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Abstract

The extended finite element method (XFEM) has achieved unprecedented success in crack analysis. However, challenges
till remain for a multiple crack simulation. One issue is the difficulty of level set construction, where cracks are generally
epresented by combinations of different level set functions. Another issue is the rapidly increasing condition number of the
lobal stiffness matrix, which is even more severe than the single crack case. In order to overcome these issues, we make two
mprovements as follows. On the one hand, inspired by the discontinuous description via cover cutting in Numerical Manifold

ethod (and later phantom node method in XFEM), we propose a level set templated cover cutting method, which makes use
f level set values to cut a nodal patch and then to add virtual nodes. This method, which combines the advantages of both the
evel set method and the cover cutting technique, is simple and straightforward to implement. The method also plays a role in
emplated subdivision of discontinuous elements and hence presents an efficient and robust integration scheme. On the other
and, we extend the Improved XFEM (IXFEM), previously proposed by our research group, to the scenario of multiple crack
roblems. The method fundamentally eliminates the daunting issues of linear dependence and ill-conditioning of the standard
FEM, because it uses an extra-dof-free singularity enrichment around the crack tip. Numerical studies on multiple crack
roblems show that the developed approach offers various advantages: (1) Highly accurate SIF evaluation over the standard
FEM; (2) Well-conditioning of the global stiffness matrix independent of the number of cracks — condition number being
f the same order as the standard FEM; (3) Efficient and robust linear system solving and geometric computations. Thus the
eveloped approach is well capable of modeling arbitrary multiple crack problems.
2023 Elsevier B.V. All rights reserved.

eywords: Improved XFEM (IXFEM); Multiple cracks; Extra-dof-free singularity enrichment; Level set templated cover cutting; Stress intensity
actor (SIF); Linear elastic fracture mechanics (LEFM)

1. Introduction

Modeling multiple cracks has always been a necessity in various fields, such as hydraulic fracturing simula-
ion [1–3], dam safety evaluation [4,5], energetic material design [6], structural integrity assessment [7], etc. Linear
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elastic fracture mechanics (LEFM) provides a theoretical basis for such problems. In LEFM, stress intensity factor
(SIF) plays a central role, since it is the single parameter that represents the singular field at the crack tip and drives
crack propagation. Thus an accurate evaluation of SIFs is quite essential for subsequent failure analysis of various
structures.

Due to the critical role that SIF plays in crack analysis, its computation has attracted broad attention. Tada et al.
ublished three versions of SIF manuals in 1973 [8], 1985 [9] and 2000 [10], respectively. Murakami edited five
olumes of SIF manuals, which were published respectively in 1987 (Volumes 1 and 2) [11], 1992 (Volume 3) [12]
nd 2001 (Volumes 4 and 5) [13]. These SIF manuals have been widely used in the engineering and scientific
ommunity.

At present, there are two kinds of approaches, i.e. the analytical and the numerical, to compute SIFs. Both
pproaches have its pros and cons. The analytical approach has the advantage of high efficiency, but is limited
o specific geometric configurations and simple loading conditions. The numerical approach has the advantage
f wide applicability, but its efficiency is generally constrained by the mesh scale. In order to apply to arbitrary
eometric configurations and complex loading conditions, the numerical approach is often adopted. The popular
umerical methods for crack analysis include but are not limited to: finite element method (FEM) [14], boundary
lement method (BEM) [15], numerical manifold method (NMM) [16], generalized/extended finite element method
G/XFEM) [17–20], meshless methods [21,22], scaled boundary finite element method (SBFEM) [23], continuous
iscontinuous element method (CDEM) [24], extended isogeometric analysis (XIGA) [25], virtual element method
VEM) [26], cracking elements method [27], etc.

Among these numerical methods, XFEM has received extensive attention in recent two-plus decades. First pro-
osed by Belytschko and his coworkers in 1999 [28,29], XFEM has three outstanding advantages: (1) Independence
f crack geometry on the simulation mesh; (2) No necessity of remeshing when a crack grows; and (3) High accuracy
chieved on a relatively coarse mesh. Due to these outstanding advantages, XFEM has been implemented into the
ommercial software ABAQUS [30] and ANSYS [31], signaling the acceptance from the industrial community.

Though XFEM has achieved unprecedented success in crack analysis, it is still hindered by two major
ssues [32,33]: (1) The highly ill-conditioning of the global stiffness matrix; and (2) The inconsistency of energy
ransfer on the extra degrees of freedom (dofs) in dynamic analysis. A number of remarkable efforts have been

ade to overcome these two issues. On the first issue, we mention the Stable GFEM (SGFEM) by Babuška and
Banerjee [34], the Orthonormalized GFEM (OGFEM) by Sillem et al. [35] and two variations of G/XFEM by
Agathos et al. [36,37] among many others. The SGFEM [34] recovers well-conditioning by subtracting the original
local approximation of G/XFEM to the FE interpolant. This method has been applied to fracture analysis in both
2D [38] and 3D [39]. In the OGFEM [35], the basis functions used are orthonormalized to remove all linear
dependences. In Ref. [36], Agothos et al. used a novel form of enrichment together with the dof gathering technique
to achieve improved conditioning. In Ref. [37], they introduced a procedure for the local near-orthogonalization of
enrichment functions, which significantly improves the conditioning. On the second issue, we mention the works
by Réthoré et al. [40], Prabel et al. [41] and Combescure et al. [42] in the context of XFEM and the work by Zheng
et al. [43] in the context of NMM. In Refs. [40–42], the extra dofs are increasingly appended to the nodes after
each time stepping to ensure energy consistency in dynamic analyses. In Ref. [43], the temporal discretization is
put prior to the spatial discretization, so all the dofs are valid only within the current time step. In this way, the
inconsistency of energy transfer on extra dofs can be resolved elegantly. Though this formulation was implemented
in the frame of NMM, it can also be extended to that of G/XFEM.

In our previous studies, we owed the very root leading to the above two issues to the extra dofs introduced
n XFEM. Therefore, we proposed the Improved XFEM (IXFEM) [44–49] based on an extra-dof-free partition of
nity approximation [50]. Eliminating the extra dofs, IXFEM overcomes the daunting issues of linear dependence
nd inconsistency of energy transfer on extra dofs in a neat and unified manner. At present, this method has been
uccessfully applied to the static and dynamic analyses of single crack problems. As for multiple crack problems, no
ystematic investigation has been conducted yet — the overall accuracy for SIF computation and the conditioning
f the global stiffness matrix remains undiscovered. This study aims at the extension of IXFEM to the scenario of
ultiple cracks.
The investigation on multiple crack analysis with XFEM is active. Daux et al. [51] first studied arbitrary branched

nd intersecting cracks with XFEM. Belytschko et al. [52] modeled arbitrary discontinuities within XFEM. Budyn

t al. [53] introduced a crack length control scheme into XFEM for arbitrary multiple crack propagation. Zi et al. [54]
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applied XFEM to modeling multiple fatigue cracks. Mousavi et al. [55] proposed to use harmonic enrichment
functions to treat multiple, intersecting and branched cracks in a unified manner. Richardson et al. [56] proposed a
novel geometric cutting algorithm in XFEM for modeling geometrically elaborate crack propagation. Xu et al. [57]
extended the junction enrichment in XFEM to the simulation of dynamic crack branching. Sutula et al. [58–60]
developed a minimum energy approach for multiple crack propagation within XFEM. Chen et al. [61] extended the
phantom node method proposed by Song et al. [62] to the scenario of multiple cracks using mesh cut technique. Ding
et al. [63,64] developed a variable-node XFEM with local mesh refinement for modeling multiple discontinuities.
Jafari et al. [65] implemented XFEM in the commercial software COMSOL to solve arbitrary (single and multiple)
crack problems.

It can be seen that the conventional XFEM generally employs level set method to deal with multiple cracks,
hich are represented by different combinations of level set functions. This method is simple to implement and

an easily describe the jump of derivatives. However, it is unsuitable for large deformation analysis, since it does
ot account for mesh topology update when large deformation occurs. For description of arbitrary deformations,
he cover cutting method in the context of NMM [66–69] is a favorable choice. The method represents cracks by
he so-called node splitting technique, which has a simple and intuitive meaning. In essence, this method falls into
he category of re-meshing and thus is suitable for arbitrary deformations. The main difficulty of this method is the
econstruction of mesh topology, i.e. how to add virtual nodes and how to reconstruct the connectivity.

In order to overcome the reconstruction difficulty in cover cutting, in this study we propose a hybrid method —
he level set templated cover cutting method. The idea of this method is to make use of level set values to cut a
over and then to add virtual nodes. The method, which combines the advantages of both the level set method and
he cover cutting technique, is simple and straightforward to implement. The method also plays a role in templated
ubdivision of discontinuous elements and hence presents an efficient and robust integration scheme. The proposed
ethod has been successfully integrated into the IXFEM framework for modeling multiple cracks. Numerical studies

onducted for multiple crack problems show that the developed approach is accurate, efficient, robust and stable,
nd thus is well suitable for modeling multiple cracks.

The paper is organized as follows. Section 2 briefly gives the governing equations for LEFM. Section 3 elaborates
he proposed hybrid method for geometric description of multiple cracks. Section 4 formulates the novel Improved
FEM (IXFEM) in particular for multiple cracks. Section 5 numerically discretizes the governing equations with

XFEM and details the templated integration scheme. Section 6 gives the interaction integral theory for extraction
f stress intensity factors. Section 7 demonstrates several numerical examples on multiple crack analysis. In the last
ection, conclusions are drawn regarding the proposed approach.

. Governing equations

As depicted in Fig. 1, a two-dimensional (2-D) linear elastic fracture mechanics (LEFM) problem containing
ultiple cracks is defined, and the governing equations for this problem read

∇ · σ + b = 0 in Ω (1)

where ∇· is the divergence operator; σ is the stress tensor; and b is the body force vector.
The displacement boundary condition is

u = ū on Γu (2)

where u is the displacement vector; and ū is the prescribed displacement vector on the displacement boundary Γu.
The traction boundary conditions are

σ · n = t̄ on Γt
σ · n = 0 on Γc

}
(3)

here t̄ is the applied traction force vector on the traction boundary Γt and n is the unit outer normal vector. A
raction-free boundary condition is assumed on the crack surface Γc.

The linear elastic constitutive law is assumed

σ = C : ε (4)
here C is the elasticity tensor; and ε is the strain tensor.
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Fig. 1. Illustration for a 2-D LEFM problem containing multiple cracks.

Under small deformations, the strain–displacement relations read

ε = ∇s u =
1
2

(
∇u + (∇u)T) (5)

here ∇s is the symmetric gradient operator.

. Geometric description for multiple cracks

The geometric description approaches for multiple discontinuities (i.e. cracks herein and after) can be roughly
ivided into two categories: (1) the cover cutting method in the context of the numerical manifold method (NMM)
nd (2) the level set method in the context of the extended finite element method (XFEM).

The former represents cracks by the node splitting technique — the number of nodes after splitting is identical
o the number of disconnected sub-regions cut by the discontinuities in the material domain (related to the crack
istribution). This method has a simple and intuitive meaning. In essence, it belongs to the category of re-meshing
nd thus is suitable for arbitrary deformations. The main difficulty of this method is the reconstruction of mesh
opology, including how to add virtual nodes and how to reconstruct the connectivity.

The latter represents cracks by the number of different combinations formed by level set values — the number
f such combinations is equal to the number of disconnected sub-regions cut by cracks in the material domain. The
umber of extra degrees of freedom (dofs) is equal to the number of cracks, independent of the crack distribution.
t should be less than the number of disconnected sub-regions. Essentially, this method represents discontinuities
n function space and hence does not change the mesh topology. Therefore, the method is unsuitable for large
eformation problems. In the case of small deformations, the two methods are equivalent to each other.

In this paper, we propose a third approach — level set templated cover cutting method, which combines the level
et method and the cover cutting technique. It makes use of templated level set values in finite elements to cut a
odal patch and then to add virtual nodes. It avoids the difficulty of mesh topology reconstruction and inherits the
dvantage of the feasibility for arbitrary deformations. This novel approach will be detailed in Section 3.3.

.1. Level set method

The conventional XFEM generally employs multiple sets of level set functions, which are naturally integrated
nto the step function enrichments, to solve multiple crack problems. The displacement field approximation has the
ollowing general form [51]

uh(x) =

∑
I∈I

NI (x)uI +

nc∑
n=1

∑
J∈J n

NJ (x)H̄ n
J (x)an

J +

mt∑
m=1

∑
K∈Km

NK (x)

(
4∑
α=1

F̄m
αK (x)bm

αK

)
(6)

where I is the set of all nodes, J n the set of step enriched nodes related to the nth crack, Km the set of singularity
enriched nodes related to the mth crack tip; N (x) is the standard FE shape function, H̄ n

J (x) the step enrichment
¯ m
unction related to the nth crack, FαK (x) the singularity enrichment function related to the mth crack tip; nc is the

4
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number of cracks, m t the number of crack tips; uI is the translational dof vector at the I th node, an
J the extra dof

ector at the J th node related to the nth crack, bm
αK the αth extra dof vector at the K th node related to the mth

crack tip.
The expression of H̄ n

J (x) is related to ϕn(x), i.e. the normal level set function associated to the nth crack

H̄ n
J (x) = H (ϕn(x))− H (ϕn(x J )) (7)

here H (x) is the Heaviside function

H (x) =

{
+1 for x > 0
−1 for x < 0 (8)

The expression of F̄m
αK (x) is given as

F̄m
αK (x) = Fm

α (x) − Fm
α (xK ) (9)

here Fα(x)|4α=1 are the crack-tip singular functions

Fα(x) =

{
√

r cos
θ

2
,
√

r sin
θ

2
,
√

r sin
θ

2
sin θ,

√
r cos

θ

2
sin θ

}
(10)

here (r, θ) is the crack-tip local (polar) coordinate system.

.2. Cover cutting method

The basic idea of the cover cutting method in NMM is that when a nodal patch (a material domain surrounding
node) is completely cut into two by a discontinuity (such as a crack), the node is divided into two simultaneously.
o be specific, as shown in Fig. 2a, a new node is added where the original node is located, and the two nodes
escribe the deformation and movement of the material separately on each side of the discontinuity.

For the sake of distinction, nodes falling outside the material domain are termed virtual nodes, e.g. i1 in Fig. 2a.
hen a nodal patch is cut into more individual parts, more virtual nodes are added where the original node is

ocated (Fig. 2b). If a nodal patch is cut into m parts, the original node will be split into one real node plus (m −1)
irtual nodes. As shown in Fig. 2b, i is the one real node and i1, i2 and i3 are the three (4 − 1 = 3) virtual nodes.
he cover cutting method describes multiple cracks by increasing the number of nodes. The displacement field
pproximation for the cut elements can be expressed in the following form (the crack-tip singular enrichment is not
onsidered temporarily)

uh(x) =

∑
I∈I

NI (x)uI +

∑
J∈Jadd

NJ (x)uJ (11)

here I is the set of all nodes; Jadd is the set of newly-added virtual nodes. The definitions of other symbols are
onsistent with Eq. (6). The same approximation form is adopted for both continuous and discontinuous problems,
hich is one of the advantages of the cover cutting method.
It is worth mentioning that the phantom node method proposed by Song et al. [62] for single crack problems

n the context of XFEM is essentially the same as the cover cutting method in the context of NMM. In contrast
or multiple crack problems, the cover cutting method has the advantage of more clear rules on how to add virtual
odes.

.3. Proposed hybrid method

The proposed hybrid method, i.e. the level set templated cover cutting method, takes the following procedures
see Fig. 3). Firstly, each set of level set functions are constructed with regard to each crack (Fig. 3a). Note that
ifferent sets of level set functions are independent of each other. Secondly, the position of each crack in the finite
lements is approximated based on each set of level set functions and the intersection points are calculated from
ero level set values (Fig. 3b). Thirdly, by looking up a readily available cutting template (Fig. 3c), a parent cover
s efficiently cut into two child ones (Fig. 3d). Meanwhile, virtual nodes are added to update the mesh topology
Fig. 3e). Lastly, if there is another crack crossing this parent cover, the previously formed child covers will be

urther cut by this subsequent crack (see Fig. 4), through repeating the previous three steps.

5
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o

Fig. 2. Cover cutting method — discontinuities are represented by adding virtual nodes: (a) virtual node i1 in a single crack case; (b) virtual
nodes i1, i2 and i3 in a multiple crack case.

Fig. 3. Conceptualization for the proposed level set templated cover cutting method: (a) level set construction; (b) crack geometry
approximation; (c) cutting template look-up; (d) cover cutting based on the template; (e) mesh topology update by adding virtual nodes.

Fig. 4. Conceptualization for secondary cutting with the proposed method: (a) a secondary crack intersecting the main crack; (b) construction
f level set values (LSVs) with regard to the secondary crack; (c) templated cutting of the child cover; (d) adding new virtual nodes.
6
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3.3.1. Level set construction
We construct a set of level set functions for each crack. Each set of level set functions include a normal level

et function and a tangential one. The normal level set function ϕ(x) is defined as the minimum signed distance
from a given point x to the crack surface Γc

ϕi (x) = min
x̄∈Γc,i

∥x − x̄∥ sign (n · (x − x̄)) (12)

here the subscript i denotes the i th crack; ∥·∥ represents the Euclidean norm; n is the unit normal vector of Γc;
nd sign(·) stands for the sign function.

The tangential level set function ψ(x) is defined as the signed distance from a given point x to the crack tip xt

ψ j (x) = t · (x − xt, j ) (13)

here the subscript j denotes the j th crack tip; and t is the unit vector tangent to the crack at the crack tip, pointing
oward its exterior. Note that the number of crack tips may be greater than the number of cracks, since one crack

ay contain one or two crack tip(s).
The crack tip local (polar) coordinate system (r, θ) can be further defined in terms of the level set functions

r = r (x) =

√
ϕ2(x) + ψ2(x) (14)

θ = θ (x) = arctan
(
ϕ(x)
ψ(x)

)
(15)

.3.2. Crack geometry approximation
The level set functions are approximated with standard finite element (FE) shape functions. The finite elements

sed in this study are 4-node quadrilaterals. The normal level set function ϕ(x) in a finite element is given by

ϕ(x) =

nen∑
i=1

ϕi Ni (ξ ), x ∈ Ωe (16)

where ϕi are the nodal values of ϕ(x); Ni (ξ ) are the standard FE shape functions in terms of the local coordinates
ξ ; and nen is the number of element nodes. The tangential level set function ψ(x) does not need to be computed at
this moment. The approximate crack position in a finite element Ωe is given by

(Γ e
c )h

= {x |ϕ(x) = 0, x ∈ Ωe } (17)

A linear interpolation gives the position of the intersection point p between the crack and the element edge i j :

ξ p − ξ i = λ(ξ j − ξ i ) (18)

where λ can be obtained from a linear interpolation of ϕ with ϕp = 0

λ =
ϕp − ϕi

ϕ j − ϕi
=

−ϕi

ϕ j − ϕi
(19)

After manipulations, the coordinates of the intersection point p can be given by the coordinates and level set
values at points i and j :

ξ p =
ϕ jξ i − ϕiξ j

ϕ j − ϕi
(20)

.3.3. Templated cover cutting
At first, we just consider the single crack case while performing cover cutting. For multiple cracks, deal with

ne crack at a time. Thus, the multiple crack case are decomposed into several single crack cases.
Based on our procedure, we first give the cutting templates for quadrilateral elements. The templates can be

ormed by the marching quadrilateral algorithm originally used in computer graphics. Here we show all the cutting
emplates in Fig. 5. The templates include four different patterns, i.e. a quadrilateral being cut into: (a) one triangle

nd one pentagon, (b) one triangle and one quadrilateral, (c) two triangles, or (d) two quadrilaterals. Accounting for

7
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Fig. 5. The cutting templates for quadrilateral elements.

Fig. 6. The cutting templates for triangle elements.

the reverse situations, the cutting templates should be doubled. For the sake of simplicity and generality, we split the
pentagon in pattern (a) into two quadrilaterals. Now all the resultant polygons are either triangles or quadrilaterals.

After a quadrilateral is cut by a primary crack, the resultant polygons may be cut by a secondary crack. In
this case, the polygons are again cut by the template cutting algorithm. If the polygon is a quadrilateral, continue
using the cutting templates in Fig. 5. If the polygon is a triangle, new cutting templates, formed by the marching
triangle algorithm, should be used, as shown in Fig. 6. The same procedure goes for a third crack. After a cover is
templatedly cut by all the cracks, virtual nodes are added where a node lies outside the material domain.

In order to understand how the templated cover cutting algorithm works for multiple cracks, we give a tree crack
example, as shown in Fig. 7. The tree crack can be decomposed into three crack branches, i.e. Γ1, Γ2 and Γ3. The
over around node P consists of four elements, i.e. A, B, C and D.

The cover is firstly cut by crack branch Γ1. The level set functions are constructed with regard to Γ1. From the
igns of level set values, it is easy to know that the elements B, C and D are discontinuous elements, which can be
ut according to the algorithm presented in Fig. 4. The element B is cut into subdomains B1 (two quadrilateral cells)
nd B2 (one triangle cell); the element C is cut into subdomains C1 (one triangle cell) and C2 (two quadrilateral
ells); the element D is cut into subdomains D1 (one quadrilateral cell) and D2 (one quadrilateral cell).

The cover is then cut by crack branch Γ2. The level set functions are constructed with regard to Γ2. At this
ime, only the quadrilateral cell in subdomain D2 is discontinuous and is cut into two subsubdomains (D21 and

22). The cover is lastly cut by crack branch Γ3. The level set functions are constructed with regard to Γ3. The
iscontinuous subdomain comes to B1, which contains two quadrilateral cells. One cell is cut into one triangle and
ne quadrilateral subcell; the other cell is cut into one triangle and two quadrilateral subcells.

After the cover is cut by all the cracks, four child covers are formed — {A, B11, C1, D1}, {B12}, {B2, C2, D22}

nd {D21}, and 13 subcells are generated. It is easy to know that P ∈ {A, B11, C1, D1}, so the split node in this
hild cover is a real node and the split nodes in other child covers are virtual nodes. The cover cutting is finished

ith mesh topology being updated.

8
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Fig. 7. Cover cutting example — the tree crack. (a) The cover composed of four elements (A, B, C and D) is to be cut by three crack
ranches (Γ1, Γ2 and Γ3). (b) The level set function ϕ1(x) is constructed with regard to Γ1. (c) The cover is firstly cut by crack branch
1 based on cutting templates. (d) The level set function ϕ2(x) is constructed with regard to Γ2. (e) The cover is secondly cut by crack
ranch Γ2 based on cutting templates. (f) The level set function ϕ3(x) is constructed with regard to Γ3. (g) The cover is lastly cut by crack
ranch Γ3 based on cutting templates. (h) The cover is finally cut into four child covers and is subdivided into 13 subcells — child cover
(1, 2, 3, 4, 8, 13), child cover II (12), child cover III (7, 9, 10, 11), and child cover IV (5, 6).

emark 1 (Treatment for a Kinked Crack in a Cut Element). If a kinked crack exists in an element, special treatment
s needed to maintain accuracy especially when the kink angle is large. Inspired by the virtual split element (VSE)
echnique proposed by Kumar et al. [70], we divide a cut element with a kink into two virtual cut sub-elements at the
ink point. After the division, the level set templated cover cutting method can be applied to each sub-element with
egard to each crack segment. Finally, the cover cutting gives the added virtual nodes and updated mesh topology.
f a branched crack exists in an element, just use twice the above treatment at the branch point to get the final
onfiguration.

emark 2 (Treatment for a Crack Close to a Node of a Cut Element). If a crack is close to a node of a cut element,
he small portion (with area Amin) of the element (with area Atot) will result in ill-conditioning of the global stiffness

matrix. In order to tackle this issue, we adopt the area criterion presented by Dolbow et al. [71]. If the area ratio
Amin/Atot is below a prescribed tolerance (e.g. 10−4), the crack is moved toward the node of the element. We also

ention the excellent work by Sanchez-Rivadeneira and Duarte [72], where they gave a good review on present
emedies and proposed a node-snapping technique to overcome this issue.

emark 3 (On the Advantages of the Templated Cover Cutting Method). From the above procedures it is easy to
earn that the proposed templated cover cutting method is very efficient and robust, since no cumbersome geometric
mplementations are introduced. It is also worth mentioning that the generated subcells will play a role in numerical
ntegration of discontinuous elements, which will be discussed in Section 5.3.

. Improved XFEM (IXFEM)

In this section, the Improved XFEM (IXFEM) is extended for multiple crack problems by integrating Eq. (11)
ith an extra-dof-free singularity enrichment [44–49]. A first glimpse of IXFEM for a single crack problem takes

he following form

uh(x) =

∑
NI (x)uI +

∑
NJ (x)uJ +

∑⎛⎝∑
NL (x)φL

K (x)

⎞⎠ uK (21)

I∈I/K J∈Jadd K∈K L∈LK

9
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Fig. 8. Definition of a nodal influence domain for crack tip singularity enrichment: (a) structured mesh; (b) unstructured mesh.

where K is the set of crack-tip singularity enriched nodes, LK ⊂ K the subset related to node K ; φL
K (x) is the

local function around the crack tip. The last term in Eq. (21) is the so-called extra-dof-free singularity enrichment,
which will be detailed next.

4.1. Extra-dof-free singularity enrichment

Denote Ωtip as a subdomain containing the crack tip, in which all nodes are enriched with singular functions.
Denote Ωi as the nodal influence domain of node i , which is formed within radius Ri around node i , as illustrated in

ig. 8. In the nodal influence domain Ωi , a local approximation of the displacement component ui (x) is constructed

uloc
i (x) = pT(x)a, x ∈ Ωi (22)

uloc
i (xi ) = ui (23)

here p(x) is the basis vector and a is the unknown coefficient vector. Eq. (23) is the forced interpolation condition.
round the crack tip, we choose p(x) as

p(x) =

[
1,

xT
− xT

k

Ri
, Fα(x) − Fα(xk)

]T

(24)

where the size of the nodal influence domain Ri is generally taken as 2 ∼ 3 times of the mesh size; and Fα(x) is
efined in Eq. (10).

The L2 norm is defined for the construction of the extra-dof-free enrichment

L =
1
2

∑
k∈Pi

(
pT(xk)a − uk

)2
+ λ

(
pT(xi )a − ui

)
(25)

here Pi is the node set in Ωi ; and λ is the Lagrange multiplier, to enforce the interpolation condition (23).
inimizing Eq. (25) by setting

∂L
∂a

= 0,
∂L
∂λ

= 0 (26)

ne can obtain[
A pi
pT

i 0

](
a
λ

)
=

(
Pu
ui

)
(27)

here pi = p(xi ); A is the moment matrix, P the basis-vector matrix, u the dof vector⎧⎪⎪⎪⎨⎪⎪⎪⎩
A =

∑
k∈Pi

pk pT
k

P =
[

p1, p2, . . . , pi , . . . , pni

]
u =

(
u1, u2, . . . , ui , . . . , uni

)T

(28)
here ni is the node number in set Pi .

10
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Solving Eq. (27), we can obtain the unknown coefficient vector a, and hence

uloc
i (x) =

∑
k∈Pi

φi
k(x)uk (29)

φi
k(x) = pT(x)

(
A−1 pk −

A−1
(1) A−T

(1) pk

A−1
11

+
A−1

(1) δik

A−1
11

)
(30)

here A−1
(1) is the first column of A−1; A−1

11 is the first element of A−1
(1) ; and δ is the Kronecker delta.

Taking Eq. (29) as the local approximation of the FE displacement field ui in the nodal influence domain, we
an get the new approximation as

uh(x) =

∑
i

Ni (x)uloc
i (x) =

∑
i

⎡⎣Ni (x)

⎛⎝∑
k∈Pi

φi
k(x)uk

⎞⎠⎤⎦ (31)

Rearranging the terms in Eq. (31), we finally get the extra-dof-free singularity enrichment around the crack tip

uh(x) =

∑
i∈K

⎛⎝∑
k∈Li

Nk(x)φk
i (x)

⎞⎠ui =

∑
i∈K

N tip
i ui (32)

here Li is the set of nodal influence domains containing node i ; φk
i (x) is the local function defined in the nodal

nfluence domain Ωk corresponding to node i . Replacing the indices i , k with K , L , respectively, gives the last term
f Eq. (21).

.2. IXFEM for multiple cracks

We extend Eq. (21) to the multiple crack scenario as

uh(x) =

∑
I∈I/K

NI (x)uI +

nc∑
n=1

∑
J∈J n

add

NJ (x)uJ +

mt∑
m=1

∑
K∈Km

⎛⎝ ∑
L∈Lm

K

NL (x)φL
K (x)

⎞⎠ uK (33)

here I is the set of all nodes; J n
add is the set of newly-added virtual nodes related to the nth crack outside the

rack-tip enrichment domain; Km is the set of singularity enriched nodes related to the mth crack tip; Lm
K ⊂ Km is

he set of nodal influence domains containing node K related to the mth crack tip. The definitions of other symbols
re consistent with Eq. (21).

.3. Blending element treatment

Blending elements are the ones that contain both standard FE nodes and singularity enriched nodes (see Fig. 9).
o ensure the accuracy and convergence of XFEMs, blending elements need special treatment [73]. A successful

mplementation for such treatment is the blending function (or ramp function) introduced by [74]

R(x) =

⎧⎨⎩ 0 x ∈ Ωfem∑nen
I=1 NI (x) x ∈ Ωblend

1 x ∈ Ωtip

(34)

here Ωfem denotes the standard FE domain, Ωblend the blending element domain, Ωtip the crack-tip singularity
nriched domain; and nen is the number of nodes in a blending element.

After introducing the blending function (34) into Eq. (33), we obtain the following IXFEM approximation

uh(x) =

∑
I∈I/(K+K∗)

NI (x)uI +

nc∑
n=1

∑
J∈J n

add/K
∗

NJ (x)uJ +

mt∑
m=1

∑
K∈Km+K∗

m

Ñ tip
mK (x)uK (35)

Ñ tip
mK (x) = (1 − R(x)) NK (x) + R(x)

∑
m

NL (x)φL
K (x) (36)
L∈L
K

11
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Fig. 9. Notations for blending element treatment: (a) Topological enrichment: the singularity enrichment node set consists of all nodes
belonging to elements containing the crack tip; (b) Geometrical enrichment: the singularity enrichment node set consists of all nodes for
which R < Re, where Re is a user defined variable referred to as enrichment radius. In the figure, h denotes the crack-tip element size.

where K∗
= {i |xi ∈ Ωfem ∩ Ωblend } is the intersection node set between Ωfem and Ωblend (see Fig. 9); and K∗

m ⊂ K∗

s the intersection node set related to the mth crack tip. The definitions of other symbols are consistent with Eq. (33).

emark 4 (Criterion on Adding Virtual Nodes in a Crack-Tip Element). The criterion to add virtual nodes is whether
he influence patch of a node, which consist of elements that contain the node, is completely cut by one (or more)
rack(s). If the patch is completely cut by one (or more) crack(s), virtual nodes should be added and the topology
hould be updated accordingly. If the patch is partially cut by one crack (the case of nodes in a crack-tip element), no
irtual nodes are added (Ω e

tip in Fig. 9). In this case, the crack-tip element nodes do not need any special treatment.

emark 5 (Criterion on Selecting Crack-Tip Singularity Enriched Nodes). As for crack-tip singularity enrichment,
oth the real nodes and the virtual nodes are identical. If a virtual node falls into the crack-tip singularity enrichment
omain, the virtual node should also be considered with the extra-dof-free singularity enrichment (Ωtip in Fig. 9b).
his treatment makes the presented approach straightforward and robust in implementation.

. Numerical discretization

.1. Weak form

According to the principle of virtual work, the equilibrium Eqs. (1) and the traction boundary conditions (3) can
e transformed into the following weak integral form∫

Ω

δε : σ dΩ −

∫
Ω

δu · b dΩ −

∫
Γt

δu · t̄ dΓ = 0 (37)

here δu is the virtual displacement, and δε the virtual strain.
Taking the linear elastic constitutive law (4) and the strain–displacement relations (5) into the weak form (37)

ives ∫
(∇sδu) : C : (∇su) dΩ −

∫
δu · b dΩ −

∫
δu · t̄ dΓ = 0 (38)
Ω Ω Γt

12
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5.2. Discrete system of equations

After a Galerkin-type discretization (with Voigt notations) using the displacement field approximation (35), the
eak form (38) of the governing equations can be discretized into the following system of linear equations:

K U = F (39)

here K is the global stiffness matrix; U is the global dof vector; and F is the global load vector. K and F can
e expressed respectively as

K =

∫
Ω

BT DB dΩ (40)

F =

∫
Γt

NT t̄ dΓ +

∫
Ω

NTb dΩ (41)

here B is the strain matrix; D is the elasticity matrix; and N is the shape function matrix. The global dof vector
U together with the matrices N and B can be written respectively as

U =
[
UT

1 UT
2 · · · UT

p

]T
(42)

U I = {u I , vI }
T (I = 1, 2, . . . , p) (43)

N =
[
N1 N2 · · · N p

]
(44)

N I =

[
ÑI 0
0 ÑI

]
(I = 1, 2, . . . , p) (45)

B = L N = [L N1 L N2 · · · L N p] (46)

B I ≡ L N I =

⎡⎣ÑI,x 0
0 ÑI,y

ÑI,y ÑI,x

⎤⎦ (I = 1, 2, . . . , p) (47)

here p is the total number of nodes; {u, v} are the nodal dofs in x and y directions, respectively; L is the strain
radient operator; and ÑI are the generalized nodal shape functions.

emark 6 (On the Total Number of Nodes and Dofs). Note that the total number of nodes p = preal + pvirtual with
preal the number of real nodes and pvirtual the number of newly-added virtual nodes. Also note that all the nodal dofs
u I , vI } are translational ones, so no extra dofs are introduced in the proposed approach and all the translational
ofs come to a number of 2p.

.3. Numerical integration

In this study, numerical integration on discontinuous elements is implemented by subdivision of discontinuous
lements. Actually, the templated cover cutting method, as shown in Section 3.3.3, also plays a role in subdivision
f discontinuous elements. The resultant cut cells can be used for numerical integration.

Denote N cell
cut as the number of cut cells in a cut element (i.e. an element fully cut by a crack) and N cgp

cut as the
umber of Gauss points in each cut cell. A second-order Hammer integration scheme is applied for each cut cell
nd thus N cgp

cut = 4. The cut element stiffness associated to node i and node j can be written as [75]

K e
i j =

N cell
cut∑

k=1

N cgp
cut∑

l=1

[Bi (ξ kl)]
T D[B j (ξ kl)] |J (ξkl)| Wkl (48)

| |
here ξ is the natural coordinates; J is the determinant of Jacobian matrix; and W is the weight at Gauss point.

13
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Fig. 10. Subdivision templates for tip elements.

Note that the templated cover cutting algorithm only gives subdivision for cut elements. As for a tip element
(i.e. an element partially cut by a crack), new subdivision templates should be implemented, as shown in Fig. 10.

Denote N cell
tip as the number of tip cells in a tip element and N cgp

tip as the number of Gauss points in each tip
cell. A sixth-order Hammer integration scheme is employed for each tip cell and thus N cgp

tip = 13. This scheme
is selected with consideration of the tradeoff between accuracy of numerical integration and efficiency of stiffness
matrix generation [44,45]. There are other quadrature rules to enhance accuracy and/or efficiency in the literature;
we refer to Refs. [76–79] for details. The tip element stiffness associated to node i and node j can be written
as [75]

K e
i j =

N cell
tip∑

k=1

N cgp
tip∑

l=1

[Bi (ξ kl)]
T D[B j (ξ kl)] |J (ξkl)| Wkl (49)

where the definitions of other symbols are consistent with Eq. (48).

6. Calculation of stress intensity factors

Stress intensity factor (SIF) is of critical importance in LEFM analysis because it is the single parameter
that represents the singular field at the crack tip and drives crack propagation. The common methods to extract
SIFs include: displacement extrapolation method [80], virtual crack extension method [81], virtual crack closure
technique [82], interaction integral method [83], etc.

Among these methods, the interaction integral method is an effective energy approach which is based on the J -
integral concept [84], and is widely used in the extraction of mixed-mode SIFs [85]. The domain form interaction
integral is defined as

I (1,2)
=

∫
A

[
W (1,2)δ1 j − σ

(1)
i j
∂u(2)

i

∂x1
− σ

(2)
i j
∂u(1)

i

∂x1

]
∂q
∂x j

dA (50)

here σi j , εi j , ui represent the stress tensor, the strain tensor and the displacement vector, respectively; the
uperscripts (1) and (2) denote the real field and the auxiliary field, respectively; A is the integral area enclosed by
ontours Γ , C0, C+, and C− (see Fig. 11); q is a smoothing function, being 1 on the innermost contour and 0 on
he outermost contour and varying linearly in between; and W (1,2) is the interaction strain energy

W (1,2)
=

1
2

(
σ

(1)
i j ε

(2)
i j + σ

(2)
i j ε

(1)
i j

)
= σ

(1)
i j ε

(2)
i j = σ

(2)
i j ε

(1)
i j (51)

The interaction integral is related to the SIFs of both real field and auxiliary field

I (1,2)
=

2 (
K (1)

I K (2)
I + K (1)

II K (2)
II

)
(52)
Eeff
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Fig. 11. Notations for the domain form interaction integral. The integral area A is enclosed by contours Γ , C0, C+, and C−, and its outer
unit normal vector is m j .

where the effective Young’s modulus Eeff is defined in terms of the material parameters E (Young’s modulus) and
ν (Poisson’s ratio)

Eeff =

{
E, plane stress
E

1−ν2 , plane strain (53)

By setting, respectively, K (2)
I = 1, K (2)

II = 0 and K (2)
I = 0, K (2)

II = 1 in Eq. (52), one can obtain the mode I and
ode II SIFs

K (1)
I =

Eeff

2
I (1,mode I), K (1)

II =
Eeff

2
I (1,mode II) (54)

In practical implementations, a square interaction integral domain A is used. This domain is discretized into a
niform mesh with 4 × 4 quadrilateral subcells and each of them is integrated by 6 × 6 Gauss quadrature. The
imension of domain A is adaptively determined to avoid interference from other cracks or the exterior boundary
nd hence to ensure the accuracy of SIF calculation by interaction integral [47]:

(1) When the computed crack tip is free of other cracks and the boundary, the dimension of each subcell in
domain A is taken as the size of the crack-tip element (1h);

(2) When the computed crack tip is close to other cracks or the boundary, the dimension of each subcell in
domain A is taken as dc,min/3, where dc,min is the minimum distance from current crack tip to other cracks
or the boundary;

(3) When the computed crack tip is interfered by other crack tips, the dimension of each subcell in domain A
is taken as dt,min/5, where dt,min is the minimum distance from current crack tip to the interfering ones.

. Numerical examples

In this section, we apply the IXFEM to various multiple crack problems. The following two XFEMs are referred
o for comparison purposes:

• XFEM (Belytschko and his coworkers, 1999) [28,29]: the standard XFEM without blending treatments.
• CXFEM (Fries, 2008) [73]: the corrected XFEM with blending element correction.

Firstly, a systematic investigation on SIF accuracy is carried out regarding the proposed approach. This novel
pproach is thoroughly benchmarked with four classic multiple crack examples, namely:

• the example of double edge cracks in a finite plate;
• the example of symmetrical branched crack in an infinite plate;
• the example of cross crack in a squared plate; and
• the example of two cracks emanating from a hole in a finite plate.
15
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Fig. 12. Double edge cracks in a finite plate under uniaxial tension.

Secondly, the efficiency of the proposed approach is checked from the following three aspects:

• the first aspect is the efficiency of linear system solving. This is considered by the example of a square plate
under uniaxial tension with many cracks (as many as 64). The conditioning of the global stiffness matrix and
the expense of linear system solving is fully compared with those of the standard and corrected XFEMs.

• the second aspect is the efficiency of geometric calculations, i.e. crack cutting elements. This is checked by
the example of a random test — generate a random quadrilateral element and a random crack and test the
computation time of the proposed cutting method. The Delaunay triangulation method is taken as a reference.

• the third aspect is the efficiency of overall computations. This is studied by the double edge cracks example.
We test the overall elapsed time of IXFEM to run this example and compare it with those of the standard and
corrected XFEMs. It is worth mentioning that different crack-tip singularity enrichment domains are examined
for all the three XFEMs in terms of overall computational efficiency.

Lastly, the proposed approach is applied to an engineering application — integrity assessment of an aircraft
structural element with multiple site damage (MSD). The SIFs of cracks arising from MSD are analyzed and
compared with existing software results.

7.1. SIF accuracy examples

7.1.1. Double edge cracks in a finite plate
We first examine the example of double edge cracks in a finite plate of width 2W and height 2H subjected to

uniform uniaxial tensile stress σ , as shown in Fig. 12. The lengths of the double edge cracks are both a. A plane
train condition is assumed. A reference solution of mode I SIF to this problem exists [10]

K ref
I = σ

√
πa g(ξ ) (55)

here ξ = a/W and g(ξ ) is an empirical function

g(ξ ) = (1.122 − 0.561ξ − 0.205ξ 2
+ 0.471ξ 3

− 0.190ξ 4)/(1 − ξ )1/2 (56)

In the computations, the size of the plate is taken as 2W = 14 and 2H = 21, and the crack length is taken
s a = 3.5. The material parameters are taken as: Young’s modulus E = 1000 and Poisson’s ratio ν = 0.3. The
niaxial tensile stress is taken as σ = 1. The reference solution given by Eq. (55) is K ref

I = 3.9263.

We consider all the numerical simulations with XFEM, CXFEM and IXFEM from the following two aspects:
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Table 1
SIF results with different simulation meshes.

Mesh Method #DOFs KI Error (%)

39 × 59
IXFEM 4880 3.9016 0.63
XFEM 4936 3.8527 1.87
CXFEM 5136 3.8959 0.77

59 × 89
IXFEM 10920 3.9136 0.32
XFEM 10976 3.8833 1.10
CXFEM 11176 3.9102 0.41

79 × 119
IXFEM 19360 3.9179 0.21
XFEM 19416 3.9042 0.56
CXFEM 19616 3.9181 0.21

Table 2
SIF results with different enrichment radii (Re).

Re KI Error (%)

XFEM CXFEM IXFEM XFEM CXFEM IXFEM

1h 3.8833 3.9102 3.9136 1.10 0.41 0.32
2h 3.9018 3.9196 3.9216 0.62 0.17 0.12
3h 3.9135 3.9232 3.9247 0.33 0.08 0.04
4h 3.9182 3.9256 3.9259 0.21 0.02 0.01
5h 3.9219 3.9262 3.9264 0.11 0.00 0.00
6h 3.9238 3.9265 3.9265 0.06 0.01 0.01
7h 3.9246 3.9267 3.9266 0.04 0.01 0.01
8h 3.9254 3.9268 3.9268 0.02 0.01 0.01
9h 3.9259 3.9269 3.9269 0.01 0.02 0.02
10h 3.9262 3.9270 3.9270 0.00 0.02 0.02

(1) One is the mesh convergence. We use different simulation meshes to study the SIF accuracy. The simulation
meshes are taken as 39 × 59, 59 × 89, 79 × 119, respectively. In these simulations, only the topological
enrichment strategy is used.

(2) The other is the enrichment convergence. Different enrichment domains are employed to also study the SIF
accuracy. The simulation mesh is taken as 59 × 89. The enrichment radii (Re) range from 1h to 10h, with
h the element size. Except for Re = 1h, the remaining enrichment radii imply a geometrical enrichment
strategy.

In the mesh convergence study, the SIF results, which are calculated on the three different meshes, are tabulated
in Table 1. From this table, we can easily conclude that IXFEM generates more accurate SIF results than XFEM and
CXFEM. The SIF errors by IXFEM are merely 0.63% on the 39 × 59 mesh, 0.32% on the 59 × 89 mesh, and 0.21%
on the 79 × 119 mesh. In contrast, the SIF errors by XFEM are, respectively, 1.87%, 1.10% and 0.56%, which are
almost one order of magnitude higher than those by IXFEM. The SIF errors by CXFEM are, respectively, 0.77%,
0.41% and 0.21%, which are slightly higher than those by IXFEM. However, for the three XFEMs, the accuracy
of SIFs all converges with mesh refinement.

In the enrichment convergence study, the SIF results, which are calculated with 10 different enrichment domains,
are tabulated in Table 2. From this table, we can draw several conclusions: (1) IXFEM generally produce more
accurate SIF results than XFEM and CXFEM. The SIF accuracy of IXFEM is far better than that of XFEM and
slightly better than that of CXFEM. (2) The geometrical enrichment produces better SIF results than the topological
one by all the three XFEMs. Even using the smallest geometrical enrichment domain with Re = 2h, the three
XFEMs significantly decrease the SIF errors compared with the topological one. (3) For the three XFEMs, the
accuracy of SIFs all converges with the radius of enrichment domain (Re). We plot the curves of KI against Re in

Fig. 13, which shows that the three numerical curves approach the analytical one with the increase of Re.
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Fig. 13. Stress intensity factor versus enrichment radius.

7.1.2. Symmetrical branched crack in an infinite plate
We now test the example of symmetrical branched crack in an infinite plate subjected to uniform uniaxial tensile

stress σ , as depicted in Fig. 14. The dimensions of the plate, which are 2W in width and 2H in height, are taken
as large as possible to meet the far-field loading condition. The lengths of the main and secondary crack branches
are a and b, respectively. The inclination angles of the two crack branches are both θ . A plane strain condition is
assumed. The SIFs at the crack tips A and B are normalized by

FA
I =

K A
I

σ
√
πc
, FB

I =
K B

I

σ
√
πc
, FB

II =
K B

II

σ
√
πc

(57)

here 2c = a + b cos θ .
In the computations, the dimensions of the plate are taken as 2W = 40 and 2H = 32, the lengths of the crack

ranches are taken as a = b = 1, and the simulation mesh is taken as 333 × 265 with mesh size ratio h/a = 0.12.
he material parameters are taken as: Young’s modulus E = 1000 and Poisson’s ratio ν = 0.3. The uniaxial

ensile stress is taken as σ = 1. The topological enrichment strategy is used in the tests, so the radius of crack-tip
ingularity enrichment domain is Re = 1h.

We study the influence of different inclination angles θ on the SIF results. Five angles are considered, namely
= 15◦, 30◦, 45◦, 60◦ and 75◦. We compare the SIF results from IXFEM with the standard XFEM by Daux

t al. [51]. The SIFs given by Chen and Hasebe [86], which were calculated by the singular integral equation method
SIEM), are taken as a reference. It should be mentioned that the simulation mesh of IXFEM is intentionally taken
s the same as that of XFEM in [51].

The SIFs calculated from IXFEM, XFEM and SIEM are tabulated in Table 3. The average difference between
XFEM and SIEM is calculated as 0.22% while the average difference between XFEM and SIEM is calculated as
.88%. Therefore, we can conclude that the SIFs from IXFEM are in closer agreement with the reference solutions
rom SIEM than those from XFEM. We further plot the curves of normalized SIFs versus inclination angles, as
hown in Fig. 15, which shows close agreement among the three methods. The von Mises stress contour for θ = 45◦

s presented in Fig. 16.

.1.3. Cross crack in a square plate
We then inspect the example of cross crack in a square plate subjected to uniform biaxial tensile stress σ , as
llustrated in Fig. 17. The size of the square plate 2W is taken as large as possible to meet the far-field loading
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Fig. 14. Symmetrical branched crack in a plate under uniaxial tension: (a) model setup; (b) different crack configurations embedded in the
imulation mesh.

Fig. 15. Normalized SIFs versus inclination angle θ for the branched crack. Reference SIF solutions are taken from [51,86].

ondition. The half lengths of the two perpendicular sets of the cross crack are both a. A plane strain condition is
assumed. The SIFs at the four crack tips are normalized by

FI =
KI

σ
√
πa

(58)

In the computations, the size of the plate is taken as 2W = 2, the crack half-length a varies from 0.1 to 0.9, and
the simulation mesh is taken as 99 × 99. The material parameters are taken as: Young’s modulus E = 1000 and

oisson’s ratio ν = 0.3. The tensile stress is taken as σ = 1. The topological enrichment strategy is used in the
ests, so the radius of crack-tip singularity enrichment domain is R = 1h.
e
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Fig. 16. von Mises stress contour of the branched crack when θ = 45◦.

Table 3
Normalized SIFs FA

I , FB
I , FA

II versus inclination angle θ .

SIF Method θ = 15◦ 30◦ 45◦ 60◦ 75◦

FA
I

IXFEM 1.019 1.031 1.045 1.068 1.115
XFEMa 1.016 1.027 1.045 1.066 1.118
SIEMb 1.018 1.030 1.044 1.069 1.117

FB
I

IXFEM 0.742 0.659 0.496 0.281 0.061
XFEMa 0.750 0.659 0.493 0.281 0.061
SIEMb 0.737 0.658 0.495 0.281 0.061

FA
II

IXFEM 0.113 0.342 0.507 0.579 0.541
XFEMa 0.123 0.344 0.504 0.576 0.535
SIEMb 0.114 0.343 0.506 0.577 0.541

aThe SIFs given by XFEM are taken from Daux et al. [51].
bThe SIFs given by SIEM are taken from Chen and Hasebe [86].

Table 4
Normalized SIFs FI for various dimension radios a/W .

Method a/W = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

IXFEM 0.8641 0.8840 0.9226 0.9557 1.0235 1.1308 1.3109 1.6237 2.3761
XFEMa 0.8653 0.8844 0.9147 0.9572 1.0253 1.1348 1.3170 1.6388 2.4395
FEMb 0.8641 0.8800 0.9092 0.9537 1.0223 1.1300 1.2866 1.4857 –

aThe SIFs given by XFEM are taken from Daux et al. [51].
bThe SIFs obtained by FEM are taken from Cheung et al. [87].

We study the influence of different crack dimensions a on the SIF results and compare the SIF results between
XFEM and two available numerical methods, namely the standard XFEM by Daux et al. [51] and the FEM by
heung et al. [87]. It should be mentioned that the simulation mesh of IXFEM is intentionally taken as the same
s that of XFEM in [51]. The normalized SIFs calculated from IXFEM, XFEM and FEM are tabulated in Table 4
or various dimension radios a/W .

From this table we can see that the SIFs obtained by the three methods gradually increase with the increase of
/W from 0.1 to 0.9. The SIF solutions by the three methods are very close to each other when a/W ≤ 0.6. The

IF solutions by IXFEM are in better agreement with XFEM than FEM when a/W > 0.6. When the dimension
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Fig. 17. Cross crack in a square plate under biaxial tension.

Fig. 18. Normalized SIF FI versus dimension ratio a/W . Reference SIF solutions are taken from [51,87].

ratio a/W is very small, this problem degenerates into the problem of cross crack in an infinite plate subjected to
biaxial tension, which has an analytical solution FI = 0.8639. When a/W = 0.1, the considered problem can be

iewed as such a case. The SIF obtained by IXFEM is 0.8651, which is in better agreement with the analytical
olution than XFEM. We further plot the curves of normalized SIF versus dimension ratio in Fig. 18, which shows
ood agreement among the three methods when a/W ≤ 0.6. The von Mises stress contour for a/W = 0.6 is
resented in Fig. 19. The stress distribution at the four crack tips is symmetrical about the intersection point, which
s physically reasonable.

.1.4. Two cracks emanating from a hole in a finite plate
We lastly check the example of two cracks emanating from a hole in a finite plate subjected to uniaxial tensile

tress σ , as illustrated in Fig. 20a. The hole is centered in the plate and the two cracks are symmetrical about its
enter. The dimensions of the plate are 2W in width and 2H in height, the radius of the hole is r , and the distance
21
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Fig. 19. von Mises stress contour of the cross crack when a/W = 0.6.

Fig. 20. Two cracks emanating from a hole in a finite plate under uniaxial tension: (a) model setup; (b) simulation mesh for IXFEM.

etween the two tips is 2a. A plane strain condition is assumed. The SIFs at the crack tips A and B are normalized
y FI = K I/(σ

√
πa). In the computations, the dimensions of the plate are taken as 2W = 2 and 2H = 4. The

radius of the hole is taken as r = 0.25. The tensile stress is taken as σ = 1. The simulation mesh contains 39 × 79
quadrilateral elements (Fig. 20b). The topological enrichment strategy is used in the tests, so the radius of crack-tip
singularity enrichment domain is Re = 1h.

We study the influence of different crack tip distances 2a on the SIF results and compare the SIF results between

XFEM and the standard XFEM by Daux et al. [51]. The SIF solutions, obtained by the Improved Boundary
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Table 5
Normalized SIFs FI for various dimension radios a/W .

Method a/W = 0.4 0.5 0.6 0.7 0.8 0.9

IXFEM 1.213 1.285 1.397 1.581 1.904 2.642
XFEMa 1.207 1.286 1.389 1.558 1.857 2.611
IBCMb 1.216 1.285 1.397 1.580 1.904 2.625

aThe SIFs given by XFEM are taken from Daux et al. [51].
bThe SIFs obtained by IBCM are taken from Newman Jr. [88].

Fig. 21. Normalized SIF versus ratio a/W . Reference SIF solutions are taken from [51,88].

Collocation Method (IBCM) [88], are taken for a reference. The normalized SIFs calculated from the three methods
are tabulated in Table 5 for various ratios a/W .

From the table we can observe that the SIFs given by the three methods gradually increase with the increase
of a/W from 0.4 to 0.9 and that they are close to each other. By simple calculations, we know that the average
difference between IXFEM and IBCM is merely 0.16% while the average difference between XFEM and IBCM
could reach 0.96%. Therefore, we can conclude that the SIFs from IXFEM are in closer agreement with the reference
solutions from IBCM than those from XFEM. We further plot the curves of normalized SIF versus ratio a/W , as
shown in Fig. 21, which shows good agreement among the three methods. The von Mises stress contour for this
problem when a/W = 0.6 is presented in Fig. 22.

7.2. Efficiency considerations

7.2.1. Efficiency in terms of linear system solving
We use the example of a square plate under uniaxial tension with 64 horizontal cracks, as illustrated in Fig. 23,

to investigate efficiency of IXFEM in terms of linear system solving for multiple crack analysis. The size of the
square plate is W and all the 64 cracks have a length of a. The distribution of the cracks is symmetrical and aligned,
as shown in Fig. 23. The top side of the plate is subjected to a uniform tensile stress σ while the bottom side is

xed. The material parameters are Young’s modulus E and Poisson’s ratio ν.
In the tests, W = 0.2, a = 0.012, σ = 1, E = 1000 and ν = 0.3. A 100 × 100 regular simulation mesh is

onsidered and hence the mesh size is h = 0.002. The topological enrichment strategy is used in the tests, so the

adius of crack-tip singularity enrichment domain is Re = 1h.
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Fig. 22. von Mises stress contour for two cracks emanating from a hole when a/W = 0.6.

Fig. 23. A square plate under uniaxial tension with 64 horizontal and equal-length cracks. The distribution of cracks is symmetrical and
aligned.
24
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Table 6
Efficiency comparison among IXFEM, XFEM and CXFEM in terms of condition number and linear system
solving expense.

nc
a method ndofs

b λmax
c λmin

d CN
e niter

f tLSS
g

0 FEM 20402 5.3826E+03 5.8230E−01 9.2437E+03 185 0.77

1
IXFEM 20418 6.0754E+03 5.8188E−01 1.0441E+04 187 0.77
XFEM 20482 5.3826E+03 1.4000E−03 3.8447E+06 197 0.84
CXFEM 20674 5.3826E+03 2.1946E−18 2.4527E+21 478 2.02

2
IXFEM 20434 6.0759E+03 5.8115E−01 1.0455E+04 194 0.79
XFEM 20562 5.3826E+03 3.9811E−04 1.3520E+07 205 0.85
CXFEM 20946 5.3826E+03 1.3484E−18 3.9918E+21 666 2.93

4
IXFEM 20466 6.0761E+03 5.7927E−01 1.0489E+04 198 0.81
XFEM 20722 5.3825E+03 3.9628E−04 1.3583E+07 208 0.89
CXFEM 21490 5.3825E+03 1.7491E−19 3.0773E+22 853 4.01

8
IXFEM 20530 6.0761E+03 5.7638E−01 1.0543E+04 201 0.85
XFEM 21042 5.3825E+03 2.9258E−04 1.8397E+07 214 0.95
CXFEM 22578 5.3825E+03 9.8334E−20 5.4737E+22 1171 6.35

16
IXFEM 20658 6.0806E+03 5.6887E−01 1.0690E+04 202 0.87
XFEM 21682 5.3822E+03 2.9258E−04 1.8396E+07 222 1.03
CXFEM 24754 5.3822E+03 5.8888E−20 9.1379E+22 1519 10.46

32
IXFEM 20914 6.0807E+03 5.5422E−01 1.0972E+04 209 0.95
XFEM 23072 5.3811E+03 2.9258E−04 1.8392E+07 227 1.24
CXFEM 29106 5.3811E+03 2.0433E−20 2.6341E+23 1743 17.49

64
IXFEM 21426 6.0807E+03 5.4979E−01 1.1060E+04 215 1.08
XFEM 27522 5.3634E+03 2.7766E−04 1.9316E+07 235 1.54
CXFEM 37810 5.3639E+03 1.6934E−20 3.1675E+23 2045 32.62

anc = number of cracks.
bndofs = number of degrees of freedom.
cλmax = maximum eigenvalue of global stiffness matrix.
dλmin = minimum nonzero eigenvalue of global stiffness matrix.
eCN = condition number of global stiffness matrix.
fniter = number of iterations in linear system solving (BiCG).
gtLSS = time cost for linear system solving (unit in second).

In consideration of that one of defacto solvers in large-scale simulations is the subspace iteration method, the
biconjugate gradient (BiCG) method in the open-source library PETSc [89] is chosen to solve systems of linear
equations (SLE). Considering the ill-conditioning of XFEM and CXFEM, the convergence tolerance is set to 10−8

on purpose and the maximum number of iterations is set to 50,000. The testing environment is a personal computer
equipped with 32 GB random access memory (RAM) and an 8-core CPU, whose base frequency is 3.7 GHz.

During the tests, the cracks are gradually activated in a double-increase manner — firstly activate 20
= 1 crack;

secondly activate 21
= 2 cracks; thirdly activate 22

= 4 cracks; · · · ; and lastly activate 26
= 64 (all) cracks. As a

consequence, a total of 7 cases are considered, namely the cases with 1, 2, 4, 8, 16, 32 and 64 cracks.
The efficiency of linear system solving is considered for IXFEM, XFEM and CXFEM, respectively. Table 6

provides an efficiency comparison between the three XFEMs and the standard FEM. In the standard FEM, a crack-
free problem is solved using the same mesh and boundary conditions as the three XFEMs adopt. The test results
in Table 6 are detailed in terms of condition number of global stiffness matrix and linear system solving expense
(reflected by iterations and time to solve SLE), which are discussed in details next.

The maximum eigenvalue λmax and the minimum nonzero eigenvalue λmin of the global stiffness matrices are
computed for the three XFEMs and are compared with the standard FEM, as shown in Table 6. The condition
number CN , which is defined as λmax/λmin, is also given in this table. It is observed from the table that:

(1) The minimum nonzero eigenvalue of XFEM is 3 ∼ 4 orders of magnitude smaller than that of FEM; the
minimum nonzero eigenvalue of CXFEM is 18 ∼ 20 orders of magnitude smaller than that of FEM. In

contrast, the minimum nonzero eigenvalue of IXFEM is in the same order of magnitude as that of FEM.
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Table 7
Comparison of condition number logarithms among IXFEM, XFEM and CXFEM.

log2(nc) log10(CN )

FEM (no crack) IXFEM XFEM CXFEM

0 3.965845317 4.018741447 6.58486407 21.3896367
1 3.965845317 4.019322375 7.13098902 21.6011734
2 3.965845317 4.020743876 7.13298188 22.4881694
3 3.965845317 4.022964207 7.26473940 22.7382803
4 3.965845317 4.028977705 7.26462643 22.9608443
5 3.965845317 4.040271383 7.26471520 23.4206277
6 3.965845317 4.043756741 7.28592687 23.5007211

Fig. 24. Comparison of condition numbers among IXFEM, XFEM and CXFEM. The lines of XFEM and CXFEM are far above the line
f IXFEM, while the lines of IXFEM and FEM coincide with each other.

(2) The condition number of XFEM is 2 ∼ 3 orders of magnitude larger than that of FEM; the condition number
of CXFEM is 17 ∼ 19 orders of magnitude larger than that of FEM. In contrast, the condition number of
IXFEM is in the same order of magnitude as that of FEM.

(3) As the number of cracks increases, the minimum nonzero eigenvalues of both XFEM and CXFEM somewhat
decrease (XFEM decreases one order of magnitude whereas CXFEM decreases two orders of magnitude),
while the minimum nonzero eigenvalue of IXFEM remains almost unchanged as FEM does.

(4) As the number of cracks increases, the condition numbers of XFEM and CXFEM somewhat increase as well
(XFEM increases one order of magnitude whereas CXFEM increases two orders of magnitude), while the
condition number of IXFEM remains almost unchanged as FEM does.

The logarithms of condition numbers are further computed for the three XFEMs in Table 7 and are plotted in
ig. 24. The table shows that the logarithms of condition numbers of XFEM and CXFEM (in particular) are much
igher than that of IXFEM, which is nearly the same as that of FEM. We can also observe this point from the
gure, where the lines of XFEM and CXFEM (in particular) are far above the line of IXFEM, while the lines of
XFEM and FEM coincide with each other.

From the above observations, we can conclude that: (1) the conditioning of IXFEM is as well as FEM, and is
uch better than XFEM and particularly CXFEM; (2) as the number of cracks increases, the ill-conditioning of
FEM and particularly CXFEM can become even more severe, whereas the well-conditioning of IXFEM remains
lmost unchanged as FEM does.
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Fig. 25. Comparison of number of iterations (niter) versus logarithm of number of cracks (log2(nc)) among IXFEM, XFEM and CXFEM.
ashed lines represent linear fitting curves.

The expense of the three XFEMs in terms of linear system solving is also investigated. The iterations and time
o solve SLE are shown in Table 6. Detailed analysis on iterations to solve SLE is plotted in Fig. 25 while that on
ime is plotted in Fig. 26.

It can be observed from the table and figures that:

(1) IXFEM not only solves a relatively smaller size of system, but also converges faster than XFEM and CXFEM
when dealing with multiple crack problems. In particular, IXFEM converges one magnitude of order faster
than CXFEM.

(2) As the number of cracks increases, the number of iterations to solve SLE becomes larger for all the three
XFEMs. A linear relation between the number of iterations and the logarithm of the number of cracks seems
to exist (Fig. 25) and hence the number of iterations is of order O(log(nc)).

(3) The slopes of the linear relation are 4.2143 for IXFEM, 6.1429 for XFEM and 268.61 for CXFEM,
respectively. The slope of IXFEM is the smallest among the three XFEMs, which means that the more
the cracks, the relatively fewer iterations that IXFEM increases to solve SLE.

(4) As the number of cracks increases, the time to solve SLE becomes also longer for all the three XFEMs.
A polynomial relation between the time to solve SLE and the logarithm of the number of cracks seems to
exist (Fig. 26). A cubic polynomial fits the relation very well and hence the time to solve SLE is of order
O(log3(nc)).

(5) The major coefficients in the cubic relation are 0.0025 for IXFEM, 0.0047 for XFEM and 0.2664 for CXFEM,
respectively. The coefficient of IXFEM is the smallest among the three XFEMs, which also means that the

more the cracks, the relatively less time that IXFEM consumes to solve SLE.
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Fig. 26. Comparison of time for linear system solving (tLSS) versus logarithm of number of cracks (log2(nc)) among IXFEM, XFEM and
XFEM. Dashed lines represent cubic fitting curves.

From the above observations, we can find that IXFEM is highly efficient in terms of linear system solving,
n particular for multiple crack problems. As the number of cracks increases, the ill-conditioning of XFEM and
XFEM can become even more severe, which leads to more expense of linear system solving. Since IXFEM remains
ell-conditioning in such problems, it consumes relatively less expense of linear system solving compared with the

wo XFEMs. Though some better solvers may exist to solve the ill-conditioned systems of the two XFEMs, it is still
easonably concluded that IXFEM is more robust and more stable and hence less challenging and less expensive
n multiple crack analysis.

.2.2. Efficiency in terms of geometric calculations
We use the example of a square plate, as illustrated in Fig. 27, to investigate the efficiency of the proposed

emplated cutting method in Section 3.3.3. The plate occupies domain Ω = [0, 2] × [0, 2]. The test procedures are
as follows:

(1) Randomly generate four points A,B,C,D ∈ Ω ;
(2) Connect these points to make a convex quadrilateral element Ωe = ABCD (assume this order) and this

element is also randomly generated;
(3) Randomly generate two points, one (P) on the left side and the other (Q) on the right;
(4) Connect the two points P and Q to form a random crack Γ ;
(5) Use the proposed templated cutting method to subdivide the element Ωe;
(6) For comparison purposes, also use Delaunay triangulation to subdivide this element.
(7) Repeat the above procedures until a given looping number (e.g. 1000) is reached.
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Fig. 27. Geometric setup for crack cutting test.

Table 8
Comparison of computation time for crack cutting.

#cutting tests #cutting events computation time (sec) time ratio

proposed Delaunay

1000 837 0.0165554 0.0384098 2.32
5000 4260 0.057322 0.1843772 3.22
10000 8470 0.120299 0.3865777 3.21
100000 84699 1.1720987 3.7420633 3.19
1000000 847407 14.08104 46.020675 3.27

The computation time for the proposed templated cutting method and the Delaunay triangulation method is
ollected in Table 8. From the table we can easily observe that the proposed templated cutting method is much
aster than the Delaunay triangulation method. The time ratio of the two methods is about 3. The efficiency of the
roposed templated cutting method is highly demonstrated. It is also worth mentioning that the proposed templated
utting method is quite robust since no cumbersome geometric implementations are introduced.

.2.3. Efficiency in terms of overall computations
We use the example of double edge cracks, as presented in Section 7.1.1, to examine the overall computational

fficiency of IXFEM. The tested cases are selected from the enrichment convergence studies, which include the cases
ith enrichment radii (Re) ranging from 1h to 5h. As for Re ≥ 5h, no convergence is observed for both XFEM and
XFEM with an iterative linear system solver (BiCG) when a maximum number of iterations (500,000) is reached.
he convergence tolerance is intentionally set to a large value of 10−6. In the tests, the level set templated cover
utting method is used for description of cracks in all the three XFEMs.

The test results in terms of computational time distribution are presented in Table 9 for Re ≤ 5h. This table
shows (1) the time cost for stiffness matrix generation (including the time to calculate element stiffness matrices
and the time to assemble global stiffness matrix), (2) the time cost for linear system solving (LSS), and (3) the time
cost for remaining operations (including the time to discretize the crack, the time to apply boundary conditions,
etc.). The total time cost for overall computations is also presented. From this table, we can conclude that:

(1) IXFEM costs (one order of magnitude) more time than XFEM and CXFEM in stiffness matrix generation.
Since the extra-dof-free singularity enrichment needs to calculate the inverses of small-scale dense matrices
(seven-order in 2D), IXFEM theoretically consumes more expenses than XFEM and CXFEM in terms of
element stiffness calculations.

(2) IXFEM costs far less time than XFEM and CXFEM in linear system solving (LSS) with an iterative solver
(de facto in large-scale simulations). Especially for geometrical enrichment, the time cost for LSS with XFEM
and CXFEM grows unbounded due to slow convergence or failure of convergence.
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Table 9
Computational time distribution for the three XFEMs with different enrichment radii (Re).

Method Time (s) Re = 1h 2h 3h 4h 5h

XFEM

tKEG
a 0.236 0.252 0.286 0.324 0.393

tLSS
b 0.085 0.538 2.750 62.757 N.A.e

tRMN
c 0.119 0.123 0.122 0.125 N.A.e

tTOT
d 0.440 0.913 3.158 63.206 N.A.e

CXFEM

tKEG
a 0.262 0.295 0.338 0.396 0.483

tLSS
b 1.744 10.936 45.281 N.A.e N.A.e

tRMN
c 0.119 0.122 0.122 N.A.e N.A.e

tTOT
d 2.125 11.353 45.741 N.A.e N.A.e

IXFEM

tKEG
a 1.861 3.159 4.320 5.522 7.590

tLSS
b 0.064 0.064 0.069 0.068 0.070

tRMN
c 0.117 0.118 0.121 0.123 0.126

tTOT
d 2.042 3.341 4.510 5.713 7.786

atKEG = time cost for (elemental and global) stiffness matrix generation.
btLSS = time cost for linear system solving (LSS).
ctRMN = time cost for remaining operations.
dtTOT = total time cost for overall computations.
eN.A. = not available due to failure of convergence in LSS.

Fig. 28. Analyzed configuration with multiple cracks: (a) model setup; (b) crack lengths.

(3) The total time cost for the three XFEMs differs with the enrichment radius (Re). When Re is small, XFEM
costs less time than IXFEM, but when Re is large, XFEM costs much more time than IXFEM. Among the
three XFEMs, CXFEM cost the most time whether Re is large or small.

.3. Engineering example

A typical aero structural configuration in engineering practices demonstrates the last example, which was
resented by Kastratović et al. [90] to validate their approximate procedure to evaluate SIFs. The configuration
s used to simulate multiple site damage (MSD) of great interest in aero community, which can be very serious
ecause of possible linkup of adjacent cracks and can cause catastrophic failure once a large crack is formed.

The configuration, as shown in Fig. 28, is a thin plate with three circular holes subjected to uniform uniaxial
ensile stress σ . The middle hole has two radial cracks while the other two have one radial crack. The material of
30
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Fig. 29. Simulation mesh for IXFEM.

the plate is aluminum alloy Al-2024 T3. Since small-strain yielding conditions prevail in the vicinity of crack tips,
the material is considered isotropic linear elastic and the simulation is conducted under the LEFM framework.

The dimensions of the plate are L1 × L2, the radius of the three holes is r , the distance between two adjacent
holes is b, and the length of the four cracks is either a1 (cracks A and B) or a2 (cracks C and D). The SIFs at the
our crack tips are normalized as follows

βA =
KIA

σ
√
πa1

, βB =
KIB

σ
√
πa1

, βC =
KIC

σ
√
πa2

, βD =
KID

σ
√
πa2

(59)

In the computations, the dimensions of the plate are taken as L1 = 150 mm and L2 = 100 mm. The radius of
the holes is taken as r = 2.4 mm. The distance between two adjacent holes is taken as b = 25 mm. The crack
length a1 ranges from 1.00 mm to 8.00 mm while a2 ranges from 1.00 mm to 4.80 mm. The material parameters
are taken as: Young’s modulus E = 73 GPa and Poisson’s ratio ν = 0.33. The simulation mesh for IXFEM, as
shown in Fig. 29, contains 33,344 nodes and 33,006 quadrilateral elements.

In the work of Kastratović et al. [90], they compared SIF results obtained by their approximate procedure
against results obtained through calculation with two finite element software packages. One is the FEM software
package ANSYS v14; the other is an Abaqus plug-in Morfeo/Crack based on the standard XFEM. SIFs in ANSYS
were calculated by displacement extrapolation technique while SIFs in Morfeo were extracted through interaction
integrals. The three sets of available SIF solutions, namely the approximate solutions, the ANSYS solutions and
the Morfeo solutions, are taken herein for comparison purposes.

The SIFs are calculated for a series of models with different crack lengths for all the cracks in the configuration.
The crack increment is set to be the same for all the cracks based on the service data which shows that cracks in
MSD are roughly of equal length. The normalized SIFs (denoted as β) for all the cracks are tabulated in Tables 10
and 11. The curves of normalized SIF versus dimensionless crack length are plotted in Fig. 30.

As can be seen from the figure, excellent agreements between SIF results by IXFEM and by other methods are
achieved. In particular, the SIFs for crack tips A and B obtained by IXFEM nearly coincide with those obtained
by ANSYS. The average difference between IXFEM and ANSYS with regard to crack A is merely 0.9% and the
average difference between IXFEM and ANSYS with regard to crack B is merely 1.2%. The average differences
between IXFEM and Morfeo are 2.1% for crack A and 3.2% for crack B, respectively. The average differences

between IXFEM and the approximate procedure are 3.0% for crack A and 2.6% for crack B, respectively.
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Table 10
Comparison of the SIF solutions for crack tips A and B.

a1 (mm) r (mm) b (mm) a2 (mm) βA-IXFEM βB -IXFEM β-Approx.a β-ANSYSa βA-Morfeoa βB -Morfeoa

1.00 2.4 25 1.00 1.9197 1.9102 1.9490 1.9736 1.7691 1.8046
1.60 2.4 25 1.53 1.6765 1.6741 1.6584 1.6969 1.6787 1.6658
2.00 2.4 25 1.86 1.5959 1.5691 1.5424 1.5951 1.5823 1.6267
2.60 2.4 25 2.28 1.4828 1.4462 1.4289 1.4849 1.5072 1.5206
3.00 2.4 25 2.53 1.4335 1.4284 1.3778 1.4285 1.4378 1.4614
3.60 2.4 25 2.87 1.3595 1.3577 1.3234 1.3701 1.3954 1.4152
4.00 2.4 25 3.00 1.3287 1.3273 1.2960 1.3467 1.3522 1.3729
5.00 2.4 25 3.56 1.2994 1.2943 1.2546 1.2974 1.3221 1.3510
6.00 2.4 25 4.00 1.2675 1.2702 1.2323 1.2728 1.3062 1.3065
7.00 2.4 25 4.43 1.2661 1.2658 1.2242 1.2548 1.2766 1.3092
8.00 2.4 25 4.80 1.2772 1.2755 1.2262 1.2545 1.2546 1.2640

aThese SIF solutions are taken from Kastratović et al. [90].

Table 11
Comparison of the SIF solutions for crack tips C and D.

a1 (mm) r (mm) b (mm) a2 (mm) βC -IXFEM βD-IXFEM β-Approx.a β-ANSYSa βC -Morfeoa βD-Morfeoa

1.00 2.4 25 1.00 1.8246 1.7985 1.8615 1.9736 1.8091 1.7786
1.60 2.4 25 1.53 1.5636 1.5570 1.6061 1.6969 1.6146 1.6351
2.00 2.4 25 1.86 1.4735 1.4675 1.5002 1.5951 1.5470 1.5384
2.60 2.4 25 2.28 1.3738 1.3687 1.4006 1.4849 1.4195 1.4361
3.00 2.4 25 2.53 1.3475 1.3297 1.3551 1.4285 1.3676 1.3820
3.60 2.4 25 2.87 1.2996 1.2884 1.3060 1.3701 1.3414 1.3288
4.00 2.4 25 3.00 1.2926 1.2773 1.2930 1.3467 1.3402 1.3274
5.00 2.4 25 3.56 1.2551 1.2293 1.2442 1.2974 1.2900 1.2571
6.00 2.4 25 4.00 1.2202 1.2224 1.2288 1.2728 1.2357 1.2418
7.00 2.4 25 4.43 1.2317 1.2344 1.2318 1.2548 1.2521 1.2305
8.00 2.4 25 4.80 1.2685 1.2582 1.2573 1.2545 1.2431 1.2471

aThese SIF solutions are taken from Kastratović et al. [90].

For cracks C and D, there are also good agreements between SIF results by IXFEM and by other methods. From
he figure we can see that IXFEM is very close to the approximate procedure. The average difference between
XFEM and the approximate procedure with regard to crack C is merely 1.1% and the average difference between
XFEM and the approximate procedure with regard to crack D is merely 1.6%. The average differences between
XFEM and ANSYS are 5.1% for crack C and 5.6% for crack D, respectively. The average differences between
XFEM and Morfeo are 1.1% for crack C and 5.6% for crack D, respectively. Considering that different meshes
nd methods are used, an average difference of order 5% is quite reasonable.

From the above observations we can conclude that the SIF solutions obtained by IXFEM are absolutely acceptable
rom an engineering point of view. Thus the approach proposed in this paper provides a very capable tool for multiple
rack analysis.

. Conclusions

Stress intensity factor (SIF) plays a critical role in LEFM analysis because it is the single parameter that represents
he singular field at the crack tip. Thus, accurate calculation of SIFs, in particular for multiple cracks, is quite
ssential for the prediction of crack growth rate and residual strength of cracked structures.

To meet this end, we develop an improved XFEM (IXFEM) with novel geometric description for multiple
racks. The proposed approach, on the one hand, avoids the difficulty of level set combination in XFEM by
ntroducing templated cover cutting; and on the other hand, eliminates the daunting issues of linear dependence and
ll-conditioning of XFEM by employing an extra-dof-free singularity enrichment around a crack tip. The developed
pproach shows promising insight into multiple crack analysis.

Several benchmark problems are considered in terms of SIF accuracy, linear system solving efficiency, geometric

omputation efficiency and overall computation efficiency. An engineering example of a typical aero structural
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Fig. 30. Normalized SIFs for (a) crack tip A, (b) crack tip B, (c) crack tip C and (d) crack tip D. Reference SIF solutions are taken
from [90].

configuration is also demonstrated. Comparative studies with available SIF solutions or existing numerical methods
are carried out. New findings with regard to multiple crack problems are revealed on IXFEM. Conclusions are
drawn as follows:

(1) IXFEM offers highly accurate SIF evaluation over the standard and corrected XFEMs in a multiple crack
simulation. From the SIF benchmarks we can see that the SIF errors of IXFEM are significantly lower than
those of XFEM and slightly lower than those of CXFEM. IXFEM always generates SIF results closer to
theoretical solutions.

(2) IXFEM exhibits well-conditioning of the global stiffness matrix independent of the number of cracks. When
this number increases, the ill-conditioning of XFEM and in particular CXFEM becomes even more severe.
Since IXFEM utilizes an extra-dof-free singularity enrichment, it does not suffer from this daunting issue at
all and recovers the well-conditioning as the standard FEM.

(3) In a multiple crack simulation, the three XFEMs all require iterations of order O(log(nc)) and time of order
O(log3(nc)) to solve systems of linear equations. The slope or major coefficient of IXFEM is much smaller
than that of XFEM and CXFEM. This indicates that IXFEM consumes relatively less expense in linear system
solving.

(4) The proposed level set templated cover cutting method is much more efficient than the Delaunay triangulation
method. It is also quite robust since no cumbersome geometric implementations are introduced.

(5) IXFEM consumes one order of magnitude more time than XFEM and CXFEM in stiffness matrix generation.
However, it costs far less time in linear system solving when an iterative solver is used. The total time spent
33
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for overall computations depends on the enrichment radius. When the geometrical enrichment strategy is
used, IXFEM shows its significant efficiency while maintaining high accuracy.

(6) From the last example we can see that the SIF solutions obtained by IXFEM are comparable with available
software solutions from an engineering point of view. Thus, the proposed approach provides a very capable
tool for multiple crack analysis.

On-going work is to investigate the proposed approach for multiple evolving crack problems, which involve
nitiation, propagation and interaction of arbitrary multiple cracks [91]. As no extra dofs and no cumbersome
eometric implementations are required, the proposed approach should also be accurate, efficient, stable and robust
or such problems. The extension of this approach to three-dimensional crack problems seems to be feasible as well
nd remains to be further investigated.
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