
Citation: Huang, J.; Lu, W.; Yang, G.;

Zheng, G. Research on Panel Flutter

Considering the Effect of Convective

Active Cooling. Appl. Sci. 2023, 13,

4925. https://doi.org/10.3390/

app13084925

Academic Editor: Junhong Park

Received: 28 March 2023

Revised: 11 April 2023

Accepted: 13 April 2023

Published: 14 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Research on Panel Flutter Considering the Effect of Convective
Active Cooling
Jie Huang 1,2 , Weishuang Lu 1, Guowei Yang 1,2 and Guannan Zheng 1,3,*

1 Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of
Sciences, Beijing 100190, China; huangjie@imech.ac.cn (J.H.)

2 School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100191, China
3 School of Future Technology, University of Chinese Academy of Sciences, Beijing 100191, China
* Correspondence: zhengguannan@imech.ac.cn

Abstract: The aeroelastic characteristics of the panel under the action of coolant are obviously different
from the flutter characteristics of the traditional panel. In order to solve this problem, the dynamics
model of the panel flutter was established in this paper based on von Karman’s large deformation
theory and the Kirchhoff–Love hypothesis. The panel dynamics equations were discretized into
constant differential equations with finite degrees of freedom by Galerkin’s method, and solved by
the fourth Runge–Kutta method in the time domain. The nonlinear modified piston theory was
used to predict the unsteady aerodynamic loads, and the accuracy of the flutter analysis model was
verified. On this basis, the effects of the head-panel pressure of coolant, the pressure drop ratio,
the coolant injection direction, and the inertial resistance and viscous resistance on panel stability
and flight stability were investigated, respectively. The results showed that reducing the pressure
drop ratio, and reducing or increasing the head-panel pressure (valuing away from the freestream
pressure) can improve the critical dynamic pressure when bifurcation occurs. At M∞ = 5.0, the
pressure drop ratio causes a 22.1% increment in the critical dynamic pressure. The influence of the
coolant injection direction on the panel bifurcation is mainly influenced by the head-panel pressure.
The inertial resistance slows down the convergence process of the panel response, increases the limit
cycle amplitude, and reduces the critical dynamic pressure of the panel, while the viscous resistance
plays the opposite role. Based on these conclusions, this paper finally proposes the suppression
method of panel fluttering from head-panel pressure, inertial resistance, viscous resistance, etc.

Keywords: panel flutter; coolant action; flight stability; flutter suppression

1. Introduction

As the most basic structural unit of a vehicle, panels have the characteristics of a
simple structure, easy loading and unloading, a high load-bearing capacity, etc. They
are widely used in the key parts of the wing fuselage skin and air intakes of hypersonic
vehicles. However, a dangerous dynamic instability phenomenon, panel flutter [1,2], often
occurs in actual flight. This is a self-excited oscillation under the coupling of aerodynamic,
elastic, and inertial forces, which has strong nonlinear characteristics. Under high dynamic
pressure conditions, the structure is prone to Limit Cycle Oscillation (LCO) and dynamic
instability, which reduces the fatigue life of the panel and even causes damage. For example,
in the late 1950s, NASA’s X-15 test aircraft experienced severe structural vibration in the tail
and fairing panels on its first flight, and the conditions of occurrence were much lower than
one atmosphere pressure [3]. Therefore, the study of panel flutter is of great importance for
flight safety and aircraft performance assessment.

The systematic study of panel flutter began in the 1950s [4,5]. Dowell [4] analyzed
the panel flutter in supersonic airflow using Galerkin’s method, in which the aerodynamic
force prediction was based on linear piston theory. The results of the analysis revealed
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the induced mechanism and evolutionary history of plate aeroelasticity, and gave the
critical dynamic pressure of flutter. It was also pointed out that at least sixth-order modes
were required to obtain a more accurate solution. These constructive results provided an
important reference for the subsequent research on panel flutter problems. Xue et al. [6]
presented a frequency domain method for two-dimensional nonlinear panel flutter with
thermal effects obtained from a consistent finite element formulation. The deformation was
obtained by von Karman’s nonlinear strain–displacement relation, and the quasi-steady
first-order piston theory was employed for aerodynamic loading. The results presented
the influence of temperature and dynamic pressure on panel fatigue life. Guo and Mei [7]
investigated the thermo-aeroelastic vibration response of a panel using the structural modal
method, which can drastically reduce the number of coupled nonlinear modal equations
for the large amplitude nonlinear panel flutter analysis. Using the Ritz method to study
the panel aeroelasticity problem, Song and Li [8] pointed out that the aerodynamic force
can significantly change the modal vibration pattern of the structure. Focusing on the
flutter problem of composite laminate, Koo et al. [9] and Singha et al. [10] established
the panel flutter dynamics model based on the finite element method, and discussed the
effect of structural and aerodynamic damping. The results indicated that the degree of
influence of structural damping on the panel dynamic characteristics is affected by the
aerodynamic damping and the fiber layup direction. The effect of structural damping is
weak when the aerodynamic damping is large, while the opposite results are obtained
when the aerodynamic damping is small. Hamid and Mohammad [11] presented the
nonlinear vibrational frequency analysis of a curved panel under the effects of in-plane
compressive and tensile loads, carried out for the first time in the time domain. The
first- and third-order piston theories were incorporated for the nonlinear curved panel
flutter analysis under the effects of in-plane and thermal loads. Cheng et al. [12] analyzed
the dynamic response of panels in a hypersonic flight environment and pointed out that
there are differences in the history of panels to reach chaotic motion at different flight
Mach numbers. Xie et al. [13] considered both aerodynamic nonlinearity and structural
nonlinearity in panel flutter analysis, in which third-order piston theory was used for
nonlinear aerodynamic loading. The effects of each item of piston theory on panel flutter
were studied. The results showed that the geometric term in the quadratic term is the
main cause of nonlinearity. Culler et al. [14] developed a comprehensive aerothermoelastic
model for the analysis of panel structures in hypersonic flow, and investigated the impact of
fluid–thermal–structural coupling on aerothermoelastic behavior using Galerkin’s method
and the third-order piston theory. Chen et al. [15] analyzed the aeroelastic flutter of a
composite panel with functionally graded material. The result illustrated that adding a few
amounts of grapheme nanoplatelets can effectually enhance the aeroelastic properties of
the plates. The displacement and acceleration feedback control are used to suppress the
occurrence of the panel flutter.

During hypersonic flight, the outer surface wall structure of the vehicle is subjected to
a rather harsh aerodynamic thermal environment, which seriously affects the performance
and flight safety of the vehicle [16]. The convection cooling system is one of the most
commonly used thermal protection strategies [17–20]. For instance, Castaldi [18] presented
an effective endothermic fuel platform for regeneratively cooled hypersonic vehicles. The
current research on the convection cooling thermal protection system mainly focuses on
optimal control [21], thermal protection efficiency improvement [16,22], structure simpli-
fication, and mass reduction [23], but has not yet considered the influence of the coolant
force on the stability of the wall plate. Therefore, the dynamics model of panel flutter under
the action of coolant is established in this paper based on von Karman’s large deforma-
tion theory and the Kirchhoff–Love hypothesis. The kinetic equations are discretized by
Galerkin’s method in the space domain and solved by the fourth Runge–Kutta method in
the time domain. Based on this, the effects of the head-panel pressure of the coolant, the
pressure drop ratio, the coolant injection direction, and the inertial resistance and viscous
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resistance on panel stability and flight stability were investigated, respectively, and the
suppression method of panel flutter was proposed.

This paper is organized as follows. Section 2 presents the dynamic analytical model of
panel flutter under the effect of coolant and verifies the accuracy of the model. Section 3
analyzes the panel stability under the influence of coolant. Section 4 analyzes the flight
stability of the panel and proposes the suppression method of panel flutter. The conclusions
are summarized in Section 5.

2. Theoretical Analysis

Consider a two-dimensional isotropic simply-supported panel, as shown in Figure 1,
where the panel length is a, the thickness is h, and the transverse vibration displacement
is w(x). The upper surface of the panel is acted on by supersonic airflow, and the Mach
number, pressure, and density of the freestream are Ma∞, p∞, ρ∞, respectively. Below the
panel is a convective cooling channel filled with coolant driven by a constant pressure
gradient −G, ignoring the viscous shear. Based on von Karman’s large deformation thin
plate theory and the Kirchhoff–Love hypothesis, the equation of motion for the panel is

ρh
∂2w
∂t2 + D

∂4w
∂x4 − (Nx + N0)

∂2w
∂x2 + (p− p∞) = fc − p∞ (1)

The boundary conditions are w(0, t) = w(1, t) = 0

∂2w
∂x2 (0, t) = ∂2w

∂x2 (1, t) = 0
(2)

where w is transverse vibration displacement, ρ is material density, D = Eh3/
[
12
(
1− ν2)]

is bending stiffness, E is elastic modulus, ν is Poisson ‘s ratio. N0 is in-plane load caused by
assembly or heating, and Nx is nonlinear membrane load caused by panel deformation.

Nx =
Eh
2a

∫ a

0

(
∂w
∂x

)2
dx (3)
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In order to predict the aerodynamic load under supersonic/hypersonic conditions
accurately, the nonlinear modified piston theory [13] is used.

p− p∞ =
2q√

M∞2 − 1

[
1

U∞

(
M∞

2 − 2
M∞2 − 1

)
∂w
∂t

+
∂w
∂x

+
γ+1

4
M∞

(
∂w
∂x

)2
]

(4)

U∞ is the velocity of freestream and q = ρ∞U∞
2/2 is dynamic pressure.
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The coolant load on the panel is

fc = pc + fin + fvis (5)

The three items on the right side of Equation (5) are coolant pressure, inertial resistance,
and viscous resistance. The flow of the coolant in the cooling channel is approximated by
the Poiseuille flow. It is called forward flow when the coolant and air flow are in the same
direction; otherwise, it is the reverse flow. Take forward flow as an example

pc = pch − Gx (6)

pch is the head-panel pressure. The inertial resistance and viscous resistance are propor-
tional to the second derivative and the first derivative of the deformation to time, respectively.

fin= cc1
∂2w
∂t2 (7)

fvis= cc2
∂w
∂t

(8)

Through dimensional analysis

cc1 ∼
ρch2

hc
, cc2 ∼

νc

δc

where ρc, νc, hc, δc are the coolant density, the coolant viscosity, the cooling channel thickness,
and the thickness of the oscillating boundary layer describing the friction effect, respectively.

The dimensionless variables are defined as

W = w/h, ξ = x/a, τ = t/
√

ρha4/D, R0 = N0a2

D , µ = ρ∞a
ρh , λ = 2qa3

D
√

M∞2−1

Pch = a4

Dh pch, PGr =
pch
Ga , Cc1 = cc1

ρh , Cc2 =
(

a4

Dρh

)1/2
cc2, P∞ = a4

Dh p∞

where R0, µ, λ, Pch, PGr, Cc1, Cc2 denote the in-plane load, air/plate mass ratio, freestream
dynamic pressure, head-panel pressure, pressure drop ratio, inertial resistance, and viscous
resistance, respectively. Pch = αP∞ is valued near the atmospheric pressure of the incoming
flow, where α is coefficient of head-panel pressure. PGr cannot be less than 1.0. The
non-dimensionalised equation of motion is

∂2W
∂τ2 + ∂4W

∂ξ4 − 6
(
1− ν2)[∫ 1

0

(
∂W
∂ξ

)2
dξ

]
∂2W
∂ξ2 − R0

∂2W
∂ξ2

+λ

[
∂W
∂ξ + M∞

2−2
M∞2−1

(
µ

λ
√

M∞2−1

) 1
2

∂W
∂τ + γ+1

4 M∞
h
a

(
∂W
∂ξ

)2
]

=
(

α− α
PGr

ξ − 1
)

P∞+Cc1
∂2W
∂τ2 +Cc2

∂W
∂τ

(9)

Equation (9) is solved using Galerkin’s method. The panel deformation can be ap-
proximated by a set of sine functions [24,25], which automatically satisfy the simply
supported conditions

W(ξ, τ) =
N

∑
n=1

an(τ) sin(nπξ) (10)

The dynamic response of the panel is mainly influenced by the low-order mode.
Some research work indicated that the first six modes are sufficient to approximate
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the panel deformation [4,14]. Substitute Equation (10) into Equation (9), multiply by
sin(rπξ)(r = 1, 2, · · · , N), and then weighted integrate over the panel length. The result is

(rπ)4

2 ar + 6
(
1− ν2)[∑

n

(nπ)2

2 an
2
]
(rπ)2

2 ar + R0
(rπ)2

2 ar +
1
2

d2ar
dτ2

+λ

{
1
2

M∞
2−2

M∞2−1

(
µ

λ
√

M∞2−1

) 1
2 dar

dt + ∑
n

nπanδ1n + γ+1
4 M∞

h
a ∑

m
∑
n

mπamnπanδ2mn

}

=
[

1−(−1)r

rπ (α− 1) + (−1)r

rπ
α

PGr

]
P∞ + 1

2 Cc1
d2ar
dτ2 + 1

2 Cc2
dar
dτ (r = 1, 2, · · · , N)

(11)

where
δ1n =

∫ 1
0 cos(nπξ) sin(rπξ)dξ

δ2mn =
∫ 1

0 cos(mπξ) cos(nπξ) sin(rπξ)dξ

Equations (11) are a set of 2-order nonlinear differential equations in time. Important
effecting parameters contain R0, λ, M∞, µ, α, PGr, Cc1, Cc2. Setting yr =

dar
dτ , dyr

dτ = d2ar
dτ2 , the

equations become a set of 1-order differential equations, which are solved by the 4 Runge–
Kutta method. In this paper, the material properties and geometrical dimensions are
E = 71.7 GPa, ν = 0.33, a = 1.0 m, a/h = 200. The aircraft flies at an altitude of 30 km. A
time step of4τ = 0.0001 and initialization value of a1 = 0.0001 are adopted. All figures
are plots at a typical point ξ = 0.75.

Figure 2 shows the close agreement between the stability regions given in [4,14] and
the results of the present model where M∞ = 5.0, µ = 0.05, α = 1.0, PGr = ∞, Cc1 = 0.0,
Cc2 = 0.0. Under the coupling effect of freestream and in-plane load, the dynamic charac-
teristics of the panel are complex, including flat and stable, buckled but dynamically stable,
Limit Cycle Oscillation (LCO), anharmonic periodic motion, and chaotic motion. In fact,
the regions flat and stable and buckled but dynamically stable belong to panel stabilization,
whereas the regions LCO and anharmonic periodic motion and chaotic motion belong to
panel flutter. The transition process of the motion state of the panel is called bifurcation.
Bifurcation is an important nonlinear phenomenon, which means the global behaviors of
nonlinear mathematical systems have changed suddenly. Figure 3 compares the peak of
LCO from the present model to [4,6,14] when in-plane load −R0/π2 = 0, 1, 2, 3, which
shows the close agreement with other reference results. More research on panel flutter with
coolant effect is carried out in the following sections.
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In this section, the dynamic analytical model of panel flutter under the effect of coolant
was established. The panel dynamics equations were solved by Galerkin’s method in space
domain and the 4th Runge–Kutta method in time domain. The nonlinear modified piston
theory was used to predict the unsteady aerodynamic loads. The first six modes were
adopted to approximate the panel deformation. Through analysis and derivation, there
were eight important effecting parameters: R0, λ, M∞, µ, α, PGr, Cc1, Cc2, respectively, which
affected the characteristics of the panel flutter. In the end, the accuracy of the solution
method was verified.

3. Panel Stability

There are five main factors that contribute to the effect of coolant on panel flutter,
including the coefficient of head-panel pressure α,the pressure drop ratio PGr, the coolant
injection direction, inertial resistance Cc1 and viscous resistance Cc2. The effect of the
pressure drop ratio PGr on the panel stability, which changes the differential pressure
distribution between the upper and lower surfaces of the panel, is discussed first in this
section. Figure 4 shows the time history of the panel response at different pressure drop
ratios PGr when λ equals 300.0 and 350.0, respectively. In Figure 4a, the panel is buckled,
but the buckling deformation of the panel decreases as the pressure drop ratio increases.
When the pressure drop ratio is infinite, the panel is in a flat and stable state. In Figure 4b,
the motion morph changes with different pressure drop ratios. It is buckled when PGr
equals 1.0 and 2.0 and LCO when PGr equals 5.0, 10.0, and ∞. The amplitude of the LCO
increases, and the equilibrium position moves towards 0.
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Figure 5 shows the curves of the peak of deformation Wp versus dynamic pressure
λ under different pressure drop ratios PGr. It can be seen that the panel bifurcates from
the stable state to LCO, and the critical dynamic pressure λcr at which bifurcation occurs
decreases with increasing PGr. Some cases are shown. The panel bifurcates from the
buckling state to LCO at λ = 420.0 when PGr = 1.0; moreover, λ = 349.0 corresponds to
PGr = 5.0, and λ = 344.0 corresponds to PGr = ∞ under which the panel bifurcates from
flat and stable to LCO.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 22 
 

 
Figure 5. Peak of deformation versus dynamic pressure under different pressure drop ratios. 

Figure 6 shows local bifurcation diagrams with several bifurcations of deformation 
extreme value versus dynamic pressure when 2

0 2R π= −  and 2
0 3.5R π= − . In Fig-

ure 6a, three bifurcations occur: from the buckling state to the anharmonic periodic motion 
at 211.7λ = ; from the anharmonic periodic motion to the buckling state at 248.6λ = ; 
and from the buckling state to the LCO at 263λ = . In Figure 6b, more than three bifur-
cations occur, and these are not detailed here. 

  
(a) (b) 

Figure 6. Multiple bifurcations: (a) 2
0 2R π= − ; (b) 2

0 3.5R π= − . 

Set 2
0 4R π= − . Figure 7 shows the time history and phase diagram of the panel de-

formation when =150.0λ . The panel is in buckling motion and gathers as a point on the 
phase plane at 2.0GrP = , while the panel performs chaotic motion and the phase dia-

gram is disordered, reflecting strong nonlinearity at 5.0GrP = . Figure 8 shows the results 
when =350.0λ , where anharmonic periodic motion occurs. Bifurcation diagrams with 
several bifurcations of deformation extreme value versus dynamic pressure are shown in 
Figure 9. For 2.0GrP = , the first bifurcation of the panel occurs at 186.0λ =  from the 
buckling state to the chaotic motion. The second bifurcation occurs at 196.0λ =  from 
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Figure 6 shows local bifurcation diagrams with several bifurcations of deformation
extreme value versus dynamic pressure when R0 = −2π2 and R0 = −3.5π2. In Figure 6a,
three bifurcations occur: from the buckling state to the anharmonic periodic motion at
λ = 211.7; from the anharmonic periodic motion to the buckling state at λ = 248.6; and
from the buckling state to the LCO at λ = 263. In Figure 6b, more than three bifurcations
occur, and these are not detailed here.
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Set R0 = −4π2. Figure 7 shows the time history and phase diagram of the panel
deformation when λ= 150.0. The panel is in buckling motion and gathers as a point on
the phase plane at PGr = 2.0, while the panel performs chaotic motion and the phase
diagram is disordered, reflecting strong nonlinearity at PGr = 5.0. Figure 8 shows the
results when λ= 350.0, where anharmonic periodic motion occurs. Bifurcation diagrams
with several bifurcations of deformation extreme value versus dynamic pressure are shown
in Figure 9. For PGr = 2.0, the first bifurcation of the panel occurs at λ = 186.0 from the
buckling state to the chaotic motion. The second bifurcation occurs at λ = 196.0 from
chaotic motion to anharmonic periodic motion. The third bifurcation occurs at λ = 469.0
from anharmonic periodic motion to LCO. There are other bifurcations, but they are not
mentioned here. They all show the complex and strongly nonlinear nature of the panel
dynamic response. For PGr = 5.0, the bifurcation process is similar but with lower critical
dynamic pressure than the result for PGr = 2.0. The first three critical dynamic pressures
are λcr = 139.0, 182.0, 395.0, respectively.
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Based on the above results, the stability regions of the panel with an in-plane load at dif-
ferent pressure drop ratios are shown in Figure 10. These curves divide the

(
−R0/π2)− λ

plane into two regions: the stable and buckled region and the flutter region. The flutter
region has complex motion forms, including LCO, anharmonic periodic motion, chaotic
motion, etc. The curves indicate a nonfunctional relationship between −R0/π2 and λ.
Taking the case with PGr = 1.0 as an example, three critical dynamic pressures exist on the
curve when −R0/π2 = 2, which means three bifurcations and at least four panel response
forms, which are buckling motion, flutter (anharmonic periodic motion or chaotic motion),
buckling motion, and flutter(LCO) in turn. When −R0/π2 ∈ (2.8, 5), the panel bifurcates
from buckling motion to flutter after which no multiple bifurcations or more complex
bifurcation behaviors occur. As the in-plane load increases from 0.0, the critical dynamic
pressure of panel flutter decreases as a whole. The stability curves tend to be horizontal
with high PGr and high −R0/π2. A smaller PGr results in a larger area of stability and
buckling region, which means that the panel is more likely to stabilize.
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The coefficient of head-panel pressure α determines the pressure difference on the
surface of the panel, which is another important factor affecting the stability of the panel.
Figure 11 plots the peak of deformation versus freestream dynamic pressure λ under
different coefficients of head-panel pressure α. It can be seen from Figure 11 that as α
increases, the panel bifurcates from buckling motion or stable state to LCO. The buckling
deformation and limit cycle amplitude increase gradually and the critical dynamic pressure
decreases first and then increases.
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Figure 12 shows the stability regions of the panel under an in-plane load for different
coefficient of head-panel pressure α. With the increase in α, the area of the stable and
buckling region decreases first and then increases. The minimum value occurs at α = 1.4
when PGr = 2.0, and at α = 1.0 when PGr = ∞ among all cases. When α = 0.2 and α = 1.8,
the upper and lower surfaces of the panel have the same static pressure difference in the
opposite direction. However, the area of the stable and buckling region is larger when
α = 0.2 than that when α = 1.8. The same result is concluded when α = 0.4 and α = 1.4.
As the in-plane load increases, the critical dynamic pressure of the panel flutter decreases,
and meanwhile, three bifurcations and more complex bifurcation behaviors occur.
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Figure 13 shows the relationship between the critical dynamic pressure and the buck-
ling deformation of the panel when the bifurcation occurs. The value α increases from 0.2
to 2.0 along the curves and positive ordinate. The figure mainly reflects two points:

1. Contradiction between the panel deformation and flutter critical dynamic pressure. It
is not difficult to see that the panel deformation is increased with the increase in the
critical dynamic pressure. Therefore, not only the flight safety but also the strength
safety of the material should be considered in the structural design process.

2. The safety envelope and flutter envelope of the panel. The W ∼ λ plane is divided
into three regions by all curve clusters, labeled I, II, and III in Figure 13. No flutter
occurs regardless of the PGr and α values in zone I. Flutter always occurs in zone II.
Whether flutter occurs or not depends on the values of (PGr, α). The delimitation
curves of zones I and III, and zones I and II form the safety envelope and the flutter
envelope of the panel, respectively.
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Figure 13. The buckling deformation versus the critical dynamic pressure.

The coolant injection direction is another important factor in the analysis of panel
stability. Figure 14 plots the curves of the peak of deformation versus the freestream
dynamic pressure under the condition of the forward injection and reverse injection of
coolant. The injection direction mainly affects three aspects of the panel response. First,
in the buckling state, the buckling deformation under forward injection is smaller than
that under the reverse injection when the dynamic pressure is small, while the magnitude
relationship changes when the dynamic pressure is large. There is obviously a transition
point. With the increase in α, the values of λ corresponding to the transition points are 140,
94, 49.5, and 111.1, respectively. Second, the position at which the bifurcation occurs is also
different. The bifurcation occurs first when the coolant is injected reversely when α is equal
to 0.6 and 1.0, while opposite results are obtained when α is equal to 1.4 and 1.8. Third, the
peak of LCO when the coolant is injected forward is larger than that when the coolant is
injected reversely, and the difference between the peaks increases with the increase in α.
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Figure 14. Peak of deformation versus dynamic pressure under different injection directions.

Figure 15 shows the stability regions of the panel under the influence of the coolant
injection direction. When α= 0.6, the panel with a small in-plane load is more prone to
bifurcation using the reverse injection method. The injection method that leads to earlier bi-
furcation or multiple bifurcations of the panel with a large in-plane load is correspondingly
opposite. The effect of the coolant injection direction on the panel stability when α= 1.8
is opposite to that when α= 0.6. Table 1 shows the critical dynamic pressure of the panel
without an in-plane load using different injection methods. The results are close when
α = 1.4. The result obtained by the reverse injection is smaller than that of the forward
injection when α < 1.4, and the conclusion is opposite when α > 1.4.
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Table 1. The critical dynamic pressure of the panel without in-plane load under different injection.

α 0.6 1.0 1.4 1.8

λcr
(forward injection) 425.4 369 344.3 370.9

λcr
(reverse injection) 420.5 364.9 345.2 380

Considering the influence of inertial and viscous resistances, Figure 16 shows the con-
vergence process of the buckling response under different inertial and viscous resistances.
It indicates that inertial resistance slows down the convergence process, while viscous re-
sistance speeds up the convergence process. However, neither of them change the buckling
deformation of the panel. Figure 17 plots the peak of deformation versus the freestream
dynamic pressure under different inertial and viscous resistances, showing that the panel
bifurcates from the stable state to LCO. In Figure 17a, the critical dynamic pressure of the
panel decreases, and meanwhile, the peak of LCO gradually increases as inertial resistance
increases, but clear changes appear only at small inertial resistances. Figure 17b shows the
influence of viscous resistance, which plays the opposite role to inertial resistance.
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Table 2 shows the critical dynamic pressure of the panel under an in-plane load at
different inertial resistances. As the in-plane load increases, the critical dynamic pressure
first decreases and then tends to be stable. When −R0/π2 = 0, 1, 2, the critical dynamic
pressure gradually decreases with increasing inertial resistance. When −R0/π2 = 3, 4,
the panel performs multiple bifurcations under the action of large inertial resistances. For
instance, the complex multi-bifurcation phenomenon occurs when λ > 119.79 under the
conditions of −R0/π2 = 3, Cc1 = 10.0. When −R0/π2 = 5, the critical dynamic pressure
is almost constant. Figure 18 shows the stability regions of the panel under different viscous
resistances. As the in-plane load increases, the critical dynamic pressure first decreases
and then tends to be stable. As the viscous resistances increase, the critical dynamic
pressure increases gradually for small in-plane loads, and remain almost constant for large
in-plane loads.

Table 2. The critical dynamic pressure when bifurcation occurs under different inertial resistances.

−R0/π2 0 1 2 3 4 5

λcr
(Cc1 = 0.0)

344.1 265.41 191.23 121.9 116.45 117.79

λcr
(Cc1 = 2.0)

343.4 264.96 190.99 121.83 116.89 117.79

λcr
(Cc1 = 10.0)

343.14 264.81 190.9 119.79 116.92 117.79

λcr
(Cc1 = 50.0)

343.08 264.75 190.88 114.66 115.17 117.79

λcr
(Cc1 = 200.0)

343.06 264.75 190.87 114.23 110.5 117.79
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In this section, the stability characteristics of the panel under the action of coolant
are presented. The pressure drop ratio with a range of (1, ∞) determines the pressure
difference distribution on the surfaces of the panel. The critical dynamic pressure under a
low pressure drop ratio is larger than that under a high pressure drop ratio. The coefficient
of head-panel pressure determines the magnitude of pressure difference. The critical
dynamic pressure is large when the coefficient of head-panel pressure is valued far away
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from 1.0. The effect of the coolant injection direction on panel flutter is affected by the
pressure drop ratio and the coefficient of head-panel pressure. When the head-panel
pressure is low, the critical dynamic pressure under forward injection is larger than that
under reverse injection. Inertial resistance slows down the convergence process of the panel
response, while viscous resistance speeds up this process. Inertial resistance reduces the
critical dynamic pressure but not obviously, while viscous resistance significantly improves
the critical dynamic pressure.

4. Flight Stability and Chatter Suppression

The stability of a panel without an in-plane load at the same height but with differ-
ent Mach numbers is discussed in this subsection. Figure 19 shows the variation in the
critical dynamic pressure at the panel bifurcation point with a freestream Mach number
for different pressure drop ratios. When PGr is valued less than 20.0, the critical dynamic
pressure gradually increases as the Mach number increases. When PGr = 20.0, the critical
dynamic pressure first decreases and then increases, but the variation is very small. When
PGr = 1.0, 2.0, the panel bifurcates several times at a high Mach number. For example,
when PGr = 1.0, M∞ = 15.0, the panel bifurcates from buckling motion to anharmonic
periodic motion at λ = 330.6, bifurcates to buckling motion at λ = 283.9, and bifurcates to
LCO at λ = 432.7, which greatly reduces the safe dynamic pressure of the flight. Figure 19
shows that when M∞ < 10.0, the bifurcation does not occur more than once and the critical
dynamic pressure decreases as the pressure drop ratio increases. For M∞ = 5.0, the largest
critical dynamic pressure is 420.1 at PGr = 1.0, which is 22.1% higher than the least critical
dynamic pressure of 344.0 at PGr = ∞.
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Figure 19. Variation curve of critical dynamic pressure with freestream Mach number for different
pressure drop ratios.

Figure 20 shows the variation curves of the critical dynamic pressure of panel flutter
with increasing Mach numbers for different coefficients of head-panel pressure. When
α = 0.2, 0.6, 1.0, the critical dynamic pressure increases with the increase in the Mach
number. When α = 1.4, 1.8, the critical dynamic pressure decreases with the increase in
the Mach number. When α = 0.6, 1.0, the panel bifurcates several times at a high Mach
number. When M∞< 13.7, the critical dynamic pressure first decreases and then increases
as the value of α increases.
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Figure 20. Variation curve of critical dynamic pressure with freestream Mach number for different
coefficients of head-panel pressure.

Figures 21 and 22 show the variation curve of the critical dynamic pressure with
increasing Mach numbers under inertial resistance and viscous resistance, respectively. It
can be seen that all curves in Figures 21 and 22 show a gradually decreasing trend as the
Mach number increases. As the inertial resistance increases, the critical dynamic pressure
decreases gradually, which has an adverse effect on flight safety, but the effect is very small.
For example, when M∞= 5.0, the critical dynamic pressures are 344.0 at Cc1 = 0.0 and
343.06 at Cc1 = 200.0 with 0.27% difference. When the inertial resistance takes a value
above 200.0, the curve is almost horizontal. As the viscous resistance increases, the critical
dynamic pressure when panel bifurcation occurs increases significantly, which leads to an
obvious suppression effect on the panel flutter. For M∞= 5.0, the critical dynamic pressures
are 344.0 at Cc2 = 0.0 and 502.8 at Cc2 = 20.0 with 50.5% difference.
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The panel shows significantly different stability characteristics under the action of
coolant. Therefore, this paper proposes the following solutions to suppress fluttering.

(1) Reduce the pressure drop ratio. However, it should be noted that the problem of
the material strength limit caused by large flexural deformation of the structure must be
considered under a small pressure drop ratio. If the deformation is required to belong
(−0.2, 0) and actual flight dynamic pressure is required to reach 380.0, the pressure drop
ratio must be less than 2.0.

(2) Increase or decrease the coefficient of head-panel pressure (away from the value of
1.0). The process brings about a large flexural deformation; therefore, the material strength
limit problem also needs to be considered.

(3) Adjust the coolant injection direction. For different head-panel pressures, the
coolant injection direction has a different effect on the critical dynamic pressure.

(4) Reduce the inertia resistance and improve the viscous resistance. The inertia re-
sistance slows down the convergence process of the panel response, while the viscous
resistance speeds up this process. The inertial resistance reduces the critical dynamic pres-
sure, and the viscous resistance increases the critical dynamic pressure. From the theoretical
analysis in Section 2, the inertial resistance is proportional to the coolant concentration,
while the viscous resistance is proportional to the coolant viscosity coefficient. Thus, a
coolant with a small concentration or a large viscosity coefficient can be selected.

In this section, flight stability of the plate panel is discussed. It can be seen that
reducing the pressure drop ratio, and increasing or decreasing the coefficient of head-panel
pressure (away from the value of 1.0) can improve the critical dynamic pressure. When
the pressure drop ratio is small, the coefficient of head-panel pressure is near 1.0, and
the Mach number is high, and the panel is prone to multiple bifurcations occurring. The
inertia resistance amplifies the instability of panel flutter, while viscous resistance plays an
opposite role. More meaningfully, the flutter suppression strategies are proposed.

5. Discussion and Conclusions

Based on von Karman’s large deformation thin plate theory and the Kirchhoff–Love
hypothesis, the dynamics model of panel flutter under the action of coolant is established.
The accuracy of the analysis model was verified. On this basis, the effects of the head-
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panel pressure of coolant, the pressure drop ratio, the coolant injection direction, and
the inertial resistance and viscous resistance on panel stability and flight stability were
studied, respectively; these are considered to be significant for panel flutter analysis, and
the suppression method of panel flutter is proposed. The follow conclusions can be drawn
from these results:

(1) The pressure drop ratio determines the pressure difference distribution on the upper
and lower surfaces of the panel. A low pressure drop ratio causes multiple bifurcations of
the panel with a large in-plane load, and, in general, the critical dynamic pressure when
bifurcation occurs under a low pressure drop ratio is larger than that under a high pressure
drop ratio. When M∞ < 10.0, the bifurcation occurs no more than one time and the critical
dynamic pressure decreases as the pressure drop ratio increases. For M∞ = 5.0, the largest
critical dynamic pressure is 420.1 at PGr = 1.0, which is 22.1% higher than the least critical
dynamic pressure valued at 344.0 at PGr = ∞. Multiple bifurcations occur at a low Mach
number, which greatly reduces the critical dynamic pressure. As the pressure drop ratio
decreases, the flexural deformation of the panel when bifurcation occurs increases, so the
strength limit of the wall plate material is also considered.

(2) The coefficient of head-panel pressure determines the pressure difference on the
upper and lower surfaces of the panel. Values far away from 1.0 can cause a large critical
dynamic pressure and avoid multiple bifurcations at high Mach numbers. Moreover, the
large panel flexural deformation should be considered.

(3) The coolant injection direction changes the critical dynamic pressure. At low head-
panel pressure, the critical dynamic pressure under forward injection is larger than that
under reverse injection, while at large head-panel pressure, the result is opposite.

(4) Inertial resistance slows down the convergence process of the panel response, while
viscous resistance speeds up this process. Inertial resistance reduces the critical dynamic
pressure but not obviously, while viscous resistance significantly improves the critical
dynamic pressure. For example, when M∞= 5.0, the critical dynamic pressures are 344.0 at
Cc1 = 0.0 and 343.06 at Cc1 = 200.0 with 0.27% difference, while critical dynamic pressures
are 344.0 at Cc2 = 0.0 and 502.8 at Cc2 = 20.0 with 50.5% difference. The critical dynamic
pressure gradually decreases as the Mach number increases.

(5) By analyzing the flutter characteristics of the panel under the action of coolant,
the suppression strategy of panel flutter is proposed. Reducing the pressure drop ratio,
increasing or decreasing the coefficient of head-panel pressure (away from the value of
1.0), and adjusting the coolant injection direction can play a role. When changing these
parameters, the problem of the material strength limit caused by large flexural deformation
of the structure must be considered. Reducing inertia resistance and improving viscous
resistance can also suppress the flutter. Considering the definitions of inertial resistance
and viscous resistance, a coolant with a small concentration or large viscosity coefficient
can be selected.
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Nomenclature

a panel length, chordwise
cc1 inertial resistance coefficient
cc2 viscous resistance coefficient
D bending stiffness of panel
E elastic modulus
fc coolant load
fin inertial resistance
fvis viscous resistance
−G pressure gradient of coolant
h thickness of plate structure
hc cooling channel thickness
Ma∞ Mach number of freestream
Nx nonlinear membrane load
N0 in-plane load
p aerodynamic pressure on panel surface
pc coolant pressure
pch head-panel pressure
p∞ pressure of freestream
q ρ∞U∞

2/2, dynamic pressure
t time
U∞ velocity of freestream
w(x) panel displacement, transverse
x chordwise direction, parallel to flat panel surface
z transverse direction, normal to flat panel surface
δc thickness of the oscillating boundary layer
ν Poisson’s ratio
νc coolant viscosity
ρ density of plate structure
ρc coolant density
ρ∞ density of freestream
dimensionless
ar amplitude of rth sine mode
Cc1 inertial resistance
Cc2 viscous resistance
Pch head-panel pressure
PGr pressure drop ratio
P∞ pressure of freestream
R0 in-plane load
W panel displacement, transverse
α coefficient of head-panel pressure
λ dynamic pressure of freestream
µ air/plate mass ratio
ξ chordwise direction, parallel to flat panel surface
τ time
Subscripts
c coolant
cr critical value
e extreme value
m, n, r sine mode numbers
p peak value
∞ freestream
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