
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2022-0081

Vol. 33, No. 2, pp. 425-451
February 2023

Quantum Implementation of Numerical Methods for
Convection-Diffusion Equations: Toward
Computational Fluid Dynamics

Bofeng Liu1,2,†, Lixing Zhu1,3,†,*, Zixuan Yang1,3,* and
Guowei He1,2,3

1 LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
2 Department of Modern Mechanics, University of Science and Technology of China,
Hefei 230027, China.
3 School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing
100049, China.

Received 15 March 2022; Accepted (in revised version) 8 November 2022

Abstract. We present quantum numerical methods for the typical initial boundary
value problems (IBVPs) of convection-diffusion equations in fluid dynamics. The IBVP
is discretized into a series of linear systems via finite difference methods and explicit
time marching schemes. To solve these discrete systems in quantum computers, we
design a series of quantum circuits, including four stages of encoding, amplification,
adding source terms, and incorporating boundary conditions. In the encoding stage,
the initial condition is encoded in the amplitudes of quantum registers as a state vector
to take advantage of quantum algorithms in space complexity. In the following three
stages, the discrete differential operators in classical computing are converted into uni-
tary evolutions to satisfy the postulate in quantum systems. The related arithmetic
calculations in quantum amplitudes are also realized to sum up the increments from
these stages. The proposed quantum algorithm is implemented within the open-source
quantum computing framework Qiskit [2]. By simulating one-dimensional transient
problems, including the Helmholtz equation, the Burgers’ equation, and Navier-Stokes
equations, we demonstrate the capability of quantum computers in fluid dynamics.

AMS subject classifications: 68Q12, 76M20

Key words: Quantum computing, partial differential equations, computational fluid dynamics,
finite difference, finite element.

†These authors contributed equally to this work.
∗Corresponding author. Email addresses: zlx@imech.ac.cn (L. Zhu), yangzx@imech.ac.cn (Z. Yang)

http://www.global-sci.com/cicp 425 ©2023 Global-Science Press

426 B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451

1 Introduction

Fluid mechanics is one of the earliest disciplines that widely bring in numerical simu-
lations. Von Neumann and Charney [24] were beginning to use the first programmable
digital computer ENIAC for meteorology as early as the 1940s. Nevertheless, the scales
of simulation in computational fluid dynamics (CFD) without any modeling are still far
away from industrial-strength problems, since the computational cost exponentially de-
pendents on the Reynolds number (Re) [48]. Slotnick et al. [41] suggested that a poten-
tial paradigm shift driven by cutting-edge computing technologies, including quantum
computing, may fundamentally change the situation. Motivated by the reaching point of
quantum supremacy [37] in experimental quantum computing [3], we observe a flourish-
ing development of quantum numerical methods or quantum simulations in researches
and engineering practices with various physical contexts, including fluid dynamics. In
the present work, our focus is the realization of the numerical methods for partial differ-
ential equations (PDEs) governing the fluid dynamics system.

The following introduction of the previous efforts on quantum solvers of PDEs in-
evitably involves some discussions on the categories of quantum computing hardware
since some of the quantum numerical procedures are better considered as different ar-
chitectures rather than algorithms, as suggested by Kendon et al. [25]. One category of
quantum computing hardware is the so-called quantum analog computing [25] or ana-
log quantum simulator [19], which uses a controllable quantum system to investigate an-
other much more complex system. Although it is relatively feasible for implementation,
the universality of quantum simulators relies on finding a corresponding Hamiltonian,
which is nontrivial for fluid dynamics or other classical systems. Specific analog quantum
hardware based on quantum annealing (QA) [23] is most likely to become commercially
available [33] amongst many prototypes of quantum computing systems. QA algorithm
utilizes the quantum-mechanical fluctuation to tunnel through the cost barrier between
local minima, and thus it is suitable for optimization problems. Ray et al. [39] converted
a one-dimensional (1D) laminar channel flow problem into a quadratic unconstrained
binary optimization problem via the least square method. Srivastava and Sundararagha-
van [42] constructed a graph representation of the functional of a 1D elastic bar via Ising
Hamiltonian on a D-Wave machine. Both attempts [39, 42] directly adopted steady-state
elliptical differential equations to an discretely equivalent form that is admitted to D-
Wave hardware [8]. However, the PDEs in fluid dynamics are most often non-elliptic, as
our discussion later on in Section 2.1. Therefore, the QA machines are very likely to be
merely used for certain sub-process rather than for the entire solution process. Zanger et
al. [50] proposed a QA-based integrator for ordinary differential equations (ODE), where
a heuristic minor-embedding algorithm proposed by Cai et al. [9] is employed to make
the connection locally condensed. Knudsen and Mendl [26] constructed a variational
continuous-variable quantum algorithm [5] to integrate an ODE. An adiabatic quantum
algorithm for solving a Hermitian linear system is proposed by Subasi et al. [45], and this
algorithm is experimentally implemented and tested by Wen et al. [46].

B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451 427

Another family of quantum computing hardware is digital quantum computers
(DQCs). Unlike analog or continuous variable quantum computers, where a Hilbert
space with infinite dimensions is essentially formulated by a Hamiltonian, the DQC
employs quantum bits (qubits) as building blocks for its registers and spans a finite-
dimensional Hilbert space. In the DQC architecture, a predefined operation, namely a
quantum gate [4] that applies to one or multiple qubits, is the basic unit in a quantum
circuit. Quantum gates can be systematically combined to construct complex operations.
Furthermore, the Solovay-Kitaev theorem has shown that the depth and complexity of
such construction is bounded [14]. Within the universal quantum computing protocol,
many quantum algorithms are proposed and proven to be superior to their classic coun-
terparts in the sense of complexity by exploiting quantum interference. A comprehensive
review of quantum algorithms and circuits for basic algebraic operations, which builds
the foundations of DQC-based algorithms, is presented by Childs and van Dam [13].

Via spatial discretization methods, a boundary value problem (BVP) can be dis-
cretized into a system of linear equations (LE), which is the essential ingredient in nu-
merical methods for PDEs. In the context of fluid mechanics, the continuity equation at
the limit of zero Mach number (Ma) becomes the constraint of incompressibility, which
yields a Poisson equation. Steijl [43, 44] proposed a quantum-classical hybrid computing
framework where the quantum Fourier transform (QFT) is involved in solving the Pois-
son equation in the solution process of the vortex-in-cell method. The QFT [21] shows
advantages in both the complexity and required number of gates as compared to classi-
cal Fourier transform. However, the spectral method where a Fourier series is used as the
basis function in spatial interpolation cannot deal with problems with complex-boundary
geometries. Harrow, Hassidim, and Lloyd (HHL) firstly proposed a quantum solver for
Hermitian matrices [22]. Cao et al. [10] presented the circuit design with four qubits for a
2×2 linear system. The HHL algorithm and its derivatives are further applied to Poisson
equations with more flexible discretization methods, including finite elements [34] and
finite differences [11]. The quantum linear solver is further refined by Berry et al. [7] and
Xin et al. [47] with lower bounds of complexity. Regarding IBVPs, besides the spatial dis-
cretization, it is also necessary to apply a time marching scheme. Gaitan [18] suggested
that a quantum time integrator based on the quantum amplitude estimation algorithm
could be a potential candidate. Apart from solving the Navier-Stokes equations, there are
some other attempts [30] in modeling a fluid dynamic system with the Lattice Boltzmann
method (LBM) in DQCs.

All the aforementioned quantum algorithms involved in the solution process of PDEs
are primarily suitable for Hermitian linear system. However, in the context of fluid me-
chanics, an anti-Hermitian nonlinear system is more common, especially in viscous flows
with high convective velocity. Fillion-Gourdeau and Lorin [17] exhibited a quantum algo-
rithm for a linear hyperbolic system with polynomial costs with respect to the input size.
Much effort was exerted on the quantum algorithms for the nonlinear system in the liter-
ature. Leyton and Osborne proposed algorithms for nonlinear transformation and time
marching in their preprint [28]. The resulting quantum algorithm for nonlinear systems

428 B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451

requires resources exponentially increasing with the integration time. Lloyd et al. [31]
proposed a quantum algorithm for a nonlinear Schrödinger equation with quadratic
scaling in the integration time. Recently, Liu et al. [29] utilized Carleman linearization
to convert the nonlinearity into a truncated series of linear problems, which leads to an
algorithm that quadratically depends on the integration time. As an alternative path,
Lubasch et al. [32] proposed variational quantum algorithm for nonlinear problems and
demonstrate the algorithm in a steady-state Schrödinger equation.

In this paper, we present the quantum algorithm and its implementation in DQCs for
IBVPs of PDEs in fluid mechanics. Unlike most previous attempts that only move part
of the numerical procedures to quantum computing, we aim to solve PDEs fully within a
quantum computer. The rest of the paper is arranged as follows. In Section 2, we summa-
rize the PDEs in fluid mechanics. Section 3 illustrates the proposed quantum algorithms
for the generic form of the PDEs, followed by some numerical tests in Section 4. Finally,
conclusions and discussions are drawn in Section 5.

2 Mathematical models in CFD

2.1 Governing equations and differential operators

The well-established Navier-Stokes equations [16] that consist of conservation laws of
mass, momentum, and energy describe the fluid motion from the perspective of contin-
uum mechanics. The primitive variables (i.e., the density, the velocity, and the tempera-
ture) or the conservative variables (i.e., the density, the momentum, and the total energy)
are involved in the governing equations. Moreover, in more complicated fluid-related
simulations (e.g., two-phase flows and combustion), one or more passive or active scalar
fields (e.g., location of interface and concentration) are introduced to the system of gov-
erning equations to represent other topological, physical, and chemical evolutions. In
the derivation of the governing equations in the Eulerian coordinates, the transformation
of an arbitrary-shaped control volume V from Lagrangian coordinates regarding a un-
known generic field ϕ is addressed by Reynolds’ transport theorem, which results in the
so-called material derivative or convective derivative [16], viz.

Dϕ(x,t)
Dt

≡∂tϕ+ u·∇︸︷︷︸
Convection

ϕ, (2.1)

where D/Dt represents the material derivative, u is the local velocity, and ∂t represents
the temporal partial derivative in the Eulerian reference frame. Eq. (2.1) depicts the rate
of change of ϕ in the infinitesimal control volume, and therefore, the convection operator
exits in almost every governing equation in CFD.

The rate of change in the control volume is balanced by some volume integrals and
surface integrals of the generic fluxes, which is further recast as a volume integral via

B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451 429

divergence theorem as follows.
∫

S=∂V
F(ϕ)·n dS=

∫

V
∇·F(ϕ) dV, (2.2)

where S is the surface of the control volume V and F(ϕ) is the generic fluxes. To close
the governing system, it is necessary to involve constitutive models to explicitly express
the flux with respect to the unknown field. The transport of mass through diffusion is
governed by Fick’s law, where the flux of concentration linearly depends on its gradient.
In an incompressible Newtonian flow, the deviatoric part of the total stress is linearly
dependent on the symmetric gradient of the velocity. The most common model for heat
conduction is Fourier’s law, where the heat flux is defined as the temperature gradient
with a constant coefficient. In summary, the generic flux most regularly holds a linear
relation with the gradient. Combined with the divergence operation on the right-hand-
side (RHS) of Eq. (2.2), the integrand ∇·F becomes the Laplacian or diffusion ∇·ν∇ϕ,
which is the other significant differential operators. The coefficient ν owns different in-
terpretations in various physical contexts, like the viscosity in momentum conservation
or the heat diffusivity in energy conservation.

With the above brief discussion on the derivation of the Navier-Stokes equations, it
is understood that the two most significant differential operators are: i) the convective
operator u·∇, and ii) the diffusion operator ∇·ν∇. The former one is the consequence of
the Eulerian reference frame, which is a common setting in the mathematical models for
fluids. The latter one perceives different physics in various contexts. In the fluid motions,
the viscous effect essentially represents the frictional force between molecules or atoms
in the microscope, and its macroscopic contribution is the resistance of the shear motion.
In thermal dynamics, the heat conduction transfers energy through microscopic collision
and movement of particles. In mass transfer, the diffusion of a passive or active scalar
field comes from the random walk of particles.

2.2 Discretizations and matrix Forms

2.2.1 Non-conservative Form

Following the aforementioned discussion, we present the discretization of an unsteady
convection-diffusion equation which includes the two representative differential opera-
tors in the mathematical models of fluid dynamics. In a unit 1D domain Ω=[0,1], a scalar
solution field ϕ is governed by the following convection-diffusion equation in advective
form.

∂tϕ+u(x)ϕ,x =νϕ,xx+ f (x) in Ω×[0,T], (2.3)

where u(x) is the prescribed velocity, ν is the viscosity, and f is the source term. Specif-
ically, if the velocity is the solution field, Eq. (2.3) becomes the celebrated 1D viscous
Burgers’ equation. For the well-posedness of the problem, we apply Dirichlet bound-
ary conditions on both ends of the 1D domain. The initial condition ϕ0 and boundary

430 B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451

conditions are

ϕ(x,0)=ϕ0(x) in Ω×{0}, (2.4)
ϕ= g(x) on Γ=∂Ω×[0,T]. (2.5)

To develop a numerical scheme for solving Eq. (2.3), we uniformly decompose the com-
putational domain Ω into m segments with m+1 grid points. Consequently, the domain
is discretized into a set of the grid points Ωh = {x0,x1,··· ,xm}, the spatial coordinates of
the grid points are xi = i/m with i∈{0,1,··· ,m} being the spatial index, and the uniform
grid spacing is ∆x = 1/m. By utilizing the second-order central difference of first- and
second- order derivatives in space and forward Euler scheme for time advancement, we
arrive at the following fully discrete form of Eq. (2.3)

ϕn+1
i −ϕn

i
∆t

+
ui

2∆x
(ϕn

i+1−ϕn
i−1)=

ν

∆x2 (ϕ
n
i+1+ϕn

i−1−2ϕn
i)+ fi, (2.6)

where fi = f (xi), the viscosity ν is a constant in the 1D domain, ∆t= tn+1−tn is the time
increment, and the superscript “n” of ϕn indicate the time spot of the unknown field
ϕ(x,tn). The fully discrete form given by Eq. (2.6) can be rewritten in a matrix form as

Φn+1= AΦn
︸ ︷︷ ︸

Amplification

+S︸︷︷︸
Source

+B︸︷︷︸
BCs

, (2.7)

where Φ = [ϕ1,ϕ2,··· ,ϕm−1]
T is the discrete solution fields excluding both ends

with Dirichlet boundary condition, A is the classical amplification matrix, and S =
∆t[f1, f2,··· , fm−1]

T is the discrete source vector. Specifically, A covers the contribution
from the convection and diffusion operators with the following form,

A= I(m−1)−
∆t

2∆x
CADV+

ν∆t
∆x2 D, (2.8)

where I is an identity matrix; C and D represent the differential algebraic matrix of con-
vection and diffusion, respectively. Matrices C and D are defined as

CADV=

u1
u2

. . .
um−1

0 1
−1 0 1

. . .
−1 0

 and D=

−2 1
1 −2 1

. . .
1 −2

. (2.9)

Specifically, C is a gradient matrix left multiplied by a diagonal matrix to account for
the inhomogeneous convective velocity. The size of the linear system is (m−1)×(m−1)
since the solution fields at both ends are determined by the boundary condition. Their
influence on the interior points of the computational domain is presented by vector BADV,

B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451 431

which consists of the contribution from both differential operators to enforce the Dirichlet
boundary condition, viz.

BADV=− ∆t
2∆x

u1g0
0(m−3)

um−1gm

+ ν∆t

∆x2

g0
0(m−3)

gm

, (2.10)

where 0(m−3) is the zero vector with (m−3) components.

2.2.2 Conservative form

The convection term u·∇ϕ arising from the material derivative in Eq. (2.1), is one of the
most notorious terms in a typical hyperbolic system in fluid mechanics. Since this term
is the source of many issues that are widely concerned in the CFD community, includ-
ing the conservation properties of the discrete system, stability in high Re number, and
the closure problem in turbulence modeling, many alternative representations are pro-
posed within various contexts of discretization procedures. Most of them are derived via
tensor identities and the conservation law of mass (or the divergence-free constraint in
incompressible flows). These alternative forms are equivalent to each other in the con-
tinuum but, in principle, not equivalent in the discrete function space. Morinishi [35]
has identified that only two forms are independent amongst all the alternative forms of
the convection term, including advective, divergence, skew-symmetric, and rotational
forms. Thus, rather than summarize all possible numerical treatments of the convection
term, we describe the detailed procedures to implement a typical conservative form (i.e.,
divergence form [20]) to illustrate the flexibility of the proposed quantum algorithm in
practical problems.

By replacing the advective form of the convection term in Eq. (2.3) with the divergence
form (i.e., u(x)ϕ,x → (u(x)ϕ),t), the convection-diffusion equation becomes

∂tϕ+(u(x)ϕ),x =νϕ,xx+ f (x) in Ω×[0,T]. (2.11)

Note that Eq. (2.11) is only equivalent with Eq. (2.3) when the prescribed velocity field is
divergence-free. By applying the identical discretization strategy as that in Section 2.2.1,
the fully discrete form is

ϕn+1
i −ϕn

i
∆t

+
1

2∆x
(un

i+1ϕn
i+1−un

i−1ϕn
i−1)=

ν

∆x2 (ϕ
n
i+1+ϕn

i−1−2ϕn
i)+ fi. (2.12)

The matrix form defined in Eq. (2.7) still holds except for the convection term in diver-
gence form, which becomes

CDIV=

0 1
−1 0 1

. . .
−1 0

u1
u2

. . .
um−1

. (2.13)

432 B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451

The corresponding vector for enforcement of Dirichlet boundary conditions becomes

BDIV=− ∆t
2∆x

u0g0
0(m−3)
umgm

+ ν∆t

∆x2

g0
0(m−3)

gm

. (2.14)

To close the discussion on the governing equation and discretization, we note that al-
though the forward Euler method is undoubtedly an unsophisticated choice from the
palette of numerical methods, it indeed serves our purpose as an early validation of quan-
tum computing in CFD as forward time central space (FTCS) represents a wide potential
of various discretization strategies. It can be readily replaced by a large family of explicit
time marching schemes.

3 Quantum algorithms

The fully discrete formulation given by Eq. (2.7) holds the classic form of amplifica-
tion matrix for stability analysis. With the assumptions that the cell Peclet number
Pe = u∆x/2ν is sufficiently small and the Courant-Friedrichs-Lewy (CFL) condition is
satisfied for both convection and diffusion operators, the simulation is robust in classical
computers, as will be shown later. The scope of this work, however, is not the analysis
of numerical methods but rather the realization in quantum computing. Specifically, the
implementation of arithmetic and linear algebraic operations in Eq. (2.7) in DQCs via
standard quantum gates remains a challenge. The present study aims at addressing this
issue and providing a general guideline on the use of quantum computers for numerical
simulations of fluid flows.

Each single-step time-marching process in quantum computers consists of four
stages, namely, encoding, amplifying, applying source terms, and incorporating bound-
ary conditions, as shown in Fig. 1. The schematic diagram shown in Fig. 1 only depicts
the skeleton of the algorithm and does not represent the actual usage of ancilla qubits.

|0⟩⊗q
Encode Amplify Source

BCs

|ψ3⟩

|0⟩a

|ψ0⟩ |ψ1⟩ |ψ2⟩

Figure 1: Overall stages of the proposed quantum algorithm for a single-step of explicit time-marching in an
IBVP problem: encoding (Section 3.1), amplifying (Section 3.2.1), applying source terms (Section 3.2.2), and
incorporating boundary conditions (Section 3.2.3). The ancilla qubits are denoted with a subscript |•⟩a.

B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451 433

The quantum circuits for different stages are delineated in the following subsections, with
related postulates and principles in quantum computing systems.

3.1 Encoding and initialization

The basic unit of quantum computing hardware is a quantum bit, which is also known
as the qubit. Unlike the classic bit or binary digit that only takes the value of either 0 or 1,
a qubit defines a Hilbert space H(C2) spanned by two basis states (i.e., |0⟩ and |1⟩). The
state vector |ψ⟩=[α,β]T of the qubit is a linear combination of these two states, viz.

|ψ⟩=α|0⟩+β|1⟩=α

[
1
0

]
+β

[
0
1

]
=

[
α
β

]
, (3.1)

where |α|2 and |β|2 can be interpreted as the probabilities of the qubit resting in either
state when being measured. This stochastic interpretation reflects a postulate in quantum
mechanics that any quantum system is described by its state vector, which is a unit vector
in the system’s state space [36]. Eq. (3.1) leads to the superiority of a qubit that it stores
two real or complex numbers in a vector form. With an increasing number of qubits
n, the dimension of the Hilbert space increases exponentially as H(C2n

). One of the
state-of-the-art direct numerical simulations (DNS) on forced isotropic turbulence utilizes
a grid of 81923 [49] to resolve the flow physics to the Kolmogorov scale, of which the
memory requirement almost hits the limitation of classical high-performance computers.
Via the spanned Hilbert space, its velocity field only takes 41 qubits to store in quantum
computers. The exponential growth of the storage capacity of qubits brings in the most
alluring attribute of quantum computing, that is, the guaranteed acceleration of space
complexity of the quantum algorithm.

To take advantage of quantum computing in the space complexity, we need to encode
the solution field in the vector space represented by a quantum register that consists of
multiple qubits. The quantum-equivalent operation of initializing vector variables in
classical computing is to prepare a specific state vector of the quantum register. To obtain
the quantum state representing an arbitrary vector (i.e., the initial condition), universal
quantum gates are the prerequisite and are considered at the early development of quan-
tum computing [15]. In practice, we start with a quantum register where all qubits are |0⟩
and apply a series of unitary operators to prepare the desired state vector |ϕ1⟩ in Fig. 1 as
follows

|0⟩⊗(q+1) Encode−−−→|ψ0⟩=
1√

∥Φn∥2+∥S∥2

(
|0⟩⊗

m−1

∑
k=1

Φn
k |k⟩+|1⟩⊗

m−1

∑
k=1

Sk |k⟩
)

, (3.2)

where q = log2(m−1) is the number of qubits used to store the solution vector Φn in
Eq. (2.7). With one additional qubit, the spanned vector space can also store the discrete
source vector S. In other words, with log2(m−1)+1 qubits, the state vector |ψ0⟩ stores

434 B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451

both the normalized current solution field Φn and the source terms S. A straightfor-
ward method for state preparation introduced in [6] is achieved by a series of controlled
rotation operators about the y axis (C-Ry gate). The angles in the C-Ry gates are deter-
mined by a system of nonlinear equations. Shende et al. [40] proposed a more efficient
quantum circuit that achieves the initialization with an upper bound of complexity (i.e.,
number of CNOT gates). Since the arrangement of the quantum circuits is case-specific,
the comparisons of the state vectors prepared via both algorithms are conducted within
the numerical tests in Section 4.

3.2 Arithmetic of quantum amplitudes

According to the matrix form of the discretized equation given by Eq. (2.7), the three
stages after the encoding of the state vector incorporate two linear algebraic operations,
including matrix-vector multiplications and vector or component addition. After the so-
lution field is encoded in the spanned Hilbert space of the quantum register (i.e., a state
vector of amplitudes) as in Eq. (3.2), quantum circuits need to be designed to manipulate
the encoded state vector |ϕ0⟩ for the realization of the linear algebraic operations. The
manipulation of the state vector in a quantum system follows another postulate in quan-
tum mechanics that the evolution of a closed quantum system is described by a unitary
transformation. Nevertheless, most of the classical system, like fluid mechanics, involves
non-unitary operations. In the following content, we present how to accomplish those
non-unitary operations via the combination of unitary ones.

3.2.1 Matrix-vector multiplication

After the encoding stage introduced in Section 3.1, we need to evolve the encoded state
vector |ψ0⟩ to the state vector |ψ1⟩ representing the amplified current solution AΦn. As
mentioned above, this manipulation needs to be achieved by a unitary matrix or a linear
combination of several unitary matrices so that the indicated evolution is admissible in a
quantum system. From Eq. (2.8), it is understood that the amplification matrix A is the
linear combination of three parts: the identity matrix I, the convection matrix C and the
diffusion matrix D.

The discrete Laplace operator D is a symmetric Toeplitz matrix due to the use of
a uniform grid. In a more generic case of structured mesh with uneven grid spacing,
the discrete Laplace operator loses the attribute of the Toeplitz matrix but preserves the
symmetry. Following the transformation suggested by Xin et al. [47] for linear systems,
we first normalize D and construct a unitary matrix from the discrete Laplace operator
as

Du =
1

∥D∥D+i

√
I− 1

∥D∥2 D ·D, (3.3)

where i=
√
−1 is the imaginary unit, ∥D∥ is the Frobenious norm of the matrix, and

√
(•)

is the matrix square root. It can be shown that as long as D is symmetric, Du is a unitary

B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451 435

matrix. Moreover, the real part of Du remains identical as the normalized D. Technically
one may need to eliminate the effect of the imaginary part via its conjugate counterpart
as DΦn/∥D∥=DuΦn+(Du)∗Φn. In practice, we can simply ignore the imaginary part in
the state vector.

The discrete convection operator C is slightly trickier for implementation in the quan-
tum circuits. Even with the homogeneous velocity field (i.e., u(x)=u), we are left with a
skew-symmetric matrix. Therefore, the construction of unitary matrix shown in Eq. (3.3)
is not applicable for the convection operator C. To overcome this issue, we decompose
the convection operator as follows,

CADVΦn =

u1
u2

. . .
um−1

︸ ︷︷ ︸
diag(u)

ϕ2
ϕ3
...

ϕm−1
0

−

0
ϕ1
...

ϕm−3
ϕm−2

, (3.4)

CDIVΦn =

u2
u3

. . .
um−1

0

ϕ2
ϕ3
...

ϕm−1
0

−

0
u1

. . .
um−3

um−2

0
ϕ1
...

ϕm−3
ϕm−2

, (3.5)

where the dimension of the linear system is m−1. Unlike the common practice of imple-
menting a non-unitary matrix via decomposition into a linear combination of multiple
unitary matrices, we rearrange the vectors on the RHS of both forms in Eqs. (3.4) and (3.5)
to accommodate for the numerical differences. Such re-arrangement requires auxiliary
qubits for extra storage in the state vector and extra work in the encoding stage, while
reducing the multiplier into a diagonal matrix. The resulting diagonal matrix diag(u) can
be converted into a unitary matrix following the transformation given in Eq. (3.3), and
the vector addition is addressed in Section 3.2.2.

An alternative approach to implement the amplification matrix A in quantum cir-
cuits is based on the singular value decomposition (SVD), where A is factorized into the
following form:

A=UΣV∗. (3.6)

Both U and V are unitary matrices, the superscript ∗ indicates the conjugate transpose,
and Σ is a diagonal matrix comprising the singular values of the square matrix A. In
particular, since the singular values are the square roots of the eigenvalues of the normal
matrix A∗A or AA∗, Σ is a real diagonal matrix. Therefore, the unitary transformation in
Eq. (3.3) is applicable to Σ, which yields the unitarized amplification matrix Au as follows

Au =UΣuV∗, where Σ
Eq. (3.3)−−−−→Σu. (3.7)

436 B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451

It is worth noticing that the resulting matrices U and V from SVD are real and orthogonal
when A is a real square matrix as is the case in simulations of fluid dynamics. Therefore,
the real part of the normalized amplification matrix is preserved in the unitarization pro-
cess as ℜ(Au)=A/∥A∥. Compared to specific treatments shown in Eq. (3.3) for symmet-
ric Toeplitz matrices and Eqs. (3.4) and (3.5) for anti-symmetric matrices, the SVD-based
unitary process in Eq. (3.7) is capable of unitarizing a real amplification matrix discretized
from a general fluid dynamics system.

The last component in the amplification matrix is an identity matrix I, which is uni-
tary by default. In the implementation on the Qiskit simulator, we treat I, CADV or CDIV,
and D with coefficients together and embed their unitary counterparts Au into quantum
circuit after unitary transformation defined in Eq. (3.3)

|ψ0⟩ Au
−→|ψ1⟩=

1√
∥AΦn∥2+∥S∥2

(
|0⟩⊗

m−1

∑
k=1

(AΦn)k |k⟩+|1⟩⊗
m−1

∑
k=1

Sk |k⟩
)

. (3.8)

The contribution from the convection operator is accounted for separately with addi-
tional vector addition, and the details of the quantum realization are presented in Sec-
tion 4.2.

3.2.2 Vector addition

Following the encoding introduced in Section 3.1, we need q= log2(m−1) qubits to store
the entire solution vector Φn in Eq. (2.7). As shown in Fig. 2, the quantum state |ψ1⟩
encoded with the matrix-vector multiplication results AΦn and the source vector S is
manipulated by a Hadamard gate to calculate AΦn+S as follows,

|ψ1⟩ H−→|ψ2⟩=
1

√
2
√
∥AΦn∥2+∥S∥2

(
|0⟩⊗

m−1

∑
k=1

(AΦn+S)k |k⟩+|1⟩⊗
m−1

∑
k=1

(AΦn−S)k |k⟩
)

,

(3.9)
where the subscript (•)k denotes the kth component of the vector, and |k⟩ denotes the kth

basis in H(C2q
). Both the amplified converged solution AΦn and the source term S have

the dimension of m−1. Therefore, the quantum state |ψ1⟩= [AΦn,S]T before the vector
addition is stored in a quantum register with a total of q+1 qubits. Via a Hadamard
gate H on the highest-order qubit, two vectors are superposed, resulting in an equivalent
operation as addition.

|ψ1〉 |ψ2〉
H

Figure 2: The quantum circuit for vector addition in the stage of adding source terms.

B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451 437

3.2.3 Component addition

The fully discrete matrix form of the governing equation given by Eq. (2.7) converts the
incorporation of the boundary condition as an correction vector B. By adding the correc-
tion vector B and the source vector S together, one can merge the stages of adding source
terms and incorporating boundary conditions to arrive at the state vector |ψ3⟩ right after
the operations of the matrix-vector multiplication and the vector addition. Nevertheless,
for the problems with a local source, embedding the source term and boundary condi-
tions into vectors with the same length as the linear system increases the space com-
plexity of quantum algorithms. To economically add the correction vector of boundary
conditions or local source terms into the amplified solution field, we hereby present the
quantum circuit for component addition. We introduce an ancilla qubit to the quantum
circuits for the purpose of the element-wise operation. With two controlled-NOT (CNOT)
gates, two components in the state vector that are meant to be summed are exposed, and
the following Hadamard gate superposes these two components, as shown in Fig. 3. The
evolution of the state vector in the stage of incorporating boundary conditions is:

|ψ∗
2⟩=

1√
∥Φn

2∥2+B2
|0⟩⊗

(
m−1

∑
k=1

(Φn
2)k |k⟩+B|m⟩

)
CNOT, H−−−−−→

|ψ∗
3⟩=

1√
2∥Φn

2∥2+2B2

[
|0⟩⊗

(
m−2

∑
k=1

(Φn
2)k |k⟩+((Φn

2)m−1+B)|m−1⟩
)

+|1⟩⊗
(

m−2

∑
k=1

(Φn
2)k |k⟩+((Φn

2)m−1−B)|m−1⟩
)]

, (3.10)

where Φn
2 =AΦn+S indicates the state vector after the stage of applying the source term

and B denotes the correction at the (m−1)th component due to boundary condition.

[AΦn + S, B]T

|ψ∗
3〉

|0〉a H

Figure 3: The quantum circuit for component addition in the stage of incorporating boundary conditions.

4 Numerical tests

In this section, we evaluate the proposed quantum algorithm using a series of problems
with manufactured solutions for the convenience of validation. These 1D problems cover
a wide range of governing equations, including the Helmholtz equation and the inviscid

438 B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451

Burgers’ equation. Also presented is the case of a convergent-divergent nozzle that is
governed by the compressible Navier-Stokes equations. The proposed quantum algo-
rithm is implemented in Qiskit [2], an open-source software development kit for quan-
tum computing, which allows us to simulate a DQC in the level of quantum circuits. The
employed “statevector” backend enables the perfect readout of the quantum state vector
without any noise, which allows us to validate the results stage by stage. In other words,
we assume there exists an oracle that is able to efficiently embed the current solution field
from the state vector into the next-step quantum circuits for nonlinear problems. Such
oracle is also assumed in the discussion of quantum time integrator for Navier-Stokes
equations [18] and the communication between classical and quantum computers in the
hybrid algorithm [30]. It is worth noticing that the purpose of the present numerical tests
is to exhibit the potential of quantum computers to simulate fluid dynamics. Thus it is
critical to validate whether these algorithms can produce replicas of classical numerical
procedures. The stability of the algorithms in mathematically non-smooth problems, like
shockwaves, is beyond the scope of this work.

4.1 Helmholtz equation

In a 1D open-bounded domain Ω=(0,1), we have a Helmholtz equation of an unknown
scalar field ϕ with homogeneous Dirichlet boundary conditions at both ends as

∂tϕ=ν∇·∇ϕ in Ω×[0,T], (4.1)
ϕ=0 on Γ×[0,T]. (4.2)

With the applied boundary conditions, the steady-state solution of Eq. (4.1) is simply zero
across the entire domain. The computational domain is evenly divided into 17 cells (or 18
nodes). Only 16 internal nodes are considered in the linear system, which needs 4 qubits
to represent the discrete solution field. The initial condition is a sinusoidal wave function
ϕ0=ϕ(x,0)=sin(2πx). To initialize the computation, we need to prepare the state vector
with the discrete initial condition Φi = ϕ0(xi). Two quantum circuits following the two
different methods introduced in Section 3.1 are implemented and tested. Fig. 4 presents
the quantum circuits following the method in [6] where only C-Ry gates are used and
corresponding angles are determined by a series of nonlinear equations. In Fig. 5, the
quantum circuits making use of the method in [40] is presented, where only two-qubit
gates (i.e., CNOT, Ry and Rz) are utilized. Both circuits in Figs. 4 and 5 are implemented
in Qiskit and applied to the quantum register with all zero states, namely, |0⟩⊗4. The
initialized quantum state vectors from both circuits are plotted in Fig. 6. We notice that
Shende’s algorithm [40] provides a more accurate representation of the initial condition.
Consequently, this method is adopted in all the numerical tests in this work.

Due to the homogeneity in the PDE and the boundary condition, the corresponding
terms S and B in the FTCS discretizations in Eq. (2.7) are dropped and so is the con-
vection matrix Conv. Consequently, the FTCS scheme for this problem is as simple as a

B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451 439

|0⟩⊗4

Ry(θ8)

Ry(θ4) Ry(θ5) Ry(θ6) Ry(θ7)

Ry(θ2) Ry(θ3)

Ry(θ1)

Ry(θ9) Ry(θ10) Ry(θ11) Ry(θ12) Ry(θ13) Ry(θ14) Ry(θ15)

|ψ0⟩

Figure 4: Quantum circuits for the state preparation in [6]. The angles in Ry gates are: θ1 = 4.76, θ2 = 1.43,
θ3 = 1.63, θ4 = 2.09, θ5 = 0.839, θ6 = 3.98, θ7 = 5.24, θ8 = 2.26, θ9 = 1.68, θ10 = 1.38, θ11 = 0.672, θ12 = 2.47,
θ13 =1.76, θ14 =1.46, θ15 =0.984.

|0⟩⊗4

Ry(π/2)

Ry(π/2) Ry(θ2) Ry(θ3)

Ry(π/2) Ry(θ1)

Ry(π/2) Rz(π)

Ry(θ4) Ry(θ5) Ry(θ6) Ry(θ7)

|ψ0⟩

Figure 5: Quantum circuits for the state preparation in [40]. The angles in Ry gates are: θ1=−0.119, θ2=0.632,
θ3 =−0.0991, θ4 =2.98, θ5 =0.444, θ6 =−0.0583, θ7 =−0.098.

matrix-vector multiplication Φn+1 = AΦn, where A= I−ν∆t/∆x2Diff. Via Eq. (3.3), we
convert the amplification matrix A into its unitary counterpart Au, of which the real part
is essentially the normalized A. To illustrate the implementations in quantum computers,
we present the quantum circuits for a case with 5 cells (4 inner nodes encoded using 2
qubits) in Fig. 7. The state vector |ψ1⟩ encoded in a 4-qubit register is evolved by Au and

440 B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451

0.0 0.2 0.4 0.6 0.8 1.0

Coordinates: x

−0.2

0.0

0.2

In
it

ia
l

co
n

d
it

io
n

:
φ

0

Initial condition

Prepared state: [5]

Prepared state: [38]

Figure 6: The initialized state vectors via methods in [6, 40].

|ψ0⟩
Ry(π/2) Rz(θ3) Rx(θ6) Rz(π)

Rz(θ1) Ry(θ2) Rz(θ4) Rz(θ5) Ry(θ7) Rz(θ8)

Rz(π/2) Ry(θ11) Rz(θ14) Ry(−π)
|ψ1⟩

Rz(θ9) Ry(θ10) Rz(θ12) Rz(θ13) Ry(θ15) Rz(θ16)

Figure 7: The quantum circuit of the amplifying stage for Helmholtz equation discretized by four inner grid
points: Two qubits are utilized to encode the solution field and the time step is ∆t=0.2∆x2/ν. The angles in
Ry and Rz gates are: θ1=2.97, θ2=0.403, θ3=1.33, θ4=1.75, θ5=0.0356, θ6=−0.239, θ7=1.49, θ8=−1.97,
θ9 =−0.16, θ10 =1.94, θ11 =−0.0674, θ12 =1.14, θ13 =−3.08, θ14 =−1.81, θ15 =1.54, θ16 =0.396.

the resulting state vector |ψ2⟩ is

|ψ1⟩=
1

∥Φn∥
15

∑
k=0

Φn
k |k⟩

Au
−→ |ψ2⟩=

1
∥Φn∥

15

∑
k=0

(
1

∥A∥Φn+1
k +i(ℑ[Au]Φn)k |k⟩

)
, (4.3)

where |k⟩ denotes the kth one among 16 bases. To recover the time-evolved solution Φn+1,
we need the L2 norm of the amplification matrix and solution field. The former one is an
a priori knowledge for a linear problem after discretization, while the latter one requires
measurement or equivalent operations after each time-marching step. We implement the
proposed algorithm in Qiskit and simulate it with “statevector” backend where quan-
tum circuits are ideal without any error in readout and encoding. The classical algorithm
shown in Eq. (2.6) is also implemented as the baselines of solutions. The time increment
is uniformly set as ∆t=0.1∆x2/ν. The results from the quantum simulator are compared
with those from a classical computer in Fig. 8, where solution fields at various snapshots

B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451 441

0.0 0.2 0.4 0.6 0.8 1.0

Coordinates: x

−0.4

−0.2

0.0

0.2

0.4

S
ol

u
ti

o
n

fi
el

d
:
φ

step 50

step 100

step 150

step 200

Classical

Quantum

Discretization

Figure 8: Comparisons of the solution field of 1D Helmholtz equation between quantum and classical imple-
mentations after 50, 100, 150, and 200 timesteps.

are plotted. In all instantaneous solution fields drawn in Fig. 8, it is observed that those
obtained from the proposed realization in quantum simulator perfectly match the results
from the classical computer. This observation indicates that the quantum implementa-
tion replicates the time-evolving solution fields from classical computers in a transient
diffusion problem.

4.2 Inviscid Burgers’ equation

Next, we evaluate the proposed quantum numerical method for the following inviscid
1D Burgers’ equation.

∂tu+uu,x =0 in Ω×[0,T], (4.4)

where the same Dirichlet boundary conditions as Eq. (4.2) are applied to the 1D domain
Ω=[0,1]. While Eq. (4.4) takes the standard convective form, an equivalent substitute in
conservative form can be written as,

∂tu+
1
2
(u2),x =0 in Ω×[0,T]. (4.5)

Burgers simplifies the Navier-Stokes equations to this 1D form to investigate the proper-
ties of turbulence [27]. The 1D domain is uniformly discretized into 15 cells. The initial
condition takes the form of a sinusoidal wave with unit wavelength. As compared to
the Helmholtz equation in Section 4.1, not only does the primary differential operator of
a Burgers’ equation becomes the convection operator, resulting in a hyperbolic system,
but the problem also becomes nonlinear since the solution field is the convection velocity
itself. We wish to point out that the validation here is particularly about the realization
of quantum algorithms presented in Section 3.2.1 for matrix-vector multiplication rather
than the usual discussion on the stability and shock-capturing for numerical schemes.

442 B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451

· · ·

· · ·

· · ·
· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

un

un
R

un
L

|0⟩a H

|0⟩a

un

+un
R

+un
L

H

Figure 9: Quantum circuits for the twice vector additions in Eq. (4.6).

As discussed in Section 3.2.1, due to the inhomogeneity in the velocity field and the
anti-Hermitian matrix discretized from the convection operator, it is not straightforward
to convert the nonlinear convection into a unitary operation directly. Therefore, we en-
code multiple copies of Φn into the quantum register to calculate different components
related to the discretization shown in Eqs. (2.7) and (3.4) and sum them up following the
strategies presented in Section 3.2.1. The abstract form of the present algorithm, includ-
ing one matrix-vector multiplication and two vector addition, is expressed as

un+1=un+un
R+un

L and

un

un
R

un
L

= Ã

un

[u2,u3,··· ,um−1,0]T

[0,u1,··· ,um−3,um−2]T

, (4.6)

where Ã is the enriched amplification matrix. Following discrete forms defined in

B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451 443

0.0 0.2 0.4 0.6 0.8 1.0

Coordinates: x

−1.0

−0.5

0.0

0.5

1.0

S
ol

u
ti

on
fi

el
d

:
φ step 5

step 10

Initial

Classical

Quantum

Figure 10: Comparison of the solution field of 1D inviscid Burgers’ equation in the advective form between
quantum and classical implementations after five and ten steps. The time increment is ∆t=0.2∆x. The initial
condition is shown using the solid line.

Eqs. (3.4) and (3.5) for the convection operator, Ã is adapted to as

ÃADV=

I
∆t

2∆x diag(un)
− ∆t

2∆x diag(un)

, (4.7)

ÃADV=

I
∆t

4∆x diag([u2,u3,··· ,um−1,0])
− ∆t

4∆x diag([0,u1,··· ,um−3,um−2])

. (4.8)

Since Ã is a diagonal matrix, it is convenient to implement it in quantum circuits after
being converted to a unitary matrix using Eq. (3.3). In this test case, to delineate the
implementation of component addition in Section 3.2.3, we illustrate the corresponding
quantum circuits in Fig. 9, where two ancilla qubits are utilized for twice vector additions.

The simulations in both the quantum simulator and classical computer are stopped
before the shockwave happens due to the lack of shock-capturing terms in the present
discretization. The solution fields obtained from quantum and classical computing in
the advective form after five and ten time-steps are plotted in Fig. 10, together with the
initial condition. As shown in Fig. 10, the proposed quantum algorithm reproduces the
evolution history of solution fields as classical computing for the convection-dominant
problems. In the meanwhile, we also implement the quantum circuits for the divergence
form and present the solution field obtained from the quantum simulator after ten-step
time marching in Fig. 11. It is clear that the divergence form is also successfully imple-
mented in the quantum simulator, where the output reproduce the results in a classical
computer. Also, the divergence form suppress the overshoot phenomenon as compared
to the advective form.

444 B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451

0.0 0.2 0.4 0.6 0.8 1.0

Coordinates: x

−1.0

−0.5

0.0

0.5

1.0

S
ol

u
ti

on
fi

el
d

:
u

DIV: classical

DIV: quantum

ADV

Figure 11: Comparison of the solution field of 1D inviscid Burgers’ equation between advective and divergence
forms after ten steps. The time increment is identical as Fig. 10.

0.0 0.2 0.4 0.6 0.8 1.0

Coordinates: x

−1.0

−0.5

0.0

0.5

1.0

S
ol

u
ti

on
fi

el
d

:
u

DIV: Eq. (3.5)

DIV: Eq. (3.7)

Figure 12: Comparison of the solution field of 1D inviscid Burgers’ equation: two quantum realizations of
matrix-vector multiplication

The SVD-based quantum matrix arithmetic presented in Section 3.2.1 is also utilized
for the inviscid Burgers’ equation with the conservative form where the amplification ma-
trix becomes A= I−(∆t/2∆x)CDIV. Via the unitarization process introduced in Eq. (3.7),
we rearrange the quantum circuits of the amplifying stage in the simulator. After ten
time-steps of simulation, the obtained solution field is plotted in Fig. 12 alongside the re-
sults based on the vector addition in Eq. (3.5). It is clear that both approaches for matrix-
vector multiplication lead to identical results. However, the vector-addition-based quan-
tum implementation costs more qubits since one needs to prepare multiple copies of the
solution field. The number of copies is determined by order of spatial interpolation p
as 2p−1. The SVD-based implementation is free of such linear dependence in spatial

B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451 445

0.0 0.2 0.4 0.6 0.8 1.0

Coordinates: x

−1.0

−0.5

0.0

0.5

1.0

S
ol

u
ti

on
fi

el
d

:
u

SVD: 2nd

SVD: 4th

Figure 13: Comparison of the solution field of 1D inviscid Burgers’ equation: SVD-based matrix-vector multi-
plication with quadratic and quartic center difference

complexity. To further illustrate the advantages of the SVD-based implementation, we
extend the spatial interpolation from quadratic center differences presented in Eq. (2.12)
to quartic center differences. The quantum circuits are rearranged accordingly for the am-
plification matrix with larger bandwidth, while the number of qubits remains the same.
The simulated result with a higher-order stencil is plotted in Fig. 13, where the overshoot
phenomenon is further suppressed as compared to the case with a lower-order stencil.

4.3 Navier-Stokes equations

In this test case, a convergent-divergent nozzle (also known as de Laval nozzle) is con-
sidered. The variation of the cross-section area of the nozzle is sufficiently slow, yielding
a quasi-1D problem. Here we prescribe the area A = 1+2.2(x−1.5)2 as the test case in
Gaitan [18] for a quantum time integrator. The quasi-1D compressible Navier-Stokes
equations are:

∂t(ρA)+∂x(ρAu)=0, (4.9)

∂t(ρAu)+∂x

(
ρAu2+

pA
γ

)
=

p
γ

∂x A, (4.10)

∂t (ρAE)+∂x (ρAuE+pAu)=0, (4.11)

where ρ(x,t), u(x,t), and T(x,t) are the density, velocity and temperature fields, re-
spectively, which are also referred to as primitive variables; A(x) is the prescribed
varying area of the cross section of the nozzle; γ = 1.4 is the heat capacity ratio; E =
e/(γ−1)+γu2/2 is the total energy; the internal energy e=RT/(1−γ). To apply the pro-
posed quantum algorithm, we rewrite the quasi-1D compressible Navier-Stokes equa-

446 B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451

tions in Eq. (4.11) based on conservative variables as follows.

∂tU+∂xF(U)=S(U), (4.12)

U =

ρA
ρAu
ρAE

, F=

U2
U2

2
U1

+ γ−1
γ

(
U3− γU2

2
2U1

)

γU2U3
U1

− γ(γ−1)U3
2

2U2
1

, S=

0
γ−1

γ

(
U3− γU2

2
2U1

)
∂x A

A

0

, (4.13)

where U is the vector of the conservative variables including mass, momentum, and total
energy, F is the flux vector, and S is the source vector.

The 1D computational domain Ω=[0,3] is uniformly divided into 128 cells. 11 qubits
are used to encode the solutions and fluxes of the last time-step together with the source
vector. The initial conditions for temperature and density are,

ρ0=

{
1.0, x≤1.5,
− 1

3 x+1.0, x>1.5,
and T0=

{
− 1

3 x+1.0, x≤1.5,
0.5, x>1.5,

(4.14)

and the initial velocity u0(x) is determined by the governing equations. The time incre-
ment is set as ∆t= 0.2∆x to ensure the stability. Both classical and quantum computing
are conducted for 2000 time-steps to make the discrete systems evolve into the nearly
steady state. We depict the converged quantum solutions and the steady-state exact so-
lutions derived by Anderson [1] in Fig. 14. The converged solution obtained from the
quantum simulator is very close to the exact solutions, which validates the capacity of
our quantum implementation. Moreover, profiles of primitive variables at three different
snapshots from both classical and quantum computing are plotted in Fig. 14. It is ob-
served that the results obtained from classical and quantum computing match well with
each other, which indicates the consistency of the presenting quantum implementations.

5 Conclusions

In this paper, we have presented a numerical procedure to conduct simulations of fluid
dynamics problems using a quantum computer. A sample convection-diffusion equation,
as a simplified version of the Navier-Stokes equations, is discretized using the classical
FTCS scheme. We propose a multiple-stage numerical procedure for the realization of a
single-step time-marching scheme in DQC, including encoding, amplification, applying
source terms, and incorporating boundary conditions. To accommodate the postulates
in a quantum-mechanical system, the solution fields are encoded via of the quantum
state vector and the operations on the solution fields need to be recast into unitary op-
erations. In particular, three linear algebra procedures, including matrix-vector multipli-
cation, vector addition, and component addition, are converted into unitary transforma-
tions and therefore become admissible in a quantum computer.

B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451 447

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Coordinates: x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
en

si
ty

:
ρ

step 50

step 200

step 600

step 2000
Classical

Quantum

Initial condition

Exact solution

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Coordinates: x

0

1

2

3

V
el

o
ci

ty
:
u

step 50

step 200

step 600

step 2000

Classical

Quantum

Initial condition

Exact solution

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Coordinates: x

0.4

0.6

0.8

1.0

T
em

p
er

a
tu

re
:
T step 50

step 200
step 600
step 2000

Classical

Quantum

Initial condition

Exact solution

(c)

Figure 14: Comparisons of the solution fields in a de Laval nozzle obtained from quantum and classical computing
at various snapshots: (a) density, (b) velocity, and (c) temperature.

Though the dimension of the vector space spanned by qubits increases exponentially,
the space complexity of the proposed quantum numerical procedure is not necessarily
superior to classical algorithms. Due to the no-cloning theorem, it is impossible to effi-
ciently (i.e., less than the logarithmic scale) reproduce a state vector with identical proba-
bility magnitudes to be recycled during time marching in nonlinear problems, where the
amplification matrix A depends on the solution field from last time-step un. As pointed
out in [28], one needs to generate enough number of copies to ensure there is at least
one valid copy of un stored in the probability magnitudes of the state vector at T=N∆t,
where N is the total number of time-steps. The required number of copies in the present
method is in the scale of O(2n). The total space complexity becomes O(2N logm). For any
practical fluid mechanics problem, N will be large enough to eliminate the direct space
complexity from encoding in the state vector spanned by qubits.

448 B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451

To validate the proposed quantum numerical method, we implement it in a quan-
tum computing simulator for a series of problems possessing an increasing degree of
complexity. The first test case is a 1D Helmholtz equation with homogeneous boundary
conditions. In this problem, we delineate the quantum circuits to encode the discrete ini-
tial condition into quantum amplitudes and validate our implementation for diffusion
equations. The second test case is a transient problem of 1D inviscid Burgers’ equation to
further validate the proposed quantum implementation for nonlinear convection equa-
tions. Finally, we extend the application of the proposed quantum numerical procedure
to a nonlinear coupled system of hyperbolic equations–quasi-1D compressible Navier-
Stokes equations. A hypersonic de Laval nozzle with analytical solutions is used as the
benchmark problem. In all three test cases, the results attained from quantum comput-
ing are identical to those attained from classical computing. These tests comprehensively
validate the realization of the proposed method in ideal quantum circuits.

Quantum solvers for hyperbolic PDEs are relatively rare among all the preliminary
investigations on the quantum computing for Navier-Stokes equations or their simplified
derivatives, as summarized in Childs et al. [12]. This work addresses the quantum im-
plementations for 1D nonlinear hyperbolic PDEs via classical central differences and ex-
plicit time marching for the brevity. It is worth noticing that the spatial discretization and
time marching schemes can be straightforwardly replaced by more sophisticated options
to largely improve the accuracy and stability of the numerical procedures. Moreover,
the proposed quantum implementation for the 1D problem can be further extended to
multidimensional problems. The proposed quantum numerical procedure is validated
in a simulator for perfect quantum circuits, while the number of qubits in the cutting
edge hardware is reaching the concept of the so-called Noisy Intermediate-Scale Quan-
tum (NISQ) computers [38]. To make quantum computational fluid dynamics feasible in
academic and industrial practices, it is critical to propose algorithms with superiority in
time complexity and with inherent error-resistant capabilities in the future.

Acknowledgments

This work is supported by NSFC Basic Science Center Program for ”Multiscale Problems
in Nonlinear Mechanics” (Grant No. 11988102) and National Natural Science Foundation
of China (Grant No. 12202454).

References

[1] J. Anderson. Fundamentals of Aerodynamics. McGraw-Hill Book Company, 6 edition, Mar.
2016.

[2] M. S. Anis, H. Abraham, AduOffei, R. Agarwal, G. Agliardi, M. Aharoni, I. Y. Akhalwaya,
G. Aleksandrowicz, T. Alexander, M. Amy, S. Anagolum, E. Arbel, A. Asfaw, A. Athalye,
A. Avkhadiev, C. Azaustre, P. BHOLE, A. Banerjee, S. Banerjee, ···, and M. ÄŒepulkovskis.
Qiskit: An Open-source Framework for Quantum Computing, 2021.

B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451 449

[3] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G.
S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney,
A. Dunsworth, E. Farhi, B. Foxen, ···, and J. M. Martinis. Quantum supremacy using a
programmable superconducting processor. Nature, 574(7779):505–510, 2019.

[4] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator,
J. A. Smolin, and H. Weinfurter. Elementary gates for quantum computation. Phys. Rev.
A, 52(5):3457–3467, 1995.

[5] J. R. Basani and A. Bhattacherjee. Continuous-variable deep quantum neural networks for
flexible learning of structured classical information. Commun. Comput. Phys., 30(4):1216–
1231, 2021.

[6] G. Benenti, G. Casati, D. Rossini, and G. Strini. Principles of Quantum Computation and Infor-
mation. World Scientific, 2018.

[7] D. W. Berry, A. M. Childs, A. Ostrander, and G. Wang. Quantum algorithm for linear dif-
ferential equations with exponentially improved dependence on precision. Commun. Math.
Phys., 356(3):1057–1081, 2017.

[8] S. Boixo, T. F. Rønnow, S. V. Isakov, Z. Wang, D. Wecker, D. A. Lidar, J. M. Martinis, and
M. Troyer. Evidence for quantum annealing with more than one hundred qubits. Nature
Phys., 10(3):218–224, 2014.

[9] J. Cai, W. G. Macready, and A. Roy. A practical heuristic for finding graph minors.
arXiv:1406.2741 [quant-ph], 2014.

[10] Y. Cao, A. Daskin, S. Frankel, and S. Kais. Quantum circuit design for solving linear systems
of equations. Molecular Physics, 110(15-16):1675–1680, 2012.

[11] Y. Cao, A. Papageorgiou, I. Petras, J. Traub, and S. Kais. Quantum algorithm and circuit
design solving the Poisson equation. New J. Phys., 15(1):013021, 2013.

[12] A. M. Childs, J.-P. Liu, and A. Ostrander. High-precision quantum algorithms for partial
differential equations. Quantum, 5:574, 2021.

[13] A. M. Childs and W. van Dam. Quantum algorithms for algebraic problems. Rev. Mod. Phys.,
82(1):1–52, 2010.

[14] C. M. Dawson and M. A. Nielsen. The Solovay-Kitaev algorithm. Quantum Info. Comput.,
6(1):81–95, 2006.

[15] D. E. Deutsch, A. Barenco, and A. Ekert. Universality in quantum computation. Proc. R. Soc.
Lond. A, 449(1937):669–677, 1995.

[16] C. R. Doering and J. D. Gibbon. Applied Analysis of the Navier-Stokes Equations. Cambridge
University Press, 1995.

[17] F. Fillion-Gourdeau and E. Lorin. Simple digital quantum algorithm for symmetric first-
order linear hyperbolic systems. Numer. Algor., 82(3):1009–1045, 2019.

[18] F. Gaitan. Finding flows of a Navier-Stokes fluid through quantum computing. npj Quantum
Information, 6(1):1–6, 2020.

[19] I. Georgescu, S. Ashhab, and F. Nori. Quantum simulation. Rev. Mod. Phys., 86(1):153–185,
2014.

[20] P. M. Gresho and R. L. Sani. Incompressible Flow and the Finite Element Method. Volume 1:
Advection-Diffusion and Isothermal Laminar Flow, volume 1. John Wiley & Sons, Ltd., New
York, NY (United States), 1998.

[21] L. Hales and S. Hallgren. An improved quantum Fourier transform algorithm and applica-
tions. In Proceedings 41st Annual Symposium on Foundations of Computer Science, pages 515–
525, 2000. ISSN: 0272-5428.

[22] A. W. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for linear systems of equa-

450 B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451

tions. Phys. Rev. Lett., 103(15):150502, 2009.
[23] T.-J. Hsu, F. Jin, C. Seidel, F. Neukart, H. De Raedt, and K. Michielsen. Quantum annealing

with anneal path control: Application to 2-SAT problems with known energy landscapes.
Commun. Comput. Phys., 26(3):928–946, 2019.

[24] J. Hunt. Lewis Fry Richardson and his contributions to mathematics, meteorology, and
models of conflict. Annu. Rev. Fluid Mech., 30(1):xiii–xxxvi, 1998.

[25] V. M. Kendon, K. Nemoto, and W. J. Munro. Quantum analogue computing. Philos. Trans.
Royal Soc. A, 368(1924):3609–3620, 2010.

[26] M. Knudsen and C. B. Mendl. Solving differential equations via continuous-variable quan-
tum computers. arXiv:2012.12220 [quant-ph], 2020.

[27] R. H. Kraichnan. Lagrangian-history statistical theory for Burgers’ equation. Phys. Fluids,
11(2):265, 1968.

[28] S. K. Leyton and T. J. Osborne. A quantum algorithm to solve nonlinear differential equa-
tions. arXiv:0812.4423 [quant-ph], 2008.

[29] J.-P. Liu, H. Ã. Kolden, H. K. Krovi, N. F. Loureiro, K. Trivisa, and A. M. Childs. Efficient
quantum algorithm for dissipative nonlinear differential equations. Proc. Natl. Acad. Sci.
USA, 118(35):e2026805118, 2021.

[30] B. Ljubomir. Quantum algorithm for the Navier-Stokes equations by using the stream
function-vorticity formulation and the lattice Boltzmann method. International Journal of
Quantum Information, 2022.

[31] S. Lloyd, G. De Palma, C. Gokler, B. Kiani, Z.-W. Liu, M. Marvian, F. Tennie, and
T. Palmer. Quantum algorithm for nonlinear differential equations. arXiv:2011.06571 [nlin,
physics:quant-ph], 2020.

[32] M. Lubasch, J. Joo, P. Moinier, M. Kiffner, and D. Jaksch. Variational quantum algorithms
for nonlinear problems. Phys. Rev. A, 101(1):010301, Jan. 2020.

[33] E. R. MacQuarrie, C. Simon, S. Simmons, and E. Maine. The emerging commercial landscape
of quantum computing. Nat Rev Phys, 2(11):596–598, 2020.

[34] A. Montanaro and S. Pallister. Quantum algorithms and the finite element method. Phys.
Rev. A, 93(3):032324, 2016.

[35] Y. Morinishi, T. Lund, O. Vasilyev, and P. Moin. Fully conservative higher order finite differ-
ence schemes for incompressible flow. J. Comput. Phys., 143(1):90–124, 1998.

[36] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information: 10th An-
niversary Edition. Cambridge University Press, 2010.

[37] J. Preskill. Quantum computing and the entanglement frontier. arXiv:1203.5813 [cond-mat,
physics:quant-ph], 2012.

[38] J. Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, 2018.
[39] N. Ray, T. Banerjee, B. Nadiga, and S. Karra. Towards solving the Navier-Stokes equation

on quantum computers. arXiv:1904.09033 [physics], 2019.
[40] V. Shende, S. Bullock, and I. Markov. Synthesis of quantum-logic circuits. IEEE Trans.

Comput-Aided Des. Integr. Circuits Syst., 25(6):1000–1010, 2006.
[41] J. P. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, and D. J. Mavriplis.

CFD vision 2030 study: A path to revolutionary computational aerosciences. Technical Re-
port NASA/CR–2014-218178, NASA, 2014.

[42] S. Srivastava and V. Sundararaghavan. Box algorithm for the solution of differential equa-
tions on a quantum annealer. Phys. Rev. A, 99(5):052355, 2019.

[43] R. Steijl. Quantum Algorithms for Fluid Simulations. In F. Bulnes, V. N. Stavrou, O. Moro-
zov, and A. V. Bourdine, editors, Advances in Quantum Communication and Information. Inte-

B. Liu et al. / Commun. Comput. Phys., 33 (2023), pp. 425-451 451

chOpen, 2020.
[44] R. Steijl and G. N. Barakos. Parallel evaluation of quantum algorithms for computational

fluid dynamics. Comput. Fluids, 173:22–28, 2018.
[45] Y. Subaşı, R. D. Somma, and D. Orsucci. Quantum algorithms for systems of linear equations

inspired by adiabatic quantum computing. Physical Review Letters, 122(6):060504, 2019.
[46] J. Wen, X. Kong, S. Wei, B. Wang, T. Xin, and G. Long. Experimental realization of quantum

algorithms for a linear system inspired by adiabatic quantum computing. Phys. Rev. A,
99(1):012320, 2019.

[47] T. Xin, S. Wei, J. Cui, J. Xiao, I. Arrazola, L. Lamata, X. Kong, D. Lu, E. Solano, and G. Long.
Quantum algorithm for solving linear differential equations: Theory and experiment. Phys.
Rev. A, 101(3):032307, 2020.

[48] X. I. A. Yang and K. P. Griffin. Grid-point and time-step requirements for direct numerical
simulation and large-eddy simulation. Phys. Fluids, 33(1):015108, 2021.

[49] P. K. Yeung, K. R. Sreenivasan, and S. B. Pope. Effects of finite spatial and temporal resolu-
tion in direct numerical simulations of incompressible isotropic turbulence. Phys. Rev. Fluids,
3(6):064603, 2018.

[50] B. Zanger, C. B. Mendl, M. Schulz, and M. Schreiber. Quantum algorithms for solving ordi-
nary differential equations via classical integration methods. Quantum, 5:502, 2021.

