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In homogeneous turbulent flow, a relation for the correlation between velocity gra-
dient mi j ≡ ∂ui

∂x j
and pressure Hessian hp

i j ≡ ∂2 p
∂xi∂x j

was found recently: 〈tr(mhpm)〉 =
− 1

2 〈(tr(m2))2〉. We discuss the implications of this relation to the velocity gradient dy-
namics: together with the Poisson equation for pressure, the homogeneity relation yields
an identity between 〈(tr(m2))2〉 and the integration of a two-point fourth-order correlation
function of velocity gradient for isotropic flows. Our results indicate that the main contri-
butions to 〈tr(mhpm)〉 come from scales less than roughly 20 times the Kolmogorov scale.
Also, the homogeneity relation provides restrictions to the parameters in the closure models
of pressure Hessian in velocity gradient dynamics. We further discuss the generalization
of this homogeneity relation to turbulent shear flows, and we show numerically that
this relation between 〈tr(mhpm)〉 and 〈(tr(m2))2〉 is approximately satisfied even in the
presence of a shear and of a wall, as it occurs in turbulent channel flows.

DOI: 10.1103/PhysRevFluids.8.024601

I. INTRODUCTION

The velocity gradient mi j ≡ ∂ui
∂x j

is an essential quantity for understanding the small-scale prop-
erties of turbulence. It contains rich information on the local structures of turbulent flows. For
example, the turbulent dissipation rate ε is directly related to the second-order moments of velocity
gradient ε = 2ν〈si js ji〉, where s is the rate of strain tensor defined as si j ≡ (mi j + mji )/2. When
studying the dynamics of the second-order moments of m, the third-order moments of m appear due
to the nonlinearity of the Navier-Stokes equation. For example, the vortex stretching term 〈ωisi jω j〉
appears in the evolution equation of enstrophy 〈ωiωi〉. Here ωi is the vorticity vector defined as
ωi ≡ −εi jkw jk , where εi jk is the Levi-Civita symbol and w jk ≡ (mjk − mk j )/2. In his classical paper
[1], Betchov derived two kinematic constraints on the second- and third-order moments of m for
homogeneous flows:

〈m2〉 = 〈m3〉 = 0, (1)

where we use the overbar symbol to denote the trace operation tr(·) for simplicity. These equalities
result from the homogeneity condition and the chain rule of derivatives, which provide further
insights into the statistics of m [2,3]. For instance, 〈m3〉 = 0 and the positive vortex stretching
implies that the intermediate eigenvalue of strain is preferentially positive [1,4].
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When studying the second-order moments of m, the pressure Hessian tensor hp
i j ≡ ∂2 p

∂xi∂x j
does

not appear explicitly in the dynamic equations since 〈hp
i jmi j〉 = 0 due to homogeneity [4]. On the

other hand, if we consider the equation of third-order moments of m, both the nonlinear fourth-order
moments and the mixed moments between pressure Hessian and velocity gradient are nonzero [cf.
the ensemble average of Eqs. (C23) and (C24) of Ref. [4]]. The studies of fourth-order moments of
m were initiated by Siggia [5], where the author managed to express all the fourth-order moments
in terms of four independent fourth-order invariants of m. Later Hierro and Dopazo [6] extended
the discussions to the general expressions of fourth-order moments of m. Various theoretical and
numerical studies have been devoted to the fourth-order derivatives and invariants [7–11] and
even higher-order moments [12]. On the other hand, although many people have investigated the
properties of pressure Hessian, especially for the dynamic model of velocity gradient [13–17],
and also the implications from Poisson equation [18], less attention has been paid to the mixed
invariants appearing in the third-order equations, except the early work by Tsinober et al. [19].
Also, with the aim of designing closure models for velocity gradient dynamics, the pressure and
viscosity terms have been investigated by using different assumptions and models, respectively.
Under these approximations, modeling results are in good agreement with observations from direct
numerical simulation (DNS), with a special focus on the second- and third-order invariants of
the anisotropic (traceless) portion of the velocity gradient tensor. However, those assumptions
and models for the pressure and viscosity terms are intrinsically inexact and might violate some
mathematical constraints. Recently, Fang et al. [9] found that the relation of fourth-order invariants
in compressible homogeneous isotropic turbulence (HIT) is similar to incompressible HIT, which
can be approached by a linear model of Gaussian and restricted Euler states. This model is also
phenomenological and not an exact relation. Very recently, using tensor function representation
theory, Carbone and Wilczek [20] found a relation between the fourth-order moment 〈(m2)2〉 and
the mixed moment 〈mhpm〉 for isotropic flows. As we show in this work, this relation can help
us to better understand the statistical properties of pressure Hessian, as it is the case for Betchov’s
relations to the velocity gradient. In Sec. II we will review the dynamic equations of the moments of
m, and from which we could see that the homogeneity condition not only leads to constraints on the
second- and third-order moments, but also results in an identity between 〈(m2)2〉 and 〈mhpm〉. Next
in Sec. III we will investigate the implications of the Poisson equation for pressure to homogeneity
relation discussed in Sec. II. In Sec. IV we will discuss the implication of this invariant’s relation
to the velocity gradient models. And, finally, in Sec. V we will generalize the discussions to the
anisotropic shear flows.

II. DYNAMIC EQUATIONS AND THE HOMOGENEITY CONSTRAINTS
ON THE INVARIANTS OF m

In this section, we first discuss the invariant’s equations of the velocity gradient tensor mi j = ∂ui
∂x j

.
Starting from the incompressible Navier-Stokes equation

∂ui

∂t
+ u j∇ jui = −∇i p + ν∇2ui, (2)

we could readily derive the evolution equations for the invariants of m, namely, Q ≡ − 1
2 m2 and

R ≡ − 1
3 m3 [21]:

dQ

dt
= −3R − mi jHji, (3)

dR

dt
= 2

3
Q2 − mi jmjkHki, (4)
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where H denotes Hi j ≡ −( ∂2 p
∂xi∂x j

− ∂2 p
∂xk∂xk

δi j

3 ) + ν
∂2Ai j

∂xk∂xk
, as defined in Ref. [21]. For convenience, we

denote H p
i j and H ν

i j as the pressure and viscous parts of the tensor H. Now taking the ensemble
averages of Eqs. (3) and (4), then for steady-state flows, the various terms on the right-hand side of
Eqs. (3) and (4) should balance with each other, i.e.,

−3〈R〉 − 〈mi jHji〉 = 0, (5)

2
3 〈Q2〉 − 〈mi jmjkHki〉 = 0. (6)

According to Eq. (1), 〈Q〉 = 〈R〉 = 0 in incompressible homogeneous flows. Actually, Eq. (1)
could be generalized to more general cases: for any vector fields a, b, c and their spatial gradient
fields ha = ∇a, hb = ∇b, hc = ∇c, we have proven that [22]

〈hahb〉 = 〈ha hb〉, (7)

〈hahbhc〉 + 〈hahchb〉 = 〈hahb hc〉 + 〈hbhc ha〉 + 〈hcha hb〉 − 〈ha hb hc〉. (8)

If we choose ai = bi = ci = ui, Eqs. (7) and (8) reduce to Eq. (1). On the other hand, it is obvious
that the viscous terms 〈mHν〉 and 〈m2Hν〉 are also zero if we choose ai = ci = ui and bi = ∇2ui in
Eqs. (7) and (8). Then, in order to satisfy Eqs. (5) and (6), we should have〈

mi jH
p
ji

〉 = 0, (9)

〈
2
3 Q2

〉 = 〈
mi jmjkH p

ki

〉
, (10)

which could also be derived from the homogeneity condition, as we will show in the following. In
Eqs. (7) and (8), if we choose ai = ci = ui and bi = ∂ p

∂xi
, Eq. (9) is readily proven from Eq. (7), and

Eq. (8) reduces to 〈
∂ui

∂x j

∂u j

∂xi

∂2 p

∂xk∂xk

〉
= 2

〈
∂ui

∂x j

∂2 p

∂x j∂xk

∂uk

∂xi

〉
. (11)

Notice that ∂2 p
∂xk∂xk

= −tr(m2), Thus,
〈
mi j

∂2 p

∂x j∂xk
mki

〉
= 〈mhpm〉 = −1

2

〈
(m2)2

〉 = −〈m4〉, (12)

and the last equality holds as a result of Cayley-Hamilton theorem. Now we show that Eq. (10)
is tantamount to Eq. (12). Recall the definition of Hp, Hp = −hp + 1

3 hpI, which is the deviatoric
part of pressure Hessian and related to the velocity gradient at the other locations via the Poisson
equation (see Sec. III for detail discussions). From Eq. (12), we have

〈
mi jH

p
jkmki

〉 =
〈
mi j

(
− ∂2 p

∂x j∂xk

)
mki

〉
+

〈
mi j

(
1

3

∂2 p

∂xm∂xm
δ jk

)
mki

〉

= 1

2

〈
(m2)2

〉 − 1

3

〈
(m2)2

〉 = 1

6

〈
(m2)2

〉 =
〈

2

3
Q2

〉
, (13)

which is exactly Eq. (10). Here we remind that Eq. (12) is first obtained in Ref. [20] by tensor
function representation theory for isotropic flows, and the derivation here releases the condition to
only homogeneity. Notice that 〈 2

3 Q2〉 is directly related to the fourth-order moments of m [5,8]:〈
2
3 Q2

〉 = 1
6 〈(mi jmji )

2〉 = 1
6 (I1 − I2 + I4/4), (14)

where we denote I1 ≡ 〈(s2)2〉, I2 ≡ 〈s2 ω2〉, and I4 ≡ 〈(ω2)2〉. Together with the quantity I3 ≡ 〈ω ·
s2 · ω〉, they represent the four independent fourth-order invariants of velocity gradient, from which
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TABLE I. A list of our HIT data sets showing the Reynolds number Rλ,
the number of grid points N in the three spatial directions in DNS, and the
number of statistics we use in the calculations of this work.

Case R129 R433 R610 R610h R1300

Rλ 129 433 610 610 1300
N 512 1024 4096 8192 8192
Points 2.68 × 109 2.68 × 108 1.34 × 108 1.34 × 108 1.34 × 108

we can determine all components of fourth-order moments of velocity gradient in homogeneous
and isotropic turbulence [5].

Now we verify Eq. (12) by DNS data. First, we briefly introduce the DNS cases of HIT used in
this work. In Table I we list and label all the DNS cases, including case R129, a simulation of HIT
performed by the authors with 5123 grids and the Taylor-scale Reynolds numbers Rλ = 129, this
DNS is performed using a standard pseudospectral method covering a periodic box of side L = 2π

(see Refs. [23,24] for more details). We used 20 snapshots resulting in 20 × 5123 = 2.68 × 109 data
points. The other four cases are all from the Johns Hopkins Turbulence Database (JHTDB). Case
R433 comes from the data set “Forced isotropic turbulence” with 10243 grids and Rλ = 433 [25].
We downloaded 64 snapshots, equally distributed over the simulation duration, with each snapshot
128 × 128 × 256 data points, resulting in 2.68 × 108 data points in total. Case R610 comes from the
“Forced isotropic turbulence data set on 40963 Grid” data set [26] with 40963 grids and Rλ = 610.
Cases R610h and R1300 come from the snapshots 5 and 3 of the “Forced isotropic turbulence data
set on 81923 Grid” data set [27,28] with 81923 grids and Rλ = 610 and 1300, respectively. For cases
R610, R610h, and R1300, we downloaded 5123 = 1.34 × 108 data points from one single snapshot.
In Table II we use cases R433, R610h, and R1300 to check Eq. (12): those results agree well with
Eq. (12) and thus verify the main result of this section.

III. IMPLICATIONS FROM THE POISSON EQUATION FOR PRESSURE

In the previous section, we discuss the dynamic equations of the velocity gradient and the
homogeneity constraint to the third-order mixed moments of velocity gradient and pressure Hessian.
As we mentioned previously, the deviatoric part of pressure Hessian H p

i j is nonlocal and relates to
the velocity gradient tensor at the other locations via the Poisson equation [cf. Eqs. (28)– (31) of
Ref. [29] or classical textbooks like Ref. [30]]:

H p
i j (x) = 1

4π

∫
dx′

[
δi j

|x − x′|3 − 3
(x − x′)i(x − x′) j

|x − x′|5
]

× mlnmnl (x′). (15)

TABLE II. Results for the mixed moment 〈mhpm〉 and the fourth-order
moment 1

2 〈(m2)2〉 normalized by 〈s2〉2 from DNS data with Rλ = 433, 610,
and 1300.

Case R433 R610h R1300

〈mhpm〉/〈s2〉2 −2.35 −2.80 −3.71
1
2 〈(m2)2〉/〈s2〉2 2.35 2.81 3.70
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Therefore, applying the above equation to the expression of the mixed third-order moments would
help us to understand its nonlocal properties. Plugging Eq. (15) to 〈mHpm〉 yields

〈
mi jmjkH p

ki

〉 = 1

4π

∫
dx′

[
δki

|x − x′|3 − 3
(x − x′)i(x − x′)k

|x − x′|5
]
〈mlnmnl (x′)mi jmjk (x)〉

= 1

4π

∫
dr

[
δki

r3
− 3

rirk

r5

]
〈mlnmnl (0)mi jmjk (r)〉, (16)

where r ≡ x − x′. We denote Kik (r) ≡ 〈mlnmnl (0)mi jmjk (r)〉 and it is a second-rank tensor function
depended on r, therefore in isotropic flows, it could be expressed as

Kik (r) = K1(r)

r2
rirk + K2(r)δik, (17)

where we define

K1(r) ≡ KLL(r) − KNN (r), (18)

K2(r) ≡ KNN (r), (19)

here KLL(r) and KNN (r) are the projections of Ki j parallel and orthogonal to r, respectively:

KLL(r) ≡ 〈mlnmnl (0)mL jmjL(r)〉, (20)

KNN (r) ≡ 〈mlnmnl (0)mN jmjN (r)〉, (21)

and the subscripts L and N refer to the longitudinal and transverse directions, respectively. Then,
we have

〈
mi jmjkH p

ki

〉 =
∫ ∞

0
r2dr

[
δki

r3
− 3

rirk

r5

](
K1(r)

r2
rirk + K2(r)δik

)

= −2
∫ ∞

0

K1(r)

r
dr. (22)

Also notice that Kii(0) = K1(0) + 3K2(0) = 〈(mi jmji )2〉 and K1(0) = 0 due to isotropy, which
yields

K2(0) = 1

3

〈
(m2)2

〉 = −4
∫ ∞

0

K1(r)

r
dr. (23)

For isotropic flows, it is easy to see that K1(0) = 0 from Eq. (18). And since K1(r) is an even
function, the linear term in the Taylor expansion of K1(r) vanishes and K1(r) ∼ r2 at r = 0, thus,
K1(r)/r = 0 at r = 0. Therefore, the integrand of Eq. (22) vanishes at r = 0 and we can conclude
that the term 〈mi jmjkH p

ki〉 originates fully from the nonlocal contributions of the integrand.

In Fig. 1 we plot the functions of KLL(r), KNN (r), and K1(r)
r normalized by 〈m4〉 and η extracted

from the DNS, where we use data from cases R129, R610, R610h, and R1300. From Fig. 1 one
can see that those curves collapse well for Rλ = 610 and 1300, and for the two different resolutions
of Rλ = 610. The low Reynolds number results of Rλ = 129 deviate from the two higher Reynolds
numbers, possibly due to the finite Reynolds number effect. Because of the resolution of JHTDB,
we lack the data points in the range of small r for Rλ = 610 and 1300, which are supplemented by
the Rλ = 129 case, one can see that K1(r)/r indeed decreases to 0 as r → 0. On the other hand, the
curves of K1(r)/r for all Reynolds numbers peak at about 3η. Therefore, although the integrand
K1(r)/r = 0 at r = 0, the term 〈mi jmjkH p

ki〉 is still a dissipative range quantity. A preliminary
understanding of this behavior would be applying the quasinormal (q.n.) assumption to the two-point
fourth-order velocity gradient correlations in the integration expression of 〈mHpm〉 [Eq. (16)], we
find that the q.n. expression of K1 catches the shape of the curves in Fig. 1, although the values are
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FIG. 1. (a) KLL (r) (solid lines) and KNN (r) (dashed lines) normalized by 〈m4〉 vs r/η and (b) K1(r)
r

normalized by 〈m4〉/η vs r/η. The cyan, magenta, red, and blue lines indicate cases R129, R610, R610h,
and R1300, respectively.

much smaller. In Appendix A we give detailed discussions on the application of q.n. assumption to
some of the quantities and expressions that appeared in the main text.

IV. IMPLICATIONS FOR PARAMETERS IN THE VELOCITY GRADIENT MODELS

In Sec. II we derived the following equation [Eq. (13)]:
〈
mi jmjkH p

ki

〉 = 1
6 〈(mi jmji )

2〉. (24)

In this section, we discuss the implications of this identity to the closure models of velocity gradient
dynamics. Borue and Orszag [31] have argued that for the coarse-grained field, the deviatoric part
of pressure Hessian is approximately proportional to the deviatoric part of m2: Hp ∝ m2 − 1

3 m2I
[cf. Eq. (5.18) of Ref. [31]]. Inspired by this observation, Chertkov et al. [32] proposed the tetrad’s
model for the (perceived) velocity gradient:

H p
i j ≡ −

(
∂2 p

∂xi∂x j
− ∂2 p

∂xk∂xk

δi j

3

)
= α

(
mikmk j − 1

3
m2δi j

)
, (25)

plugging it into Eq. (24) yields

1

6

〈
(m2)2

〉 = 〈
mi jmjkH p

ki

〉 = α

(
〈m4〉 − 1

3

〈
(m2)2

〉) = α

6

〈
(m2)2

〉
, (26)

which gives α = 1. Following Fig. 17(c) of Ref. [31], in Fig. 2 we plot the joint probability density
function (PDF) between 2

3 Q2 and m2Hp normalized by their mean values, where we use data from

case R1300. We can see that the conditional mean 〈m2Hp| 2
3 Q2〉 is very close to a straight line

with slope 1, which is consistent with α = 1 in Eq. (26) above. On the other hand, we should
remind that the homogeneity relation (24) is a scalar relation and only constitutes projections of the
pressure Hessian along particular directions, while Eq. (25) is a tensor model with five independent
components, thus Eq. (24) could not fully measure the quality of the closure model for pressure
Hessian. Recently Wilczek and Meneveau [14] introduced the Gaussian closure for pressure Hessian
in velocity gradient dynamics, which could be regarded as a generalization of Eq. (25):

−H p
i j = α

(
siksk j − 1

3 s2δi j
) + β

(
wikwk j − 1

3 w2δi j
) + γ (sikwk j − wiksk j ), (27)
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FIG. 2. Joint PDF between 2
3 Q2 and m2Hp normalized by their mean values. The black solid line is the

conditional mean 〈m2Hp| 2
3 Q2〉 and the red dashed line is a straight line with slope 1. Data come from case

R1300 of HIT.

where α, β, and γ are model parameters. Plugging Eq. (27) into Eq. (24) yields

〈
mi jmjkH p

ki

〉 = −α

6
I1 + α + β

12
I2 − α + β

4
I3 − β

24
I4. (28)

Table III gives the values of mixed moment 〈mHpm〉 and the fourth-order invariants I’s normalized
by I1 extracted from DNS of three different Rλ as in Table II, and also the value I1/〈s2〉2 for reference.
One can see that all the ratios in Table III are roughly constants with respect to Reynolds number,
consistent with the observations in Ref. [8]. We could choose I2/I1 ≈ 1.73, I3/I1 ≈ 0.24, I4/I1 ≈
8.1, 〈mHpm〉/I1 ≈ 0.21, and plug those values into Eq. (28), which yields a quantitative relation
between the parameters α and β:

β = −0.829 − 0.326α. (29)

In Ref. [14], based on the assumption of Gaussian velocity fields, one could theoretically
calculate the values of model parameters: α = − 2

7 and β = − 2
5 . Plugging these two values into

Eq. (29) leads to an 80% error between the left-hand side and right-hand side of the equation,
showing that the Gaussian closure approach violates the homogeneity constraint when the velocity
gradients are not Gaussian but belong to a turbulent ensemble. On the other hand, we remind
that there exist specific values of α and β which generate Gaussian and homogeneous ensemble
for velocity gradient [33], and in this case we expect those homogeneity constraints are fulfilled.

TABLE III. Results for the mixed moment 〈mHpm〉 and the fourth-order
moments of velocity gradient I2 to I4 normalized by I1 from DNS of Rλ =
433, 610, and 1300. We also show the values I1/〈s2〉2 for reference.

I1/〈s2〉2 I2/I1 I3/I1 I4/I1 〈mHpm〉/I1

R433 3.58 1.71 0.248 8.07 0.211
R610h 4.50 1.75 0.236 7.98 0.208
R1300 5.60 1.73 0.245 8.18 0.214
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In addition to the Gaussian closure, Ref. [14] also estimated the parameters from DNS data.
Contracting Eq. (27) with sw, s2, and w2, respectively, and taking the ensemble average would give
three identities for the three parameters α, β, γ [see Eqs. (4.13) to (4.15) in Ref. [14]]. Extracting
those coefficients from DNS, one could determine α = −0.61 and β = −0.65 [14]. This approach
is called the “enhanced Gaussian closure” in Ref. [14], and since m2 = s2 + w2 + sw + ws, this
approach is consistent with the homogeneity constraint (24). Plugging these two values α = −0.61
and β = −0.65 into Eq. (29), the errors between the left- and right-hand sides are only 3%, showing
that the enhanced Gaussian closure indeed agrees with the homogeneity constraint. Table III also
suggests that Eq. (29) is approximately Reynolds number independent.

At this point, the reader might raise the question whether homogeneity constraints with order
higher than Eq. (24) exist and provide further constraints to the closure model. In Appendix B
we show that although we could derive a relation similar to Eq. (8) for the fourth-order moments
[Eq. (B1)], it is not an independent constraint imposed by the homogeneity condition and could be
derived from pure mathematical tensor relations. One might prove that homogeneity does not lead
to further constraint by tensor function representation theory [20], but this is beyond the scope of
this work.

V. GENERALIZATION TO THE TURBULENT SHEAR FLOWS

In this section, we discuss the generalization of Eq. (12) to turbulent shear flows. The motivation
is that although the Betchov relations [Eq. (1)] require homogeneity condition, they hold approxi-
mately even in the log-layer and bulk region of turbulent boundary layer [34,35]. Thus, it would be
interesting to see whether the homogeneity constraint for pressure Hessian derived in Sec. II works
in the presence of a shear and a wall. First we notice that Eq. (12) should be modified when the flow
possesses a mean velocity gradient since in this case, the Poisson equation becomes

∂2 p

∂xk∂xk
= −m2 − 2mM + 〈m2〉, (30)

where M denotes the mean gradient Mi j = ∂〈Ui〉
∂x j

. Plugging Eq. (30) into Eq. (11) yields

〈mhpm〉 = − 1
2

(〈
(m2)2

〉 + 2〈m2mi j〉Mji − 〈m2〉2
)
. (31)

Notice that in homogeneous flows 〈m2〉 = 0 and thus the last term on the right-hand side of Eq. (31)
vanishes. Even in turbulent boundary layers, experimental and DNS data show that 〈m2〉 � 〈s2〉
[34,35], so one could expect that the last term on the right-hand side of Eq. (31) is negligible in
these cases. Now considering the second term on the right-hand side of Eq. (31), 〈m2mi j〉Mji, we
could show that for high Reynolds number homogeneous shear flows (HSF), this term is much
smaller than 〈(m2)2〉, which is the first term on the right-hand side of Eq. (31), thus, in this case
Eq. (31) reduces to Eq. (12). The arguments are the following: we first denote x1 and x2 as the
coordinates in the streamwise and normal directions, and in HSF, the only nonvanishing component
of the mean gradient Mi j is M12. As a result, 〈m2mi j〉Mji = 〈m2m21〉M12 = 〈mi jmjim21〉M12. Then
we notice that i and j in 〈mi jmjim21〉 are both repeated indices, thus, all the individual terms
forming 〈mi jmjim21〉, like 〈m12m21m21〉 and 〈m13m31m21〉, etc., must have odd numbers of 1 and 2
among all the indices. According to the analysis in Ref. [36], the odd components of the third-order
moments of velocity gradient scale with Reynolds number as ∝R−1/2

λ when normalized by 〈s3〉,
where Rλ = 〈u2

1〉/(ν〈( ∂u1
∂x1

)2〉1/2) is the Reynolds number based on the Taylor microscale by using
the velocity fluctuation and its derivative along the streamwise direction x1. That means we expect
〈mi jmjim21〉 ∼ 〈s3〉R−1/2

λ . Furthermore, the mean gradient M12 is much smaller than the fluctuation

〈( ∂u1
∂x1

)2〉1/2 when Rλ is large, as we show below. The mean gradient scales as M12 ∼ 〈u2
1〉1/2

L , where L
is the characteristic length scale of the system. The second-order moment of the velocity gradient
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FIG. 3. (a) The ratio −2〈mhpm〉/(〈(m2)2〉 + 2〈m2mi j〉Mji ) in channel flows. For homogeneous flows,
those values should be 1. The red solid line with plus symbols indicates the Reτ = 5200 case, while the blue
dashed line with square symbols indicates the Reτ = 1000 case. (b) −2〈mhpm〉/〈(m2)2〉 in channel flows for
comparison. The black dashed line indicates the value 1, the corresponding value for homogeneous flows.

∂u1
∂x1

scales as 〈( ∂u1
∂x1

)2〉 ∼ ε
ν

∼ 〈u2
1〉2

R2
λν

2 , where we use Rλ = 〈u2
1〉1/2λ

ν
and λ/〈u2

1〉1/2 ∼ (ν/ε)1/2, λ is the

Taylor microscale [37]. Thus, M12/〈( ∂u1
∂x1

)2〉1/2 ∼ 〈u2
1〉1/2

L × Rλν

〈u2
1〉 ∼ Rλ/Re ∼ R−1

λ , in the last step we

use Re = 〈u2
1〉1/2L/ν ∼ R2

λ [37]. On the other hand, DNS data of HIT show that the skewness
and flatness of the velocity gradient scale as 〈( ∂u1

∂x1
)3〉/〈( ∂u1

∂x1
)2〉3/2 ∼ R0.1

λ and 〈( ∂u1
∂x1

)4〉/〈( ∂u1
∂x1

)2〉2 ∼
R0.3

λ [8]. Therefore, we estimate that 〈m2m21〉M12 ∼ (〈s3〉R−1/2
λ ) × (〈( ∂u1

∂x1
)2〉1/2R−1

λ ) ∼ 〈( ∂u1
∂x1

)3〉 ×
〈( ∂u1

∂x1
)2〉1/2 × R−1.5

λ ∼ 〈( ∂u1
∂x1

)2〉2R−1.4
λ ∼ 〈( ∂u1

∂x1
)4〉R−1.7

λ ∼ 〈(m2)2〉R−1.7
λ , which is negligible when

Rλ  1.
For wall flows, Eq. (31) might not be applicable in the viscous sublayer, while we expect it to

hold in and above the log-layer. In Fig. 3(a) we plot the ratio −2〈mhpm〉/ (〈(m2)2〉 + 2〈m2mi j〉Mji )
vs y+ in channel flows for two different Reynolds number Reτ = 1000 and Reτ = 5200. The data
are downloaded from the data sets “channel flow” and “channel flow at Reτ = 5200” in JHTDB
[38,39]. The details of the simulations could be found in Refs. [38,39]. Briefly, in both simulations,
the domain sizes are 8π × 2 × 3π , using 2048 × 512 × 1536 and 10240 × 1536 × 7680 nodes,
respectively, at the lower and higher Reynolds simulations. The Reynolds numbers based on the
friction velocity at the wall uτ , Reτ ≡ uτ h/ν are 1000 and 5200 for these two flows, where h is the
half-height of the channel and ν is the viscosity. In Fig. 3, for the Reτ = 1000 simulation, we record
data in 20 planes from the wall to the center of the channel, i.e., data in 20 positions from y = 0 to h,
and in each plane we used 2.2 × 107 data points. And for the higher Reynolds number Reτ = 5200,
we record 26 planes, with 3.8 × 107 data points for each plane.

We can see from Fig. 3 that the ratio is close to the homogeneous value 1 when y+ > 10, but
significantly deviate from 1 in the near wall region: it increases as we move towards the wall, and
reaches roughly 1.5 at y+ = 1. For comparison, we also plot −2〈mhpm〉/〈(m2)2〉 in Fig. 3(b), it is
clear that far from the wall, the curves in Fig. 3(b) deviate more from unity than the counterparts
in Fig. 3(a) in the range 30 < y+ < 1000, suggesting a small but non-negligible contribution from
2〈m2mi j〉Mji in this range. To exclude the possible effects of statistical fluctuations on the small
variations of those curves at about y+ = 100, we check the statistical convergence by dividing the
data points into several groups and compare their results with full statistics: the differences are no
more than a few percent in the viscous sublayer, and negligible further away from the wall.
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FIG. 4.
Kqn

1 (r)

r normalized by (a) 〈m4〉/η and (b) 〈s2〉2/η vs r/η. The cyan, magenta, red, and blue lines
indicate cases R129, R610, R610h, and R1300, respectively.

VI. CONCLUDING REMARKS

In summary, we discussed the homogeneity constraint (12) to the mixed moment 〈mhpm〉, which
leads to various implications. Together with the Poisson equation for pressure Hessian [Eq. (15)],
from Eq. (12) we can express 〈mhpm〉 and thus 〈(m2)2〉 in terms of the integration of a two-point
fourth-order velocity gradient correlation function. Then DNS results indicate that the integrand
peaks at ∼3η and does not vary with the Rλ when it is high enough, thus although the mixed
moment 〈mhpm〉 is nonlocal as a result of the Poisson equation, it is still a dissipative scale quantity.
Furthermore, Eq. (12) imposes a constraint on the closure model of pressure Hessian in the velocity
gradient dynamics. Technically, plugging the model into Eq. (12) might generate an identity for the
model parameters. As an example, we discuss the Gaussian closure model introduced in Ref. [14]
and give a quantitative relation between the model parameters [Eq. (29)]. Equation (12) could
also be generalized to homogeneous flows with mean gradient [see Eq. (31)]. Moreover, even in
turbulent channel flows, which is a typical example of inhomogeneous turbulence, Eq. (31) is still
approximately true in and above the log-layer.

In the future it would be interesting to analytically and numerically investigate the other inde-
pendent mixed moments of pressure Hessian and velocity gradient, such as 〈shps〉 and 〈ω · hp · ω〉.
Also, the properties of mixed moments between pressure Hessian and velocity gradient could help
us to develop better closure models of velocity gradient dynamics.
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APPENDIX A: DERIVATION OF THE FORMULAS BASED ON QUASINORMAL ASSUMPTION

In this Appendix, we first discuss the application of the q.n. assumption to the integration
expression of 〈mHpm〉, i.e., Eq. (16). Under the q.n. assumption, the integrand of Eq. (16),
〈mlnmnl (0)mi jmjk (r)〉, splits to 2〈mln(0)mi j (r)〉〈mnl (0)mjk (r)〉, and similar operations could be

applied to other fourth-order correlations like K1 and K2. In Fig. 4(a) we plot Kq.n.
1 (r)

r normalized by

〈m4〉/η, where Kq.n.
1 (r) is the q.n. expression of K1(r): Kq.n.

1 (r) = 2〈mln(0)mL j (r)〉〈mnl (0)mjL(r)〉 −
2〈mln(0)mN j (r)〉〈mnl (0)mjN (r)〉. Compared with Fig. 1(b), although the values of those curves in
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Fig. 4 are much smaller, they still catch the shape, and peak at ∼3η. We should point out that 〈m4〉
is not a proper normalization for Kqn

1 (r), which is the products of second-order correlations, thus as

an alternative, in Fig. 4(b) we normalize Kq.n.
1 (r)

r by 〈s2〉2/η. Again as in Fig. 1(b), the three curves
with higher Reynolds number collapse very well, while the lower Reynolds number Rλ = 129 case
shows some deviation.

Next, we calculate the q.n. value of 〈mi jmjkH p
ki〉 by applying the q.n. assumption to the right-hand

side of Eq. (16), which yields

〈
mi jmjkH p

ki

〉 = 1

4π

∫
dr

[
δki

r3
− 3

rirk

r5

]
〈mlnmnl (0)mi jmjk (r)〉

q.n.= 1

4π

∫
dr

[
δki

r3
− 3

rirk

r5

]
2〈mln(0)mi j (r)〉〈mnl (0)mjk (r)〉. (A1)

Notice that in isotropic flows, the fourth-rank tensor Ti jkl ≡ 〈mi j (0)mkl (r)〉 could be expressed as
the following:

Ti jkl = 〈mi j (0)mkl (r)〉 = C1rir jrkrl + C2rir jδkl + C3rirkδ jl + C4rirlδk j + C5rkrlδi j

+ C6r jrlδik + C7rkr jδil + C8δi jδkl + C9δikδ jl + C10δilδk j . (A2)

Furthermore, one could readily see that

Ti jkl = − ∂

∂r j

∂

∂rl
Qik (r), (A3)

where the second-rank tensor Qi j denotes the second-order velocity correlation Qi j = 〈ui(0)u j (r)〉,
which has the following form under the isotropic condition:

Qi j (r) = g(r)δi j + [ f (r) − g(r)]
rir j

r2
, (A4)

where f (r) is the longitudinal correlation function f (r) = QLL(rêL ), and g(r) is the transverse
correlation function g(r) = QNN (rêL ), êL denotes the normal direction of r. Functions g and f
satisfy the following identity due to the incompressible condition: g(r) = f (r) + f ′(r)r/2, where ′
denotes the derivative with respect to r. Then, plugging Eq. (A4) into Eq. (A3) yields

C1 = f ′′ − g′′

r4
− 5

f ′ − g′

r5
+ 8

f − g

r6
, C2 = C3 = C4 = C5 = C7 = f ′ − g′

r3
− 2

f − g

r4
,

C6 = g′′

r2
− g′

r3
, C9 = g′

r
, C8 = C10 = f − g

r2
. (A5)

Therefore, we have

〈
mi jmjkH p

ki

〉 q.n.= 1

4π

∫
dr

[
δki

r3
− 3

rirk

r5

]
2Tlni jTnl jk

= 2
∫ ∞

0
dr

−2( f ′′)2r2 + f ′ f ′′′r2 − 4 f ′ f ′′r + 6( f ′)2

r3

= 2
∫ ∞

0
dr

(−2 f ′ f ′′

r
− 3( f ′)2

r2

)′
= 2

(
2 f ′ f ′′

r
+ 3( f ′)2

r2

)∣∣∣∣∣
r=0

. (A6)

Notice that at small r, function f can be Taylor expanded as f (r) ∼ u′2 − ε
30ν

r2 = u′2 − 〈s2〉
15 r2, thus,

f ′(r)/r|r=0 = f ′′(0) = − 2
15 〈s2〉. Therefore, 〈mi jmjkH p

ki〉
q.n.= 2( 2 f ′ f ′′

r + 3( f ′ )2

r2 )|r=0 = 8
45 〈s2〉2. As a

self-consistency check, we show that the q.n. value of the left-hand side of Eq. (24) also equals
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TABLE IV. Quasinormal predictions for invariants I’s and 〈ωiω jH
p

i j〉,
〈si js jkH p

ki〉 normalized by 〈s2〉2.

I1 I2 I3 I4

〈
ωiω jH

p
i j

〉 〈
si js jkH p

ki

〉
q.n. predictions 7

5 2 2
3

20
3

4
9

1
15

to 8
45 〈s2〉2. Applying the q.n. assumption, the left-hand side of Eq. (24) reads as

1

6
〈(mi jmji )

2〉 = 1

6

〈
∂ui

∂x j

∂u j

∂xi

∂um

∂xn

∂un

∂xm

〉
q.n.= 1

3

〈
∂ui

∂x j

∂um

∂xn

〉〈
∂u j

∂xi

∂un

∂xm

〉
. (A7)

Then notice that for homogeneous and isotropic turbulence, the second-order moments of velocity
gradient have the following general expression:〈

∂ui

∂x j

∂uk

∂xl

〉
= β

(
δikδ jl − 1

4
δi jδkl − 1

4
δilδ jk

)
, (A8)

where β = 2ε/15ν = 4
15 〈s2〉. Thus,

1

6
〈(mi jmji )

2〉 q.n.= 1

3

〈
∂ui

∂x j

∂um

∂xn

〉〈
∂u j

∂xi

∂un

∂xm

〉

= β2

3

(
δimδ jn − 1

4
δi jδmn − 1

4
δinδ jm

)(
δ jnδim − 1

4
δ jiδnm − 1

4
δ jmδin

)

= 5

2
β2 = 8

45
〈s2〉2. (A9)

Incidentally, parallel to the above derivation, we could also evaluate the value of 〈si js jkH p
ki〉 within

the q.n. formalism:

〈
si js jkH p

ki

〉 q.n.= 1

4π

∫
dr

[
δki

r3
− 3

rirk

r5

]
(2Tlni jTnl jk + Tln jiTnl jk + Tlni jTnlk j )

=
∫ ∞

0
dr

2 f ′ f ′′r + f ′′ f ′′′r3/2 − 2( f ′)2

r3

=
∫ ∞

0
dr

(−2 f ′ f ′′

r
− 3( f ′)2

r2
+ ( f ′)2

r2
+ ( f ′′)2

4

)′
= 1

15
〈s2〉2 (A10)

and similar calculation leads to 〈ωiω jH
p

i j〉
q.n.= 4

9 〈s2〉2. In Table IV we summarize the q.n. predictions
for fourth-order invariants I1 to I4 [5] and mixed moments 〈si js jkH p

ki〉, 〈ωiω jH
p

i j〉 normalized by

〈s2〉2.
Under the Gaussian closure model (27) proposed in Ref. [14], similar to Eq. (28), one could

readily show that

〈
si js jkH p

ki

〉 = −α

6
I1 + β

12
I2 − β

4
I3 (A11)

and
〈
wi jw jkH p

ki

〉 = α

12
I2 − α

4
I3 − β

24
I4. (A12)

With α = − 2
7 and β = − 2

5 , Eqs. (A11) and (A12) are consistent with Table IV under the q.n.
assumption.
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TABLE V. DNS results for the six-order moments 〈(m2)3〉 and the related
mixed moments between velocity gradient and pressure Hessian. All quanti-
ties in the table are normalized by 〈s2〉3. We list the results from case R610h
of HIT here since this data set has the largest resolution.

〈hp hpm2〉 〈hp2 m2〉 〈hpm
2〉 〈hp2

m2〉 〈(m2)3〉 〈hp2m2〉
−120.6 −121.1 4.648 −241.9 −61.81

〈(hpm)2〉 〈Hp2 m2〉 〈Hpm
2〉 〈Hp2m2〉 〈(Hpm)2〉

−52.55 −40.58 4.649 −8.299 0.9535

APPENDIX B: FOURTH-ORDER INVARIANTS RELATIONS

The derivation of Eq. (8) only requires chain rule of derivatives and homogeneity condition [22].
A natural question is whether this derivation could be generalized to higher-order moments. Here
we discuss the n = 4 case. Similar to the derivation of Eq. (8), one could show that four different
vector gradient fields ha = ∇a, hb = ∇b, hc = ∇c, and hd = ∇d satisfy the following relation:

〈ha hb hc hd〉 + 〈ha hbhchd〉 + 〈ha hbhdhc〉 + 〈hb hahchd〉 + 〈hb hahdhc〉 + 〈hc hahbhd〉
+ 〈hc hahdhb〉 + 〈hd hahbhc〉 + 〈hd hahchb〉 + 〈hahb hchd〉 + 〈hahc hbhd〉 + 〈hahd hbhc〉

= 〈ha hb hchd〉 + 〈ha hc hbhd〉 + 〈ha hd hbhc〉 + 〈hb hc hahd〉 + 〈hb hd hahc〉 + 〈hc hd hahb〉
+ 〈hahbhchd〉 + 〈hahbhdhc〉 + 〈hahchbhd〉 + 〈hahchdhb〉 + 〈hahdhbhc〉 + 〈hahdhchb〉.

(B1)

However, this relation does not provide an additional constraint from homogeneity. Tensor analysis
shows that any three second-order tensors A, B, and C satisfy the following three-dimensional
Rivlin’s identities [cf. Eq. (6.163) of Ref. [40]]:

ABC + ACB+BCA+BAC + CAB + CBA + AB C + BA C + CA B + (A BC + B AC+C AB)I

= A(BC + CB) + B(AC + CA) + C(AB + BA) + ABC + BAC + CAB

+ (A B C + ABC + ACB)I, (B2)

where I denotes the identity matrix. Now choosing A = ha, B = hb, and C = hc in Eq. (B2),
then multiplying Eq. (B2) with hd and taking the trace, one could exactly recover Eq. (B1). To
numerically examine Eq. (B1), we choose ha = hb = hp and hc = hd = m in Eq. (B1) as an
example, which yields

4〈hp hpm2〉 + 〈hp2 m2〉 + 2〈hpm
2〉 = 〈hp2

m2〉 + 4〈hp2m2〉 + 2〈(hpm)2〉, (B3)

this equation could also be expressed in terms of Hp:

〈Hp2 m2〉 + 2〈Hpm
2〉 = 4〈Hp2m2〉 + 2〈(Hpm)2〉. (B4)

In Table V we list the DNS results for those quantities appearing in Eqs. (B3) and (B4). We can
see that the data agree well with Eqs. (B3) and (B4).

[1] R. Betchov, An inequality concerning the production of vorticity in isotropic turbulence, J. Fluid Mech.
1, 497 (1956).

024601-13

https://doi.org/10.1017/S0022112056000317


ZHIDENG ZHOU AND PING-FAN YANG

[2] W. T. Ashurst, A. R. Kerstein, R. M. Kerr, and C. H. Gibson, Alignment of vorticity and scalar gradient
with strain rate in simulated Navier-Stokes turbulence, Phys. Fluids 30, 2343 (1987).

[3] C. Meneveau, Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows,
Annu. Rev. Fluid Mech. 43, 219 (2011).

[4] A. Tsinober, An Informal Conceptual Introduction to Turbulence (Springer, Berlin, 2009).
[5] E. D. Siggia, Invariants for the onepoint vorticity and strain rate correlation functions, Phys. Fluids 24,

1934 (1981).
[6] J. Hierro and C. Dopazo, Fourth-order statistical moments of the velocity gradient tensor in homogeneous,

isotropic turbulence, Phys. Fluids 15, 3434 (2003).
[7] R. M. Kerr, Higher-order derivative correlations and the alignment of small-scale structures in isotropic

numerical turbulence, J. Fluid Mech. 153, 31 (1985).
[8] T. Ishihara, Y. Kaneda, M. Yokokawa, K. Itakura, and A. Uno, Small-scale statistics in high-resolution

direct numerical simulation of turbulence: Reynolds number dependence of one-point velocity gradient
statistics, J. Fluid Mech. 592, 335 (2007).

[9] L. Fang, Y. J. Zhang, J. Fang, and Y. Zhu, Relation of the fourth-order statistical invariants of velocity
gradient tensor in isotropic turbulence, Phys. Rev. E 94, 023114 (2016).

[10] L. Djenidi, L. Danaila, R. A. Antonia, and S. Tang, A note on the velocity derivative flatness factor in
decaying HIT, Phys. Fluids 29, 051702 (2017).

[11] S. L. Tang, R. A. Antonia, L. Djenidi, L. Danaila, and Y. Zhou, Reappraisal of the velocity derivative
flatness factor in various turbulent flows, J. Fluid Mech. 847, 244 (2018).

[12] J. Boschung, Exact relations between the moments of dissipation and longitudinal velocity derivatives in
turbulent flows, Phys. Rev. E 92, 043013 (2015).

[13] L. Chevillard, C. Meneveau, L. Biferale, and F. Toschi, Modeling the pressure Hessian and viscous
Laplacian in turbulence: Comparisons with direct numerical simulation and implications on velocity
gradient dynamics, Phys. Fluids 20, 101504 (2008).

[14] M. Wilczek and C. Meneveau, Pressure Hessian and viscous contributions to velocity gradient statistics
based on Gaussian random fields, J. Fluid Mech. 756, 191 (2014).

[15] J. M. Lawson and J. R. Dawson, On velocity gradient dynamics and turbulent structure, J. Fluid Mech.
780, 60 (2015).

[16] M. Carbone, M. Iovieno, and A. D. Bragg, Symmetry transformation and dimensionality reduction of the
anisotropic pressure Hessian, J. Fluid Mech. 900, A38 (2020).

[17] J. Tom, M. Carbone, and A. D. Bragg, Exploring the turbulent velocity gradients at different scales from
the perspective of the strain-rate eigenframe, J. Fluid Mech. 910, A24 (2021).

[18] D. G. Vlaykov and M. Wilczek, On the small-scale structure of turbulence and its impact on the pressure
field, J. Fluid Mech. 861, 422 (2019).

[19] A. Tsinober, M. Ortenberg, and L. Shtilman, On depression of nonlinearity in turbulence, Phys. Fluids
11, 2291 (1999).

[20] M. Carbone and M. Wilczek, Only two Betchov homogeneity constraints exist for isotropic turbulence,
J. Fluid Mech. 948, R2 (2022).

[21] B. J. Cantwell, Exact solution of a restricted Euler equation for the velocity gradient tensor, Phys. Fluids
4, 782 (1992).

[22] P.-F. Yang, J. Fang, L. Fang, A. Pumir, and H. Xu, Low-order moments of the velocity gradient in
homogeneous compressible turbulence, J. Fluid Mech. 947, R1 (2022).

[23] Z. D. Zhou, S. Z. Wang, and G. D. Jin, A structural subgrid-scale model for relative dispersion in
large-eddy simulation of isotropic turbulent flows by coupling kinematic simulation with approximate
deconvolution method, Phys. Fluids 30, 105110 (2018).

[24] Z. D. Zhou, G. W. He, S. Z. Wang, and G. D. Jin, Subgrid-scale model for Large-Eddy simulation of
isotropic turbulent flows using an artificial neural network, Comput. Fluids 195, 104319 (2019).

[25] Y. Li, E. Perlman, M. Wan, Y. Yang, C. Meneveau, R. Burns, S. Chen, A. Szalay, and G. L. Eyink, A
public turbulence database cluster and applications to study Lagrangian evolution of velocity increments
in turbulence, J. Turbul. 9, 1 (2008).

024601-14

https://doi.org/10.1063/1.866513
https://doi.org/10.1146/annurev-fluid-122109-160708
https://doi.org/10.1063/1.863289
https://doi.org/10.1063/1.1613648
https://doi.org/10.1017/S0022112085001136
https://doi.org/10.1017/S0022112007008531
https://doi.org/10.1103/PhysRevE.94.023114
https://doi.org/10.1063/1.4983724
https://doi.org/10.1017/jfm.2018.307
https://doi.org/10.1103/PhysRevE.92.043013
https://doi.org/10.1063/1.3005832
https://doi.org/10.1017/jfm.2014.367
https://doi.org/10.1017/jfm.2015.452
https://doi.org/10.1017/jfm.2020.470
https://doi.org/10.1017/jfm.2020.960
https://doi.org/10.1017/jfm.2018.857
https://doi.org/10.1063/1.870091
https://doi.org/10.1017/jfm.2022.680
https://doi.org/10.1063/1.858295
https://doi.org/10.1017/jfm.2022.622
https://doi.org/10.1063/1.5049731
https://doi.org/10.1016/j.compfluid.2019.104319
https://doi.org/10.1080/14685240802376389


HOMOGENEITY CONSTRAINTS ON THE MIXED MOMENTS …

[26] P. K. Yeung, D. A. Donzis, and K. R. Sreenivasan, Dissipation, enstrophy and pressure statistics in
turbulence simulations at high Reynolds numbers, J. Fluid Mech. 700, 5 (2012).

[27] P. K. Yeung, X. M. Zhai, and K. R. Sreenivasan, Extreme events in computational turbulence, Proc. Natl.
Acad. Sci. USA 112, 12633 (2015).

[28] P. K. Yeung, K. R. Sreenivasan, and S. B. Pope, Effects of finite spatial and temporal resolution on extreme
events in direct numerical simulations of incompressible isotropic turbulence, Phys. Rev. Fluids 3, 064603
(2018).

[29] K. Ohkitani and S. Kishiba, Nonlocal nature of vortex stretching in an inviscid fluid, Phys. Fluids 7, 411
(1995).

[30] A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow (Cambridge University Press, Cam-
bridge, 2002).

[31] V. Borue and S. A. Orszag, Local energy flux and subgrid-scale statistics in three-dimensional turbulence,
J. Fluid Mech. 366, 1 (1998).

[32] M. Chertkov, A. Pumir, and B. I. Shraiman, Lagrangian tetrad dynamics and the phenomenology of
turbulence, Phys. Fluids 11, 2394 (1999).

[33] L. A. Leppin and M. Wilczek, Capturing Velocity Gradients and Particle Rotation Rates in Turbulence,
Phys. Rev. Lett. 125, 224501 (2020).

[34] P. Bradshaw and J. B. Perot, A note on turbulent energy dissipation in the viscous wall region,
Phys. Fluids 5, 3305 (1993).

[35] A. Pumir, H. Xu, and E. D. Siggia, Small-scale anisotropy in turbulent boundary layers, J. Fluid Mech.
804, 5 (2016).

[36] A. Pumir, Structure of the velocity gradient tensor in turbulent shear flows, Phys. Rev. Fluids 2, 074602
(2017).

[37] S. B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000).
[38] J. Graham, K. Kanov, X. I. A. Yang, M. Lee, N. Malaya, C. C. Lalescu, R. Burns, G. Eyink, A. Szalay,

R. D. Moser, and C. Meneveau, A web services accessible database of turbulent channel flow and its use
for testing a new integral wall model for LES, J. Turbul. 17, 181 (2016).

[39] M. Lee and R. D. Moser, Small-scale anisotropy in turbulent boundary layers, J. Fluid Mech. 774, 395
(2015).

[40] M. Itskov, Tensor Algebra and Tensor Analysis for Engineers (Springer, Cham, 2015).

024601-15

https://doi.org/10.1017/jfm.2012.5
https://doi.org/10.1073/pnas.1517368112
https://doi.org/10.1103/PhysRevFluids.3.064603
https://doi.org/10.1063/1.868638
https://doi.org/10.1017/S0022112097008306
https://doi.org/10.1063/1.870101
https://doi.org/10.1103/PhysRevLett.125.224501
https://doi.org/10.1063/1.858691
https://doi.org/10.1017/jfm.2016.529
https://doi.org/10.1103/PhysRevFluids.2.074602
https://doi.org/10.1080/14685248.2015.1088656
https://doi.org/10.1017/jfm.2015.268

