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Abstract
Peridynamics (PD) theory is a promising technique for modeling solids with discontinuities. Short-range repulsive force
models are commonly employed in PD impact event simulations. Despite their extensive usage, short-range force models
do not take damping, friction, and tangential force components into account and hence are unable to effectively describe
energy dissipation, leading to uncertainty in the calculation of contact forces. However, the accuracy of impact simulations
using alternate contact models has not been extensively investigated in the context of PD impact simulations. The Discrete
Element Method (DEM) has been proven to be the most reliable and effective approach to model collision processes between
distinct solid objects. This work presents, a particle-based hybrid PD-DEM model to accurately predict the particle impact
forces and the resulting damage to the target material. The present model brings together the unique capabilities of PD and
DEM and has the potential to make use of the various DEM contact laws, which allow the development and adjustment
of relevant contact forces in the normal and tangential directions. Furthermore, damping effects, friction, and intra-particle
stiffness are incorporated into the simulations through DEM. The proposed method has been used for modeling material
failure after being validated and verified for the contact parameters during the impact process. The predicted damage patterns
and resulting material loss demonstrate good agreement with the experimental results reported in the literature.
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List of symbols

Latin

Hx Interaction domain m3

x, x´, y, y´ Material point (position)
D Displacement vector m
d̈ Time derivative of displacement (acceleration)

m/s2
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F Internal force field Kg.m/s2

Fb External body force Kg.m/s2

Vx´ Volume m3

c Bond constant
s Bond stretch
n Unit vector
E Young’s modulus
sc Critical stretch
Gc Fracture energy per unit area J
u Translational velocity m/s
V Relative velocity m/s
F Force Kg.m/s2

T Total torque Kg.m2/s2

qc Torque Kg.m2/s2

D Overlap displacement m
K Stiffness constant
C Damping constant
E Effective Young’s modulus
R Effective radius
m Effective mass
G Effective shear modulus
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Nk Neighboring particles number

Greek symbols

δ Horizon m
ξ Relative position
η Relative displacement m
ν Poisson’s ratio
φ Damage
μ History-dependent function
ρ Density kg/m3

τ Time s
ω Angular velocity m/s
ϑ Damping ratio
λ Coefficient of static friction

Subscripts and Superscripts

I Particle i
j Particle j
N Normal direction
T Tangential direction
C Contact

Abbreviations

SPE Solid Particle Erosion
PD Peridynamics
DEM Discrete Element Method
FEM Finite Element Method
CZM Cohesive Zone Method
BEM Boundary Element Method
XFEM Extended Finite Element Method
SPH Smoothed Particle Hydrodynamics
RKPM Reproducing Kernel Particle Method
MFGM Mesh Free Galerkin Method
EFFM Element Free Galerkin Method
XEFGM Extended Element Free Galerkin Method
CCM Classical Continuum Mechanics

1 Introduction

Solid particle erosion (SPE) of engineered materials is a
dynamic process that causes material loss from a target sur-
face due to the impingement of fast-moving solid particles [1,
2]. Surface erosion causes component wear, surface rough-
ening, surface degradation, and a shortening in the functional

life of the structure. Metals and polymer composite materi-
als are increasingly being employed in a range of industries
where they may be subjected to solid particle erosion.
Examples of these applications include high-speed vehicles,
aircraft flying in dusty arid climates [3], pipelines transport-
ing sand slurries in petroleum refining [4, 5], helicopter rotor
blades [6], pump impeller blades [7], and abrasive erosion in
rocket motor tail nozzle [8].

Another important occurrence of SPE is in wind turbine
blades due to solid particle impacts such as hailstones, sand,
or dust particles. The blades of modern turbines are natu-
rally subjected to high-speedwinds as they travel at speeds of
80ms−1 or higher, and are bombarded by solid (e.g. hailstone
or sand) particles depending on the installation site [9]. The
particles can cause abrasive wear or impact erosion depend-
ing on the size and impact angle. As the coating of the blade
is compromised, synergy with UV degradation speeds up the
erosion rate leading to widespread damage to internal struc-
tures. Initially, the increased surface roughness increases the
friction drag resulting in an earlier onset of the stall which
causes a substantial aerodynamic performance penalty. Ulti-
mately, as the severity of erosion increases, the blades’
structural integrity is compromised resulting in unplanned
downtime and high maintenance costs [10]. Therefore, it is
very crucial to investigate the solid particle erosive impact
and behavior of polymeric-engineered materials under such
operating conditions.

The solid particle erosion process is a complex phe-
nomenon involving several parameters that interact simulta-
neously, which includes mechanical and chemical properties
of the materials as well as the shape, size, velocity, and
impingement angle of the impactor. Numerous experimen-
tal investigations considering particle impact tests have been
conducted by researchers to understand the erosion mech-
anism of polymeric and brittle materials under different
conditions [11–23]. The development of numerical models
to simulate erosion events has been progressively attempted
in recent decades. Among the numerical methods, the finite
element method (FEM) has been widely used to simu-
late the erosion process of ductile and brittle materials
[24–26]. Aquaro et al. [27] developed a FEM-based approach
that is suitable for determining erosion rates in a variety
of applications. Wang et al. [28, 29] used Johnson–Cook
and Johnson–Holmquist material models and established a
FEM framework to simulate the erosion process. In [30–32]
stress–strain criteria are used inside the FEM scheme to
model the impact of a rigid particle on glass material. FEM
solvers commonly use Lagrange multipliers or the penalty-
based technique to formulate the contact constraints [33].

Even though FEM is quite accurate in predicting stress
and strain fields, it experiences issues in modeling erosion,
because governing partial differential equations of FEM are
undefinable at geometric discontinuities of cracked surfaces.
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To solve these issues in crack growth problems, Xu et al. [34]
introduced the cohesive zone method (CZM) in FEM that
defines kinetic relations between the elements. The fracture
process, on the other hand, is a dynamic phenomenon that
involves crack propagation and requires continuous geome-
try re-meshing, which is extremely laborious and computa-
tionally expensive. Another popular technique for simulating
cohesive fractures is the boundary element method (BEM)
[35, 36]. The BEM while using a boundary-only mesh min-
imizes the problem’s size and compared to FEM reduces
dimensionality by one. To avoid the costly re-meshing,Moës
et al. [37] developed the extended finite element method
(XFEM), which incorporates enrichment functions based
on the partition of unity in the finite element formulation.
Although XFEM can effectively predict damage patterns
and allow fractures to travel through an element, it can only
simulate a limited number of cracks simultaneously. Due to
complex algorithms, it is still challenging for XFEM to con-
tinuously track the evolving large number of cracks and their
interactions e.g. scattering of glass.

The meshfree or particle-based methods such as the dis-
crete element method (DEM) [38], smoothed particle hydro-
dynamics (SPH) [39], reproducing kernel particle method
(RKPM) [40], material point method (MPM) [41], mesh-
free Galerkin method (MFGM) or element free Galerkin
method (EFGM) [42, 43] provide an alternative approach for
handling the inherent problem of elements and have been
used for a broad range of applications. Due to their smooth
and higher-order interpolation, it is quite simple to capture
massive deformations in the system. Additionally, track-
ing algorithms or re-meshing are not required in mesh-free
approaches [44]. The contact methods in most of the mesh-
free approaches have limitations and most of them are
extensions of existing methods developed for FEM [45].
Meshless methods are discrete by definition, yet they are
developed using local continuumprocedures. The spatial par-
tial derivatives in governing equations of meshless methods
are not defined for conditions such as crack initiation and
propagation and assume that the body remains continuous as
it deforms.

To address this issue, Peridynamics (PD) was introduced
as a non-local continuum mechanics theory by Silling [46].
The advantage of this formulation is that the governing equa-
tions remain valid whether the structure is continuous or not.
The PD theory is a reformulated version of classical contin-
uum mechanics (CCM) and it is more suitable for modeling
solids with discontinuities, such as cracks. In PD, the par-
tial differential equations of CCM are replaced with integral
equations. In non-local continuum models which are based
on PD theory, the state of a material point is influenced
by other material points that are situated within a certain
region with a finite radius called a horizon [47]. The PD
theory incorporates damage into the material response and

permits damage initiation and propagation at many spots
along arbitrary internal channels without using any specific
crack growth criteria. The PD theory has been effectively
applied tomaterial deformation and damage prediction appli-
cations. Silling et al. [48] successfully applied PD theory to
model damage in concrete due to numerous impacts and glass
plate crack fragmentation. Madenci et al. [49] developed a
state-based PD model for plastic deformation. Oterkus et al.
[50] applied PD to impact damage assessment and residual
strength of a reinforced panel under compression. In PD, the
contactmodel is generally implementedwith the help of rigid
impactors or short-range repulsive force algorithms [51].
The short-range force approach simulates contact interac-
tions between bodies using a technique similar to molecular
dynamics. It applies spring-like repulsive forces between
closely spaced nodes at each simulation step, yielding sat-
isfactory outcomes in several scenarios. Another option is to
use a conventional contact algorithmwithin a PD simulation,
as demonstrated in [52]. The short-range force model can be
modified to include friction effects [53] if required. Addition-
ally, to enhance its accuracy, the model may be extended to
incorporate PDbonds,which it currently does not account for
in its basic form. The absence of consideration for PD bonds
leads to a situation where material points interact simultane-
ously via the material and contact models. For further details
on correspondence constitutive models, particularly in rela-
tion to material interpenetration, readers may refer to the
study conducted by Tupek and Radovitzky [54]. Although
these contact models are used for extremely complex impact
problems, there is still uncertainty about the reaction forces
and torques. The penalty stiffness or short-range force con-
stants involved in these methods are arbitrarily set in most
of the investigations, or their formulations are unrealistic. It
is necessary to have an accurate estimation of the contact
forces in order to predict the erosive impacts of particles on
the material surface. Contact modeling in PD simulations is
still an open area of research.

Researchers [55–59] have recently proposed alternatives
to the aforementioned contact models and provided a generic
contact modeling approach for PD impact problems. Zhang
et al. [57, 60, 61] established a two-dimensional PD-DEM
coupledwith the lattice Boltzmannmethod (LBM) to address
particle–fluid interactions and particle collisions with solid
surfaces, as well as the associated damage. Jha et al. [55]
also developed a two-dimensional PD coupled with a DEM
[38] framework to simulate particle impacts and compres-
sive behavior of multi-particle systems. Madenci et al. [62]
and Anicode et al. [58, 59] presented a three-dimensional
generalized particle-based contact modeling approach in the
framework of peridynamics and analyzed the particle contact
parameters, and performed investigations for the progressive
damage in the target material.
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The present study presents a three-dimensional particle-
based hybrid PD-DEMmodel, which combines the strengths
of PD and DEM inside the LAMMPS framework. The main
reason for coupling PD with DEM [38] is to take advantage
of the multiple DEM [38] contact laws which are theo-
retically sound and are extensively validated for various
materials and impact conditions. The contact model parame-
ters can be modified to produce the appropriate DEM contact
forces, damping effects, and intra-particle stiffness. The
present hybrid PD-DEM model incorporates the Hertzian
force–displacement law [63] for the contact force in the nor-
mal direction and the stick–slip friction model proposed by
Mindlin [64] in the tangential direction. It avoids the arbi-
trary selection of the penalty parameter throughdirect contact
mechanics estimations. These contact laws are extendable
[65, 66] for systems that involve simultaneous multi-particle
interactions. This contact modeling technique in PD enables
the accurate simulation of interacting entities that deform,
fracture, and are composed of numerous particles.

This paper is organized as follows: The peridynamics the-
ory of material deformation and the governing equation of
motion of the impactor and target are discussed inSect. 2. The
implementation of the contact model between the impactor
and the target is described in Sect. 3 of the article. Section 4 of
the paper presents numerical findings for material failure in
brittle and laminated targets as well as validations of impact
parameters and contact forces.

2 Mathematical model

We have established a novel hybrid peridynamics discrete
element method (PD-DEM) based meshless software library
inside the LAMMPS framework to numerically model solid
particle erosion. Equations arising from the conservation of
momentum and constitutivemodels related tomaterial defor-
mation and stress are solved by this coupled PD-DEM. The
characteristics of the target material are described by the
integrodifferential equations of the PD theory, where DEM
explicitly depicts the motion and interaction of discrete solid
particles.

2.1 Peridynamics formulation

The peridynamics theory uses integral equations instead of
the partial differential equations based classical formulation
of continuum mechanics to describe the relative displace-
ments and non-local exchange of constitutive information
by applying forces between material points across finite
distances [46], allowing for the natural formation of discon-
tinuities and cracks within continuous materials. This work
concentrates on the coupling of PD with DEM and a brief
description of bond-based PD theory for brittle material is

Fig. 1 Bond-based Peridynamics: Interaction of material point x with
material point x′ and material point y with material point y′ in unde-
formed and deformed states respectively

presented here, formore details readers are referred to Silling
et al. [46, 67] and Madenci et al. [47]. In a bond-based PD
[46], a material point x, interacts with another material point
x′ within the interaction domain Hx, as shown in Fig. 1. The
interaction domain Hx of the material point x is assumed to
be a spherical region specified by a radius δ which is known
as its horizon. Material points within the interaction domain
Hx of material points x are called the family members of x.

According to Silling et al. [46], the interactions of a
material point x with another material point x′ inside the
interaction domain Hx are governed by the PD equation of
motion as

ρm d̈(x, τ ) �
∫

Hx

f(η, ξ )dVx′ + Fb(x, τ ), (1)

where material points are represented by spherical PD parti-
cles with diameter dm . In Eq. (1), ρm is the density of the PD
particle, and d is the displacement vector of a particle located
at a point x at a time τ . The time derivative of the displace-
ment vector d̈ of each particle is correlated with the integral
of an internal force field f(η, ξ ) and an external body force
Fb. The peridynamic force exerted on the PD particle located
at the point x by all the PD particles within Hx is expressed
as the integral of a force density f(η, ξ ) over the volume Vx′ ,
where ξ � x′ − x and η � d′ − d are the relative position
and displacement vectors respectively. The force density f(η,
ξ ), also termed as the response function representing inter-
particle bonds, is expressed as

f(η, ξ ) � μcsn, (2)

The bond constant c, also known as the micro-modulus
function is a PDparameter obtained by equating strain energy
densities from the classical theory of elasticity with peridy-
namics under simple loading conditions [58, 59] and is given
as
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Fig. 2 Constitutive bond model

c � 15E

πδ4(1 + ν)
, (3)

where E is Young’s modulus and ν is the Poisson’s ratio
of the material. In Eq. (2), n is a unit vector directed from
x + d to x′ + d′, and the parameter s represents bond stretch,
expressed as

s � |η + ξ | − |ξ |
|ξ | . (4)

If the bond stretch s value exceeds its critical value sc, then
the bond breaks, which is an irreversible process. The critical
stretch sc in 3D for bond-based peridynamics was derived by
Silling et al. [51] as

sc �
√
10Gc

πcδ5
, (5)

where Gc is the fracture energy per unit area of the material.
The parameter μ in Eq. (2) is a history-dependent function
associated with material damage and its value is 0 or 1. If
s ≤ 0, for live or broken bonds μ � 1, otherwise, μ � 0.

Figure 2 shows the elastic andperfectly plastic constitutive
model for the bonds. The force density function can be non-
zero in both compression and tension. For elastic and plastic
regions, the force density relationship can be written as

f(s) �
{

cs, i f syc < s(t) < s0t

csyc i f s(t) < syc
(6)

The weighted ratio of the number of broken bonds to the
total number of initial bonds between a material point and
its family members is used to characterize local damage at a
point. The local damage at a material point ranges from 0 to

1 and, according to Silling et al. [51], it can be quantified as

φ(x, τ ) � 1 −
∫
Hx

μ
(
x′ − x, τ

)
dV ′

∫
Hx

dV ′ , (7)

when φ � 1, it denotes a completely damaged point, all the
bonds initially associated with the material point have been
eliminated, andφ � 0 indicates an undamagedmaterial point
i.e. all interactions are intact.

2.2 Governing equations for solid DEM particle

The DEM model is used to simulate the motion of solid par-
ticles. In DEM, both the translational and rotational motion
of solid particles are governed by Newton–Euler equations
of rigid body dynamics, i.e. if u j andω j are the translational
and angular velocities of the j th particle respectively, then
the particle must satisfy the following equations

m j u̇ j � F j , (8)

I j ω̇ j � T j , (9)

where m j and I j are the mass and moment of inertia of j th

particle, respectively. F j is the resultant force, and T j is the
resultant torque acting on the particle j about the axis passing
through its center. Since all of the forces and torques acting
on the j th particle are added together in the vectors F j and
T j , the sum can be expressed as

F j �
nc∑
c�1

Fext
j + Fc

j + Fdamp
j , (10)

T j �
nc∑
c�1

(
rcj × Fc

j + qcj
)
+ Text

j + Tdamp
j , (11)

where Fc
j is the contact force due to interaction of the par-

ticle j with other particles and obstacles, Fext
j and Text

j are

external load, Fdamp
j and Tdamp

j are force and torque because
of damping in the system. qcj is the torque other than due to
a tangential force e.g., due to rolling motion or torsion, rcj is
vector connecting particle center with the contact point and
nc is the total number of particles in contact with particle j .

3 Contact model

The primary purpose behind coupling DEM with PD is
to use the DEM contact laws. The contact method used
here is similar to that extensively used in the context of
DEM, it is based on Hertz’s theory [63] for the force–dis-
placement relations in the normal direction, and for the
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tangential direction, it employs the no-slip elastic solutions
for force–displacement relations proposed byMindlin [64]. It
is a penalty force contact approach that prevents interpenetra-
tion between contacting particles by using a spring-damper
system. The present contact model additionally includes the
contact point concept and coefficient of restitution for a non-
linear spring and damper system. Here, we briefly discuss
the multi-particle contact formulation; readers are referred
to Anicode et al. [58, 59] and Bui et al. [66] for a more
detailed discussion on the formulation and evolution of the
multi-particle contact forces.

Let ri be the radius of the rigid spherical particles repre-
senting the PD material points and r j be the radius of the
impactor (in case of single DEM particle) or radius of sub-
volume particles that are combined (in case of multi-particle
DEM approach) to model the solid particle e.g. sand particle.
If xi and x j are position vectors of particle i and j respec-
tively, then the contact force between the two particles based
on the normal overlap Dn is calculated as

Dn � (
ri + r j − ∥∥xi − x j

∥∥)
n( j)(i) , (12)

where, n( j)(i) is the unit vector in the normal direction. The
tangential overlap Dt is obtained by using relative tangential
velocity Ḋt � v( j)(i) − Ḋn over time τ as

Dt � Dt−1 + Ḋtτ. (13)

According to Bui et al. [66], the force–displacement
relations in the normal direction can be extended for multi-
particle interactions. The normal contact force Fn on the
particle i due to its interaction with neighboring particles
Nk becomes

Fn � 1

Nk

Nk∑
j�1

(
KnDn + CnḊn

)
, j � 1, 2, 3, ...., Nk (14)

where Kn and Cn are stiffness and damping constants in the
normal direction respectively and can be expressed as

Kn � 2E
√
RDn , and Cn � ϑn

√
mKn , (15)

ϑn is the damping ratio in the normal direction. E , R and
m denotes the effective Young’s modulus, radius, and mass
of the two interacting particles i and j , and can be obtained
as

1

E
� 1 − v2i

Ei
+
1 − v2j

E j
, (16)

1

R
� 1

Ri
+

1

R j
, (17)

1

m
� 1

mi
� 1

m j
. (18)

The tangential component of contact force Ft on the par-
ticle i due to its interaction with neighboring particles Nk is
given as

Ft � 1

Nk

Nk∑
j�1

(
KtDt + Ct Ḋt

)
, j � 1, 2, 3, ...., Nk (19)

where Kt and Ct are the stiffness and damping constants in
the tangential direction respectively and can be defined as

Kt � 8G
√
RDn , and Ct � ϑt

√
mKt , (20)

ϑt is the damping ratio in the tangential direction and G is
the effective shear modulus of the two interacting particles i
and j , and can be obtained as

1

G
� 2 − vi

Gi
+
2 − v j

G j
. (21)

A Coulomb friction coefficient λ is used to model a stick
and slip behavior [68] and Ft of two interacting particles i
and j is set as

Ft , i j � λFn, i j (22)

The external body force as in Eq. (1) acting on PD particle
i becomes

Fb(xi , τ ) � F(i), n + F(i), t , (23)

while the contact force on the impactor Fc
j in Eqs. (10) and

becomes

Fc
j � −

(
F(i), n + F(i), t

Vi Ni

)
(24)

4 Results and discussion

4.1 Validation case for normal impact

Numerous numerical studies that appropriately considered
the contact forces in impact event modeling are available in
the literature [58, 59, 69–72]. To verify and validate the pro-
posed hybrid PD-DEM results for contact forces and impact
parameters by using the previously published results [58,
59, 69, 70], we first simulated a classical impact problem
of a square steel plate subjected to a normal impact of a
rigid sphere. A spherical steel particle of radius R � 0.01m
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Fig. 3 The evolution of impactor parameters with time using PD-DEM: a normal velocity, b normal displacement, and c normal force

Table 1 Data comparison
Object Parameters Present results [58] [69]

PD-SRRFM Hybrid PD-DEM

Impactor Dz, max [mm] 7.5 0.029 0.027 0.025

Vz, max/Vz, min [ms–1] 3.3/–1 0.75/–1 0.75/–1 0.75/–1

Fn, max [kN] 5.6 1.25 1.2335 1.25

Plate Dz, max [mm] 0.016 0.00778 0.00781 0.0078

described by DEM is projected normally at the center of a
square steel plate with velocity Vz � −1ms−1. The square
plate geometrically defined by length l � 0.2m, width
w � 0.2m, and thickness h � 0.008m is simply supported.
The interactions between material points of the target plate
are represented by bond-based PD particles. The impactor
and target plate are made up of steel having the same mate-
rial properties i.e. Young’s modulus E � 206 GPa, density
ρ � 7833 kg/m3, and Poisson’s ratio v � 0.28. The horizon
is three times the size of PD particles and the target plate is

discretizedwith PD particles of radius r � 0.001m as shown
in Fig. 4.

The results obtained by using the present hybrid PD-DEM
are plotted in Fig. 3 and the comparison of the obtained
data with the results from published studies is presented
in Table 1. Figure 3a, b, and c shows the time histories of
normal velocity, normal displacement, and normal contact
force of the impactor respectively. The predicted PD-DEM
results in Table 1 are in good agreement with the litera-
ture [58, 69] results, where the results obtained by using the
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Fig. 4 Displacement of the plate in the normal direction after impact
using PD-DEM

Fig. 5 Velocity of the plate in the normal direction after impact using
PD-DEM

original PD short-range repulsive force model (PD-SRRFM)
show a clear difference from the other results. The lack of
damping effects, together with the absence of friction, and
intra-particle stiffness parameters are the main factors of the
unrealistic PD-SRRFM findings. Figures 4 and 5 show the
displacement and velocity fields of the plate in the normal

Fig. 7 Force fields on the soda-lime glass wall due to the impact of
spherical aluminum particle

Fig. 8 Stress fields on the soda-lime glass wall due to the impact of
spherical aluminum particle

direction after the impacting rigid particle rebounds respec-
tively.

4.2 Validation case for oblique impact

In this validation test case, a soda-lime glass wall is subjected
to an oblique impact of a spherical solid particle made up
of aluminum oxide having a radius R � 5mm. The oblique

Fig. 6 Non-dimensional contact forces: a normal force and b tangential force
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Table 2 Material properties

Parameters Particle Wall

Young’s modulus E(GPa) 380 70

Shear modulus G (GPa) 154 28

Poisson ratio ν 0.23 0.25

Friction coefficient λ 0.092 0.092

Density ρ (kgm−3) 4000 2500

impacting particle has a constant velocity 3.9ms−1 and it tar-
gets the horizontal soda-lime glass wall at an angle α � 85◦.
The characteristics andmechanical properties of bothmateri-
als are listed in Table 2. A single DEM particle represents the
impactor, where the wall is geometrically defined by length
l � 0.04m, width w � 0.04m, and thickness h � 0.004m
and is discretized with PD particles of radius r � 0.0005m
and the horizon is three times the size of PD particles. A non-
dimensional graphical comparison of the present PD-DEM
and PD-SRRFM results with the reference literature [70] for
the contact forces in the normal and tangential directions is
presented in Fig. 6a and b respectively. The comparison of
PD-DEMresults in Fig. 6a and b shows similaritywith the lit-
erature results, while the results predicted using PD-SRRFM
totally differ from the reference findings. Figures 7 and 8
show the force and stress fields on the soda-lime glass wall
due to the impact of spherical aluminum particle.

In validation cases of Sects. 4.1 and 4.2, a good agreement
with the literature has been found for the normal and tangen-
tial contact forces acting on an impactor during the contact.
These comparisons of obtained results confirm that the con-
tact model is implemented correctly in the coupled PD-DEM
simulations and provide us the confidence to further model
the solid particle erosion with the current hybrid method.

4.3 Erosive impact of particle on a brittle plate

In this case, damage propagation is modeled in a brittle plate
due to the normal impact of a solid particle. The target plate is
cylindrical in shape with diameter d � 0.06m and thickness
h � 0.03m,where it is discretizedwithPDparticles of radius
r � 0.00025m resulting in a total of 688,263 particles and
the horizon is three times the size of PD particles. The spher-
ical solid particle of radius R � 0.005m described by DEM
is projected normally at the center of the top flat surface of the
cylinder with velocity Vz � −35ms−1 and Vz � −70ms−1.
The maximum time step size t � 1.0 × 10−8s and total
time t � 200μs. The time step is a crucial parameter in these
simulations, as its size impacts both the accuracy and stability
of our results. To optimize our simulations, we implement an
adaptive time stepping approach, utilizing a maximum time
step of 1.0×10−8s and aminimum time step of 1.0×10−10s

Fig. 9 PD discretization of the brittle plate and the solid spherical
impactor

Table 3 Material properties

Parameters Particle Plate

Young’s modulus E(GPa) 205 22.35

Poisson ratio ν 0.3 0.25

Friction coefficient λ 0.092 0.092

Density ρ (kgm−3) 7945.015 2200

formost simulations. This approach allows us to dynamically
adjust the time step according to the system’s complexity,
ensuring both high precision and computational speed. The
solid spherical impactor and the PD discretization of the
brittle cylindrical plate are illustrated in Fig. 9. The mate-
rial properties of the solid impactor and the brittle plate are
listed in Table 3 and their values are considered similar to
the ones used in Anicode et al. [59]. Figures 10 and 11 show
the progression of damage through the plate thickness with
time for impact velocities of 35ms−1 and 70ms−1, respec-
tively. From Figs. 10 and 11, it is noticed that the damage is
more localized at high velocity. Figure 12a and b show the
three-dimensional view of the damaged brittle plates after
the particle impact at the incident velocities of 35ms−1 and
70ms−1 respectively. Moreover, Figs. 13 and 14 illustrate
the comparison of conical crack patterns predicted by the
PD-DEM approach with the experimental results [73] at an
impact velocity of 160ms−1 and 310ms−1. The compari-
son in Figs. 13 and 14 closely resembles the experimental
findings [73], confirming that the present model is a reli-
able technique for modeling solid particle erosion. Figure 15
shows the 3D conical crack patterns after removing themate-
rial points with damage index < 0.5 at impact velocities of
160ms−1 and 310ms−1. We used the prototype micro elas-
tic brittle (PMB) PDmaterial model and the interested reader
is encouraged to refer to articles [46, 51, 74] for better under-
stand the validity criteria for the bond-based model.
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Fig. 10 Cross-sectional view of
damage evolution along
thickness of the brittle plate with
time, sequentially from a to f ,
when impactor velocity is
35ms−1

4.4 Erosive impact of particle on a composite
laminated plate

In this case, damage propagation is modeled in a composite
laminated plate due to the normal impact of a solid parti-
cle. The target plate is cylindrical in shape with diameter
d � 0.06m and thickness h � 0.015m, and is comprising
of four plies. The thickness of each of the top two layers
is 0.0025m and each of the bottom two layers are 0.005m
thick. The plate is discretized with PD particles of radius
r � 0.00025m resulting in a total of 372,340 PD particles
and the horizon is three times the size of PD particles. A
spherical solid particle of radius R � 0.008m described by
DEM is projected normally at the center of the top flat surface
of the cylinder with impact velocity Vz � −100ms−1. The
time step size t � 1.0 × 10−8s and total time t � 200μs.
Figure 16 displays the discretizedmulti-layer laminated plate
cross-sectional view of thickness and the different colors of
particles represents different layers. Here we consider two

different laminated plates, first a simple laminated plate, and
in the second case a hybrid laminated plate. The purpose is to
test our numerical implementation and analyze the material
response in both cases. In the first case, the same material
properties are used for each layer of the plate. The layer
structure has no difference from a single-layer plate when
using the same material for each layer. Since the interac-
tion between two layers is modeled by applying bond-based
PD potential to particles at the interface which depends on
material properties. Hence, with the same material, the PD
potential of particles at the interface is similar to interior par-
ticles. The material parameters of the solid impactor and the
laminated plate are given in Table 4. Figure 17 shows the
cross-sectional images of the damage progression through
the laminated plate thickness with time for an impact veloc-
ity of 100ms−1, when all of the plate layers are made up
of the same material. Next, we consider a hybrid laminated
plate, such as each layer has different material properties.
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Fig. 11 Cross-sectional view of
damage evolution along
thickness of the brittle plate with
time, sequentially from a to f ,
when impactor velocity is
70ms−1

Fig. 12 3D images of damaged
brittle plates after particle
rebound when impact velocity is
a 35ms−1 and b 70ms−1

Fig. 13 Comparison of conical
crack patterns with experimental
results [73] when impact velocity
is 160ms−1
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Fig. 14 Comparison of conical
crack patterns with experimental
results [73] when impact velocity
is 310ms−1

Fig. 15 Conical crack patterns
after removing the material
points with damage index < 0.5
at impact velocities a 160ms−1

and b 310ms−1

Table 4 Material properties of the composite laminated plate and solid
impactor

Parameters Particle Plate

Young’s modulus E(GPa) 90 7

Poisson ratio ν 0.2 0.33

Density ρ (kgm−3) 2650 1400

The interaction between any two layers of the hybrid lami-
nated plate is modeled by applying bond-based PD potential
to particles at the interface obtained by taking average values
of material properties. The material parameters of the solid
impactor and the hybrid laminated plate are listed in Table
5. Figure 18 shows the progression of damage through the
thickness of the hybrid laminated plate with the time when
impact velocity is 100ms−1. The ultimate damage to the two
plates along thickness is compared in Fig. 19, and it can be
seen that the hybrid laminated plate has somewhat deeper and
broader damage than the simple laminated plate. Figure 20
compares the damage to the laminated plates after the top
layer has been removed, again it is noticed that the hybrid
laminated plate has sustained more damage than the simple
laminated plate. The study demonstrates how the choice of
material has a significant impact on the evolution of damage
profiles in laminated plates.

5 Conclusions

This paper presents a particle-based hybrid model that com-
bines the peridynamics theory with the DEM to simulate

Table 5 Material properties of the hybrid laminated plate and solid
impactor

Parameters Particle Plate

Young’s modulus E(GPa) 90 layer-1 7

layer-2 3.5

layer-3 4

layer-4 4

Poisson ratio ν 0.2 layer-1 0.33

layer-2 0.33

layer-3 0.3

layer-4 0.3

Density ρ (kgm−3) 2650 layer-1 1400

layer-2 1100

layer-3 1120

layer-4 1120

Fig. 16 PD discretization of the multi-layer laminated plate thickness
cross-sectional view and the solid impactor
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Fig. 17 Cross-sectional view of damage evolution along thickness of the simple laminated plate (samematerial for all layers) with time, sequentially
from a to f , when impact velocity is 100ms−1

the particle impact events and predict surface erosion caused
by the colliding solid particles. In this coupled framework,
the particle interaction with the target material is modeled
basedon force–displacement relations proposedbyHertz and
Mindlin in the normal and tangential directions respectively.
The contact model also takes into account contact friction,
damping effects, and intra-particle stiffness parameters that
are normally neglected in repulsive force models adopted in
PD simulations. The contact model for the hybrid PD-DEM
isfirst tested andvalidated for the normal and oblique impacts
on the target material without allowing any damage or
failure. The time histories of the effective contact parameters
of the collision process, includingdisplacement, velocity, and
reaction forces acting on the impactor , exhibit a good match

with the findings of the experiments reported in the literature.
Moreover, numerical simulations were carried out to simu-
late the erosive impact of particles on brittle and laminated
targets by allowing material failure and damage. The pre-
dicted conical crack patterns in brittle material caused by the
impact of spherical particles striking normally at different
velocities closely resemble with the experimental findings
[73]. Therefore, the present model is shown to be reliable for
simulating solid particle erosion under different conditions,
and contact parameters can be tuned to achieve the desired
effects.
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Fig. 18 Cross-sectional viewof damage evolution along thickness of the hybrid laminated plate (layersmaterials are different)with time, sequentially
from a to f , when impact velocity is 100ms−1

Fig. 19 Comparison of damage along thickness of the laminated plates a simple, b hybrid, when impact velocity is 100ms−1
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Fig. 20 Comparison of damage
after removing top layer of the
laminated plates: a simple,
b hybrid, when impact velocity is
100ms−1
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