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ABSTRACT

Similar to the kinetic energy cascade, a helicity cascade is also a basic and key process in the generation and evolution of the turbulent flows.
Furthermore, the helicity flux (HF) plays a crucial role between two scales in the helicity cascade. In this study, we will supply a new helical
model constrained by the helicity flux for the large eddy simulation of the compressible turbulent flows. Then, in order to obtain a more
precise HF, the local coefficient of the modeled HF is determined by the artificial neural network (ANN) method. The new model combines
merits of the high robustness and the correlation with the real turbulence. In the test case of the compressible turbulent channel flow, the
new model can supply a more accurate mean velocity profile, turbulence intensities, Reynolds stress, etc. Then, for the test in the
compressible flat-plate boundary layer, the new model can also precisely predict the onset and peak of the transition process, the skin-
friction coefficient, the mean velocity in the turbulent region, etc. Moreover, the ANN here is a semi-implicit method, and the new model
would be easier to be generalized to simulate other types of the compressible wall-bounded turbulent flows.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0137607

I. INTRODUCTION

In three-dimensional (3D) turbulent flows, the helicity
h ¼ u � x, the scalar product of the velocity u and the corresponding
vorticity x, is the sole chiral quadratic inviscid invariant.1 The helicity
plays the central role in many natural phenomena and engineering
flows, such as hurricanes, tornadoes, Langmuir circulations in the
oceans, and rotating machinery.2–4

In 3D turbulence, both the energy and the helicity are inviscid
invariants, indicating that the helicity may also cascade to small scales
just as the energy cascade.5 However, different from the energy, the
helicity is a topological invariant, which can measure the knottedness,
or amount of the linkage of vortex lines.6 In 3D turbulence, the helicity
may be negative, showing different dynamics and cascades.7 Brissaud
et al. proposed two types of cascades showing the pure helicity cascade
and the joint cascades of the energy and the helicity.8 However,
Kraichnan deemed that the first possibility is not reasonable but the
second is more plausible.9 Then, the joint cascade of energy and helic-
ity is revealed from the properties of Euler equations.8,10 This picture

of cascades in the helical turbulence was subsequently tested and veri-
fied through the Gledzer–Ohkitani–Yamada shell model for the turbu-
lence.11,12 In the joint cascade process of the energy and the helicity,
the helicity flux (HF) has more intermittent than the energy one.13

Using a phenomenological approach, a distortion timescale (sH) for
the helicity cascade can be deduced, and it is in analogy to that for the
energy cascade (sE).

14 The value of the ratio sE/sH can be measured by
the square root of the spectral relative helicity {aðkÞ ¼ jHðkÞj=
½2kEðkÞ� [H(k) and E(k) are the helicity and energy spectra, respec-
tively]}, and aðkÞ � 1=k for the parallel cascade regime. The mean
spectral relative helicity showed the scale as k � 1 in the inertial range
from the simulation result.15,16

As a prospective technique, large-eddy simulation (LES) has been
widely used in the simulation of the turbulent flows for different fields,
including the science research and engineering. Due to the high
robustness, the eddy-viscosity model is the most popular LES model,
and the Smagorinsky model (SM) is the first one proposed by
Smagorinsky and Deaedorff.17,18 Later, several different models were
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suggested. The wall-adapting local eddy-viscosity model (WALE) was
suggested by Nicoud and Ducros,19 and it can simulate correct asymp-
totic behavior in the near-wall region. Vreman proposed the Vreman
model20 and it is a low dissipation eddy-viscosity model which can
also predict transitional flow well. Considering the helicity effects in
the helical turbulence, Yu et al. first introduced the helicity flux to con-
struct a new eddy-viscosity model,21 which can improve the simula-
tion result apparently. Then, the helical model (HM) was rectified and
applied to simulate the compressible transitional flows.22 The merit of
the eddy-viscosity model is robustness, and its shortcoming is low cor-
relation with the real turbulence. Also, there still are other types of LES
models. The scale-similarity model is one of the structural models pro-
posed by Bardina, Ferziger, and Reynolds, and it needs a second filter-
ing.23 The gradient model is another structural model deduced from
Taylor expansions for subgrid-scale stress (SGS).24 Different from the
eddy-viscosity model, the structural model has the merits of high
correlation with the real turbulence but the shortcoming is low
robustness.

Recently, artificial neural networks (ANNs) are playing an
important role in turbulence modeling. Ling et al. proposed a new
multiplicative-layer neural network to predict the Reynolds stress
anisotropic tensor for the first time.25 Using machine learning and
through optimal evaluation theory analysis, Vollant et al. obtained a
new SGS scalar flux model,26 which can predict results much closer to
the direct numerical simulation (DNS) results. Using the ANN
method, Xie et al. suggested the coefficients of the mixed SGS model
for LES of the compressible isotropic turbulence and the new model
can supply a better result than the traditional LES model.27 Zhou et al.
proposed a new SGS model based on the ANN method for the isotro-
pic turbulence,28 and the dependence of the SGS model on the filter
width was considered. Based on the ANN method, a series of nonlin-
ear algebraic models and deconvolutional models were developed
recently,29–31 and they could improve the accuracy of the model
clearly. Park and Choi suggested a new method for modeling the SGS
model which could show good performance and was not affected by
the grid resolution.32 Many SGS models based on ANN method are
established for the isotropic turbulence and few of them are proposed
for more complex flows, such as the transition flow, the separated flow
and the flow with complex-geometry boundaries. In addition, low effi-
ciency is still a problem for ANN method on turbulence modeling,
and it need to be improved. On the other hand, we have known that
ANN method can improve the predicting precision, and it has been
well applied to recognize the elaborate turbulent structures, and also it
is a better tool to model high-precision turbulence model.

In this study, we propose a new helical model (NHM) based on
the ANN method for the LES of the compressible flow. In this new
model, the existing helical model21,22 is constrained by the helicity
flux. To obtain the correct coefficient of the helicity flux, the ANN
method is introduced for LES modeling. In this paper, the governing
equations and the LES models are illustrated in Sec. II. The new helical
model is deduced in Sec. III. In Sec. IV, the new model is tested and
compared with others. Finally, we supply the conclusions in Sec. V.

II. GOVERNING EQUATIONS AND SGS MODELS

The derivation of the filtered N–S equations for the LES of the
compressible turbulence is as follows:

@�q
@t

þ @�qeuj

@xj
¼ 0; (1)

@�qeui

@t
þ @�qeuieuj

@xj
¼ � @�p

@xi
þ @er ij

@xj
� @sij

@xj
; (2)

@�qeE
@t

þ @ð�qeE þ �pÞeuj

@xj
¼ � @eqj

@xj
þ @erijeui

@xj
� @CpQj

@xj
� @Jj
@xj

; (3)

and supplemented by the filtered state equation as follows:

�p ¼ �qReT : (4)

Here, (��) represents spatial filtering with a low-pass filter at scale
D and (e�) represents the Favre filtering (e/ ¼ q/=�q). �q; eui; eT ; �p, and
R are the filtered density, the velocity, the temperature, the pressure,
and the specific gas constant, respectively.

In the equations,

�qeE ¼ �qCveT þ 1
2
�qeuieui (5)

is the resolved total energy, where Cv is the specific heat at the constant
volume,

erij ¼ 2lðeT Þ eSij � 1
3
dijeSkk� �

; eSij ¼ 1
2

@eui

@xj
þ @euj

@xi

 !
(6)

is the resolved viscous stress tensor, and

eqj ¼ CplðeT Þ
Pr

@eT
@xj

(7)

is the resolved heat flux vector, in which Cp is the specific heat at the
constant pressure, Pr is the molecular Prandtl number, and

l ¼ 1
Re

eTeT1

 !3=2 eT1 þ TseT þ Ts

(8)

is the dimensionless molecular viscosity calculated using Sutherland’s
law for given Ts ¼ 110:3K .

In Eqs. (2) and (3), there are still some unclosed terms, which are
the SGS stress

sij ¼ �qðguiuj � euieujÞ; (9)

the SGS heat flux

Qj ¼ �qðfujT � eujeT Þ; (10)

and the SGS turbulent diffusion term

Jj ¼ 1
2
�qð guiuiuj �guiuieujÞ: (11)

The SGS turbulent diffusion can be approximated as Jj ¼ sijeui.
33

III. DERIVATION OF THE NEWHELICAL MODEL (NHM)
A. Proposition of the helicity flux constrained helical
model

In the compressible LES equations, the eddy-viscosity model of
SGS stress can be written as follows:
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smod
ij � 1

3
dijs

mod
kk ¼ �2lsgs eSij � 1

3
dijeSkk� �

; (12)

where smod
kk is the isotropic part of the SGS stress model and lsgs is the

SGS eddy viscosity.
The eddy diffusion model of SGS heat flux is as follows:

Qmod
j ¼ � lsgs

Prsgs

@eT
@xj

: (13)

For the helical model,21,22 the form of the SGS stress model is as
follows:

sHij ¼ �2�qCrD
5=2eSsr eSij � 1

3
dijeSkk� �

þ 2
3
CI�qD

3eS2srdij; (14)

whereeSsr ¼ j2eSijeRijj with eRij ¼ 1
2

@ex i
@xj

þ @ex j

@xi

� �
.

The modeled SGS heat flux is

QH
j ¼ �Cr�qD

5=2eSsr
Prsgs

@eT
@xj

: (15)

Then, the infinite series expansion34 is introduced here as
follows:

fg � �f �g ¼ a
@�f
@xk

@�g
@xk

þ 1
2!
ðaÞ2 @2�f

@xk@xl

@2�g
@xk@xl

þ 1
3!
ðaÞ3 @3�f

@xk@xl@xm

@3�g
@xk@xl@xm

þ � � � ; (16)

where

aðyÞ ¼
ð1
�1

2x2Gðx; yÞdx: (17)

G(x, y) in Eq. (17) is the kernel of the filter and can be designated
as the box filter.

Applying the infinite series expansion to SGS stress, we can
obtain

sij ¼ �qðguiuj � euieujÞ

¼ CkD
2
k�q

@eui

@xk

@euj

@xk
þ 1
2!
ðC2

kD
2
kD

2
l Þ�q

@2eui

@xk@xl

@2euj

@xk@xl
þ � � � ; (18)

where Ck is the coefficient and Dk is the grid width in the xk direction.
For simplicity, we only reserve the first term and it can be

expressed as follows:

ssij � CkD
2
k�q

@eui

@xk

@euj

@xk
; (19)

which is just the same form as the gradient model.24

The turbulent cascade has always been the core content of turbu-
lence research,35 since the concept of the turbulent cascade was pro-
posed by Richardson for the first time. As mentioned above,7,8 the
helicity cascade also exists in 3D turbulence. As we know, the energy
flux is the core physical quantity in the energy cascade.36 Similar to the
energy flux, the helicity flux is also the core physical quantity in the
helicity cascade, and it also can reflect the cascade process. In addition,

the helicity flux could be also a measurement of the turbulent struc-
tures,6 which is also an important character for the reflection of the
turbulence. Helicity flux is proportional to the product of the SGS
stress tensor and the resolved vorticity gradient tensor, written as
follows:21

PH
D ¼ �2sijeRij: (20)

To get the more accurate helicity flux, we assume a ratio gD exist-
ing between the real helicity flux and the simplified helicity flux, and it
is a dimensionless parameter. Then, we can obtain

PH
D ¼ �2gDs

s
ij
eRij: (21)

Now, to make the helical model to simulate the accurate helicity
flux, we use the helicity flux obtained from Eq. (21) to constrain the
helicity flux from the helical model as follows:

�2sHij eRij ¼ �2gDs
s
ij
eRij (22)

and

sHij eRij ¼ gDs
s
ij
eRij: (23)

Using the constraint of Eq. (23), we can get new coefficients Cr

and CI in Eq. (14). Therefore, the NHM is obtained. However, gD is
still unknown.

For obtaining the coefficient gD, we will introduce the artificial
neural network (ANN) method in the next part.

B. Artificial neural network

In this work, we will use the ANN to confirm the relation
between the input parameters and gD in the compressible turbulent
channel flow. The data for training and testing in this paper are
obtained from the DNS data of a temporally compressible isothermal-
wall turbulent channel flow. The Mach number Ma¼ 1.5 and the
Reynolds number Re¼ 3000. The main characteristics of the DNS of
the channel flow are listed in Table I. In the process of training and
testing, the DNS data are filtered in the streamwise and the spanwise
directions with a top-hat filter.

In Fig. 1, we show the schematic diagram of the ANN. The ANN
is composed of multiple layers with many neurons. The neurons
receive the input signals from the previous layer and send them to the
next layer by the successive mathematical operation of the linear
weighted sum and nonlinear activation. In the lth layer, each neuron
receives the inputs Xðl�1Þ

i from ðl � 1Þ layer and then transmits them
to the outputs XðlÞ

i activated by the nonlinear function. The transfer
function from the ðl � 1Þth layer to the lth one is calculated as follows:

XðlÞ
i ¼ r bðlÞi þ

X
j

WðlÞ
ij X

ðl�1Þ
j

" #
; (24)

TABLE I. Main characteristics of the DNS data for training and testing.

Computation domain Grids Dxþ Dyþw Dzþ Res

DNS 4p� 2� 4=3p 900� 201� 300 2.99 0.32 2.99 220
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where r½�� is the nonlinear activation function and WðlÞ
ij and bðlÞi are

the weights and biases in the lth layer, respectively.
The input parameters of the ANN are critical for predicting gD.

The variables are dimensionless quantities, where several variables
may be selected in compressible wall-bounded turbulence, such as Dþ,
yþ, ReD, and D

þ
l . In this paper,D

þ ¼ �qweusD=lw is the normalized fil-
ter width, yþ ¼ �qweusy=lw is the dimensionless normal distance,
ReD ¼ qwjeSjD2=lw is the mesh Reynolds number, and Dþ

l ¼ D=l

with l ¼ ½l2w=ð2�qwheSijeSijiÞ�1=4. Here, eus ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sw=�qw

p
is the filtered

wall friction velocity with sw ¼ lw
@eu
@y being the wall shear stress and

h�i denoted as the spatial average along the homogeneous directions.
Additionally, we also supply the respective helicity aðDÞ ¼ jDHðDÞj=
½2DEðDÞ� for predicting the ratio of helicity flux. A total of four layers
(one input layer, two hidden layers, and one output layer) with neu-
rons in the ratioM : 100 : 100 : 1 are supplied in this study, and M is
the number of input variables which is listed in Table II. The hyper-
bolic tangent function [rhðxÞ ¼ ðex � e�xÞ=ðex þ e�xÞ] and linear
function [roðxÞ ¼ x] are the activation ones of the hidden layers
and output layer. The mean-squared error (MSE) function is
chosen as the loss function of the ANN, and it can be defined as

L ¼ hðgtrueD � gpredD Þ2i, where gtrueD and gpredD denote the true and pre-
dicted values of the ANN.

In this paper, 2� 104 samples are chosen from 20 snapshots
of the filtered DNS data with a ratio of the filter width D=DDNS

ranging from 2 to 20. Then, using the cross-validation strategy, we
divide the dataset into a training set and a testing set to hold down
parameter overfitting of the ANN; 70% of the samples are ran-
domly selected from the total dataset as the training set, while the
others as the testing set. The weights of the ANN are initialized by
the Glorot-uniform algorithm and optimized by the Adam algo-
rithm37 for 1� 104 iterations, with a batch size and learning rate of
1000 and 0.01, respectively. In addition, to obtain the optimal
hyperparameters including the numbers of layers and neurons and
the types of activation functions, the grid search method is selected
as the hyperparameter pruning method of the ANN. In Fig. 2, we
show the learning curves of the different ANN models. After a
period of training with 1� 104 epochs, the MSE losses in both the
training and the testing sets converge quickly and reach the statio-
narity. The training and the testing losses for all the models are
close, which means that the chosen hyperparameters are reasonable
and all the ANN models are well trained. At the same time, we can
also see that the ANN3 has the smallest loss among the three ANN
models.

Through calculating three metrics to measure the difference
between the true value gtrueD from the filtered DNS data and the pre-
dicted value gmodel

D obtained from the ANN, we can well evaluate the
performance of different ANN models. The three metrics are the cor-
relation coefficient CðgDÞ, the relative error ErðgDÞ and the ratio of the
root mean square value RðgDÞ, which are expressed, respectively, as
follows:

FIG. 1. Schematic diagram of the ANN for predicting gD.

TABLE II. A set of inputs and outputs for different ANN models.

Model ANN1 ANN2 ANN3

Inputs Dþ; yþ; aðDÞ Dþ
l ; y

þ; aðDÞ ReD; yþ; aðDÞ
Outputs gD gD gD

FIG. 2. Learning curves of the proposed ANN models for predicting the coefficient gD: (a) training loss for ANN models and (b) testing loss for ANN models.
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CðgDÞ ¼
hðgrealD � hgrealD iÞðgmodel

D � hgmodel
D iÞi

hðgrealD � hgrealD iÞ2i1=2hðgmodel
D � hgmodel

D iÞ2i1=2
; (25)

ErðgDÞ ¼
hðgrealD � gmodel

D Þ2i1=2
hðgrealD Þ2i1=2

; (26)

RðgDÞ ¼
hðgmodel

D � hgmodel
D iÞ2i1=2

hðgrealD � hgrealD iÞ2i1=2
: (27)

In Table III, we show the comparisons of the correlation coeffi-
cients, relative errors, and ratios of root mean square values for the hel-
icity flux ratio gD in both the training and testing sets. We find that
there exists slight differences between the results of the training and
testing sets, and it indicates that none of the trained ANN models are
overfitted. From the table, we can also see that the ANN3 model per-
forms better than the others. The correlation coefficient and relative
error of the ANN3 model in the training dataset are 92.3% and 11.2%,
and 91.2% and 12.2% in the testing dataset, respectively. The ratio of
the root mean square value of the ANN3 model is 92.3% and 91.3%,
respectively, and they are both very close to 100%, which means that
the ANN3model can better reconstruct the helicity ratio. More impor-
tantly, all the input variables are local, which indicates that it could be
easy to be generalized to other types of the compressible wall-bounded
turbulence. In Fig. 3, we show the comparisons of the coefficient gD
reconstructed by different ANN models along the normal direction
with different filter widths. From the figures, we know that the mod-
eled helicity flux by the ANNs models has perfect agreement with the
DNS results. All the factors considered, we choose the ANN3 as the

TABLE III. Correlation coefficient (C), relative error (Er), and ratio of root mean
square value (R) of the coefficient gD in different datasets for different ANN models.

Dataset/C(gD) ANN1 ANN2 ANN3

Training 0.912 0.921 0.923
Testing 0.901 0.904 0.912

Dataset/Er(gD) ANN1 ANN2 ANN3

Training 0.106 0.111 0.112
Testing 0.113 0.119 0.122

Dataset/R(gD) ANN1 ANN2 ANN3

Training 0.911 0.922 0.923
Testing 0.891 0.906 0.913

FIG. 3. Comparisons of the coefficient gD reconstructed by different ANN models along the normal direction with different filter widths: (a) D=DDNS ¼ 4; (b) D=DDNS ¼ 8; (c)
D=DDNS ¼ 12; and (d) D=DDNS ¼ 16.
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following testing model because it shows the best behaviors among the
three ANN models. The newly constructed helicity flux ANN is a
semi-explicit model, beneficial to be generalized to other type of wall-
bounded turbulence. Hitherto, we finish the NHM based on the ANN
method, and we will test NHM in Sec. IV.

IV. TESTING RESULTS AND ANALYSES
A. Application in the compressible channel flow

In this section, the new model is applied in the compressible tur-
bulent channel flow firstly. The case setting of the LES is same as that
of the DNS case for ANN in Sec. III. The filtered Navier–Stokes

equations are solved by a high-precision non-dimensional finite-
difference solver in Cartesian coordinates: the equations are temporally
integrated by the third-order Runge–Kutta scheme, and the convective
and viscous terms are discretized using a sixth-order central-difference

TABLE IV. The grid setting and the main parameters for the simulations in the com-
pressible turbulent channel flow.

Grids Dxþ Dyþw Dzþ Res �Bq sw

DNS 900� 201� 300 2.99 0.32 2.99 220 0.0445 0.00392
Vreman 48� 65� 48 56.48 1.05 18.83 207 0.0416 0.00351
WALE 48� 65� 48 54.86 1.02 18.28 201 0.0419 0.00368
DSM 48� 65� 48 57.55 1.07 19.20 210 0.0429 0.00372
HM 48� 65� 48 57.57 1.07 19.21 215 0.0431 0.00381
NHM 48� 65� 48 57.60 1.07 19.23 219 0.0443 0.00389

FIG. 4. The profiles of the Van Driest the transformed mean velocity normalized by
us from the Vreman, the WALE, the DSM and the NHM, and the DNS for compari-
sons. The results from Coleman et al.38 are also listed here for comparison.

FIG. 5. Different quantities from NHM and DNS obtained a priori: (a) the helicity flux PH; (b) the component of SGS stress s11; and (c) the component of SGS stress s12.
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scheme. For DNS, a seventh-order upwind difference scheme is applied
to discrete the convective term, and a sixth-order central difference
scheme is applied to discrete the viscous term. The grid filter width is
D ¼ ðDxDyDzÞ1=3, where Dx, Dy, and Dz represent the three-direction
local grid width, and the test-filter width is 2D for the dynamic model.
Table IV shows the grid setting and the main parameters for the simula-
tions in the compressible turbulent channel flow. For comparison, we
will select three chiefly used SGS models: the Vreman, the WALE, the
HM, and the dynamic Smagorinsky model (DSM).

In Fig. 4, we show the profiles of the Van Driest transformed

mean velocity (Uvd ¼
ÐU
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffihqi=qw
p

dhUi) obtained from models of
the NHM, the Vreman, the WALE, the HM and the DSM, and DNS
results are also listed here for comparisons. We can see the velocity
profile from the NHM is tightly close to the DNS result, which is
much better than those from other models. As expected, for yþ < 5,
the mean streamwise velocity generally increases linearly with yþ. In
the viscous sublayer, almost all the results from the SGS models col-
lapse to the DNS result perfectly. In the buffer layer, all the models
except the WALE still show good behavior. In the log-law region, the
NHM shows obvious advantage than others, and the DSM behaves
better than the Vreman.

We show different quantities from the NHM and DNS obtained
a priori in Fig. 5. From the figures, we can know that the NHM can
well predict the helicity flux and the SGS stress.

Figures 6(a)–6(c) shows the profiles of the streamwise, the wall-
normal, and spanwise turbulence intensities from the different models
and normalized by us. Totally, we can see that the result of the NHM

shows better behavior than the others apparently, especially in the
buffer region of the flow. In Fig. 6(d), we show the distribution of the
normalized Reynolds stress Ruv along the normal height yþ, and the
results of the DNS, the Vreman, the WALE, the HM, the DSM, and
the NHM are compared together. Compared with the results of other
SGS models, the NHM gives a perfect total Reynolds stress Ruv in
almost all of the regions. The results in Fig. 5 also prove that the NHM
can also supply better simulation of the high-order statistics of the
turbulence.

In Fig. 7, we supply the profiles of the mean temperature
Tþ
av ¼ ðTw � hTiÞ=Ts (Ts ¼ BqTw is the friction temperature,

Bq ¼ qw=ðqwcpusTwÞ is the non-dimensional heat flux, and qw is the
wall-normal heat flux) obtained from the Vreman, the WALE, the
HM, the DSM, the NHM, and the DNS. The results of all the models
are not much different, but well close to the DNS result. However, after
carefully identifying, we can still find that the NHM shows a little
advantage over the others. In Fig. 8, the temperature fluctuations from
the DNS and the selected models are compared together. Different
from the mean temperature profile, the temperature fluctuation from
the NHM shows much better than other results.

To further observe the performance of the NHM, we show the
profiles of the resolved root mean square (rms) density fluctuations
from different SGS models and DNS in Fig. 9. As the figure shows, the
results from the NHM are better than those from other SGS models.

From the testing results in the compressible turbulent channel
flow, we can know that the NHMhas an obvious improvement in con-
trast to other commonly used model.

FIG. 6. Turbulence intensities and the Reynolds stress from DNS and different models: (a) streamwise turbulence intensity; (b) wall-normal turbulence intensity; (c) spanwise
turbulence intensity; and (d) Reynolds stress.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 35, 045120 (2023); doi: 10.1063/5.0137607 35, 045120-7

Published under an exclusive license by AIP Publishing

 08 April 2024 03:44:15

https://scitation.org/journal/phf


B. Generalizing to the compressible flat-plate
boundary layer

In this part, to verify the ability of the NHM in simulating other
type of the compressible wall flow, we select the compressible flat-
plate boundary layer as a typical testing case. Compared with
the channel flow, the flat-plate boundary layer is a more complex
wall-bounded flow. It is a typical flow consisting of laminar, transi-
tional, and fully turbulent regions which are representative charac-
ters in wall-bounded flow. Therefore, the testing case can be
regarded as a better case for evaluating the new SGS model in transi-
tional and turbulent flows.

Here, the spatially developing supersonic adiabatic flat-plate
boundary layer flow (atMa¼ 2.25 and Re¼ 635 000) is selected to test
the validity of the new model. The computational domain is bounded
by in-flow and out-flow boundaries, a wall boundary, a far-field
boundary and two boundaries (periodic) in the spanwise direction; the
computational domain has a size of Lx � Ly � Lz ¼ 6� 0:3� 0:175.
Blowing and suction disturbances39 are imposed at the wall with an

interval of x (4:5 � x � 5:0), and the amplitude of 0.02 is selected for
this case. For convenience of comparison, we select two sets of the LES
grid for testing. In Table V, we supply the grid setting of the DNS and
the LES of this testing case.

First, we show distributions of the Van Driest transformed mean
streamwise velocity at x¼ 8.8 from the LESs of two sets of grids in Fig. 10,
and grid-1 is fine while grid-2 is coarse. In Fig. 10(a), we can see that,
under the condition of the fine grid, the velocity profile from the NHM is
tightly close to the DNSwhich is better than other models, but the prepon-
derance is not so evident. On the coarse grid case in Fig. 10(b), the result
of the NHM still shows better behavior than other results, and the prepon-
derance even turns more distinct.

As a key index in the compressible flat-plate boundary layer,
the skin-friction coefficient distribution can accurately reflect the
laminar, the transition and the turbulence, and is also a key index
for testing the models. In Fig. 11, we show distributions of the skin-
friction coefficients obtained from the Vreman, the WALE, the HM,
the DSM, and the NHM compared with the results obtained from
the DNS on two sets of grids. From the curve of the skin-friction
coefficient predicted by the DNS, we can see that the occurrence of
the transition is about x¼ 6.3, the transition peak is about x¼ 7.2,
and the value of the peak is about 0.285. On the fine grid, all the
models can supply the reasonable results, and the NHM is a little
better than other models in transition peak predicting. On the coarse
grid, we can easily see that the NHM has evident advantage over
other model in predicting the transition process including the onset
and the peak of the transition.

FIG. 7. Mean temperature profiles obtained from the DNS and the selected mod-
els. The results from Coleman et al.38 are also listed here for comparison.

FIG. 8. Temperature fluctuations from the DNS and the selected models.

FIG. 9. Density fluctuations normalized by averaged density qav from different
SGS models and DNS.

TABLE V. The grid setting of the DNS and the LES for the simulations in the flat-
plate boundary layer.

Grids Dxþ Dyþw Dzþ

DNS 10090� 90� 320 6.02 0.58 5.47
LES1 1500� 90� 100 40.10 0.58 17.5
LES2 1000� 90� 80 60.20 0.58 21.9
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In Fig. 12, the profiles of the normalized temperature–velocity
correlation along the wall-normal direction at x¼ 8.8 are shown in the
two-grid resolutions. Compared with other models, the result from the
NHM still has advantage, especially in the buffer-lay region. However,
different from other physical quantities, the result from the NHM on
the coarse grid does not show more obvious advantage over the others
on the fine grid.

From the analyses of the testing case above, the NHM shows a
superior ability in predicting the main physical quantities in flat-plat

boundary layer, and has a good generalization to this type of the wall
bounded turbulence.

V. CONCLUSION

In this paper, we propose a new rectified helical model (NHM)
using the constraint of helicity flux and the method of artificial neural
network (ANN) for the large eddy simulation of the compressible wall-
bounded turbulent flows. Considering the helicity flux can well reflect
the cascade process and the evolution of the flow structure in turbulent

FIG. 11. The skin-friction coefficient distribution along the flat plate: (a) grid-1 and (b) grid-2.

FIG. 12. The temperature–velocity correlation normalized by the product of the average temperature and the velocity along the wall-normal direction at x¼ 8.8 of the com-
pressible flat-plate boundary layer: (a) grid-1 and (b) grid-2.

FIG. 10. The Van Driest transformed mean streamwise velocity at x¼ 8.8: (a) grid-1 and (b) grid-2. The results from Pirozzoli et al.39 are also listed here for comparation.
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flows, we use the helicity flux to constrain the old helical model for better
predicting the turbulent flow. To ultimately determine the model coeffi-
cient of the simplified helicity flux, we introduce the ANNmethod.

First, the NHM is applied to the simulation of the compressible
turbulent channel flow. Compared with other traditional eddy-
viscosity SGS models, including the Vreman, the WALE, and the
DSM models, the NHM can better predict typical statistical quantities
than the comparing models, such as the mean profile of the stream-
wise velocity, the Reynolds stress, the temperature–velocity correla-
tion, etc. Then, the NHM is also tested in a supersonic spatially
developing flat-plate flow. In a posteriori test, the NHM could precisely
predict the classic natural transition process, including the onset of the
transition and the transition peak on the presupposed fine and coarse
grids. Furthermore, the NHM could also provide more accurate profile
of the mean velocity and the temperature–velocity correlation than
other models in the cases of two sets of grids. It also proves the good
generalization of the NHM for its semi-explicit character.

In summary, the new helical model suggested in this paper has
been verified to be an effective method in LES of the compressible
wall-bounded turbulent flows. It should be generalized to more com-
plex wall-bounded turbulences in the future.
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APPENDIX: HYPERPARAMETERS FOR THE ANN
METHOD

In this section, we will show the predicting effects using differ-
ent activation functions and neurons numbers in the ANN method.

The activation functions are chosen as tangent function (tanh) and
leaky_relu function (lrelu). The leaky_relu function can be
expressed as follows:

lreluðxÞ ¼ x; x 	 0;

ax; otherwise;
where a ¼ 0:2:

(
(A1)

Every case is given two hidden layers. The neuron numbers for each
hidden layer are chosen as 10, 50, and 100. From Tables VI and
VII, we can know that the predicting effects from tangent function
and 100 neurons are best, and we can infer that the hyperpara-
meters for the ANN method chosen in this paper are good.
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