows to include inelastic collisions [14–16].
Although it is well known that the Enskog equation for dense gases based on the hard-sphere model
may not be able to get accurate transport properties of real fluids, it “provided the first prediction of
the transport coefficients of the hard-sphere fluid and opened the way to the calculation of transport
properties of real dense fluids” [17]. The Enskog transport theory for hard-sphere fluids can also
be extended to real fluids in a simple and straightforward manner to obtain transport coefficients
as described in the modified Enskog theory [18]. So the temperature dependence of the collision
frequency of a real fluid can be expressed in terms of the equation of state of the real fluid.

Like the Boltzmann equation, numerically solving the Enskog or modified Enskog equations is
highly challenging. Both stochastic and deterministic approaches have been developed, including
the Monte Carlo quadrature method [19], the direct simulation Monte Carlo (DSMC) method
[20,21], and the fast spectral method [6,22]. These methods have been verified through benchmark
tests by comparisons with the “exact” molecular dynamics (MD) simulations. Note that another
particle method, namely, the consistent Boltzmann algorithm [23], was modified from the DSMC
method for the Boltzmann equation by introducing an additional streaming process and an enhanced
collision rate. This modification is based on a rather intuitive observation and not directly deduced
from the Enskog equation; however, its solutions for large-density flows are comparable to the
results of the Enskog equation.

Although accurate results of dense gas flow far from equilibrium can be obtained by solving the
Enskog equation, the significant computational costs turn out to be a major constraint, especially for
practical applications such as engineering design simulations. Therefore, a computationally efficient
kinetic model equation, which replaces the known collision operator of the Enskog equation with
a simpler form, is highly desirable. For near-equilibrium states, where the kinetic equation is
linearizable, a linear kinetic model can be constructed systematically through approximations to
the eigendecomposition of the collision operator [24]. However, in a general nonlinear case, the
construction is more arbitrary and phenomenological, depending on the desired mathematical and
physical features to preserve [25]. Compared to a dilute gas, one of the major differences in the
dynamics of dense gases is that transfer of momentum and energy due to molecular collisions cannot
be ignored, which results in the nonzero potential stress tensor and heat flux. As a consequence, not
only are the equation of state, shear viscosity, and thermal conductivity modified but also bulk
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viscosity comes into play. Besides, when the effect of solid boundary dominates the flow behavior
of a tightly confined gas, an inhomogeneous distribution of gas density emerges due to the shield of
the solid surface against collisions [26]. Therefore, when developing a kinetic model equation for
general nonequilibrium dense gas flows, the following essential criteria need to be satisfied.

(1) The model equation has the unique solution of the Maxwellian at equilibrium and retains the
equation of state.

(2) The transport coefficients derived from the model equation are consistent with those obtained
from the original kinetic equation; thus, the Navier-Stokes equations at the hydrodynamic limit can
be recovered.

(3) The model equation can describe both nonequilibrium and denseness effects, particularly
density inhomogeneity, velocity slippage, and temperature jump for the flows in confined space.

A few attempts have been made to develop simplified kinetic models for the Enskog equation.
In extending the lattice Boltzmann method to both nonideal gas and liquid flows, Luo [27,28] used
the method described in Chapman and Cowling [3] to simplify the Enskog collision integral: the
delocalized velocity distribution function of the colliding pair is expanded into a Taylor series of
molecular diameter; the zeroth term gives the Boltzmann collision operator, which is replaced by
the Bhatnagar-Gross-Krook (BGK) relaxation model [29]; the first-order terms are evaluated by
the Maxwellian, resulting in functions of derivatives of macroscopic flow properties including the
density, temperature, and bulk velocity, where only the terms involving density are retained; finally
all the other higher-order terms are omitted. This lattice Boltzmann model only works for low-speed
flows at the hydrodynamic limit. Later, Guo et al. [30,31] proposed a simplified kinetic model for
strongly inhomogeneous flows, where the density inhomogeneity is taken into account based on the
density-functional theory and the Fischer and Methfessel [32] model for inhomogeneous fluids. This
model has not properly considered thermal and nonequilibrium effects, its validity being restricted to
equilibrium and isothermal flows. For systems far from equilibrium, a kinetic model was developed
from the revised Enskog equation [25,33], where the collision operator is first projected into a
Hilbert space spanned by the polynomials of the molecular velocity of up to degree 2 and then
split into two parts: the collisional transfer contribution to the momentum and energy fluxes, and
the remaining part. The former contribution is expressed in terms of the potential stress tensor and
heat flux, while a BGK-like relaxation term approximates the latter contribution. Since the potential
stress tensor and heat flux are still integral functionals of the colliding velocity distribution functions,
this kinetic model is a highly nonlinear integrodifferential equation, which is only applicable to a few
simple flows where simplifications can be exploited, e.g., uniform shear flow. Sadr and Gorji [34]
derived a cubic Fokker-Planck (FP) model for nonequilibrium dense gas flows, in which an extra
advection of the velocity distribution function in the physical space is added to the FP-Boltzmann
model to match the potential momentum and heat flux approximated by the Enskog equation. The
model was verified by simulating thermal and shear-driven flows under different confinements by
comparing the temperature and velocity profiles with the Enskog solutions. Recently, a Shakhov-
Enskog kinetic model was proposed by Wang et al. [35]. Emphasis was put on capturing the correct
shear viscosity, but the recovery of correct thermal conductivity and bulk viscosity was omitted.
Furthermore, the gas molecule-surface interactions were not addressed since the model was verified
for a normal shock wave structure where the surface effect was absent.

As pointed out above, when simulating general nonequilibrium dense gas flows, none of the
present kinetic models can largely simplify the complexity of the Enskog equation and reduce
the computational cost while simultaneously satisfying all the aforementioned criteria. Particularly,
the inhomogeneous density profile has been overlooked in these models, which, however, is vital
to be properly considered as it may influence transport processes. In this paper, we will develop a
kinetic model for the Enskog equation, which recovers the correct equation of state and transport
coefficients, and captures gas-surface interactions and their effect on gas dynamical behavior.

The remainder of the paper is arranged as follows. Section II presents details of the kinetic
modeling, focusing on the equation of state, the transport coefficients, and the modeling of den-
sity inhomogeneity for confined flows. The model equation will be verified through a series of
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benchmark tests and applied to investigate the sound wave propagation in a confined dense gas in
Sec. III, followed by some conclusions in Sec. IV.

II. KINETIC MODELING OF NONEQUILIBRIUM DENSE GAS FLOW

A. The Enskog equation

In gas kinetic theory, the dynamics of a nonuniform gas system is described by the evolution of
the one-particle velocity distribution function f (t, x, v), defined so that f dxdv gives the number of
molecules within an incremental volume element dxdv in the phase space at position x, molecular
velocity v, and time t . With the information of f , some important macroscopic flow properties,
including the number density n, bulk velocity U , temperature T , as well as the kinetic stress tensor
Pk and heat flux Qk, are immediately determined from the velocity moments:

n(t, x) =
∫

f (t, x, v)dv,

nU (t, x) =
∫

v f (t, x, v)dv,

3

2
nkBT (t, x) =

∫
m

2
C2 f (t, x, v)dv, (1)

Pk(t, x) =
∫

mCC f (t, x, v)dv,

Qk(t, x) =
∫

m

2
CC2 f (t, x, v)dv,

where m is the molecular mass, kB is the Boltzmann constant, and C = v − U is the peculiar
velocity, i.e., the deviation of the molecular velocity from the flow velocity. It is worth mentioning
that the kinetic stress tensor Pk and heat flux Qk result from the momentum and energy transport
of free molecular motions between collisions. Meanwhile, the transfer of momentum and energy
at collisions plays an important role in determining the dynamics of dense gases, which was first
modeled by Enskog [12] for hard-sphere molecules.

The governing equation of f is written as [3]

∂t f + v · ∇x f + F · ∇v f = JE( f , f ), (2)

where

JE( f , f ) = σ 2
∫∫

g · k{χHS[x, x + σk|n] f (t, x, v′) f (t, x + σk, v′
1)

−χHS[x, x − σk|n] f (t, x, v) f (t, x − σk, v1)}dkdv1. (3)

In Eqs (2) and (3), ∇ denotes the vector differential operator; F is an external body force exerted per
unit mass of molecules; σ is the effective molecular diameter; g = v1 − v is the relative velocity of
two colliding molecules, with v and v1 being the molecular velocities before collisions and k a unit
vector that specifies their relative position at the time of impact; v′ and v′

1 are the postcollision veloc-
ities, related to the precollision ones through v′ = v + k(g · k) and v′

1 = v1 − k(g · k); finally, χHS

is the two-point pair-correlation function (PCF) of a hard-sphere fluid. To be specific, χHS[x, x1|n]
gives the probability to find molecules at x and x1 in a density field n(t, x) at equilibrium. The
effect of the finite size of molecular diameter σ is reflected in JE in two ways. First, the centers of
the collision pair are separated by a distance σ so that the first molecule (of velocity v) is at the
point x while the other molecule (of velocity v1) is at the points x ∓ σk before and after a collision.
Second, the factor χHS is introduced to take account of the variation of collision frequency; it is
equal to unity for a dilute gas and increases with the gas density.
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In the standard Enskog theory, χHS is defined as the PCF in a uniform equilibrium state, χ ,
evaluated from the local density at the contact point of the collision pair, i.e.,

χHS[x, x ± σk|n] ≡ χ
[
n
(
x ± 1

2σk
)]

, (4)

where χ is related to n through the equation of state, which will be shown later. In a solid-fluid
system, the presence of solid surfaces induces a nonuniform density profile and modifies the PCF,
which is no longer equal to the local uniform equilibrium PCF [36]. Therefore, in the framework of
the revised Enskog theory, χHS is a functional of the local density, and the functional dependence
should be chosen so that the resulting density field has the form required by equilibrium statistical
mechanics [37]; particularly, the equation of van Beijeren and Ernst [13] is based on the exact
equilibrium PCF. On the other hand, the PCF and density structure in nonuniform equilibrium have
been intensively studied. One of the most successful approaches is the density-functional theory,
where the exact PCF is approximated to take the form as that of a uniform equilibrium state;
however, it is at an average density n, i.e.,

χHS[x, x ± σk|n] ≡ χ [n(x)]. (5)

The density profile is obtained by either solving the Born-Green-Yvon equation [32,38] or mini-
mizing the grand canonical free energy functional [39,40]. Since both of the formulations (4) and
(5) rely on the PCF in uniform equilibrium states, in the following sections, we will start from the
standard Enskog equation to derive the equation of state and transport coefficients in Sec. II B and
propose a kinetic model in Sec. II C; finally, inhomogeneity will be modeled in Sec. II D, adopting
an argument used in the density-functional theory that the model can be obtained from the one for
the standard Enskog equation with the average density.

B. Equation of state and transport coefficients

To derive the equation of state and transport coefficients from the Enskog equation, we multiply
Eq. (2) by the collision invariants φ = {m, mv, 1

2 mv2} and integrate the resulting equations over v.
The following balance equations for mass, momentum, and energy are eventually obtained:

∂tρ + ∇ · (ρU ) =
∫

mJEdv,

∂t (ρU ) + ∇ · (ρUU ) + ∇ · Pk = ρF +
∫

mvJEdv, (6)

∂t (ρe) + ∇ · (ρeU ) + ∇ · (Qk + Pk · U ) = ρF · U +
∫

m

2
v2JEdv,

where ρ = mn is the mass density and e = cvT + 1
2U2 with cv = 3kB

2m the total energy per unit mass
of gas. Unlike the dilute gas, the quantities

∫
φJEdv do not generally vanish in dense gases: although

the total amount of φ possessed by the collision pair is conserved, part of this total is transferred
across the diameter σ from one molecule to the other at collision due to the non-negligible size of
σ . The nonlocal transport terms can be written in divergence form as [26,41]∫

mJEdv = 0,∫
mvJEdv = −∇ · Pc,∫

m

2
v2JEdv = −∇ · (Qc + Pc · U ),

(7)

013401-5



SU, GIBELLI, LI, BORG, AND ZHANG

where Pc and Qc are the potential stress tensor and heat flux, defined by

{Pc, Qc} = σ 2

2

∫∫∫
(ψ ′ − ψ )k(g · k)

∫ σ

0
χ

{
n

[
x +

(
α − σ

2

)
k
]}

× f (t, x + αk, v) f (t, x + αk − σk, v1)dαdvdv1dk. (8)

Here ψ = {mC, mC2/2} and ψ ′ denotes the corresponding postcollision quantities, and α is a
dummy variable.

Equations (6) are not closed unless constitutive relations for the stress tensor and heat flux are
given. The Chapman-Enskog expansion is the most widely used method to close the equations,
where it is assumed that the solution of the velocity distribution function is in the form of an infinite
series f = f (0)[1 + 	(1) + 	(2) + · · · ] with {	(r), r = 1, 2, . . . } being a small perturbation in the
rth order of the Knudsen number; the zeroth-order estimation f (0) is the uniformly steady state
taking the Maxwellian distribution f (0) = nE where

E =
(

m

2πkBT

)3/2

exp

(
− mC2

2kBT

)
. (9)

The first-order approximation f (1) = f (0)[1 + 	(1)] can be obtained through expanding χ , f (v1),
and f (v′

1) at x into Taylor’s series of the diameter σ , and retaining up to the first-order derivatives,
substituting f = f (1), and neglecting all the terms of order higher than the first. The kinetic stress
tensor and heat flux can then be approximated to the first order of the Knudsen number by taking
moments of f (1), giving

P(1)
k = nkBT I − μ∗

χ

(
1 + 2

5
nbχ

)
2S,

Q(1)
k = −κ∗

χ

(
1 + 3

5
nbχ

)
∇T,

(10)

where b = 2
3πσ 3, I is the unit matrix, and S = 1

2∇U + 1
2 (∇U )� − 1

3 (∇ · U )I is the rate-of-stress
tensor; μ∗ and κ∗ are the gas shear viscosity and thermal conductivity at ordinary pressure, which
are μ∗ = 5

16 (mkBT/π )
1
2 /σ 2 and κ∗ = 15kB

4m μ∗ for hard-sphere gases.
The potential stress tensor and heat flux are derived similarly: approximating the integral with

respect to α in Eq. (8) by the midpoint quadrature, expanding χ and f (v1) by Taylor’s series,
retaining terms up to first order, and evaluating the resultant integrals using f (1); finally, we have [3]

P(1)
c = [n2bχkBT − � (∇ · U )]I −

[
μ∗

χ

(
1 + 2

5
nbχ

)
2

5
nbχ + 3

5
�

]
2S,

Q(1)
c = −

[
κ∗

χ

(
1 + 3

5
nbχ

)
3

5
nbχ + cv�

]
∇T, (11)

where � = μ∗χ (nb)2. Accordingly, the first-order approximations of the stress tensor and heat flux
are sums of the kinetic component (10) and the potential component (11), as

P(1) = [(1 + nbχ )nkBT − � (∇ · U )]I −
[

μ∗

χ

(
1 + 2

5
nbχ

)2

+ 3

5
�

]
· 2S,

Q(1) = −
[

κ∗

χ

(
1 + 3

5
nbχ

)2

+ cv�

]
∇T . (12)

From the above equations, it is found that the equation of thermodynamic pressure of a gas in
uniform equilibrium is

p = nkBT (1 + nbχ ). (13)
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Using the most used Carnahan and Starling [42] equation of state for the hard-sphere fluid

p

nkBT
= 1 + η + η2 − η3

(1 − η)3 , (14)

the pair-correlation function is determined as

χ (n) = 1

2

2 − η

(1 − η)3 , (15)

where η = π
6 nσ 3 is the reduced density. Note that Eq. (14) retains its accuracy up to the random

packing limit η � 0.47. When the gas is not in a uniform equilibrium, the pressure must increase
by an amount of −� (∇ · U ). As a consequence, apart from the viscous resistance, there will be
a resistance to the contraction or expansion of gases; the parameter � plays the role of the bulk
viscosity. Finally, the shear viscosity and thermal conductivity of a rigid-sphere dense gas are given
by

μ = μ∗

χ

(
1 + 2

5
nbχ

)2

+ 3

5
� (16)

and

κ = κ∗

χ

(
1 + 3

5
nbχ

)2

+ cv�, (17)

respectively. Compared with dilute gases, not only does the effect of the finite size of molecules
modify the equation of state and change the values of shear viscosity and thermal conductivity, but
it also gives rise to the second viscosity. It is worthwhile mentioning that the revised Enskog theory
of van Beijeren and Ernst [13], when the exact PCF replaces the uniform equilibrium PCF, yields
the same transport coefficients at the Navier-Stokes level as the standard Enskog theory.

C. Kinetic model equation for the standard Enskog equation

In this section, we present a model equation to simplify the standard Enskog equation while
retaining its essential physics. The physical requirements for the relaxation terms are: (1) the
Maxwellian distribution function as the unique solution at equilibrium; (2) the correct equation of
state and transport coefficients; and (3) correct mass, momentum, and energy equations at least up
to the Navier-Stokes level. It is also required that the model has a simple form, e.g., combinations
of polynomials of molecular velocity and some low-order derivatives of macroscopic quantities.
Therefore, we propose that our model is read as

∂t f + v · ∇x f + F · ∇v f = JS + JK, (18)

where the collision term has a relaxation form with a Shakhov model-like part being

JS = nE − f

τ
+ E

τ

2m(1 − Pr)

5(kBT )2 Qk · C

(
mC2

2kBT
− 5

2

)
, (19)

and an excess part as

JK = −n2bχE

[
C · ∇ ln(n2T χ ) +

(
mC2

3kBT
− 1

)
(∇ · U )

]

+∇ ·
[

E

kBT
� (∇ · U )C

(
mC2

2kBT
− 3

2

)]
. (20)
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Here, τ = μ/nkBT is the relaxation time calculated according to the shear viscosity of a dense gas
(16), and the Prandtl number Pr is calculated as

Pr = 2

3

(
1 + 2

5 nbχ
)2 + 3

5 (nbχ )2(
1 + 3

5 nbχ
)2 + 2

5 (nbχ )2
, (21)

to recover the correct thermal conductivity (17).
The derivation process of our kinetic model is summarized as follows: the delocalized PCF

and the velocity distribution function in the original collision integral are expanded using Taylor’s
theorem at x up to the first order in the molecular diameter σ . The zeroth-order terms are replaced by
the Shakhov relaxation model, while the first-order terms are evaluated by replacing the distribution
function with the Maxwellian, and only those directly contributing to momentum and energy are
retained. The relaxation time and Prandtl number are determined according to the shear viscosity
and thermal conductivity for dense gases, and an additional term involving the second derivative of
velocity is introduced for the bulk viscosity. It is straightforward to confirm that the kinetic model
equation has a unique solution of the local Maxwellian for gases at equilibrium. Meanwhile, in the
limit of dilute gas, i.e., b → 0 and χ → 1, the excess part JK vanishes, while the shear viscosity μ

and the Prandtl number Pr approach to the values of dilute hard-sphere gases, and then the kinetic
model regresses to the Shakhov model for the Boltzmann equation.

The excess part in Eq. (20) takes account of the effect of denseness and the collisional contri-
butions in the momentum and energy fluxes. It is shown that the transfer of mass, momentum, and
energy generated by the model collision operator satisfies

m
∫

Jdv = 0,

m
∫

vJdv = −∇ · Pc = −∇ · [n2bχkBT − � (∇ · U )]I, (22)

m

2

∫
v2Jdv = −∇ · (Qc + Pc · U ) = −∇ · [n2bχkBT − � (∇ · U )]U ,

where J = JS + JK. As expected, the collisional mass transfer is nought. The potential stress tensor
Pc = [n2bχkBT − � (∇ · U )]I and the heat flux Qc = 0 are not completely consistent with the ones
from the Enskog equation [see Eq. (11)]. This is because the excess collision part JK is expressed
using a few low-order derivatives, and information contained in higher-order terms is discarded.
However, when applying the Chapman-Enskog expansion to the kinetic model (18), we obtain the
first-order approximation to the kinetic stress tensor and heat flux as

P(1)
k = nkBT I − 2μS, Q(1)

k = −κ∇T . (23)

It is intriguing that the total stress tensor and heat flux are the same as (12). Consequently, the
eliminated high-order information in JK that does not appear in the collisional momentum and
energy transfer is recovered in the kinetic transfer of momentum and energy by defining the
relaxation time and Prandtl number in JS from the shear viscosity and thermal conductivity of dense
gases, so that the total stress tensor and heat flux obtained by the present kinetic model coincide with
those from the Enskog equation at least to the first-order approximation. Therefore, the equation of
state and the transport coefficients of the present model are correctly recovered. The primary feature
of our model is its inherent simple structure; meanwhile, it preserves some physical properties
that are essential for simulating nonequilibrium dense gas flows. Therefore, our model permits
one to perform simulations for practical engineering problems that were not possible until now.
One limitation is that the collisional fluxes of momentum and energy derived from the model are
inconsistent with those from the original Enskog equation beyond the Navier-Stokes level. Since our
model is derived from the principle that it could reproduce the correct transport coefficients through
the Chapman-Enskog expansion rather than matching the moments of the Enskog collision operator
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via Grad’s moment method, the 13- and 26-moment equations (the macroscopic equations describe
gas flows of moderate Knudsen numbers) obtained from the current model equation are not exactly
the same as those from the Enskog equation [43,44]. However, the differences might not be
important because the dense gas effect is usually significant at small Knudsen numbers where the
correct transport coefficients are more important (e.g., see the numerical results in Sec. III A). The
new kinetic model is developed for flows where both the denseness and rarefaction effects appear
locally in the flow field, e.g., pore-scale transport of shale gas at high-pressure and high-temperature
geoconditions, and molecular transport of surface-confined fluids at the nanoscale. For such flows,
the rarefaction can be described by the Shakhov relaxation term JS , and the denseness could be
captured by the excess part JK .

D. Modeling of confined flows

For confined flows, inhomogeneity in density arises in the vicinity of the solid-gas interface.
When the distance of a molecule from the wall is less than σ , a portion of its surface is shielded
by the wall against collisions, so the molecule is pushed to the wall. Monte Carlo simulation [36],
which provides an insight into the structure of fluids, had shown that the large densities near walls
are caused by the fact that the normal motions of the molecules are largely limited.

Numerical experiments show that the kinetic model presented above cannot capture the density
inhomogeneity. To circumvent this defect, we follow the method of Guo et al. [30], which is inspired
by the density-functional theory for inhomogeneous fluids. The key idea is that the excess Helmholtz
free energy for an inhomogeneous fluid can be modeled as that of the homogeneous hard-sphere
fluid using some form of weighted densities:

n(x) =
∫

n
(
x′)γ (|x − x′|)dx′, (24)

with γ (x) being a weighting function. As was mentioned above, the PCF is approximated using the
average density (5), and the excess part JK is thus modified as

JK = −n2bχ (n)E

{
C · [2∇ ln n + ∇ ln T + ∇ ln χ ] +

(
mC2

3kBT
− 1

)
(∇ · U )

}

+∇ ·
[

E

kBT
� (∇ · U )C

(
mC2

2kBT
− 3

2

)]
, (25)

where ∇ ln n and ∇ ln χ are estimated as

∇ ln n = 120

πσ 5

1

n

∫
|x′|<σ/2

x′n
(
x + x′)dx′,

(26)

∇ ln χ = 120

πσ 5

1

χ

∫
|x′|<σ/2

x′χ
[
n
(
x + x′)]dx′,

to retain the computational stability in case the density significantly varies. Furthermore, the
parameters τ , Pr, and � need to be evaluated from the average density, i.e., τ (n), Pr(n), and � (n).
In this paper, we use the method of Tarazona [39] to obtain the average density, where the weighting
function γ (x) is expressed as a power series of n. The series is, in practice, truncated after the third
term, and the average density is eventually found as the physically appropriate root of the following
equation:

n(x) = n1(x) + n2(x)n(x) + n3(x)n(x)2, (27)

where

ni(x) =
∫

γi
(|x − x′|)n

(
x′)dx′, i = 1, 2, 3, (28)
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and the density-independent weighting functions γi are given as [45]

γ1(|x|) =
{

3
4πσ 3 , |x| � σ,

0, |x| > σ,

γ2(|x|) =

⎧⎪⎪⎨
⎪⎪⎩

0.475 − 0.648
( |x|

σ

) + 0.113
( |x|

σ

)2
, |x| � σ,

0.288
(

σ
|x|

) − 0.924 + 0.764
( |x|

σ

) − 0.187
( |x|

σ

)2
, σ < |x| � 2σ,

0, |x| > 2σ,

(29)

γ3(|x|) =
{

5πσ 3

144

[
6 − 12

( |x|
σ

) + 5
( |x|

σ

)2]
, |x| � σ,

0, |x| > σ.

Together with the Carnahan-Starling pair-correlation function (15), it has been shown that the
above modification can recover the equilibrium density distribution of a hard-sphere fluid confined
between two planar walls [30,46].

III. RESULTS AND DISCUSSIONS
A. Couette, Fourier, and Poiseuille flows

In this section, we focus on one-dimensional dense gas flows confined between two infinite,
parallel, and planar plates perpendicular to the x direction and located at x = −H/2 and H/2,
respectively. The plates are impenetrable; thus, the average number density between the plates

n0 = 1

H

∫ H/2

−H/2
n(x)dx (30)

remains constant. The fully diffuse scattering of molecules on both the plates is assumed, i.e., the
impinging molecules are reemitted according to the Maxwellian nwE (Tw,Uw), where Tw and Uw

are the preassigned wall temperature and velocity, and nw is determined from the impenetrable
condition. The flows are characterized by the reduced density η0 = η(n0) and the confinement ratio
R = H/σ . Note that the Knudsen number becomes known once η0 and R are provided:

Kn = λ0

H
= 1

6
√

2

1

η0χ (η0)

1

R
, (31)

where λ0 = 1/
√

2πn0σ
2χ (η0) is the mean free path in hard-sphere dense gases. For the flows

considered, the Knudsen number is not negligible; thus, the nonequilibrium effect has equal
importance as the effect of denseness. The flows are simulated by solving the proposed kinetic
model equation with JK to account for the density inhomogeneity near solid surfaces. The results are
compared with the Monte Carlo solutions of the Enskog equation or MD data whenever available.

We first consider a shear-driven and thermal-driven flow to check whether our model can capture
the inhomogeneous density and recover correct shear viscosity and thermal conductivity. The shear-
driven flow is the Couette flow, in which the plate at x = −H/2 moves at a velocity parallel to its
plane, V1/

√
kBT0/m = −0.5 with T0 being the temperature at equilibrium, while the plate at x =

H/2 moves in the opposite direction with a velocity V2/
√

kBT0/m = 0.5. The thermal-driven flow is
the Fourier flow, which develops when the two plates are at rest but kept at different temperatures,
namely, T1 at x = −H/2 and T2 at x = H/2; we impose T2 = 2T1.

The kinetic model equation is solved by the discrete velocity method (DVM), where the molec-
ular velocity space is truncated into the range [−6

√
2kBT0/m, 6

√
2kBT0/m]3 and discretized by

48 nonuniformly distributed points in each direction [47]. Since the gas molecules cannot fully
occupy the region less than half of a molecular diameter away from the plates, the effective
computational domain is x ∈ [−(H − σ )/2, (H − σ )/2], and the boundary condition is applied
to the positions x = ∓(H − σ )/2, respectively. The one-dimensional spatial domain is partitioned
by 401 equidistant points; on each discrete point, the spatial derivatives are approximated by the
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FIG. 1. Profiles of density (first row) and transverse velocity (second row) of the shear driven flow: (a),
(d) η0 = 0.1, R = 10, and Kn = 0.09; (b), (e) η0 = 0.1, R = 5, and Kn = 0.181; (c), (f) η0 = 0.2, R = 5, and
Kn = 0.067. The solutions to the Enskog equation are represented by empty circles. The DVM solutions of the
kinetic model are shown by the solid lines.

second-order finite difference method, while the integral used to evaluate the average density is
approximated by the first-order midpoint quadrature. The steady-state solutions are obtained by a
semi-implicit iteration scheme [48], where the flow is initialized by the equilibrium state, and the
iteration is terminated when the residuals of density, velocity, and temperatures are less than 10−6.
The reference solutions are obtained by using a Monte Carlo particle method to solve the Enskog
equation [21,26]. In this paper, the computational parameters are as follows: 400 uniform cells are
allocated along the x direction, and a total of 200 000 simulating particles are used; the time interval
is set as �t = 10−4σ/

√
kBT0/m; the steady state is assumed to be reached after 2 × 106 time steps,

and another 2 × 106 steps are consumed for sampling to obtain smooth flow profiles.
Figures 1 and 2 show the flow density and transverse velocity and temperature for the Couette

flow and Fourier flow, respectively. Different combinations of the reduced densities (η0 = 0.1 and
0.2) and confinement factors (R = 5 and 10) are considered. The comparisons between the solutions
of the Enskog equation and our kinetic model show that our model can capture not only the
inhomogeneous structure of the flow density but also the velocity and temperature profiles, although
minor discrepancies emerge near the walls when the gas denseness is large at η0 = 0.2, and the
confinement is extremely tight at R = 5.

We then consider the Poiseuille flow driven by an external force F parallel to the plates, which
induces a transverse motion of the gas in the direction perpendicular to the x axis. The results
obtained from the kinetic model are compared with published MD data [7], where it is assumed
that the external force is very small, say F � 2kBT0/mH . Since the flow is driven by a very
small disturbance, the gas system slightly deviates from its equilibrium state, and the kinetic model
equation is expressible in a linear form. The formulation of the linearized system can be found in
the Appendix, and we focus on the simulation results here. The linearized kinetic model equation is
again solved by the DVM. The computational setup is the same as that described above. Figure 3
plots the kinetic results of flow density and velocity for three confinement factors, R = 10, 5, and
2, at a reduced density of η0 = 0.1, in comparison with the profiles obtained by using event-driven
MD. The kinetic solutions are in good agreement with the MD results, and what is noteworthy is
that the kinetic model can capture both the density inhomogeneity and slip velocities.
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FIG. 2. Profiles of density (first row) and temperature (second row) of the thermally driven flow: (a), (d)
η0 = 0.1, R = 10, and Kn = 0.09; (b), (e) η0 = 0.2, R = 10, and Kn = 0.034; (c), (f) η0 = 0.2, R = 5, and
Kn = 0.067. The solutions to the Enskog equation are represented by empty circles. The DVM solutions of the
kinetic model are shown by the solid lines.

The current kinetic model equation can reasonably describe the flow properties of gas flows with
medium denseness. Discrepancy from the Enskog solution becomes noticeable when the reduced
density is larger than 0.2 and the confinement ratio is smaller than 5. However, we need to note
that the Enskog equation is less accurate at a high denseness, say η = 0.2 and above, although the

FIG. 3. Profiles of density (first row) and transverse velocity (second row) of the force-driven flow: (a),
(d) η0 = 0.1, R = 10, and Kn = 0.09; (b), (e) η0 = 0.1, R = 5, and Kn = 0.181; (c), (f) η0 = 0.1, R = 2, and
Kn = 0.452. The results obtained from the event-driven MD simulations are denoted by empty circles. The
DVM solutions of the linearized kinetic model are shown by the solid lines. The velocity is normalized by
V0 = n0FH

√
2mkBT0/p0. Only half domain [−H/2, 0] is plotted since the flow is symmetric with respect to

x = 0.
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FIG. 4. The flows at large Knudsen number: η0 = 0.01, R = 10, and Kn = 1.149. (a), (c) Profiles of density
and transverse velocity of the Couette flow. (b), (d) Profiles of density and temperature for the Fourier flow. The
DSMC solutions to the Enskog equation are represented by empty circles. The DVM solutions of the kinetic
model are shown by the solid lines.

deviation of the Enskog solution from the MD data at η = 0.2 is still not large [7]. For the cases
calculated, the Knudsen number is relatively low, in 0.05 < Kn < 0.5. Large Knudsen number flows
occur at a small reduced density and confinement ratio; see Eq. (31). For instance, for R = 5 and
10, the Knudsen number is larger than 1 when the reduced density is smaller than 0.02 and 0.01,
respectively. Then the excess part of the collision operator is relatively small, and the Shakhov
relaxation part largely dominates. Our kinetic model can well capture the Enskog predictions; see
Fig. 4.

B. Shock wave structure

In the previous section, we calculate the benchmarking cases of Couette, Fourier, and Poiseuille
flows. In each case, the steady flow has no bulk motion, or the direction of its motion is perpendicular
to the direction in the gas density varies. Thus, the bulk viscosity does not play an effect. In this
section, we use our kinetic model to simulate a normal shock wave in a hard-sphere dense gas to
verify the modeling of bulk viscosity and demonstrate its role. When the gas is not stationary, the
thermodynamic pressure given by Eq. (13) is increased by an amount of −� (∇ · U ); see Eq. (12).
According to the mass conservation equation in (6), this term is not zero whenever the gas density
varies in the direction of flow motion; it is positive when the gas is contracting and negative when
it is expanding. Therefore, the bulk viscosity term represents an additional resistance to contraction
or expansion. The value of bulk viscosity approaches zero at the dilute gas limit and becomes large
as the degree of denseness intensifies.

In the propagation of a normal shock wave, the boundary effect from solid walls is absent;
thus, the kinetic model without modification for density inhomogeneity is solved. The obtained
solutions of flow properties are compared to those obtained by solving the Enskog equation.
The shock wave structure is characterized by the Mach number and the degree of denseness;
the latter can be described by the reduced density η. For comparison, the present kinetic model
and the Enskog equation are both solved by the DVM on a one-dimensional spatial domain
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FIG. 5. Profiles of normalized flow properties for a shock wave of Mach number Ma = 4: (a), (c)
η1 = 0.022 and (b), (d) η1 = 0.077. The normalized properties are density ρ̃ = ρ−ρ1

ρ2−ρ1
, temperature T̃ = T −T1

T2−T1
,

velocity Ũ = U−U1
U2−U1

, total normal stress P̃xx = Pxx−p
ρ1kBT1/m , and total heat flux Q̃x = Qx

ρ1kBT1/m
√

2kBT1/m
.

x = [−25λ1, 25λ1]; here, λ1 is the mean free path based on the upstream equilibrium state, denoted
as {ρ1, T1,U1}, which is related to the downstream equilibrium state {ρ2, T2,U2} through the
Rankine-Hugoniot relation for dense gases [19]. The molecular velocity space is truncated into the
range [−15

√
2kBT1/m, 15

√
2kBT1/m]3 and discretized by 64 equidistant points in each direction.

The spatial derivatives are approximated either by the fourth-order discontinuous Galerkin method
[48] on 128 uniform elements (in solving the kinetic model) or by the second-order upwind finite
difference method on 200 equidistant points (in solving the Enskog equation). A semi-implicit time
iterative scheme [48] is applied to seek the steady shock structure, where the flow is initialized
by the upstream state in the region of x < 0 and the downstream state in x � 0, and the iteration
is terminated when the residuals of density, velocity, and temperatures are less than 10−6. For the
Enskog equation, the full collision integral is evaluated by the fast spectral method [6,22]. Note
that the accuracy of the Enskog equation in simulating the normal shock wave has been verified in
several works [35,49] by comparing with the “exact” shock profiles obtained from MD simulations.

Figure 5 plots the profiles of normalized flow properties of a shock wave at the Mach number
Ma = 4, including the mass density, temperature, velocity, normal stress, and heat flux. The stress
and heat flux contain both kinetic and potential contributions. It is found that when the degree of
denseness is relatively small with η1 = 0.022, the results obtained from the kinetic model with
(� = 0) and without (� = 0) the bulk viscosity term are not distinguishable because the value of
the bulk viscosity is very small [see Figs. 5(a) and 5(c)]. Notably, the results are in good agreement
with those of the Enskog equation. The earlier rises of the temperature and heat flux predicted by the
kinetic model are a consequence of the molecular-velocity-independent relaxation time adopted in
JS; the same discrepancies are also observed in the case of a dilute gas solved by the Shakhov model
[50]. When we increase the gas denseness to η1 = 0.077, the effect of the bulk viscosity becomes
noticeable. The variations of the flow properties are steeper if the bulk viscosity is disregarded,
especially in front of the shock, which is not unexpected. Indeed, the bulk viscosity makes the
shock profile thicker because of more significant resistance to compression. Overall, it is found that
only the model with the correct bulk viscosity can accurately match the Enskog predictions.
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FIG. 6. Profiles of velocity amplitude for the sound wave propagation in the confinement of R = 5. The first
row shows the results at St = 1, and the second row shows those at St = 5: (a), (d) η0 = 0.01 and Kn = 2.299;
(b), (e) η0 = 0.05 and Kn = 0.415; (c), (f) η0 = 0.1 and Kn = 0.181. The solutions of the linearized kinetic
model with and without bulk viscosity are obtained by the DVM. The results for the sound wave in a dilute gas
at the same Knudsen number and Strouhal number are included in (a) and (d), which are obtained by solving
the Shakhov model equation.

C. Sound wave propagation

The sound wave propagation through a dilute gas confined in macro- and nanochannels has been
intensively investigated [51–53]. However, to the best of the authors’ knowledge, the one in a tightly
confined dense gas has not been studied yet. Investigation of the acoustic and damping properties in
dense gases is useful in developing micromachined sensors for supercritical fluids, e.g., the acoustic
resonator for detecting density fluctuations in supercritical carbon dioxide [54]. Therefore, it is very
intriguing to unravel acoustic characteristics of sound wave propagation in dense gas, especially
when the density inhomogeneity and bulk viscosity may have significant effects. We now apply
our model to investigate this problem. The flow is generated by the plates at x = −H/2 oscillating
harmonically in the x direction with a frequency ω so that its velocity depends on time as

Uw(t ) = U0 cos (ωt ), (32)

where U0 is the velocity amplitude, assumed to be very small compared to the most probable
molecular velocity vm = √

2kBT0/m, i.e., U0 � vm. The plate at x = H/2 is stationary, which can
be treated as a sound receptor. In addition to the reduced density η0 and confinement ratio R, the
flow is defined by the Strouhal number, i.e., the dimensionless oscillating frequency

St = ωH

vm
. (33)

We are interested in the flow state when the oscillation has been fully established so that the
periodic flow has the same frequency as the oscillating plate, and the time-dependent problem can
be converted into a quasisteady one by introducing complex numbers (see the Appendix). We use
the flow velocity, which has the following form,

U (t, x) = Um(x) cos (ωt + ϕu), (34)

to demonstrate the acoustic properties. Um is the velocity amplitude, and ϕu is the velocity phase.
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FIG. 7. Profiles of velocity phase for the sound wave propagation in the confinement of R = 5. The first
row shows the results at St = 1, and the second row shows those at St = 5: (a), (d) η0 = 0.01 and Kn = 2.299;
(b), (e) η0 = 0.05 and Kn = 0.415; (c), (f) η0 = 0.1, R = 2, and Kn = 0.181. The solutions of the linearized
kinetic model with and without bulk viscosity are obtained by the DVM. The results for the sound wave in a
dilute gas at the same Knudsen number and Strouhal number are included in (a) and (d), which are obtained by
solving the Shakhov model equation.

Figure 6 illustrates the distribution of the velocity amplitude for the sound wave confined between
the plates of R = 5 with η0 = 0.01, 0.05, and 0.1, respectively. The oscillating frequency is set
to be St = 1 or 5. The distribution of the velocity phase is plotted in Fig. 7. The comparison
between the results of the kinetic model with and without bulk viscosity can reveal the influence
of bulk viscosity. Note that in the plots for the flows of η = 0.01, the solutions of the Shakhov
model are added, which stand for the sound wave propagation in a dilute gas at the same Knudsen
number and Strouhal number. It is found that when both the degree of denseness and oscillating
frequency are small, i.e., η0 = 0.01 and St = 1, the velocity magnitude monotonously decreases
from U0 at the oscillating plate to zero at the stationary one; when the frequency increases to
St = 5, the amplitude first decreases followed by a small rise before eventually falling to zero;
the influence of the bulk viscosity is negligible, and the profile for dense gases is close to that
of a dilute gas, indicating a weak denseness effect. For both St = 1 and 5 when η0 increases to
0.05, a distinct increment in the amplitude is apparent near the oscillating wall, which is more
pronounced when η0 increases to 0.1. Actually, the location of the amplitude peak coincides with
that of the first trough in the density profile; see Fig. 1(b) (note that the density profile of the current
problem induced by small disturbance coincides with the one when the plates do not move in the
x direction). Therefore, the density inhomogeneity results in enhanced oscillations. The influence
of bulk viscosity becomes more significant when the oscillating frequency and degree of denseness
become large: the amplitude with nonzero bulk viscosity is smaller than that with zero bulk viscosity,
and denser gas of larger bulk viscosity will dampen the transport of sound waves more strongly.
For all the considered conditions, the velocity phases are a convex function, and the location of
the minimum values moves towards the stationary plate when the Strouhal increases from 1 to 5.
For St = 1, the magnitude of the phase increases with the reduced density; therefore, the enhanced
denseness makes the phase lag more severe. For St = 5, the trend becomes more complicated. In the
region near the oscillating plate [−(H − σ )/2,−H/5], the magnitude phase becomes larger with
η0, but outside this region it decreases when η0 increases. The obtained velocity phases with zero
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or nonzero bulk viscosity are almost the same; therefore, the bulk viscosity rarely has any influence
on phase shift.

IV. CONCLUSIONS

We have developed a kinetic model to simplify the Enskog equation for the nonequilibrium
confined flow of hard-sphere dense gases. The collision operator of the kinetic model contains
a relaxation part and an excess part which is a function of low-order spatial derivatives of flow
properties, i.e., density, velocity, and temperature, allowing one to take into account the denseness
effect. In the dilute limit, the excess part vanishes, and the model regresses to the Shakhov equation.
The present model equation can reproduce the equation of state and transport coefficients, including
shear viscosity, thermal conductivity, and bulk viscosity of the Enskog equation; thus, the continuum
equations of mass, momentum, and energy derived from the kinetic model equation by the first-order
Chapman-Enskog expansion are the same as those obtained from the Enskog equation. The density
inhomogeneity in the vicinity of a solid boundary is captured by a method inspired by the density-
functional theory and Fischer-Methfessel model for inhomogeneous fluids, where the flow density,
pair-correlation function, and their spatial derivatives entering the collision operator are replaced by
some average quantities.

The numerical results for the normal shock wave, Couette flow, Fourier flow, and Poiseuille
flow are in good agreement with the solutions of the Enskog equation, suggesting at least in the
range of the flow parameters examined that our kinetic model can capture the effects of denseness,
density inhomogeneity, and nonequilibrium. The present kinetic model is then applied to investigate
the sound wave propagation in a dense gas confined between two parallel plates. It is found that
the density inhomogeneity enhances the velocity amplitude in the region near the oscillating wall,
whereas the presence of bulk viscosity strongly dampens the sound wave.

The most attractive feature of the present kinetic model, just like any Boltzmann model equation,
is that it largely reduces the computational complexity and cost. Evaluation of the collision operator
of the kinetic model requires regular discretization for up to second-order spatial derivatives,
which is much simpler than the scheme for evaluating the full collision integral, e.g., the fast
spectral method [6,22]. The latter requires transformation between the velocity space and frequency
domain and interpolation in the physical space. Furthermore, the simplified model equation allows
for reducing the three-dimensional molecular velocity space into a lower-dimensional one when
simulating one- or two-dimensional flows. This can significantly reduce memory consumption and
computational time in the DVM simulations. For example, the velocity space has been projected into
the one-dimensional (for Fourier flow and sound wave propagation) or two-dimensional spaces (for
Couette and Poiseuille flows) in this paper, and all the results are obtained within several seconds
using a single processor. Therefore, the present kinetic model can strike a balance between modeling
accuracy and computational efficiency to enable practical design simulations of nonequilibrium
dense gas flows in confined geometries.
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APPENDIX: LINEARIZED KINETIC MODEL EQUATION
FOR CONFINED DENSE GAS FLOW

Here, we give the formulations of the linearized governing equation system for confined flows
that slightly deviate from the equilibrium state. The velocity distribution function is expressed as

f (t, x, v) = ñeq(x̃)E0(ṽ)[1 + h(t̃, x̃, ṽ)]
n0

v3
m

, (A1)
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where n0 is a reference number density, and vm = √
2kBT0/m is the most probable molecular ve-

locity with T0 the equilibrium temperature; ñeq is the dimensionless number density at equilibrium;
t̃ = tvm/H , x̃ = x/H , and ṽ = v/vm are the dimensionless time, spatial position, and molecular
velocity, respectively; E0 = v3

mE (U = 0, T = T0) is the dimensionless global Maxwellian with unit
density; finally h is the perturbed velocity distribution function, satisfying |h| � 1. Note that, unlike
the dilute gas for which the equilibrium density remains constant, ñeq(x̃) varies with respect to the
spatial position and the variation is not a small quantity, especially in the vicinity of solid walls. The
macroscopic quantities of interest are defined as

�(t̃, x̃) =
∫

E0(ṽ)h(t̃, x̃, ṽ)d ṽ,

Ũ (t̃, x̃) =
∫

ṽE0(ṽ)h(t̃, x̃, ṽ)d ṽ,

θ (t̃, x̃) =
∫ (

2

3
ṽ2 − 1

)
E0(ṽ)h(t̃, x̃, ṽ)d ṽ, (A2)

P̃(t̃, x̃) =
∫

2ṽṽE0(ṽ)h(t̃, x̃, ṽ)d ṽ,

Q̃(t̃, x̃) =
∫

ṽ

(
ṽ2 − 5

2

)
E0(ṽ)h(t̃, x̃, ṽ)d ṽ,

where � and θ are the perturbed density and temperature satisfying n/n0 = ñeq(1 + �) and
T/T0 = 1 + θ , respectively; and Ũ = U/vm, P̃ = Pk/n0ñeqkBT0 as well as Q̃ = Qk/n0ñeqvm are
the dimensionless flow velocity, stress tensor, and heat flux, respectively. Furthermore, the external
force, relaxation time, and bulk viscosity are normalized as F̃ = Fv2

m/H , τ̃ = τvm/H , and �̃ =
�vm/n0kBT0H , respectively. In the remainder of the Appendix, the tilde can be omitted without
causing any confusion. The linearized kinetic model equation for the perturbed velocity distribution
function h is then written as

∂t h + v · ∇h + ∇ ln neq · vh = 2F · v + neq

τeq

[
L + 4

5
(1 − Preq)Q · v

(
v2 − 5

2

)
− h

]

− n2
eq

neq
bχeq(Lv − U ) · (2∇ ln neq + ∇ ln χ eq )

− n2
eq

neq
bχeq

[
v · (∇� + ∇θ ) +

(
2

3
v2 − 1

)
(∇ · U )

]

+ 1

neq
v

(
v2 − 3

2

)
· ∇[�eq(∇ · U )], (A3)

where

L = � + 2U · v + θ
(
v2 − 3

2

)
, (A4)

and χ eq = χ (neq ), while neq, ∇ ln neq, and ∇ ln χ eq are the average quantities in Eqs. (24) and (26)
evaluated around the local equilibrium density neq. The transport coefficients are also evaluated
from neq. The left-hand side of the above equation shows that the transport of h in the spatial space
contains two parts: the variation of the equilibrium density neq and the variation h itself. Before
applying some discretization schemes to solve the equation (A3), its nonlinear version (18) is solved
under the constrain of equilibrium to obtain neq; then the linear equation is solved with neq as known
quantity to obtain the other flow properties.

When considering the problem of sound propagation, it is assumed that the periodic flow state
has been fully established so that all the time-dependent quantities oscillate at the same frequency
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as the wall. To improve numerical efficiency, we eliminate the time variable by including an
explicit time-varying term exp(iStt ), where i is the imaginary unit. The time-dependent quantities
are then expressed as M(t ) = Re{M̂ exp(iStt )} with M being either of {h, �, θ,U , P, Q} and Re{·}
denoting the real part of a complex number. The governing equation is the same as (A3), but the
time-dependent variables are replaced by M̂ and the time derivative ∂t is replaced by iSt. Therefore,
the problem is converted into a quasisteady one.
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