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In the data-driven discovery of partial differential equations, previous researchers have successfully employed 
various methods to derive estimation of parameters from smooth data, but not from data with sharp gradient or 
discontinuity. To capture the sharp gradient/discontinuous part in data, we introduce a non-zero mean function 
in terms of the Sigmoid function in the Gaussian process prior. We test the method using noise-free and noisy 
data on the regression problem and the inverse problem of Burgers’ equation, inviscid Burgers’ equation, and the 
nonlinear wave system (NLWS), and verify its effectiveness and robustness.
1. Introduction

Based on knowledge of mathematical formulas, physical laws, or 
other principles, we can generate data through experiments or simula-

tions. In turn, data can also be employed to discover the principles un-

derneath, or in many cases, the governing partial differential equations 
(PDEs) [1]. The discovery of PDEs aims at determining the unknown 
parameters in the equations, which regulate the operation of the sys-

tem or reveal certain properties of an object. A relevant term “system 
identification” is also used [2–7], which mostly focuses on the recon-

struction of the equations based on observation data. The identification 
of parameters in PDEs can boost our knowledge in a group of systems 
with similar physical backgrounds, and provide guidance for potential 
applications.

Data-driven algorithms have been widely used in the discovery of 
PDEs. The most direct approach is sparse regression, which involves dis-

cretization of the spatial derivative [8,9], local interpolation [10–13]

or time integration scheme [14–16]. Other statistical models include 
Deep Neural Networks (DNN) and Gaussian Processes (GP). DNN con-

structs a neural network for the target function, and has been applied 
to both the solution [17] and the discovery of PDEs [18–21]. GP sets 
a prior distribution to the data at a certain timepoint, and has been 
proved effective in linear [22,23] and non-linear PDEs [24–27], and 
also fractional differential equations [22,28]. Compared to DNN, the 
GP model introduces fewer hyperparameters, which decreases the risk 
of over-fitting and meanwhile speeds up the training process. GP can 
be thought as a Bayesian alternative to the class of kernel methods and 
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gives well-calibrated probabilistic outputs [29], which is suitable for 
regression problems [30,31]. GP model has also been applied to regres-

sion problems with discontinuous data [32–34].

Currently, the application of the GP model to data-driven discovery 
has the following limitation. Previous researchers [35] set the mean 
function in the GP prior as zero for simplicity. Although the GP model 
with zero mean function does work for smooth cases, it fails for data 
with sharp gradient or discontinuity (such as shock waves in supersonic 
flow). A GP prior with zero mean function and squared exponential 
kernel function is too smooth to capture jumps in data, and results in 
bad performance as shown in Section 4.

In our work, the GP model is enhanced by introducing the Sigmoid 
function as the mean function in the GP prior. The key idea is to use 
a non-zero mean function to capture the sharp gradient/discontinuous 
part, and the conventional GP model to deal with the smooth part. A 
natural idea is to take functions containing discontinuity like the Heav-

iside function as the mean function. Our previous work introduced the 
Heaviside function into the GP model as the mean function to deal with 
inverse problems with discontinuity, while there are some problems do-

ing this. Firstly, the Heaviside mean function is discontinuous and thus 
leads to a complicated optimization, for we cannot use gradient-based 
algorithms directly. Secondly, the loss is piecewise constant with respect 
to the location of the shock (discontinuity) because the Heaviside mean 
function is a piecewise constant function, which means that the opti-

mal solution is not unique. To address these issues, we choose a smooth 
function, the Sigmoid function, as the mean function in this paper, be-

cause it is easy to obtain the analytical form of its derivatives, which 
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is convenient for the training stage, and avoid the trouble of piecewise 
optimization and nonuniqueness of solution.

To interpret the modification and demonstrate the effectiveness, we 
apply the GP model with a non-zero mean function to a regression prob-

lem with discontinuous data first. Then we illustrate the effectiveness 
of our method for data-driven discovery of PDEs by Burgers’ equation, 
inviscid Burgers’ equation, and the nonlinear wave system (NLWS) with 
sharp gradient/discontinuous data, and further consider noisy cases to 
test the robustness.

The rest of this paper is organized as follows. Section 2 introduces 
the problem setup for data-driven discovery of equations and the back-

ward Euler scheme used in the proposed method. Section 3 describes 
the modified GP model with non-zero mean function for the discov-

ery of PDEs. Section 4 shows the numerical results for the regression 
problem and the inverse problem of Burgers’ equation, inviscid Burg-

ers’ equation, and NLWS.

2. Problem setup

Consider parameterized nonlinear partial differential equations of 
the general form

𝑢𝑡 + 𝜆
𝑥
𝑢 = 0, (1)

where 𝑢(𝑡, 𝑥) denotes a function of time 𝑡 and position 𝑥,  𝜆
𝑥

is a non-

linear operator parameterized by 𝜆 that is unknown.

We have two snapshots of a wave profile 𝑢(𝑡, 𝑥) at 𝑡0 and 𝑡1, denoted 
by 𝑢1 ∼ 𝑢(𝑡1, 𝑥) and 𝑢0 ∼ 𝑢(𝑡0, 𝑥), respectively. Our objective is to discover 
𝜆 numerically from the given data. Assuming the time step Δ𝑡 = 𝑡1 − 𝑡0

is small enough, we can apply the backward Euler scheme to equation 
(1) and obtain the discretized equation

𝑢0 =𝜆
𝑥
𝑢1. (2)

The reason for adopting the backward Euler method is that it has a 
minimal stencil and is most convenient to present our theoretical work. 
Other schemes are also available for presenting our idea. We remark 
that if a multi-step method is adopted, our theory needs to be further 
extended, but our idea still works.

We take Burgers’ equation for illustration, which is a minimal model 
of fluid mechanics. In one space dimension, the equation reads

𝑢𝑡 + 𝜆𝑢𝑢𝑥 = 𝜈𝑢𝑥𝑥, (3)

where 𝜈 is the viscosity and 𝜆 is the unknown parameter. The corre-

sponding linear operator is

𝜆,𝜇
𝑥

𝑢1(𝑥) =
(
𝐼 + 𝜆Δ𝑡𝜇(𝑥) 𝑑

𝑑𝑥
− 𝜈Δ𝑡

𝑑2

𝑑𝑥2

)
𝑢1(𝑥). (4)

There exist different ways to define the parameter 𝜇 in different 
schemes [24]. Here, we use 𝑢0 to approximate it in the backward Euler 
scheme. Note that in the numerical implementations, we only consider 
the mean and covariance of data points, so 𝜇(𝑥) approximated by 𝑢0(𝑥)
is known at the sampled spatial points 𝐱0.

Assume that 𝑢0(𝑥) is provided at 𝑀 sample points 𝐱0 denoted by 𝐮0
and 𝑢1(𝑥) at 𝑁 sample points 𝐱1 as 𝐮1, with

𝐱0 = {𝑥01, ..., 𝑥
0
𝑀
}, 𝐱1 = {𝑥11, ..., 𝑥

1
𝑁
},

𝐮0 = {𝑢01, ..., 𝑢
0
𝑀
}, 𝐮1 = {𝑢11, ..., 𝑢

1
𝑁
}.

They may be subjected to a certain level of noise. For the sake of 
simplicity, we consider the wave profile containing only one sharp gra-

dient, though the position is unknown. Note that the sample points 𝐱0
and 𝐱1 can be different. The viscosity 𝜈 can also be inferred in the same 
manner.
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3. Methodology

GP model with zero mean function can be used to successfully iden-

tify parameters from smooth data [22,25], but it might fail for data 
with sharp gradient/discontinuity, as illustrated in Section 4. To ad-

dress such a problem, we develop a GP model with a non-zero mean 
function as below, called the GPNOM method. Fig. 1 shows a schematic 
of the developed framework summarizing the methodology.

3.1. Prior

The key idea of the GP model is to assume 𝑢1(𝑥) = 𝑢(𝑡1, 𝑥) to be a 
Gaussian process with a mean function 𝑚1(𝑥; 𝜃𝑚) and a kernel function 
𝑘1,1(𝑥, 𝑥′; 𝜃𝑘)

𝑢1(𝑥) ∼ (𝑚1(𝑥;𝜃𝑚), 𝑘1,1(𝑥,𝑥′;𝜃𝑘)), (5)

with hyperparameters 𝜃𝑚 and 𝜃𝑘 = (𝜎0, 𝜎1). The kernel function takes the 
form

𝑘1,1(𝑥,𝑥′;𝜃𝑘) = 𝑘𝑆𝐸 (𝑥,𝑥′;𝜃𝑘) = 𝜎2
0 exp[−𝜎

2
1 (𝑥− 𝑥′)2]. (6)

It is the one-dimensional form of the squared exponential kernel func-

tion 𝑘𝑆𝐸 , which is common in GP models [36].

Different from the zero mean function used by Raissi et al. [22], we 
take a non-zero mean function

𝑚1(𝑥;𝜃𝑚) = 𝑎𝜎 (𝑤(𝑥+ 𝑏)) (7)

with 𝜃𝑚 = (𝑎, 𝑏, 𝑤) and the Sigmoid function 𝜎(𝑧) = 1∕ (1 + exp(−𝑧)). The 
jump takes the magnitude 𝑎 at position −𝑏, and with the width 1∕𝑤. See 
Fig. 2. The mean function of this form is designed to capture the sharp 
gradient/discontinuous part in the data.

Since 𝜆
𝑥

is a linear operator in terms of 𝑢1(𝑥), and the linear trans-

formation of a Gaussian process remains Gaussian [22], 𝑢0(𝑥) and 𝑢1(𝑥)
form a multi-output Gaussian process[
𝑢1

𝑢0

]
∼ 

([
𝑚1

𝑚0

]
,

[
𝑘1,1 𝑘1,0

𝑘0,1 𝑘0,0

])
(8)

with

𝑚0(𝑥;𝜃𝑚, 𝜆) = 𝜆
𝑥
𝑚1(𝑥;𝜃𝑚), 𝑘1,0(𝑥,𝑥′;𝜃𝑘, 𝜆) = 𝜆

𝑥′
𝑘1,1(𝑥,𝑥′;𝜃𝑘),

𝑘0,1(𝑥,𝑥′;𝜃𝑘, 𝜆) = 𝜆
𝑥
𝑘1,1(𝑥,𝑥′;𝜃𝑘), 𝑘0,0(𝑥,𝑥′;𝜃𝑘, 𝜆) = 𝜆

𝑥
𝜆

𝑥′
𝑘1,1(𝑥,𝑥′;𝜃𝑘),

where 𝑘𝑖,𝑗 (𝑥, 𝑥′) = cov(𝑢𝑖(𝑥), 𝑢𝑗 (𝑥′)) represents the covariance between 
𝑢𝑖(𝑥) and 𝑢𝑗 (𝑥′), 𝑖, 𝑗 ∈ {0, 1}. The subscript 𝑥′ of 𝜆

𝑥′
means that the oper-

ator acts on the input variable 𝑥′ with another variable 𝑥 unchanged.

In practice, we mostly face noisy measurements rather than noise-

free data. Assuming noise follows an independent identically Gaussian 
distribution with variance 𝜎2

𝑢
, we substitute the noisy data 𝐱0, 𝐱1, 𝐮0, 𝐮1

introduced in Section 2 into equation (8). The prior on noisy measure-

ments is

𝐮 ∼ (𝐦,𝐊), (9)

where column vectors 𝐮, 𝐦, and symmetric matrix 𝐊 all of order (𝑀 +
𝑁) are given by

𝐮 =
[
𝐮1
𝐮0

]
, 𝐦 =

[
𝐦1

𝐦0

]
=
[
𝑚1(𝐱1)
𝑚0(𝐱0)

]
,

𝐊 =
[
𝑘1,1(𝐱1,𝐱1) 𝑘1,0(𝐱1,𝐱0)
𝑘0,1(𝐱0,𝐱1) 𝑘0,0(𝐱0,𝐱0)

]
+ 𝜎2

𝑢
𝐈,

respectively. For noise-free data, the variance 𝜎2
𝑢
, which measures the 

level of noise, equals zero.

3.2. Training

Under the hyperparameters 𝜃𝑚 = (𝑎, 𝑏, 𝑤), 𝜃𝑘 = (𝜎0, 𝜎1) and model pa-

rameter 𝜆, the likelihood function reads
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Fig. 1. Flowchart summarizing the GPNOM method developed in this work.
Fig. 2. Non-zero mean function 𝑚1(𝑥;𝜃𝑚).

𝑝(𝐮|𝜆, 𝜃𝑚, 𝜃𝑘, 𝜎2
𝑢
) = 1

(2𝜋)(𝑀+𝑁)∕2|𝐊|1∕2 exp[−1
2
(𝐮−𝐦)𝑇𝐊−1(𝐮−𝐦)]. (10)

The model parameter 𝜆 and hyperparameters can be trained by em-

ploying a quasi-Newton optimizer L-BFGS [37] to minimize the negative 
log marginal likelihood [30]

𝐿 = −log𝑝(𝐮|𝜆, 𝜃𝑚, 𝜃𝑘, 𝜎2
𝑢
)

= 1
2
log |𝐊|+ 1

2
(𝐮−𝐦)𝑇𝐊−1(𝐮−𝐦) + 𝑀 +𝑁

2
log(2𝜋).

(11)

The three terms of the negative marginal likelihood in equation (11)

have the following interpretation. The only term involving the observed 
targets is the data-fit (𝐮 −𝐦)𝑇𝐊−1(𝐮 −𝐦)∕2, and especially when 𝑚(𝑥)
gives the exact solution, this term equals zero. log |𝐊|∕2 is the complex-

ity penalty depending only on the covariance function and the inputs, 
and (𝑀 +𝑁) log(2𝜋)∕2 is a normalization constant.

3.3. Some discussions

We choose the Sigmoid function as the mean function for the fol-

lowing reasons.

Firstly, the Sigmoid function can approximate the sharp gradient 
part of the data. With appropriate parameters, the rest part 𝑢1(𝑥) −
𝑚1(𝑥; 𝜃𝑚) is of better regularity, which the conventional GP model can 
deal with. From the perspective of stochastic process, GP with zero 
mean function is a stationary process, which is unsuitable for depict-

ing the data with sharp gradient. Raissi et al. [24] choose GP with a 
neural network kernel function [30]

𝑘𝑁𝑁 (𝑥,𝑥′;𝜎0, 𝜎1) =
2
𝜋
sin−1

⎛⎜⎜⎜⎝
2(𝜎2

0 + 𝜎2
1𝑥𝑥

′)√
(1 + 2(𝜎2

0 + 𝜎2
1𝑥

2))(1 + 2(𝜎2
0 + 𝜎2

1𝑥
′2))

⎞⎟⎟⎟⎠
(12)
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instead of 𝑘𝑆𝐸 in equation (6) as prior, and get a nonstationary process. 
In contrast, GP with a non-zero mean function used in our GPNOM is 
also a nonstationary process.

Secondly, it is easy to obtain the analytical form of the derivatives 
for the Sigmoid function, which is convenient for the training stage. See 
Appendix C.

Thirdly, the traveling wave solution of Burgers’ equation is in the 
form of the Sigmoid function [38], which reads

𝑢(𝑡, 𝑥) = 2𝑤
1 +𝐶 exp[𝑤(𝑥−𝑤𝑡)∕𝜈]

, (13)

with 𝑤 as the propagation velocity, 𝜈 the viscosity, and 𝐶 the integra-

tion constant. It can be rewritten in the form of the Sigmoid function

𝑢(𝑡, 𝑥) = 2𝑤𝜎
(
−𝑤(𝑥−𝑤𝑡)∕𝜈 − �̃�

)
, (14)

where �̃� = ln𝐶 . Especially, for a standing shock, the traveling wave 
solution is

𝑢(𝑡, 𝑥) =𝑤 tanh(𝑤𝑥∕2𝜈). (15)

The tangent hyperbolic function is an alternative form for the mean 
function. We remark that the Sigmoid function also works for cases 
without a Sigmoid-form traveling wave, such as the following regres-

sion problem and the example of NLWS.

Similar to Burgers’ equation, in inviscid Burgers’ equation

𝑢𝑡 + 𝜆𝑢𝑢𝑥 = 0, (16)

a shock wave appears when the velocity profile has a decreasing seg-

ment as a function of 𝑥, and the observation data would contain discon-

tinuity as time evolves. GPNOM can discover the unknown parameter 
𝜆 of the inviscid Burgers’ equation if we set 𝜈 = 0 in equation (4), as 
shown in Subsection 4.3.

4. Numerical results

In the following, we shall present numerical results to explore the 
effectiveness of GPNOM and the influence of noise. We first illustrate 
the effectiveness of GPNOM on regression problems with discontinu-

ity by an example of the Forrester function [39]. Then we turn to the 
inverse problem of Burgers’ equation and inviscid Burgers’ equation, 
where we use the data at two time steps 𝑡0 and 𝑡1, with a step size Δ𝑡

to discover the unknown parameter 𝜆. Finally, we study NLWS to show 
that GPNOM also applies to systems.

4.1. Forrester function with jump

The discontinuous data are generated by the Forrester function with 
jump [33]
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Fig. 3. Regression problem for Forrester function with a jump. (a) GP with zero mean function. (b) GPNOM.

Fig. 4. Wave profiles of the solution of Burgers’ equation under periodic boundary condition, with 𝜈 = 0.01∕𝜋. A sharp gradient occurs between 𝑡 = 0.20 and 𝑡 = 0.40. 
(a) Standing wave with the initial condition 𝑢(0, 𝑥) = − sin(𝜋𝑥). (b) Moving wave with the initial condition 𝑢(0, 𝑥) = 1 − sin(𝜋𝑥).
𝑓 (𝑥) =

{
0.5(6𝑥− 2)2 sin(12𝑥− 4) + 10(𝑥− 0.5) − 5, 0 ≤ 𝑥 < 0.5,

3 + 0.5(6𝑥− 2)2 sin(12𝑥− 4) + 10(𝑥− 0.5) − 5, 0.5 ≤ 𝑥 ≤ 1.
(17)

The jump develops at 𝑥 = 0.5 with a magnitude of 3. In order to generate 
the training data, we pick 20 +21 +20 uniformly distributed points from 
the interval [0, 1] = [0, 0.4] ∪ [0.4, 0.6] ∪ [0.6, 1].

The results are shown in Fig. 3. The hyperparameters 𝜃𝑚 of GPNOM 
after training are (𝑎, 𝑏, 𝑤) = (2.991, −0.5000, 2579), which are close to true 
values as we recall that 𝑎 is the jump magnitude and −𝑏 is the jump po-

sition. In contrast to GP with zero mean function, which gives a wrongly 
smoothed profile, GPNOM correctly captures the discontinuity.

4.2. Burgers’ equation

For Burgers’ equation (3), the exact parameter 𝜆 is set as 𝜆∗ = 1, and 
the viscosity 𝜈 = 0.01∕𝜋. The reference solutions are obtained by Cole’s 
transformation and Hermite integration [40]. As shown in Fig. 4, the 
wave profile is smooth near 𝑡 = 0, and a sharp gradient occurs between 
𝑡 = 0.20 and 𝑡 = 0.40.

First, we separately discuss the standing wave and the moving wave 
and compare the results of GPNOM with that of GP with zero mean 
function. Then we add noise to both cases to verify the effective-

ness and robustness of GPNOM. We uniformly choose 101 data points 
{(𝑥𝑘

𝑖
, 𝑢𝑘

𝑖
)|𝑖 = 1, ...101}, −1 ≤ 𝑥𝑘

𝑖
≤ 1, 𝑘 = 0, 1 for each time as observation 

data.
36
Table 1

Burgers’ equation - standing wave: predicted 𝜆 with noise-free data.

Δ𝑡 0.005 0.0067 0.008 0.010

𝑡1 = 0.2 GP (zero mean) 1.015588 1.020491 1.024301 1.029811

GPNOM 1.010416 1.013749 1.016358 1.020193

𝑡1 = 0.6 GP (zero mean) 0.600958 0.602040 0.603063 0.604856

GPNOM 0.998636 0.998026 0.997534 0.996787

4.2.1. Standing wave

We get a standing wave with the following initial condition and 
periodic boundary condition

𝑢(0, 𝑥) = −sin(𝜋𝑥), 𝑢(𝑡,1) = 𝑢(𝑡,−1).

We take different sample data 𝑡1 and time step sizes Δ𝑡 to test GPNOM, 
and list the results compared with GP (zero mean) in Table 1.

The predicted 𝜆’s well reproduce the exact value when the wave 
profile is smooth (𝑡1 = 0.2), with a relative error of less than 3%. While 
sharp gradient occurs (𝑡1 = 0.6), the GP model with zero mean function 
loses accuracy, and the relative errors are about 40%, whereas GPNOM 
still captures the correct value, even better than the case 𝑡1 = 0.2. See 
Fig. 5(a).

The exact data at 𝑡1 = 0.6 and Sigmoid mean function under trained 
hyperparameters are plotted in Fig. 6(a). The rest part 𝑢1(𝑥) −𝑚1(𝑥; 𝜃𝑚)
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Fig. 5. Burgers’ equation: relative error of predicted 𝜆 with noise-free data. (a) Standing wave. (b) Moving wave.

Fig. 6. Standing wave. (a) Exact data at 𝑡1 = 0.6 and Sigmoid mean function. (b) The rest part 𝑢1(𝑥) −𝑚1(𝑥;𝜃𝑚).

Fig. 7. Sample spatial points 𝐱0 and 𝐱1 using LHS within the interval [−0.5,0.5].
Table 2

Burgers’ equation - Standing wave: predicted 𝜆 of LHS and uniform data points.

Δ𝑡 0.005 0.0067 0.008 0.010

𝑡1 = 0.2 LHS data points 1.010425 1.013797 1.016421 1.020300

Uniform data points 1.010416 1.013749 1.016358 1.020193

𝑡1 = 0.6 LHS data points 0.994977 0.996179 0.992545 0.991682

Uniform data points 0.998636 0.998026 0.997534 0.996787

calculated through subtracting the Sigmoid function from exact data is 
almost a smooth function as we claimed. See Fig. 6(b).

To show that the sample points 𝐱0 and 𝐱1 can be different, we use 
the Latin Hypercube Sampling (LHS) [41] to separately choose 101 data 
points {(𝑥𝑘

𝑖
, 𝑢𝑘

𝑖
)|𝑖 = 1, ...101}, −1 ≤ 𝑥𝑘

𝑖
≤ 1, 𝑘 = 0, 1 for each time as obser-

vation data. See Fig. 7. The results have no significant difference from 
that of uniform data points. See Table 2.
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Table 3

Burgers’ equation - moving wave: predicted 𝜆 with noise-free data.

Δ𝑡 0.005 0.0067 0.008 0.010

𝑡1 = 0.2 GP (zero mean) 1.010406 1.013727 1.016326 1.020123

GPNOM 1.015605 1.020279 1.025271 1.029859

𝑡1 = 0.6 GP (zero mean) -0.357612 -0.481515 -0.487411 -0.431710

GPNOM 0.975342 0.955764 0.946142 0.928716

4.2.2. Moving wave

We get a moving wave with the following initial condition and peri-

odic boundary condition

𝑢(0, 𝑥) = 1 − sin(𝜋𝑥), 𝑢(𝑡,1) = 𝑢(𝑡,−1).

The results of GP (zero mean) and GPNOM with different 𝑡1 and Δ𝑡 are 
listed in Table 3.
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Fig. 8. Error of 𝜆 during the training process with 𝑡1 = 0.6 and Δ𝑡 = 0.01. (a) Standing wave. (b) Moving wave.
Table 4

Burgers’ equation: hyperparameter 𝑤 with noise-free data.

Δ𝑡 0.005 0.0067 0.008 0.010

𝑡1 = 0.6 Standing wave 297.7395 297.8395 297.5260 297.1894

Moving wave 675.3984 917.0746 1156.663 1800.883

For the shock wave profile (𝑡1 = 0.6), errors of GP with zero mean 
function become even bigger for the case of moving wave than the 
standing wave, see Fig. 5(b). The standard GP does not account for 
sharp gradient, hence losing much information in optimizing the loss 
function. GPNOM has relative errors of less than 8%, which is satisfac-

tory. We see that GPNOM addresses the problem with sharp gradient 
that GP can not.

For both the standing wave and the moving wave, relative error 
increases as time step Δ𝑡 increases, which results from the numerical 
scheme (4). Different initial guess of parameters 𝜆0 are taken for the 
training process and 𝜆 always converges to the correct value with the 
iteration step increasing as shown in Fig. 8.

For the standing wave with noise-free data, the hyperparameter 𝑤
of the Sigmoid mean function after training is about 297, close to 1∕𝜈 =
100𝜋. While for the moving wave, the hyperparameter 𝑤 after training 
has a larger value range. See Table 4.

4.2.3. Noise

In practice, measurements might be corrupted by noises. We want 
to test the robustness of GPNOM method by considering noises. In this 
subsection, Gaussian noise is added to the observation data. The mag-

nitude of the noise is at a given percentage 𝑝 of the standard deviation 
of noise-free data, namely,

𝐮0
noisy

= 𝐮0 + 𝑝 ⋅ Std
(
𝐮0
)
⋅
[
( (0,1))

]
𝑀×1 ,

𝐮1
noisy

= 𝐮1 + 𝑝 ⋅ Std
(
𝐮1
)
⋅
[
( (0,1))

]
𝑁×1 ,

(18)

where Std calculates standard deviation of the data, and  (0, 1) rep-

resents the standard Gaussian distribution. The results of GPNOM for 
noisy observation data from standing wave and moving wave are sepa-

rately listed in Table 5 and Table 6.

We observe that, different from the case of noise-free data, where 
relative error increases as time step Δ𝑡 increases, the relative error of 
predicted 𝜆 decreases as Δ𝑡 increases here. See Fig. 9 and 10. That is to 
say, the robustness improves as the time step size increases. The reason 
is that the motion of the wavefront becomes easier to identify out of the 
noisy data when the time step size increases.

Moreover, it is natural to see that the relative error increases as the 
level of noise increases. See Fig. 11. We notice that most observation 
data falls into the shaded area restricted by 𝑢(𝑡1, 𝑥) ± 𝑝 ⋅ Std

(
𝐮1
)
, where 
38
Table 5

Burgers’ equation - standing wave: predicted 𝜆 with noisy data.

Δ𝑡 0.005 0.0067 0.008 0.010

𝑡1 = 0.2 1% noise 0.906491 0.935235 0.950560 0.967112

2% noise 0.812468 0.864338 0.891258 0.919443

5% noise 0.631440 0.724157 0.771405 0.819791

𝑡1 = 0.6 1% noise 1.135722 1.088918 1.065298 1.041347

2% noise 1.377765 1.244259 1.177065 1.109342

5% noise 1.553015 1.295692 1.168052 1.041783

Table 6

Burgers’ equation - moving wave: predicted 𝜆 with noisy data.

Δ𝑡 0.005 0.0067 0.008 0.010

𝑡1 = 0.2 1% noise 1.052944 1.049708 1.044240 1.047008

2% noise 1.094017 1.081061 1.075992 1.072695

5% noise 1.256004 1.205807 1.182146 1.160291

𝑡1 = 0.6 1% noise 1.206469 1.113251 1.074017 1.028380

2% noise 2.010566 1.308696 1.233805 1.153015

5% noise 2.110147 2.417519 2.589268 1.631862

𝑝 ⋅ Std
(
𝐮1
)

is the standard deviation of the added Gaussian noise as in 
equation (18), which means that it is difficult to distinguish the noisy 
observation data at 𝑡0 and 𝑡1.

4.3. Inviscid Burgers’ equation

For inviscid Burgers’ equation (16), the exact parameter 𝜆 is set as 
𝜆∗ = 1. The reference solutions are obtained by the Godunov method. 
The wave profile is very similar to that of Burgers’ equation: smooth 
near 𝑡 = 0, and discontinuity occurs between 𝑡 = 0.20 and 𝑡 = 0.40. 
The difference is that the wavefront developed in the inviscid Burgers’ 
equation is discontinuous, while the nonsingular thin transition layer 
developed in Burgers’ equation has a width at the order of 1∕𝜈. We uni-

formly choose 101 data points {(𝑥𝑘
𝑖
, 𝑢𝑘

𝑖
)|𝑖 = 1, ...101}, −1 ≤ 𝑥𝑘

𝑖
≤ 1, 𝑘 = 0, 𝑛

for each time as observation data.

4.3.1. Standing wave

We get a standing wave with the following initial condition and 
periodic boundary condition

𝑢(0, 𝑥) = −sin(𝜋𝑥), 𝑢(𝑡,1) = 𝑢(𝑡,−1).

We take different sample data 𝑡1 and time step sizes Δ𝑡 to test GPNOM, 
and list the results compared with GP in Table 7.

As shown in Fig. 12(a), when the wave profile is smooth (𝑡1 = 0.2), 
both the GP model with zero mean function and GPNOM have correct 
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Fig. 9. Burgers’ equation - standing wave: relative error of predicted 𝜆 with noisy data. (a) 𝑡1 = 0.2. (b) 𝑡1 = 0.6.

Fig. 10. Burgers’ equation - moving wave: relative error of predicted 𝜆 with noisy data. (a) 𝑡1 = 0.2. (b) 𝑡1 = 0.6.

Fig. 11. Burgers’ equation. (a) Noisy observation data and exact solutions at 𝑡0 and 𝑡1 . The shaded area is restricted by 𝑢(𝑡1, 𝑥) ± 𝑝 ⋅ Std(𝐮1), and here we set the level 
of noise 𝑝 = 5%. We notice that most observation data falls into the shaded area, which means that it is difficult to distinguish the noisy observation data at 𝑡0 and 
𝑡1. (b) Zoom in.
39
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Fig. 12. Inviscid Burgers’ equation: relative error of predicted 𝜆 with noise-free data. (a) Standing wave. (b) Moving wave.
Table 7

Inviscid Burgers’ equation - standing wave: predicted 𝜆 with noise-free data.

Δ𝑡 0.005 0.0067 0.008 0.010

𝑡1 = 0.2 GP (zero mean) 1.009306 1.013190 1.015097 1.018813

GPNOM 1.009466 1.013398 1.015320 1.019081

𝑡1 = 0.6 GP (zero mean) 0.008515 0.006155 0.004964 0.002565

GPNOM 0.997971 0.997184 0.996783 0.996681

Table 8

Inviscid Burgers’ equation - moving wave: predicted 𝜆 with noise-free data.

Δ𝑡 0.005 0.0067 0.008 0.010

𝑡1 = 0.2 GP (zero mean) 1.019506 1.023128 1.025278 1.029816

GPNOM 1.019534 1.023269 1.025309 1.030034

𝑡1 = 0.6 GP (zero mean) -1.358070 -0.969123 -0.847670 -0.677783

GPNOM 0.998359 0.997141 0.996584 0.995447

Table 9

Inviscid Burgers’ equation: hyperparameter 𝑤 with noise-free data.

Δ𝑡 0.005 0.0067 0.008 0.010

𝑡1 = 0.6 Standing wave 3777.369 7299.524 11531.50 516.7663

Moving wave 12412.30 8868.000 7760.038 6208.068

predictions and very close errors. While discontinuity occurs (𝑡1 = 0.6), 
the GP model with zero mean function gets totally wrong predicted val-

ues, indicating that it loses the information contained in data, whereas 
GPNOM still captures the correct value, even better than the case 
𝑡1 = 0.2.

4.3.2. Moving wave

We get a moving wave with the following initial condition and peri-

odic boundary condition

𝑢(0, 𝑥) = 1 − sin(𝜋𝑥), 𝑢(𝑡,1) = 𝑢(𝑡,−1).

The results of GP (zero mean) and GPNOM with different 𝑡1 and Δ𝑡 are 
listed in Table 8.

For the shock wave profile (𝑡1 = 0.6), errors of GP with zero mean 
function become worse for the case of moving wave than the standing 
wave, while GPNOM still gets correct predicted values. See Fig. 12(b). 
Again we see that GPNOM addresses the problem with discontinuity 
that GP can not.

We further mention that compared to Burgers’ equation, the hy-

perparameter 𝑤 of the Sigmoid mean function after training is bigger 
because the sharp gradient is replaced by discontinuity. See Table 9.
40
Table 10

Inviscid Burgers’ equation - standing wave: predicted 𝜆 with noisy data.

Δ𝑡 0.005 0.0067 0.008 0.010

𝑡1 = 0.2 1% noise 0.892087 0.928463 0.940523 0.958469

2% noise 0.797950 0.860798 0.881146 0.910719

5% noise 0.562508 0.686788 0.726262 0.782491

𝑡1 = 0.6 1% noise 1.277512 1.194742 1.167134 1.126443

2% noise 1.563738 1.366663 1.304470 1.216688

5% noise 1.994925 1.587796 1.460490 1.282128

Table 11

Inviscid Burgers’ equation - moving wave: predicted 𝜆 with noisy data.

Δ𝑡 0.005 0.0067 0.008 0.010

𝑡1 = 0.2 1% noise 1.054458 1.049594 1.049124 1.050049

2% noise 1.091727 1.076788 1.073186 1.069746

5% noise 1.247380 1.191689 1.175379 1.154182

𝑡1 = 0.6 1% noise 1.212984 1.148273 1.125822 1.099155

2% noise 1.465690 1.328597 1.285620 1.225242

5% noise 2.414444 2.005919 1.878116 1.698967

4.3.3. Noise

From the above cases, we have seen that GPNOM also works for 
data with discontinuity. We further study the robustness of GPNOM 
with discontinuous data by considering noises. The results of GPNOM 
for noisy observation data from standing wave and moving wave are 
separately listed in Table 10 and Table 11.

We observe similar phenomena as in Subsection 4.2.3: the relative 
error of predicted 𝜆 decreases as Δ𝑡 increases, and increases as the level 
of noise increases. See Fig. 13 and Fig. 14. The reason for the first one 
is that the motion of the wavefront becomes easier to identify out of 
the noisy data when the time step size increases, while the latter one is 
because it is difficult to distinguish the noisy observation data at 𝑡0 and 
𝑡1.

4.4. The nonlinear wave system

GPNOM not only applies to the scalar equation but systems. We 
consider the nonlinear wave system, obtained either by starting with 
the isentropic gas dynamics equations and neglecting terms which are 
quadratic in the velocity or by writing the nonlinear wave equation as 
a first-order system [42],{

𝜕𝑡𝑣+ 𝜕𝑥𝑢 = 0,

𝜕 𝑢+ 𝜆𝜕 𝑝(𝑣) = 0,
(19)
𝑡 𝑥
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Fig. 13. Inviscid Burgers’ equation - standing wave: relative error of predicted 𝜆 with noisy data. (a) 𝑡1 = 0.2. (b) 𝑡1 = 0.6.

Fig. 14. Inviscid Burgers’ equation - moving wave: relative error of predicted 𝜆 with noisy data. (a) 𝑡1 = 0.2. (b) 𝑡1 = 0.6.
Table 12

The NLWS: predicted 𝜆 with noise-free and noisy data at time 𝑡1 = 1.

Δ𝑡 0.005 0.0067 0.008 0.010

0% noise 0.991567 1.019796 1.004850 1.012048

1% noise 0.978202 0.988752 0.992608 0.996296

2% noise 0.961198 1.031933 0.983908 0.996073

5% noise 0.639204 0.694239 0.704000 0.731569

where 𝑝(𝑣) = 𝑣𝛾 . In all our computations we take 𝛾 = 1.4, which is the 
ratio of specific heats of perfect gas in aerodynamics [43]. We compute 
the 1-shock, 2-rarefaction solution of the Riemann problem with initial 
condition [44]:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑢0(𝑥) =

{
0.5, 𝑥 < 0,

0.60466, 𝑥 > 0,

𝑣0(𝑥) =

{
0.1, 𝑥 < 0,

0.4, 𝑥 > 0.

(20)

The exact parameter 𝜆 is set as 𝜆∗ = 1. The reference solutions and data 
are obtained by Suliciu’s method [45], and the computation has been 
performed on a space interval [−2, 2] with a time range [0, 1], see Fig. 15.

The mathematical formula derivation of GPNOM for NLWS is put 
in Appendix B. We uniformly choose 101 data points {(𝑥𝑘

𝑖
, 𝑢𝑘

𝑖
)|𝑖 =

1, ...101}, −2 ≤ 𝑥𝑘
𝑖
≤ 0, 𝑘 = 0, 1 for each time as observation data. We take 

𝑡1 = 1, different time step sizes Δ𝑡, and different levels of noise to test 
GPNOM. See Table 12 for the results.
41
Fig. 15. Wave profiles of the solution of NLWS at time 𝑇 = 1.

For the noise-free data, the relative error of predicted 𝜆 is less than 
2%. For the noisy data, we observe that the relative error of predicted 𝜆
decreases as Δ𝑡 increases here. That is to say, the robustness improves 
as the time step size increases, and the reason is the same as explained 
in Subsection 4.2.3, i.e., the motion of the wavefront becomes easier 
to identify out of the noisy data when the time step size increases. See 
Fig. 16.

5. Conclusion

In this paper, we propose a novel method to identify parameters 
of PDEs driven by data with sharp gradient/discontinuity, called GP-
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Fig. 16. NLWS: relative error of predicted 𝜆 with noise-free and noisy data at 
time 𝑡1 = 1.

NOM. We introduce a Sigmoid function as the mean function in GP 
prior to capture the sharp gradient/discontinuous part. After subtract-

ing the Sigmoid function from observation data, the rest part is of better 
regularity, which conventional GP can deal with.

In the numerical tests, we apply GPNOM to the regression problem, 
the inverse problem of Burgers’ equation, and NLWS. After testing the 
modified GP model using noise-free data and data with different levels 
of noise, we verify the effectiveness and robustness of this method.

1. Effectiveness: Our modified GP model GPNOM addresses the prob-

lem when data contains sharp gradient/discontinuity, which GP 
with zero mean function can not.

2. Robustness: The robustness of GPNOM against noise improves as 
the time step increases because the motion of the wavefront be-

comes easier to identify out of the noisy data correspondingly.

There are some issues to be further studied. Firstly, the effective-

ness of GPNOM for noisy data needs to be improved. Secondly, applied 
to the inverse problem of Burgers’ equation, GPNOM has better perfor-

mance if observation data comes from the standing wave rather than 
the moving wave, and the reason needs to be figured out. Besides, the 
sharp gradient or discontinuous cases in 2 or more dimensions are more 
complex. For discontinuity surface of regular shape, we may use a Sig-

moid function like 𝑚(𝑥) = 𝑎𝜎(𝛼𝑥 + 𝛽𝑦 + 𝑏) to capture it. The challenge 
comes from an appropriate mathematical description/approximation of 
the complex shape of the discontinuity surface in real cases. This may 
be solved by the use of a composition of Sigmoid functions as the mean 
function, which will be explored in the future work.
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Appendix A. Mean functions and covariance functions of Burgers’ 
equation

For simplicity and clarity, we use 𝑘 to represent 𝑘1,1 and 𝑚 to repre-

sent 𝑚1. The mean function 𝑚0 in Section 3 can be derived as

𝑚0 = 𝜆,𝜇
𝑥

𝑚 =𝑚+ 𝜆Δ𝑡𝜇(𝑥) 𝑑
𝑚− 𝜈Δ𝑡

𝑑2

2𝑚.

𝑑𝑥 𝑑𝑥
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The covariance functions 𝑘1,0, 𝑘0,0 in Section 3 can be derived as

𝑘1,0 = 
𝜆,𝜇

𝑥′
𝑘 = 𝑘+ 𝜆Δ𝑡𝜇(𝑥′) 𝜕

𝜕𝑥′
𝑘− 𝜈Δ𝑡

𝜕2

𝜕𝑥′ 2
𝑘

and

𝑘0,0 =𝜆,𝜇
𝑥


𝜆,𝜇

𝑥′
𝑘 = 𝑘+ 𝜆Δ𝑡𝜇(𝑥′) 𝜕

𝜕𝑥′
𝑘− 𝜈Δ𝑡

𝜕2

𝜕𝑥′ 2
𝑘

+ 𝜆Δ𝑡𝜇(𝑥) 𝜕

𝜕𝑥
𝑘+ 𝜆2Δ𝑡2𝜇(𝑥)𝜇(𝑥′) 𝜕

𝜕𝑥

𝜕

𝜕𝑥′
𝑘

− 𝜈𝜆Δ𝑡2𝜇(𝑥) 𝜕

𝜕𝑥

𝜕2

𝜕𝑥′ 2
𝑘− 𝜈Δ𝑡

𝜕2

𝜕𝑥2
𝑘

− 𝜈𝜆Δ𝑡2𝜇(𝑥′) 𝜕2

𝜕𝑥2
𝜕

𝜕𝑥′
𝑘+ 𝜈2Δ𝑡2

𝜕2

𝜕𝑥2
𝜕2

𝜕𝑥′ 2
𝑘.

The computations can be performed using any mathematical symbolic 
computation program, like Wolfram Mathematica.

Appendix B. Mean functions and covariance functions of NLWS

For NLWS, employing the backward Euler time-stepping scheme, we 
obtain from equation (19) that{

𝑣1 + Δ𝑡𝑢1
𝑥
= 𝑣0,

𝑢1 + 𝜆Δ𝑡𝛾(𝑣1)𝛾−1𝑣1
𝑥
= 𝑢0.

(21)

The above equations can be approximated by[
𝑣0

𝑢0

]
= 𝜆,𝜈

𝑥

[
𝑣1

𝑢1

]
=
[
𝑣1 + Δ𝑡𝑢1

𝑥

𝑢1 + 𝜆Δ𝑡𝛾(𝜈)𝛾−1𝑣1
𝑥

]
, (22)

where 𝜈 is approximated by 𝑣0, and only uses the known values of 𝑣0
on sampled data points in numerical calculation.

We assume 𝑢1(𝑥) = 𝑢(𝑡1, 𝑥), 𝑣1(𝑥) = 𝑣(𝑡1, 𝑥) to be independent Gaussian 
processes

𝑢1(𝑥) ∼ (𝑚1
𝑢
(𝑥;𝜃𝑢

𝑚
), 𝑘1,1

𝑢,𝑢
(𝑥,𝑥′;𝜃𝑢

𝑘
)),

𝑣1(𝑥) ∼ (𝑚1
𝑢
(𝑥;𝜃𝑣

𝑚
), 𝑘1,1

𝑣,𝑣
(𝑥,𝑥′;𝜃𝑣

𝑘
)),

(23)

with hyperparameters 𝜃𝑢
𝑚
, 𝜃𝑢

𝑘
, 𝜃𝑣

𝑚
, 𝜃𝑣

𝑘
. The kernel functions and the non-

zero mean functions have the same form as equation (6) and equation 
(7).

Combine the prior assumptions (23) with equations (22), we obtain 
a multi-output Gaussian process

⎡⎢⎢⎢⎢⎣
𝑢1

𝑣1

𝑢0

𝑣0

⎤⎥⎥⎥⎥⎦
∼ 

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣
𝑚1

𝑢

𝑚1
𝑣

𝑚0
𝑢

𝑚0
𝑣

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣
𝑘
1,1
𝑢,𝑢 𝑘

1,1
𝑢,𝑣 𝑘

1,0
𝑢,𝑢 𝑘

1,0
𝑢,𝑣

𝑘
1,1
𝑣,𝑣 𝑘

1,0
𝑣,𝑢 𝑘

1,0
𝑣,𝑣

𝑘
0,0
𝑢,𝑢 𝑘

0,0
𝑢,𝑣

𝑠𝑦𝑚. 𝑘
0,0
𝑣,𝑣

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠

(24)

with mean functions

𝑚0
𝑢
=𝑚1

𝑢
+ 𝜆Δ𝑡𝛾(𝜈)𝛾−1 𝑑

𝑑𝑥
𝑚1

𝑢
,

𝑚0
𝑣
=𝑚1

𝑣
+Δ𝑡

𝑑

𝑑𝑥
𝑚1

𝑣
,

and covariance functions

𝑘1,1
𝑢,𝑣

= 0; 𝑘1,0
𝑢,𝑢

= 𝑘1,1
𝑢,𝑢

, 𝑘1,0
𝑣,𝑣

= 𝑘1,1
𝑣,𝑣

,

𝑘1,0
𝑢,𝑣

=Δ𝑡
𝜕

𝜕𝑥′
𝑘1,1
𝑢,𝑢

, 𝑘1,0
𝑣,𝑢

= 𝜆Δ𝑡𝛾(𝜈′)𝛾−1 𝜕

𝜕𝑥′
𝑘1,1
𝑣,𝑣

;

𝑘0,0
𝑢,𝑢

= 𝑘1,1
𝑢,𝑢

+ 𝜆2Δ𝑡2𝛾(𝜈)𝛾−1𝛾(𝜈′)𝛾−1 𝜕

𝜕𝑥

𝜕

𝜕𝑥′
𝑘1,1
𝑣,𝑣

,

𝑘0,0
𝑢,𝑣

=Δ𝑡
𝜕

𝜕𝑥′
𝑘1,1
𝑢,𝑢

+ 𝜆Δ𝑡𝛾(𝜈′)𝛾−1 𝜕

𝜕𝑥
𝑘1,1
𝑣,𝑣

,

𝑘0,0
𝑣,𝑣

= 𝑘1,1
𝑣,𝑣

+Δ𝑡2
𝜕

𝜕𝑥

𝜕

𝜕𝑥′
𝑘1,1
𝑢,𝑢

.

The lower triangular portion of the matrix of covariance functions is 
not shown due to symmetry.
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Appendix C. Derivatives of the Sigmoid function

The Sigmoid function reads

𝜎(𝑥) = 1
1 + exp(−𝑥)

, (25)

and its derivatives are as follows:

𝜎′(𝑥) = 𝜎(𝑥) (1 − 𝜎(𝑥)) , (26)

𝜎′′(𝑥) = 𝜎′(𝑥) (1 − 2𝜎(𝑥)) , (27)

𝜎′′′(𝑥) = 𝜎′′(𝑥) (1 − 2𝜎(𝑥)) − 2𝜎′(𝑥)2. (28)

We noticed that high-order derivatives can be computed algebraically 
by low-order derivatives.
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[42] S. Čanić, B.L. Keyfitz, E.H. Kim, Mixed hyperbolic-elliptic systems in self-similar 
flows, Bol. Soc. Bras. Mat./Bull. Braz. Math. Soc. 32 (3) (2001) 377–399.

[43] J. Anderson, Fundamentals of Aerodynamics, 6th edition, McGraw-Hill Education, 
2017.

[44] D. Aregba-Driollet, R. Natalini, Discrete kinetic schemes for multidimensional sys-

tems of conservation laws, SIAM J. Numer. Anal. 37 (6) (2000) 1973–2004.

[45] I. Suliciu, Some stability-instability problems in phase transitions modelled by piece-

wise linear elastic or viscoelastic constitutive equations, Int. J. Eng. Sci. 30 (4) 
(1992) 483–494.
43

http://refhub.elsevier.com/S0898-1221(23)00116-5/bibE11D49FA056406E6317288C5F4F0C78Bs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibE11D49FA056406E6317288C5F4F0C78Bs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibC20AD4D76FE97759AA27A0C99BFF6710s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibC20AD4D76FE97759AA27A0C99BFF6710s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibCD9E9BC86EF0E0381B4CD383951AE57Fs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibCD9E9BC86EF0E0381B4CD383951AE57Fs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibCD9E9BC86EF0E0381B4CD383951AE57Fs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibEB92122173254BACDD0406F7261EDC76s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibEB92122173254BACDD0406F7261EDC76s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib412550C37CBAF45F0579CDC9808BB9DEs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib412550C37CBAF45F0579CDC9808BB9DEs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib412550C37CBAF45F0579CDC9808BB9DEs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib12989B729296FAA60877355BA4EF505Ds1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib12989B729296FAA60877355BA4EF505Ds1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib12989B729296FAA60877355BA4EF505Ds1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib98F13708210194C475687BE6106A3B84s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib98F13708210194C475687BE6106A3B84s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibB6D767D2F8ED5D21A44B0E5886680CB9s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibB6D767D2F8ED5D21A44B0E5886680CB9s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibB6D767D2F8ED5D21A44B0E5886680CB9s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib11DEC7D650F45C84165001172337E893s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib11DEC7D650F45C84165001172337E893s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib11DEC7D650F45C84165001172337E893s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibC74D97B01EAE257E44AA9D5BADE97BAFs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibC74D97B01EAE257E44AA9D5BADE97BAFs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib6F4922F45568161A8CDF4AD2299F6D23s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib6F4922F45568161A8CDF4AD2299F6D23s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib6F4922F45568161A8CDF4AD2299F6D23s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibB284FF7395D29B68840391A78F6B4C54s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibE75F4A228CD7A0B325399A424E6B4648s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibE75F4A228CD7A0B325399A424E6B4648s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib9B6AF6BC832635BBDE79BB222EDA07E3s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib9B6AF6BC832635BBDE79BB222EDA07E3s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibF80B1A42ECC2DB8A3337198FD30742F5s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibF80B1A42ECC2DB8A3337198FD30742F5s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibF80B1A42ECC2DB8A3337198FD30742F5s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib05F5BC9AC37093BB0266228795D8D096s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib05F5BC9AC37093BB0266228795D8D096s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibCC0CA804134620F2021178C63BBD2B30s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibCC0CA804134620F2021178C63BBD2B30s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib9D79433FC905C25D968E9107BBF250DDs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib9D79433FC905C25D968E9107BBF250DDs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib09A72CEB5B76A1A3D17D4CCD425C4BA8s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib09A72CEB5B76A1A3D17D4CCD425C4BA8s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibBE46664F4FEC6566671BB6DA2BB88278s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibBE46664F4FEC6566671BB6DA2BB88278s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibA83DAB2585D18DACC2653FD4ECF779E9s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibA83DAB2585D18DACC2653FD4ECF779E9s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib91362A64EE7A3060FD612822962DF270s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib91362A64EE7A3060FD612822962DF270s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib4F8264AAF1144DD8476F1B625B70CCB5s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib4F8264AAF1144DD8476F1B625B70CCB5s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib4F8264AAF1144DD8476F1B625B70CCB5s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib9E9FE784FC6BBCD346839E4E780E3F2Es1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib9E9FE784FC6BBCD346839E4E780E3F2Es1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib9E9FE784FC6BBCD346839E4E780E3F2Es1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib6B9F391B3F5A1D88004362D7AFD69E77s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib6B9F391B3F5A1D88004362D7AFD69E77s1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibB32B1B822DD59451B17B08F97FDFE81Es1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bibB32B1B822DD59451B17B08F97FDFE81Es1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib152375901EF513B39E4CB97644B246FFs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib152375901EF513B39E4CB97644B246FFs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib6A257E27DB3A032EB4DACBB0236333AAs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib6A257E27DB3A032EB4DACBB0236333AAs1
http://refhub.elsevier.com/S0898-1221(23)00116-5/bib6A257E27DB3A032EB4DACBB0236333AAs1

	Discovery of PDEs driven by data with sharp gradient or discontinuity
	1 Introduction
	2 Problem setup
	3 Methodology
	3.1 Prior
	3.2 Training
	3.3 Some discussions

	4 Numerical results
	4.1 Forrester function with jump
	4.2 Burgers’ equation
	4.2.1 Standing wave
	4.2.2 Moving wave
	4.2.3 Noise

	4.3 Inviscid Burgers’ equation
	4.3.1 Standing wave
	4.3.2 Moving wave
	4.3.3 Noise

	4.4 The nonlinear wave system

	5 Conclusion
	Data availability
	Acknowledgements
	Appendix A Mean functions and covariance functions of Burgers’ equation
	Appendix B Mean functions and covariance functions of NLWS
	Appendix C Derivatives of the Sigmoid function
	References


