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Unstructured meshes provide a distinct advantage for handing complex geometries. 
However, the low cache utilization due to mesh-related data access patterns raises 
particular challenges in achieving a high computing efficiency for large-eddy simulations. 
We propose a geometrical-based mesh reordering method to improve cache utilization. 
The proposed method utilizes a Hilbert space-filling curve that passes through each 
cell once, guiding the reordering of the cells of the unstructured mesh. The reordering 
enables neighboring cells to be stored in contiguous areas of memory as much as 
possible. The performance of the proposed method is validated by two- and three-
dimensional unstructured meshes. According to the memory and spatial distances, the 
proposed reordering method significantly improves data localities. Consequently, the cache 
hit rate is increased and the computing efficiency is improved. The proposed reordering 
method is then applied to large-eddy simulations of flows around an underwater vehicle 
model with ReL = 1.2 × 106. To fully resolve the near-wall flows, an unstructured mesh 
consisting of 1.476 billion cells is used, which is partitioned into 12800 subdomains. 
The computed velocity profiles, pressure and friction coefficients are in good agreement 
with the experimental measurements. The computational costs are reduced by using the 
proposed reordering method.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Large-eddy simulation (LES) is a promising approach for predicting and analyzing flows around underwater vehicles 
[1,2]. In this approach, the energy-containing eddies are resolved on computational grids [3]. The number of grid points 
required to fully resolve the energy-containing eddies scales as Re13/7

Lx
[4], where ReLx = U Lx/ν , U is the freestream velocity, 

Lx is the reference length in the streamwise direction, and ν is the kinematic viscosity. The need to fully resolve these 
energy-containing eddies places high demands on the spatial resolution. For example, hundreds of millions of mesh cells 
are usually required even in simulating flows around an underwater vehicle at a relatively low Reynolds number of ReL =
U L/ν = 1.1 × 106 [5,6], where L is the length of the underwater vehicle. Parallel computing is essential for large-scale 
simulations [7].
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One of the challenges in parallel computing of flows around an underwater vehicle is efficiently handling complicated 
boundaries. The complicated boundaries of underwater vehicles are usually handled by either body conformal meshes or 
nonbody conformal meshes. The recent work of Posa and Balaras [8] successfully conducted simulations on a nonbody 
conformal mesh with 8.1 billion grid points on 3000 CPU cores, as the nonbody conformal grid has advantages in high-
efficiency parallel computing. A detailed discussion of the advantages and disadvantages of nonbody conformal grids can 
be found in the review of Mittal and Iaccarino [9]. However, highly efficient parallel computing on a body conformal mesh, 
especially unstructured mesh, is very difficult. In a flow solver on an unstructured mesh, the mesh connectivity and irregular 
element orders [10] are required to be explicitly stored in memory. Indirect and irregular memory access patterns appear 
when iterating over the mesh cells to evaluate fluxes, gradients, and limiters, increasing the memory access latency and 
dramatically decreasing the computational speed [11–13]. Memory access latency has been reported to be one of the top 
five challenges for exascale computing systems [14,15]. Memory latency becomes worse as the mesh size increases; however, 
many of these problems can be alleviated by the programmer through the use of memory caches [16–18]. Mesh reordering 
is considered to be an effective method for reducing cache-related latency and achieving high computing efficiency [19–
21].

Due to the increasing size of the mesh used in computational fluid dynamics (CFD), mesh reordering methods have been 
studied to exploit the performance gains of CFD solvers [22–24]. Mudigere et al. [23] conducted a detailed exploration on 
optimizing the memory of a solver using an unstructured mesh (PETSc-FUN3D), demonstrating that optimizing the data 
structure and cache utilization significantly improved solver performance. Economon et al. [24] studied the impact of edge 
reordering and data layout transformations on improving the computing performance of modern multicore architectures. 
Their results show that a speedup ranging from 1.2X to 1.7X was obtained by reordering the mesh. Hadade et al. [13]
reviewed some useful optimizations for CFD solvers using unstructured meshes on multicore and manycore architectures. 
In a flow solver on an unstructured mesh, most of the computations are performed at the local elements (edges, faces, 
or cells), including time integration, gradient calculations, and gather and scatter operations. However, unstructured mesh 
generators, such as the Delaunay generator [25], usually create numbers for the vertices and cells as they produce them, 
which effectively results in irregular ordering. Consequently, computations based on an unstructured mesh suffer from low 
cache utilization due to these irregular and nonlocal memory access patterns. Improving the data access pattern is helpful in 
exploiting cache utilization, increasing computational efficiency [13,24]. Previous works have optimized data access patterns 
by reordering the mesh cells. Löhner [26] presented reordering techniques based on shared-memory, cache-based parallel 
machines, focusing on eliminating cache-line overwriting. Aubry et al. [12] presented reordering methods for vertex-centered 
discretization that guaranteed that nodes belonging to one thread were not accessed by other threads. Cheng et al. [27]
proposed a grid reordering method for hybrid unstructured meshes, in which the negative effect of the interface between 
threads was weakened, thereby improving the convergence of the solution. This type of reordering approach makes better 
use of the cache and improves the performance of the solver for shared-memory OpenMP implementations.

One widely used reordering strategy for message passing interface (MPI) platforms is the reverse Cuthill-McKee (RCM) 
method [28,29], which has been adopted by SU2 [22], FUN3D [23], and some in-house codes [30]. Duff and Meurant [31]
showed that the RCM method effectively reduced the matrix bandwidth for lower-upper (LU) factorization and incomplete 
LU (ILU) preconditioning. Shi et al. [32] used the RCM method to compress the bandwidth of sparse matrices, considerably 
reducing the complexity of LU factorization and improving the computational efficiency. To increase the speed of solving 
linear equations, Diosady et al. [33] and Mathews et al. [34] performed the RCM method on the Jacobian matrix. Amir 
et al. [35] used the RCM method as a preconditioner in a high-order unstructured Newton-GMRES solver, resulting in an 
acceleration in the convergence of the solver. In the RCM method, a starting cell is selected and relabeled as 1. The cells 
adjacent to the starting cell are relabeled as (1 + i) in the order of their increasing number (i) of cells. The cells at a distance 
of 1 from the starting cell are said to be in the first level. The cells adjacent to the cells in the first level that have not yet 
been labeled become the next level. This procedure is repeated until all cells are numbered. In each level, the first cell in 
the preceding level can be connected to any cell in the current level, even the last cell in the current level in the worst-case 
scenario. Mesh connectivity can be broken arbitrarily, thereby deteriorating the data locality [36,37]. Data locality indicates 
that the data access is linear and therefore predictable and that the data are accessed soon after nearby data in the same 
domain have been accessed [38]. In the conditional source-term estimation (CSE) method [39], which has been applied 
in CFD simulations of turbulent reacting flows, the data locality guarantees correct results due to the requirement that 
a sufficient number of localized points must be used to compute the conditionally averaged scalars. In computer science, 
better locality of the data reference results in faster execution times. Data that will be used in the near future are prefetched 
and stored in the cache, eliminating the latency penalty from the main memory [18]. Modern computer architectures use 
various cache levels, and these caches access data quickly but are small in size. Poor locality in the data access pattern may 
cause cache misses, leading to dramatic decreases in the computational speed. The study presented by Günther et al. [11]
shows that cache misses lead to a dramatic slowdown of the data access when solving the Poisson equation. More recently, 
Akkurt et al. [18] presented cache optimization strategies in the context of a high-order Euler solver, obtaining a significant 
speedup of approximately 2 for hexahedral elements. Cache misses are a serious bottleneck in high-performance computing 
[17,18].

The objective of this paper is to develop a Hilbert space-filling curve (SFC)-based mesh reordering method to improve 
cache utilization when performing large-scale numerical simulations with unstructured meshes. This idea is inspired by 
graph partitioning algorithms, which use an SFC to identify locally optimal partitions that minimize edge cuts [40]. The SFC 
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is a function that maps a multidimensional space to a one-dimensional space with good locality properties [41]. In scientific 
computing, SFCs are also powerful tools for multidimensional data mining and computer graphics or can be used to build 
data structures that allow fast data access and exploit cache hierarchies [41,42]. Self-similar Hilbert SFCs are characterized 
by the properties that the curves are very tightly packed or coiled within a local area. Thus, these SFCs can localize spatially 
neighboring cells in a one-dimensional array, preserving the locality [43]. The properties of preserving locality make for 
efficient gathering and scattering of data from and to pairs of cells that share a face. Motivated by the locality property 
of Hilbert SFCs, we propose a Hilbert SFC-based mesh reordering method to improve the performance of flow solvers for 
unstructured meshes in parallel computations. The proposed mesh reordering method was implemented in an in-house CFD 
solver [44–48] that can run on a range of computing platforms from desktop workstations to HPC platforms.

The remainder of this paper is organized as follows. The Hilbert SFC-based mesh reordering approach and basic numer-
ical methods are briefly described in Section 2. The computational results and detailed analyses of the statistical data are 
discussed in Section 3.1 and Section 3.2. A wall-resolved LES of the flow over SUBOFF without appendages is presented in 
Section 3.3. Finally, the conclusions are drawn in Section 4.

2. Numerical method

The governing equations for a large-eddy simulation of a compressible flow are obtained by filtering the time-dependent 
compressible Navier–Stokes equations. The filtered Navier–Stokes equations are given by Ref. [49]

∂ρ̄

∂t
+ ∂

∂xi
(ρ̄ũi) = 0, (1a)

∂(ρ̄ũi)

∂t
+ ∂

∂x j
(ρ̄ũi ũ j) + ∂τ SG S

i j

∂x j
= − ∂ p̄

∂xi
+ ∂τ̃i j

∂x j
, (1b)

∂(ρ̄ Ẽ)
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i j ũi) = ∂(τ̃i j ũi)

∂xk
− ∂q̃ j

∂x j
− ∂ Q SG S

j

∂x j
, (1c)

where ϕ̄ denotes the filtered quantity and ϕ̃=ρϕ/ρ̄ represents the Favre-filtered quantity. ρ̄ , p̄ and ũi represent the density, 
pressure and velocity, respectively. The total energy and total enthalpy are given by Ẽ = ẽ + 0.5ũi ũi + 0.5τ SG S

ii /ρ̄ and 
H̃ = Ẽ + p̄/ρ̄ , respectively. Here, ẽ represents the internal energy. By convention, the molecular viscous stress tensor τ̃i j

is approximated as

τ̃i j = μ̄
(

T̃
)(

∂ ũi

∂x j
+ ∂ ũ j

∂xi
− 2

3

∂ ũk

∂xk
δi j

)
, (2)

where μ̄
(

T̃
)

is the molecular viscosity based on the Favre-filtered static temperature T̃ , which is evaluated by Sutherland’s 

law. The subgrid stress tensor τ SG S
i j is defined as,

τ SG S
i j = −ρ̄

(
ũiu j − ũi ũ j

)
. (3)

The molecular heat flux is defined as

q̄i = −λ
∂ T̃

∂xi
, (4)

where λ represents the thermal conductivity coefficient. The corresponding components of the subgrid-scale heat flux are

Q SG S
j = 1

γ − 1
ρ̄

(
u j T − ũ j T̃

)
. (5)

Further details on these terms can be found in Refs. [49–51].
The governing equations, namely, Eqs. (1a)-(1c), were discretized with the cell-centered finite volume method on un-

structured hybrid meshes composed of hexahedrons, prisms, tetrahedrons, and pyramids. An in-house CFD solver [44–48]
was used to solve Eq. (1). The convective flux terms were computed with second-order Roe discretization schemes, and 
the viscous flux terms were obtained with a reconstructed central scheme. For the Roe scheme, second-order accuracy was 
achieved by reconstructing the solution following Frink’s interpolation method [52]. The lower-upper symmetric Gauss–
Seidel (LU-SGS) relaxation-based implicit backward-Euler scheme was implemented for simulations of steady flows [53,54], 
and a corresponding second-order fully implicit dual-time scheme [55,56] was adopted for unsteady flows. An adaptive local 
time stepping method was developed to eliminate the adverse influence of poor-quality grids on the stability and conver-
gence of the solution. In addition, locally adaptive flux blending [57] was implemented in the Roe scheme to ensure the 
dominance of low dissipation. To allow large-scale computations, this solver was parallelized by using a domain decomposi-
tion strategy with an MPI protocol. Nonblocking communications were used to overlap computations with communications 
to exploit possible performance gains. The details of the numerical methods employed in this work are summarized in 
Table 1.
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Table 1
Details of the numerical methods.

Governing equations 3D, compressible, filtered Navier-Stokes equation

Spatial discretization Cell-centered FVM

Temporal evolution LU-SGS

Time marching 2nd-order fully implicit dual-time scheme

Reconstruction
2nd-order Roe scheme for inviscid term

2nd-order central scheme for viscous term

2.1. Subgrid-scale model

The eddy viscosity model proposed by Vreman [58] was employed to close the system of momentum and energy equa-
tions. The Vreman subgrid-scale (SGS) model formulates the SGS eddy viscosity μt as follows:

μt = C

√
Bβ

αi jαi j
, (6)

with

Bβ = β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23, (7)

βi j = �2
mαmiαmj, (8)

where, C is a model constant that is specified as C = 0.06; αi j = ∂ ũ j/∂xi represents the derivatives of the filtered velocity; 
and �m is the filter width in the spatial domain. In this paper, the filter width �m was taken as the cubic root of the cell 
volume.

2.2. Implementation of mesh reordering

The performance of flow solvers for unstructured meshes can be improved by changing the order in which data are 
accessed. We achieved this improvement by using a Hilbert SFC-based mesh reordering method. The Hilbert SFC-based 
reordering method generates a Hilbert SFC that passes through each point (the centroid of cells) once, establishing a one-
to-one mapping between the index of the curve and the discretized cell in the computational domain. The SFC connects 
only neighboring mesh cells to cluster the nonzero elements of the system matrix, thereby preserving data locality as much 
as possible.

Algorithm 1 Implementation of Hilbert SFC-based mesh reordering algorithm.

Step 1 Define an axis-aligned bounding box. A bounding box for the mesh is defined based on the maximum and minimum coordinates of the 
nodes.

Step 2 Assign each cell coordinate to a Cartesian grid. The bounding box is divided into N bins. These “overflow” bins are subdivided into N equal 
bins. A specific refinement pattern is followed for each of these basic bins to obtain the next level, and this process is continued until the 
desired level of refinement is achieved.

Step 3 Generate the Hilbert SFC. A coherent Hilbert SFC can be constructed by joining all local SFCs obtained by scaling, rotating, or reflecting the 
fundamental elements.

Step 4 Reorder the vertices according to the Hilbert SFC order. The cells are reordered according to the order provided by the Hilbert SFC.

The algorithm for the Hilbert SFC-based mesh reordering method is briefly summarized in Algorithm 1. Here, we use 
a simple mesh [shown in Fig. 1(b)] to illustrate the implementation of this strategy. First, the smallest axis-aligned box 
that contains all of the point ensembles [e.g., the centroid of the mesh cells in Fig. 1(c)] is defined according to the spatial 
coordinates of these points, as shown in Fig. 1(d). This bounding box is used to scale the coordinates to a [0, 1]d unit 
volume (where d = 2 represents the number of dimensions in Fig. 1). Next, all centroids of the mesh cells are assigned 
to a Cartesian grid in the [0, 1]d unit volume. To accomplish this, the bounding box is divided into N bins, where N = 2d

and d is the number of spatial dimensions[N = 4 for 2D, as shown in Fig. 1(e)]. The left and right endpoints of these bins 
specify a half-open interval and form a nonoverlapping cover over the bounding box. These bins are ordered such that the 
curve traverses them with an “�” shape, which is referred to as the fundamental pattern of the Hilbert SFC. The “overflow” 
bins, which are marked in blue in Fig. 1(e), are each subdivided into N equal sub-bins. The four sub-bins in the next level 
are arranged by rotating or reflecting the fundamental pattern given in Fig. 1(e), allowing their start and end points to be 
connected. Thus, they respectively take the shapes “�”, “�”, “�”, and “�”, which are indicated by the bold polygonal lines 
in Fig. 1(f). Following the spatial refinement for each of these basic bins, we obtain the next level [see Fig. 1(g)], and this 
process is continued until the desired level of refinement is achieved. In the programming design and implementation, the 
4
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Fig. 1. Recursive generation of the Hilbert SFC (in a 2D domain). (a) Quadtree representation of a given object and the sequential order of the quadtree 
cells. (b) The objective mesh with the original ordering. (c) The centroid of the mesh cells. (d) Axis-aligned bounding box. (e) Initial coarse grid definition. 
(f) The second construction steps. The “overflow” bins marked in blue are subdivided into smaller cells, unless the finest resolution marked in orange has 
already been achieved. (g) In the third construction step, the resolution exactly satisfies the requirements throughout the domain. (h) Recursive generation 
of the SFC and the sequential orders. (i) The reordering mesh. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

data structure is described by quadtrees, as shown in Fig. 1(a), and each mesh cell corresponds to a node of the tree. The 
root of the trees represents the computational domain, and the sub-bins of each bin are the children of the respective node. 
The same idea is followed in the 3D case, where the basic shapes are defined on 2 × 2 × 2 sub-bins. This loop terminates 
when the resolution satisfies the requirements throughout the domain.

In the third step, we traverse the sub-bins represented by the leaf cells [see Fig. 1(a)]. This traversal is achieved by 
recursively descending in the tree structure following Hilbert iterations until a leaf cell is reached. After this leaf cell is 
processed, the traversal ascends up the tree until the first node with a child node that was not visited throughout the 
traversal is reached. After all the leaf cells are processed, a Hilbert SFC that traverses all sub-bins is obtained as shown in 
Fig. 1(g). We then remove those “empty” bins and replace the remaining bins with the centroids of the mesh cells. Fig. 1(h) 
depicts the SFC that traverses all centroids of mesh cells. Further details about the generation of the Hilbert SFC can be 
found in Ref. [59]. The vertices on the curve are plainly ordered, and this ordering provides guidance for reordering the cells 
in the mesh. In a mathematical sense, the mapping between the indices of the vertices and cells is bijective [see Fig. 1(i)]. 
Finally, the cells are reordered according to the mapping, and the reordered mesh is shown in Fig. 1(i). Compared with the 
original ordering in Fig. 1(b), jumps between cells and their successors in sequential order are effectively eliminated by the 
Hilbert SFC-based reordering method.

A simple test case is presented to illustrate how the cells in a simple unstructured mesh are reordered. The unstructured 
mesh consists of 100 triangular cells, and the order of the mesh cells is indicated by the numbers shown in Fig. 2(a). Fig. 2(b) 
shows a curve that traverses all the cells in the same order as shown in Fig. 2(a). The curves are chaotically displayed in the 
figure. Fig. 2(c) presents the ordering obtained by the RCM method. Starting from a given cell (the starting point is marked 
by •), new cells are added in layers by searching the smallest connectivity, and these cells are sorted according to the order 
of entry. Then, the “front” of the reordered cells advances through the mesh until all cells have been covered. It is clear 
that the selection of the starting cell has an impact on bandwidth reduction, which has also been reported by Burgess et 
al. [37]. Fig. 2(d) presents the ordering of cells after Hilbert SFC reordering. The SFC ordering starts in the lower left corner 
5
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Fig. 2. Schematic of a simple test case. (a) The unstructured mesh, with the cells numbered. (b) Original ordering of the cell coordinates. (c) Ordering 
of the cell coordinates after RCM method reordering; (d) Ordering of the cell coordinates after Hilbert SFC reordering. • represents the starting point; 
� represents the ending point; and ◦ represents the cell location.

and follows the Hilbert curves to the upper left corner, and the neighboring cells remain as neighboring cells in memory 
reference. This clustering of data is important for exploiting cache memory during computations.

3. Results and discussion

Two test cases are selected to illustrate the performance of the Hilbert SFC-based reordering method: a 2D unstructured 
mesh case and a 3D ONERA M6 wing case. We examine the improvement in the data locality and the reduction in the 
system matrix bandwidth. After the 2D and 3D test cases were validated and their performance was evaluated, the Hilbert 
SFC-based reordering method was applied to LESs of flows over an axisymmetric body of revolution.

3.1. 2D unstructured mesh test case

A typical unstructured mesh that consists of 26,545 cells and 18,724 nodes is shown in Fig. 3(a). This mesh was generated 
by the Delaunay method [25] and is locally refined near the “CFD” region, which represents the wall in most simulations. 
The rest of the computational domain is filled with triangles. A line that traverses all cells according to the ordering of 
the original mesh given by the mesh generator is presented in Fig. 3(b). The line exhibits disorganization in space, which 
confirms the irregular ordering of the original mesh.

The application of the RCM method on this mesh is presented in Fig. 3(c). The ordering shows a certain improvement 
and follows some sort of pattern; however some irregularities remain. A number of spanning “jumps” in the traversal order 
can be observed between adjacent layers. Since the searching layer is formed by the cells adjacent to the reordered cells, 
the first cell in the previous level can be connected to any cell in the current level. Thus, the data locality worsens. Fig. 3(d) 
presents the ordering of the cell coordinates after Hilbert SFC reordering, and the curve connecting the centers of each cell 
emphasizes their ordering. The ordering starts in the lower left corner and follows the Hilbert curve to the upper left corner. 
The neighboring cells are mapped to adjacent cells in the index space, ensuring that the data locality is preserved as much 
6
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Fig. 3. Schematic of an unstructured mesh and the lines that traverse all cells in the ordering given by the mesh generator, RCM method, and Hilbert 
SFC-based reordering method. (a) The unstructured mesh that is locally refined in the nearby the “CFD” region. (b) Original ordering of the cells given by 
the mesh generator. (c) Ordering of the cells after RCM method reordering. (d) Ordering of the cells after Hilbert SFC reordering.

Fig. 4. Data locality measured according to the memory distance and spatial distance. (a) Probability of the memory distance between a cell and its 
neighboring cells. (b) Probability of the spatial distance between the i-th and (i + 1)-th cells in the physical domain.

as possible. Fig. 4(a) and Fig. 4(b) show the data locality measured according to the memory distance and spatial distance. 
Here, the memory distance (Dm) is defined as the difference between the array indices of neighboring cells (N(i)), and the 
spatial distance (Ds) is defined as the distance between the i-th cell and (i + 1)-th cell in the physical domain.

Dm(i) =
∑

j∈N(i)

|i − j|, (9a)

Ds(i) =
√

(xi+1 − xi)
2 + (yi+1 − yi)

2 + (zi+1 − zi)
2, (9b)

The vertical axis in Fig. 4 represents the probability of occurrence, which is defined as the ratio of the number of possible 
outcomes of an event to the total number of cells. Fig. 4(a) presents the statistical result of the memory distance, demon-
7
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Fig. 5. Sparse matrix bandwidth (β) reduction with the reverse Cuthill-McKee method and the Hilbert SFC-based reordering method. (a) Original mesh 
given by the mesh generator, β = 24709, χ = 1706.5. (b) Reordering by the reverse Cuthill McKee method, β = 521, χ = 235.2. (c) Reordering by the 
Hilbert SFC-based method, β = 546, χ = 112.9.

Table 2
The bandwidth (β) and average bandwidth (χ ) of the matrix for each of the mesh or-
ders.

Ordering Original ordering RCM ordering Hilbert SFC ordering

Bandwidth 24709 521 546

Average bandwidth 1706.5 235.2 112.9

strating that the memory distance decreases when the mesh is reordered by the Hilbert SFC-based reordering method. 
Fig. 4(b) presents the probability distribution of the spatial distance. Since the Hilbert SFC connects neighboring cells, the 
spatial distance is also reduced by the Hilbert SFC-based reordering method.

In terms of bandwidth reduction, the Hilbert SFC-based reordering method is expected to be as good as the RCM method. 
The bandwidth β of a matrix is defined by

β = max
aij �=0

|i − j| . (10)

Fig. 5 shows the sparsity pattern of the adjacency matrix. The quasi-random distribution of nonzero elements in the 
original mesh is undesirable, and the original mesh has a bandwidth of 24709 [Fig. 5(a)]. The RCM algorithm produces good 
numbering and reduces the matrix bandwidth to 521 [Fig. 5(b)]. The test result [Fig. 5(c)] indicates that the Hilbert SFC-
based reordering method results in a bandwidth of 546, which is comparable to that of the RCM method. Since the matrix 
bandwidth does not provide too much information about the grouping pattern of nonzero elements along and around the 
main diagonal, an indicator of the nonzero element compactness known as the average bandwidth is presented. The average 
bandwidth is defined as

χ = 1

m

∑
i, j=1,n
aij �=0

|i − j|, (11)

where, m denotes the number of nonzero elements, and i and j represent the row and column indices of the nonzero 
elements. Table 2 lists the average bandwidth (χ ) of the matrix for each of the mesh orders. The adjacency matrix of the 
original mesh has an average bandwidth of 1706.5, and the RCM algorithm compresses the average bandwidth to 235.2. The 
Herbert SFC-based reordering method has an average bandwidth of 112.9, which is substantially better than that of the RCM 
method. In a matrix with the minimum average bandwidth, most nonzero elements are very close to the main diagonal and 
very few nonzero elements are away from the main diagonal, which is advantageous for large-scale computations when the 
cache size is limited.

3.2. ONERA M6 wing

As a 3D test case, we examine the flow over an ONERA M6 wing. The most widely computed case corresponds to the 
conditions of Ma = 0.84, α = 3.06o and ReM AC = 11.72 × 106, where the mean aerodynamic chord (MAC) is 0.801673 m. 
Computations with the Menter shear stress transport (SST) turbulence model [60] were carried out on a hybrid unstructured 
mesh, as shown in Fig. 6. The mesh employs a nonreflecting boundary condition at a distance of approximately 500 chord 
8
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Fig. 6. Computational mesh used for the ONERA M6 wing simulation. (a) Surface grid. (b) Symmetry plane and far-field boundary condition. (c) Zoomed-in 
view of the volume mesh.

Fig. 7. Pressure coefficient contour on the wing surface for the ONERA M6 wing at Ma = 0.84, α = 3.06o and ReM AC = 1.172 × 107, and a comparison of 
the computed surface C p distribution in four outboard sections (a η = 20%; b η = 44%; c η = 65%; d η = 90%) with the experimental data.

lengths, a symmetry boundary condition on the inboard wing side, and an adiabatic no-slip wall on the wing surface. The 
mesh contains a total of 3,627,926 cells and 1,602,721 points and is divided into 20 blocks by the Metis software package 
[61].

The mesh reordering is performed immediately after the solver is initialized across all processes. Each process is in charge 
of reordering the local cells. Since the mesh is reordered only once at initialization and without MPI communication, this 
reordering process has a negligible effect on the overall execution. After the reordering process is completed, simulations 
are conducted. The results are shown in Fig. 7, and the computed C p distributions at the 20% −90% span in the four sections 
9
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Fig. 8. Tenth part of the unstructured mesh used for the ONERA M6 wing simulation. For easy of reading, the details of mesh in region I and its ordering of 
the cells are shown in the following panels. (a) Hybrid unstructured mesh. (b) Original ordering of the cell coordinates. (c) Ordering of the cell coordinates 
after RCM method reordering. (d) Ordering of the cell coordinates after Hilbert SFC reordering.

are plotted against the experimental data [62]. For both reordering methods, good agreement is observed throughout the 
sections, and a sharp shock wave is accurately predicted on the upper surface.

To provide details of the mesh reordering for the 3D cases, we use the 10th part of [Fig. 8 (a)] the 20 blocks as an 
example for illustration. The orders computed using the RCM and Hilbert SFC-based methods are shown in Fig. 8 (c) and 
Fig. 8 (d), respectively, with the ghost cells on the interface also included. For easy of reading, the details of mesh in region 
I and its ordering of the cells are shown in the following panels. In Fig. 8 (b) and (c), many curve segments cross the 
region I and connected to the cells that outside the region I. A computation loop based on such an ordering will slow 
down the convergence of iterative inversion methods such as the Gauss–Seidel method [63]. The Hilbert SFC ordering starts 
at the bottom of the domain in a finely discretized area and ends at the top of the domain. The data locality indicated 
by the average memory distance and average spatial distance among the 20 blocks is presented in Fig. 9. Compared with 
the ordering given by the RCM method and the original ordering, the ordering given by the Hilbert SFC-based method 
significantly reduces these distances. This clustering of data is important for exploiting cache memory during computations 
because the cells referenced according to the ordering are quasi-contiguous in memory, allowing the computed data to 
be reused as much as possible. Thus, mesh reordering enables efficient cache traversal during cell looping and leads to 
performance gains.
10



Y. Liu, H. Wang, S. Wang et al. Journal of Computational Physics 480 (2023) 112009
Fig. 9. Data locality indicated by the memory distance and spatial distance. (a) Memory distance between a cell and its neighboring cells. (b) Spatial distance 
between the i − th and (i + 1) − th cells in the physical domain.

Table 3
The total number of last-level cache misses for each mesh order during 100 iter-
ations.

Ordering LU-SGS1 Green-Gauss2 Convective flux3

Original order 181,964,020 35,362,804 43,795,641

RCM Reorder 103,341,268 23,814,375 30,039,360

Hilbert SFC Reorder 83,671,823 16,287,130 30,133,705

1 The computation of LU-SGS.
2 The computation of gradients with the Green-Gauss method.
3 The computation of the convective flux with the Roe scheme.

Then, we use the memory access analysis tool of the Intel VTune Profiler [64] to identify cache missing. A GNU/Linux 
system equipped with a dual Intel Xeon Gold 6226R CPU and 32 cores was used to conduct these simulations. All cores were 
run at 2.9 GHz, and the total cache size was 22 MB. Because the benefits of Hilbert SFC-based reordering may be affected 
by the computation work per element, three functions with different computational complexities are examined. We isolate 
the objective function and call it 100 times. Table 3 shows the total number of last-level cache (LLC) misses for each of 
the mesh orders. The Hilbert SFC-based mesh reordering method significantly reduces the cache misses by 54% for LU-SGS 
operations, 53.9% for Green-Gauss operations, and 31.2% for convective flux computations. When the two ordering methods 
are compared, we find that the Hilbert SFC-based reordering method is more effective, especially for LU-SGS operations. 
This difference indicates that the effectiveness of sorting for improving cache efficiency is related to the computational 
complexity of the operation. The LU-SGS operation is conducted over all faces of the current cell and neighboring cells 
with a common face, whereas the convective flux computation is performed only on a face and the two cells that share 
this face. The higher the computational complexity, the more types and number of elements involved, and the better the 
improvement in cache utilization with the Hilbert SFC-based reordering method. We also evaluated the improvement in the 
run time and average cache missing rate due to the reordering on a real system. The run time was provided by the VTune 
Profiler, and the average cache missing rate is defined as:

Cache miss rate = 1

Np

N p∑
i=1

[
Total cache misses

Total cache accesses

]
i
, (12)

where Np represents the total number of parts. The results are shown in Fig. 10. Since the total number of loads and 
stores from memory depends on the algorithm, the total number of times that the cache is accessed is almost the same 
for a specified operation. The cache miss rates shown in Fig. 10(a) follow the same trend as the data presented in Table 3. 
Fig. 10(b) compares the run times of the objective functions. The Hilbert SFC-based mesh reordering method yielded the 
lowest computing time. When the gradient was calculated by using the Green-Gauss method, we see favorable results, with 
the execution time of the Green-Gauss functions reduced by 24.2%.
11
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Fig. 10. The averaged cache misses rate (a) and run time (b) of the three functions during 100 computations.

Fig. 11. Convergence histories for the ONERA M6 wing at Ma = 0.84, α = 3.06o and ReM AC = 11.72 × 106 monitored by tracking the l2-norm residual, 
which is defined in Eq. (1c) according to the energy equation.

Fig. 11 compares the convergence histories of the three mesh orders for the M6 wing test cases. The convergence of the 
solution was monitored by tracking the l2-norm residual which is defined in Eq. (1c) according to the energy equation. All 
test cases were conducted using a Courant-Friedrichs-Lewy (CFL) number of 10. The residuals are plotted on logarithmic 
scales, and the execution time is calculated in minutes. Compared to the baseline performance with an unordered mesh, 
the Hilbert SFC-based method reduces the execution time required for the residual to fall below 10−9 by 11.3 − 29.6%. The 
average reduction in execution time is 18.2% over 10 tested cases, and Fig. 11 shows an example in which the execution 
time is reduced by 18.36%.

3.3. AFF1 SUBOFF

In this section, a wall-resolved LES of the flow over SUBOFF is conducted with the Hilbert SFC-based reordering method. 
The geometry of SUBOFF without appendages (AFF1), which is composed of a forebody, a parallel middle body, and an 
afterbody stern, is shown in Fig. 12. The hull length is L = 14.292 ft, and the maximum diameter is D = 1.667 ft. The 
freestream conditions are selected according to the numerical studies presented by Posa [1] and Shi [65]; the angle of 
attack is set as 0O , and the Reynolds number based on the hull length L is equal to ReL = 1.2 × 106. The computational 
domain is composed of a hemisphere with a radius of 90D in the front and a cylinder that extends downstream by 120D
from the trailing edge. An unstructured mesh consisting of approximately 1.476 billion cells is generated and partitioned 
into 12800 subdomains to perform the parallel simulations.
12
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Fig. 12. Schematic of the SUBOFF model without appendages and the computational domain used for the wall-resolved LES.

Fig. 13. Near-wall instantaneous flow structures in the initial stage visualized using the Q -criterion isosurface. The boundary layer is tripped at the same 
location (x/D = 0.75) as in the experiments of Jimenez et al. by applying a steady wall-normal velocity of 0.08U∞.

To the best of our knowledge, the size of the unstructured mesh used in present simulation goes beyond what has been 
reported for LESs of flows over SUBOFF model. The first layer spacing of all grids was chosen such that the average y+ ≈ 0.6
and the growth rate in the boundary layer was 1.008. A no-slip adiabatic wall condition was employed on the hull surface, 
and a nonreflecting boundary condition was implemented at the pressure far-field (PFF) boundary. The nondimensional 
time step used in the simulations is �t∗ = �t · Uα/L = 3.35 × 10−4, where Uα denotes the freestream velocity and �t is 
the dimensional time step size. Simulations were conducted on a new-generation domestic TH-3F supercomputer platform 
with 12,800 cores and the overall computation took approximately 1.15 million CPU hours. Considering that the LES testing 
is too expensive, we simplify the numerical test in which the unsteady simulations are performed over 100 physical time 
steps with both reordered and unordered meshes. The results indicate that execution time is reduced by 18% with the 
Hilbert SFC-based reordering method.

In the simulations, a numerical trip wire was used to force the transition of the boundary layer to occur at the same 
location as in the experiments of Jimenez et al. [66]. The trip wire in the computations was represented by a wall-normal 
velocity perturbation and located at a distance x/D = 0.75 from the nose. Several perturbations with different amplitudes 
were tested, and a value of 0.08U∞ was found to be the minimum value that satisfied the requirements. A small steady 
wall-normal velocity over a few cells around the bow promotes a quick transition of the boundary flow, as shown in Fig. 13. 
A sequence of vortical structures induced by tripping is convected downstream and becomes complex 3D vortices in the 
wake. Fig. 14 shows the instantaneous flow structures near the wall visualized by a Q -criterion isosurface [67] after the 
flow has fully developed. Here, Q is computed as Q = 0.5(�i j�i j − Sij Si j), where �i j and Sij denote the antisymmetric and 
symmetric components of ∇u, respectively. A global view of the axial velocity, pressure coefficient and vorticity magnitude 
field in the XZ plane is shown in Fig. 15, where the contour of the axial velocity [Fig. 15(a)] shows that the axisymmetric 
turbulent boundary layer gradually thickens after the trip wire is implemented. The axial velocity undergoes a significant 
13
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Fig. 14. Instantaneous flow structures near the wall visualized using the Q -criterion isosurface. The boundary layer is tripped at the same location (x/D =
0.75) as in the experiments of Jimenez et al. by applying a steady wall-normal velocity of 0.08U∞.

Fig. 15. Instantaneous flow field in the XZ plane. (a) Axial velocity; (b) pressure coefficient; (c) vorticity magnitude.

deceleration due to the reverse pressure gradient on the stern [Fig. 15(b)]. The contour of the vorticity magnitude shown in 
Fig. 15(c) shows regions with intense turbulent activity near the hull boundary layer and the wake.

After the initial transient stage ended, statistics were gathered over 1.5 flow-through times. A database with 4500 snap-
shots was collected to compute the statistics, which include the time-averaged pressure coefficient C p , the skin friction 
coefficient C f , and the velocity profiles. The time-averaged pressure (C p ) and skin friction (C f ) coefficients are computed as 
follows:

C p = p − p∞
0.5ρ∞u0

2
, and C f = τw

0.5ρ∞u0
2

, (13)

where p∞ is the freestream pressure, and ρ∞ represents the density of the fluid in the far field. τw and p represent the 
time-averaged wall shear stress and pressure, respectively. The predicted hull pressure and skin friction coefficients are 
compared with the experimental data and the available LES results in Fig. 16. The experimental data reported by Huang et 
al. [68] and the LES results presented by Posa et al. [1] and Kumar et al. [5] are used in our comparison. Posa and Balaras 
conducted wall-resolved LESs of SUBOFF with appendages at a Reynolds number of ReL = 1.2 × 106. Kumar and Mahesh 
also conducted wall-resolved LESs of SUBOFF without appendages at a slightly lower Reynolds number of ReL = 1.1 × 106. 
The predicted C p profiles [shown in Fig. 16(a)] are in good agreement with both the measurements by Huang et al. [68]
14
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Fig. 16. Distribution of the computed mean pressure C p (a) and skin friction C f (b) coefficients on the hull. The symbols represent measurements taken 
from the experiment by Huang et al. (1992) at ReL = 1.2 × 107, and the C f measurements are scaled to the Re of the current simulations by using a 
scaling law (C f ∼ Re−0.2). The LES results presented by Posa et al. (2016) and Kumar et al. (2018) are also shown for comparison.

Fig. 17. Time-averaged axial (a) and radial (b) velocity profiles at x/L=0.904, 0.927, 0.956 and 0.978. The circles indicate the measurements obtained by 
Huang et al. (1992) at ReL = 1.2 × 107. The LES results presented by Mahesh et al. (2018) are also shown for comparison.

and the wall-resolved LES results, including the C p levels in the forebody and middle sections, as well as the C p details on 
the stern. There is a spike in the predicted C p curve at x/D=0.75 that was induced by the numerical trip wire. Fig. 16(b) 
presents a comparison of the experimental data, the LES results and the computed C f along the meridian line of the hull. 
According to the work of Posa and Balaras [1] and Kumar and Mahesh [5], the skin friction coefficient C f of the experiments 
is scaled to the Reynolds number of the simulation using a scaling law (C f ∼ Re−0.2) based on the measurements of Huang 
et al. [68]. Huang et al. also reported a measurement uncertainty of ±0.0002 for C f , which is indicated by the error bars 
in Fig. 16(b). Qualitatively, the C f predicted in the current study is consistent with the experimental results and the results 
of Posa et al. [1] in the middle section. While the numerical results converge in the tapered stern region, they are slightly 
smaller than the experimental results. It should be noted that the amplitude of the spike in the curve presented by Kumar 
and Mahesh [5] is higher than that presented in the current study, which may be due to the weaker effect of the numerical 
trip wire we used, resulting in the difference between the red solid line and the blue dashed-dotted line.

The time-averaged axial and radial velocity profiles at four streamwise locations on the stern, namely, x/L = 0.904, 0.927, 
0.956, and 0.978, are compared with the measurements of Huang et al. [68] and the LES results presented by Kumar and 
Mahesh [5] in Fig. 17(a) and Fig. 17(b), respectively. The development of the boundary layer over the stern is properly 
reproduced, and the adverse pressure gradient causes the hull boundary layer on the stern to thicken. The velocity deficit 
increases downstream, as shown in Fig. 17(a). The overall agreement among the prediction results, the available exper-
imental data and the LES results is satisfactory, with the exception of a small underprediction in the velocity deficit at 
x/L=0.904.

Fig. 18 compares the profiles of the root mean square (rms) velocity with the measurements and LES results at x/L=0.904, 
0.927, 0.956 and 0.978. The root mean square velocity in the axial direction is shown in Fig. 18(a), and the root mean square 
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Fig. 18. Profiles of the axial rms velocity (a) and radial rms velocity (b) at x/L=0.904, 0.927, 0.956 and 0.978. The diamonds indicate the measurements 
obtained by Huang et al. (1992) ReL = 1.2 × 107. The LES results presented by Mahesh et al. (2018) are also shown for comparison.

velocity in the radial direction is shown in Fig. 18(b). The measurements denoted by diamonds were obtained by Huang et 
al. [68] at ReL = 1.2 × 107, and only two of the four cross-sectional datasets are available. The LES results represented by 
the dashed line were obtained from the wall-resolved LES data reported by Kumar and Mahesh [5]. Notably, the present 
results show reasonably good agreement with the measurements and the LES results of Kumar and Mahesh [5] at x/L=0.904 
and 0.978. Moreover, the agreement is satisfactory even for fluctuations in the normal velocity, which are challenging to 
capture.

4. Summary and conclusion

To improve the performance of a flow solver on an unstructured mesh, we propose a cache-efficient mesh reordering 
method. In the proposed mesh reordering method, a Hilbert SFC that traverses all mesh cells and provides a new ordering 
is generated. The cells are rearranged according to this ordering, improving data locality and reducing memory latency. This 
mesh reordering method is effectively implemented and validated using an in-house CFD solver. Then, we use the proposed 
method to conduct a wall-resolved LES of the flow around SUBOFF at Rel = 1.2 ×106 with zero yaw angle. All essential flow 
features, including the flow transition induced by numerical tripping and the development of a turbulent boundary layer 
along the hull, are well resolved by the high-resolution mesh. The results are compared with the results of experiments and 
the available LES results. The main observations and conclusions are summarized as follows:

(1) Compared with the baseline performance with an unordered mesh, the computational costs of CFD computations with 
the reordered mesh are significantly reduced. The reordered unstructured mesh cells allow the data to be accessed as 
continuously as possible when looping over the cells, reducing the number of cache misses and thereby improving the 
performance of the solver.

(2) We compare the performance of the RCM and Hilbert SFC-based reordering methods in terms of preserving the data 
locality. The Hilbert SFC-based reordering method is found to generate a better order according to the memory and 
spatial distances. When the Hilbert SFC-based reordering method is coupled with a CFD solver, the execution time 
required for convergence in the M6 wing test cases is reduced by 11.3 − 29.6%.

(3) Wall-resolved LES of turbulent flows around SUBOFF is conducted on an unstructured mesh with approximately 1.476
billion cells over 12800 CPU cores. To the best of our knowledge, this is the largest number of cells used in LES of 
turbulent flows over SUBOFF on an unstructured mesh. The development of the boundary layer around the SUBOFF 
hull is well reproduced by the present wall-resolved LES, which shows a significant deceleration along the stern under 
an adverse pressure gradient. The quantitative results, including the time-averaged C p , C f , mean velocity profiles, and 
root mean square velocity profiles, are in good agreement with the experimental and LES results. These comparisons 
demonstrate the capability of the proposed method to conduct large-scale simulations and to accurately predict asym-
metric turbulence boundary layers under the influence of a pressure gradient. The overall computational costs in the 
wall-resolved LESs are reduced by using the proposed Hilbert SFC-based reordering method.
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Appendix A. Unstructured meshes generated by different methods

To assess the performance of the proposed Hilbert SFC-based reordering method, we generated two additional meshes 
for the M6 wing as shown in Fig. A.1. The two hybrid unstructured meshes are generated with the same surface mesh on 
the wing by the voxel-blocking method and advancing-front method [46], respectively. In Fig. A.1(a), the volume blocks are 
mainly composed of hierarchical hexahedral cells clustered about and sized by the surface mesh. Transitions between levels 
in the hexahedral cells are made using tetrahedral cells and pyramids for maintaining the point-to-point connections. The 
total cell counts of unstructured voxel-mesh were approximately 9.53 million. In Fig. A.1(b), the hybrid unstructured mesh 
is generated using a bottom-up meshing approach using the advancing-front method. Since the advancing-front generator 
is only applicable to the surface mesh that uses triangular elements [46], some quadrangular elements at the front, rear, 
and middle of the wing are diagonalized. The volume mesh will then be generated from this surface mesh, and finally 3.65 
million cells are generated.

The proposed Hilbert SFC-based reordering method can improve the data locality of mesh for unstructured meshes 
generated by both the voxel-type and advancing-front. We divide the two unstructured meshes into 20 blocks to conduct 
the numerical test. The process, the numerical settings, and the testing platform are the same as in section 3.2. Fig. A.2 plots 
the data locality of the unstructured mesh generated using the voxel-blocking method. The Hilbert SFC-based reordering 
method significantly reduces the memory and spatial distance, where the maximum value of the distance is compressed 
to one-tenth of the original mesh. Fig. A.3 plots the data locality of the unstructured mesh generated using the advancing-
front method, which shows the frequency of relatively short memory distances substantially increases after Hilbert SFC 
reordering. Table A.1 lists the frequency of occurrence that the memory distance falls within the range of 0 to 104. For the 
mesh generated by advancing-front, the Hilbert SFC-based reordering method increases the frequency of memory distance 
in [0, 104] from 9.95% to 86.83%, which is better than that of voxel-type mesh from 24.43% to 80.72%. The improvement 
might be due to the difference in mesh generation strategies. The voxel-blocking method generates a mesh using a top-
down meshing approach. First, a background mesh of hexahedral cells that fills the entire region is created. Then, cell 

Fig. A.1. Computational mesh used for the ONERA M6 wing simulation. (a) Generated by using voxel-blocking method. (b) Generated by using advancing-
front method.
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Fig. A.2. Data locality of unstructured voxel-type mesh, which is indicated by the memory distance and spatial distance. (a) Memory distance between a 
cell and its neighboring cells. (b) Spatial distance between the i − th and (i + 1) − th cells in the physical domain.

Fig. A.3. Data locality of advancing-front mesh, which is indicated by the memory distance and spatial distance. (a) Memory distance between a cell and 
its neighboring cells. (b) Spatial distance between the i − th and (i + 1) − th cells in the physical domain.

Table A.1
Frequency of occurrence that the memory distance falls in the range of 0 to 104.

Mesh type Original order RCM reorder Hilbert SFC reorder

Voxel-type mesh 24.43% 12.35% 80.72%

Advancing-front mesh 9.95% 49.02% 86.83%

splitting is repeatedly performed according to the surface mesh or parameters. In contrast, the advancing-front method 
adopts a bottom-up meshing approach. The volume mesh is generated from the surface mesh and successively pushes the 
front layers far away from the surface until it fills the entire computational domain.

The proposed Hilbert SFC-based reordering method can reduce the cache misses for the unstructured meshes generated 
by both the voxel-blocking method and the advancing-front method. The memory access analyses of two type meshes are 
summarized in Table A.2, which presents the total number of last-level cache misses and run time for LU-SGS functions 
during 100 iterations. We find that the proposed Hilbert SFC-based reordering method is still valid for both tested meshes 
and performs better than the RCM method. In terms of LU-SGS operations, the Hilbert SFC-based reordering method reduces 
the cache misses by 57.4% in the voxel-type mesh and 53.4% in the advancing front. Furthermore, the execution time of LU-
SGS functions decreases with the reduction of cache misses. The Hilbert SFC-based reordering method reduces the execution 
time by 8.7% in the voxel-type mesh and 15.2% in the advancing-front mesh.
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Table A.2
The total number of last-level cache misses and run time for LU-SGS functions during 100 
iterations.

Item Voxel-type mesh Advancing-front mesh

cache misses run time(s) cache misses run time(s)

Original order 557,414,040 82.637 143,510,045 31.861

RCM reorder 379,270,948 79.183 116,383,146 28.367

Hilbert SFC reorder 237,512,120 75.416 66,878,981 26.996

Appendix B. Unstructured mesh with irregularly-shaped cells

Although the Hilbert SFC-based reordering method works well with the three commonly used meshes, it also suffers 
degraded performance when dealing with irregularly-shaped cells. Similar performance degradation problems were reported 
in Ref. [39] and Ref. [69]. Ref. [39] presented a heuristic that improves partition locality in arbitrary geometries by using 
a Morton order curve, and Ref. [69] used adaptive Hilbert curve algorithm to enhance the efficiency of searching several 
adjacent grids. To illustrate the irregular cells related problem, we test a mesh with elongated triangle cells [in Fig. B.1(a)] 
and compare it with a mesh consisting of multiple identical triangle cells [in Fig. B.1(b)]. Fig. B.1(c) presents the probability 
of the memory distance over the specified interval, indicating that the irregularly-shaped cells increase the likelihood of 
longer memory distance.

Further, we estimate the upper bound of the memory distance for a mesh with irregularly-shape cells using the reso-
lution requirement of the Hilbert SFC. Considering a computational domain �i that contains the i–th mesh cell and all its 
neighbors N (i), we define the maximum and minimum spatial distance of i–th mesh cell as Ds,max and Ds,min according to 
Eq. (9b).

Ds,max (i) = max [Ds ( j)] , j ∈ N (i), (B.1)

Ds,min (i) = min [Ds ( j)] , j ∈ N (i) . (B.2)

Then, we define the maximum (Lmax) and minimum (Lmin) characteristic lengths of those cells in �i

Lmax = max
[

Ds,max (i)
]
, i ∈ �i, (B.3)

Lmin = min
[

Ds,max (i)
]
, i ∈ �i . (B.4)

For this n–th refinement level, the length of the nested intervals of the Hilbert curve construction is 2−n . The smallest 
bins that cover all the center of cells belonging to the �i should satisfy

2−(n+1) < Lmax < 2−n. (B.5)

Fig. B.1. Performance of the proposed Hilbert SFC-based reordering method on a mesh with irregularly-shaped cells. (a) An unstructured mesh with elon-
gated triangle cells, and the ordering of the cell after Hilbert SFC reordering. (b) An unstructured mesh consisting of multiple identical triangle cells, and 
the ordering of the cell after Hilbert SFC reordering. (c) Probability of the memory distance between a cell and its neighboring cells. • represents the 
starting point; � represents the ending point; and ◦ represents the cell location.
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The highest resolution should be able to distinguish the minimum spatial distance

2−(m+1) < Lmin < 2−m. (B.6)

Therefore, we obtain an upper bound for the memory distance between the i–th cell and its neighbors: Dm < 3 · 4(m−n) (for 
the 2D case). Combining Eq. (B.5) and Eq. (B.6), we find that an increase in the ratio of Lmax/Lmin would result in a dramatic 
increase in memory distance. Since the Lmax/Lmin is an estimate of the skewness, considerable value of Lmax/Lmin is often 
occurring in the region where the irregularly-shaped cells appear. The above analysis shows that the proposed Hilbert SFC-
based reordering method will achieve the best performance in uniformly distributed meshes and degrade in meshes with 
irregularly-shaped cells.
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