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Abstract: The fatigue failure mechanism of bending fretting for cyclic softening material 6061-T6
aluminum alloy was researched by experiment and finite element method. The influence of cyclic
load on bending fretting fatigue was researched and the damage characteristics under different cycles
was discussed experimentally though SEM images. In the simulation, a normal load transformation
method was employed to obtain a simplified two-dimensional model used for simulating the bending
fretting fatigue from a three-dimensional model. An advanced constitutive equation with the Abdel–
Ohno rule and isotropic hardening evolution was transplanted into ABAQUS by UMAT subroutine
to consider the ratchetting behavior and cyclic softening characteristics. The peak stain distributions
under various cyclic loads were discussed. Additionally, the bending fretting fatigue lives and crack
initiation locations referring to a critical volume method were estimated using the Smith–Watson–
Topper critical plane approach and reasonable results were obtained.

Keywords: fretting fatigue; critical plane approach; 6061-T6 aluminum alloy; fatigue life

1. Introduction

Under the external fatigue cyclic loads, fretting fatigue will happen because of micrometer-
scale relative movements at the interface between contact bodies [1]. Fretting fatigue is widely
found in a variety of engineering components, such as in riveted structures or bolted struc-
tures, bioimplant components, railway axles, aerospace, nuclear energy, and so on [2–4]. It
results in the earlier failure and lower fatigue strength of the structure than plain fatigue
does [5–7]. The prevalence and the severity of harm make fretting fatigue the focus of current
engineering research work.

According to different types of fatigue loads, there are three types of fretting fatigue:
fretting fatigue of tension–compression, torsion, and bending [8]. Most of the existing
studies have focused on the fretting fatigue of tension–compression and torsion, while
studies are limited on the fretting fatigue of bending [9–12]. Ebaraa et al. studied the bend-
ing fretting fatigue behaviors of Ti-6Al-4V [13]. Kubotaa et al. discussed the influencing
factors of bending fretting fatigue, such as H2 and N2 [14]. The experiments of bending
fretting fatigue for various materials such as 316 L austenitic stainless steel and LZ50 steel
were carried out based on macro- and micromethod, and the fatigue failure characteristic
was explored by observing the profile at the location of crack initiation [11,15–18]. Based
on the experimental results, Jiang et al. carried out a finite element analysis of bending
fretting fatigue [19], but the warping phenomenon observed in the experiment was not
considered. Zhu et al. [20] proposed an equivalent normal load to obtain a simplified
equivalent two-dimensional plane strain finite element model from the three-dimensional
model to consider the warping phenomenon. Using the simplified two-dimensional model,
the stress and strain distribution of LZ50 steel during the bending fretting fatigue process
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was analyzed numerically. However, LZ50 steel is a cyclic stable material. Research on the
bending fretting fatigue of cyclic softening materials is still rare.

Therefore, the fatigue failure mechanism of bending fretting for cyclic softening mate-
rial 6061-T6 aluminum alloy is worth researching in detail. First, the fatigue experiment of
bending fretting for 6061-T6 aluminum alloy was carried out, and the damage evolution un-
der different cycles was revealed. Then, based on the experiment, finite element simulation
was conducted to analyze the peak strain distribution by using an advanced constitutive
equation. In this constitutive, a nonlinear isotropic hardening equation was employed to
describe cyclic softening and the Abdel–Ohno equation was introduced to describe the
ratchetting. Finally, the fatigue lives and crack initiation locations were assessed using the
Smith–Watson–Topper (abbreviated as SWT) critical plane approach.

2. Bending Fretting Experiment
2.1. Materials and Test Method

The material of fatigue specimen used in the bending fretting experiment was 6061-T6
aluminum alloy. Figure 1 gives the specimen, which was created in the shape of a half dog
bone. The material used for the fretting pad was 52100 bearing steel. The pad was designed
to be a half cylinder and the radius was set to be 5 mm. The chemical compositions of 6061-T6
aluminum alloy: Fe, 0.7%; Ti, 0.15%; Si, 0.6%; Zn, 0.25%; Mg, 1.0%; Cu, 0.3%; Cr, 0.25%; Al,
balance. The chemical compositions of 52100 bearing steel: C, 1.0%; Si, 0.25%; Mn, 0.30%;
Mo, 0.05%; Cr, 1.50%; Ni, 0.20%; V, 0.15%; S, 0.03%; P, 0.027%; Fe, balance. Table 1 shows the
mechanical properties of 6061-T6 aluminum alloy and 52100 bearing steel.
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Figure 1. Fatigue specimen geometry of bending fretting.

Table 1. Mechanical properties of the two materials used.

Materials Yield Stress σ0.2 (MPa) Strength Limit σb (MPa) Hardness HV Elastic Modulus E (GPa)

6061-T6 aluminum alloy 295 324 95 76
52100 bearing steel 1700 2000 890 210

The fatigue experiments of bending fretting for 6061-T6 aluminum alloy were carried
out by a uniaxial fatigue machine named as EHF-UM100K2-040-OA to obtain the behavior
of the bending fretting fatigue. Figure 2 shows the diagram of the fatigue experiment
device. The blue plate is the fatigue specimen of 6061-T6 aluminum alloy; the two red
half-cylinders are the pads of 52100 bearing steel. It should be noted that Peng et al. [16–18]
used the point contact mode between the cylindrical specimen and cylindrical fretting pad
when studying the bending fretting fatigue. In this study, the plate specimen was used
to form the line contact mode, because the line contact mode has many advantages, such
as good contact state, good experimental repeatability, ease of establishing finite element
models and conducting mechanical analyses, and increased closeness to actual contact. The
left end of the fatigue specimen in Figure 1 is fixed to the fatigue machine, and the location
A-B is loaded with a cyclic bending load by the fatigue testing machine. Location C-D is
the initial contact line of specimen–pad before being subjected to the cyclic bending load.
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Figure 2. The schematic diagram of the experimental device.

The bending fretting fatigue experiment device mainly consists of a vertical fatigue
load application device, a normal load application device, and a base frame. A high-
precision mechanical sensor is embedded in the normal load application device. The
normal load is imposed and controlled by a load cell through bolts, and the upper pad is
in contact with the fatigue specimen; the fatigue load is applied at the end of the fatigue
specimen. During the experiment, the effect of bending fatigue load causes bending
deformation of the fatigue specimen, resulting in microdisplacement between the fatigue
specimen and the fretting pad. The plain bending fatigue with zero normal load can also
be conducted by this experimental equipment. The frequency of the bending fretting
experiment was selected as 20 Hz. The loading waveform was sine wave and the load ratio
of cyclic load was 0.1.

2.2. Relation of Cyclic Load and Fatigue Lives

In order to analyze the relationship between cyclic load and fatigue lives of bending
fretting, the bending fretting experiments with various cyclic bending loads and identical
normal load for 6061-T6 aluminum alloy were carried out. The identical normal load
was selected as 1000 N. The peak cyclic loads were prescribed as 3000 N, 2750 N, 2500 N,
2250 N, 2000 N, and 1500 N, respectively. Figure 3 shows the experimental results. It should
be noted that the lives shown by blue stars with peak bending loads of 2250 N, 2000 N,
and 1500 N in Figure 3 are not the actual lives, because the fatigue life limit of fretting
bending in the experiments was set to be 1 × 106 cycles. The fatigue lives of bending
fretting for 6061-T6 aluminum alloy decreased clearly with the increase in cyclic load. This
indicates that cyclic load has an obvious influence on the fatigue life of bending fretting.
This conclusion is different from the research results under point contact. Under point
contact mode, the bending fretting fatigue life of 7075 aluminum alloy first decreases and
then increases with the increase in bending fatigue load, and finally shows a decreasing
trend [16].
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Moreover, the fatigue experiments of plain bending with zero normal load were
conducted to compare the difference of bending fretting and plain bending. When the peak
cyclic load was 3000 N, which is shown in Figure 3, the fatigue life of plain bending was
clearly higher than that of bending fretting. Peng et al. [16] reached the same conclusion.
Whether in point contact or line contact mode, under the same peak cyclic load, the fatigue
life of plain bending is significantly longer than that of bending fretting fatigue. The
high-local-contact stress of the fretting damage area caused by the cyclic load and normal
load resulted in the early initiation of fatigue microcracks. Then, the fatigue cracks further
expanded under the cyclic load and finally resulted in fatigue failure. This indicates that
the coupling effect of cyclic load and normal load makes the fretting damage on the contact
surface conducive to crack formation and further propagation, and finally results in a
shortened fatigue life and the reduced fatigue strength of the structure.

2.3. Fracture Analysis of Bending Fretting Fatigue

The fatigue cracking of bending fretting initiated and expanded in the fretting dam-
age area, so the fracture surface of the fretting damage region was researched. Figure 4
illustrates the fracture morphology analysis results with the normal load of 1000 N and the
peak cyclic load of 3000 N. The fatigue crack source marked by the black circle in Figure 4
is seated on the upper surface of the plate specimen. The secondary fatigue crack initiation
of the contact region is caused by the local high-contact stress.
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Figure 5 exhibits the optical microscope appearance result of the contact area for
6061-T6 aluminum alloy. The normal load was 1000 N and the peak cyclic load was 2750 N.
The fatigue crack of bending fretting is located at the fretting damage area and on the right
side of the original contact center.
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2.4. Evolution of Fretting Damage under Different Cycles

The fretting damage area under different cycles with a normal load of 1000 N and a
peak cyclic load of 1500 N was discussed to reveal the damage evolution characteristics
during the bending fretting fatigue process. Figure 6 shows the SEM images of the fretting
damage area for 6061-T6 aluminum alloy with different cycles.
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Figure 6. SEM images of the fretting damage area for bending fretting fatigue when (a) the number
cycle N was 5 × 105 c and (b) the number cycle N was 2 × 106 c.

As given in Figure 6, with the cycle number of 5 × 105 c, the material surface was
very slightly scratched. As the cycle increased to 2 × 106 c, the damaged area on the
contact surface enlarged significantly, and the damage became more severe. The asperity
on the surface of the fretting zone caused the material to produce corresponding plastic
deformation. Under external cyclic loading, the surface material was squeezed to both
sides, perpendicular to the fretting direction, and then new asperity formed. After repeated
sliding, rolling, and oxidation, the plastic deformation layer on the surface of the contact
area gradually hardened and became brittle. Then, part of the material detached from
the surface of the specimen and formed debris. Under cyclic loading, massive peeling



Materials 2023, 16, 4161 6 of 15

appeared on the debris bed and formed into a third body to cover the surface of the fatigue
specimen. The debris accelerated the failure process of bending fretting fatigue.

3. Finite Element Simulation
3.1. Cyclic Constitutive Equation
3.1.1. Main Equations

Under small deformation, the main governing equations are:

ε = εp + εe (1)

εe = D−1 : σ (2)

.
ε

p
=

√
3
2

.
λ

s−α
‖s−α‖ (3)

Fy =

√
3
2
(s−α) : (s−α)−Q (4)

where, ε, εp, and εe are the total, plastic, and elastic strain tensor. D is Hooke’s elasticity
tensor and σ is the stress tensor.

.
ε

p is the plastic strain rate tensor.
.
λ is a scalar which is

calculated by the consistency condition
.
λ

.
Fy = 0. s is the deviatoric stress tensor and α

is the back stress tensor. (:) is the inner product of tensors Q refers to the resistance of
isotropic deformation.

3.1.2. Nonlinear Kinematic Hardening Evolution

Plastic deformation accumulation occurs in the fatigue process of bending fretting.
Therefore, the Abdel–Ohno hardening equation [21] was adopted to describe the influence
of ratcheting behavior on bending fretting for 6061-T6 aluminum alloy.

The back stress tensor α of the Abdel–Ohno equation is composed as:

α =
M

∑
i=1
α(i) (5)

Each back stress α(i) is given by the following nonlinear evolution formula:

.
α
(i)

= ζ(i)
[

2
3

r(i)
.
ε

p − µ(i)α(i) .
p− H( f (i))α(i)

〈 .
ε

p : K(i) − µ(i) .
p
〉]

(6)

where r(i) and ζ(i) are material parameters and K(i) = α(i)/‖α(i)‖. The accumulated plastic

strain rate
.
p is obtained with

.
p =

(
3
2

.
ε

p .
ε

p
) 1

2 and H( f (i)) is the Heaviside function. The

ratchetting parameter µ(i) for all back stress is described as identical value, i.e., µ(i) = µ.
The critical plane is represented as:

f (i) = ‖α(i)‖
2
− (r(i))

2
= 0 (7)

3.1.3. Isotropic Hardening Evolution

6061-T6 aluminum alloy is a typical cyclic softening material [22]. Therefore, the
following nonlinear equation of isotropic hardening was employed to describe the influence
of cyclic softening on the ratchetting:

.
Q = γ(Qsa −Q)

.
p (8)
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where γ determines the evolution rate of Q. Qsa is the resistance of saturated isotropic
deformation and is prescribed as a constant for simplicity.

The cyclic constitutive equation introduced above was transplanted to the finite
element software ABAQUS through secondary development by UMAT. Table 2 gives the
material constants of 6061-T6 aluminum alloy which can be determined in detail referring
to Reference [23]. The elastic modulus of the fretting pad was assumed to be 210 GPa and
Poisson’s ratio was described as 0.3. It was supposed to be a linear and elastic material in
this simulation.

Table 2. Material constant for 6061-T6 aluminum alloy used in the simulation.

M = 8, µ = 0.01, γ = 4.0; E = 76 GPa, Q0 = 315.8 MPa, Qsa = 310.8 MPa, v = 0.33, ζ(1) = 10,000,
ζ(2) = 2083, ζ(3) = 649, ζ(4) = 359.7, ζ(5) = 207, ζ(6) = 101, ζ(7) = 50.8, ζ(8) = 25; r(1) = 2.51, r(2) = 25.8,

r(3) = 4.39, r(4) = 2.3, r(5) = 1.68, r(6) = 3.94, r(7) = 3.92, r(8) = 22.66 MPa

3.2. Verification of the Suggested Cyclic Constitutive Equation

In order to validate the ability of the used constitutive equation, the monotonic tensile
curves of 6061-T6 aluminum alloy and the uniaxial ratcheting behavior were simulated by
establishing a three-dimensional 8-node 6-faceted isoparametric element of ABAQUS.

Figure 7 gives the simulated monotonic tensile result of 6061-T6 aluminum alloy by
using the new constitutive equation introduced in the above subsection. The simulation
curve is in strong agreement with the experiment curve.
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stress–strain curves (b) the uniaxial ratcheting behavior.

The uniaxial ratchetting behaviors with different amplitudes (300 MPa and 340 Mpa,
respectively) and same mean stress (30 Mpa) were carried out and Figure 7b shows the
simulation results. The maximum strain is usually considered to be a limit value of
fatigue failure under cyclic loading, so the maximum strain of each cycle is defined as
ratchetting strain. The simulated ratchetting curves by ABAQUS are in strong agreement
with the experiments.

The cyclic elastic–plastic ratcheting constitutive equation selected in this paper can
describe the tension curve and ratcheting behavior of 6061-T6 aluminum alloy reasonably,
and it indicates that adopting this constitutive equation is reasonable to simulate the process
of bending fretting.



Materials 2023, 16, 4161 8 of 15

3.3. Two-Dimensional Finite Element Model

The finite element analysis by employing a three-dimensional finite element model
(referred to as 3-D model) is not suitable for revealing the characteristics of bending fretting
fatigue due to the limitations of the computer. A two-dimensional plane strain finite
element model (referred to as 2-D model) should be obtained through simplification. It was
demonstrated that using an equivalent normal load transformation considering the warping
phenomenon to obtain the 2-D model from the 3-D model is reasonable [20]. Therefore,
a 3-D model of 6061-T6 aluminum alloy shown in Figure 8 was established referring to
the experiment. As described in Section 2.1, the z-dimension of 6061-T6 aluminum alloy
in the experiment should be 18 mm. Based on the symmetry of the applied load and the
boundary conditions, the z-dimension of 6061-T6 aluminum alloy can be set to be half
of the experimental size, that is, 9 mm. The symmetry plane with z = 0 was imposed
by a symmetry constraint with Uz = 0 to conduct rapid and effective calculations. The
specimen surface was directly controlled by the pad surface. Both were set to be a contact
pair to measure the separation of the contact interface. The Coulomb model was employed
to describe the interaction between two contact surfaces, and the frictional coefficient of
specimen–pad was taken as a constant, i.e., 0.2. The left plane of the fatigue specimen
was applied by a fixed constraint. Two pads were placed 40 mm from the left plane of the
fatigue specimen. The upper pad was marked by Pad 1 and the lower pad was marked by
Pad2. The plane with z = 0 of the pads was imposed by Uz = 0. The top plane for Pad 1
was applied by Ux = 0. The bottom plane for Pad 2 was imposed by a fixed constraint. A
cyclic load was loaded on the right plane of the fatigue plate. A normal load was applied
on the top plane of Pad 1. There were 61,102 nodes and 53,224 elements for the 3-D model,
including 38,782 nodes and 34,728 elements for fatigue specimens, and 11,160 nodes and
9248 elements for each pad. A C3D8I element (an 8-node linear brick, incompatible modes)
was used. The stress and strain distribution on the top plane for 6061-T6 aluminum alloy
should be discussed in detail, because the tensile stress of the top plane is more likely to
cause crack initiation and propagation. To facilitate the subsequent analysis, Path 1 and
Path 2 are defined in Figure 8. The path from Point E (0, 6, 9) to the Point F (0, 6, 0) on
the top plane is marked as Path 1 and it is the initial contact line of specimen–pad before
applying the cyclic bending load. The path from Point H (−1.2, 6, 8.75) to Point G (1.2, 6,
8.75) is marked as Path 2.
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When analyzing contact problems, the model can fail to converge if all loads are
applied to the finite element model in the first analysis step. Therefore, the entire load
history was divided into the following three analysis steps. First, in order to establish a
more stable contact state, a smaller normal load (0.001 MPa) was applied in the y-direction
to the upper surface of Pad 1. Second, the normal load was increased to the true normal
load value P to establish a true contact. Third, the cyclic bending load Fb was applied to the
right plane of the fatigue specimen to form bending fretting fatigue. The loading process
described above is shown in Figure 9.
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An equivalent normal load transformation which was introduced in detail and demon-
strated reasonably by Zhu et al. [20] was employed to obtain a simplified 2-D model from
the calculated results of the 3-D model. Figure 10 shows the 2-D model.
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This normal load transformation formula is expressed by:

F = MAX

{
n

∑
i=1

CNORMF(z, i, t)

}
(9)

where F applying on the 2-D model is the equivalent normal load per unit length; n is
the contact nodes number along Path 2; z is the z-coordinate along Path 1; t is the load
substep time of each cycle; and CNORMF(z, i, t) is the normal load of the i-th node for the
3-D model.
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Figure 10 shows Path 2 which is defined as the path from Point I (−1.2, 6) to Point
K (1.2, 6) on the upper plane. Point O (0, 6) is defined as the initial contact center before
applying the cyclic bending load.

The dimensions of x and y directions for the 2-D model were 80 mm and 12 mm,
respectively. There were 2912 nodes and 3384 elements for the 2-D model. The size of x
and y directions for the refined area was 12.5 µm and 15.625 µm, respectively. The top
edge of Pad 1 was imposed by Ux = 0. The bottom edge of Pad 2 and the left end of the
6061-T6 aluminum alloy were imposed by fixed constraints. The normal load F obtained
by Equation (9) should be loaded on the top edge of Pad 1. The contact conditions were the
same as the description in the 3-D model. There were 25,004 nodes and 29,598 elements
for the 2-D model, including 16,226 nodes and 18,570 elements for fatigue specimens, and
4389 nodes and 5514 elements for each pad. Elements with CPE3 (3-node, plane strain) and
CPE4I (4-node, plane strain) were used in the 2-D model.

Four loading steps were used. First, a displacement in the y-direction (U2 = −0.001)
was loaded to the upper surface of Pad 1 to establish a relatively stable contact. Second, the
normal load was increased to the minimum value Fmin of the true normal load to establish
a true contact. Third, the normal load was increased from the minimum value Fmin to
the maximum value Fmax, and the cyclic bending load was applied gradually to the finite
element model from 0 to the peak value Fb, max of the bending load. Forth, the normal load
F and bending load Fb of subsequent cycles were applied to the finite element model. The
loading process described above is shown in Figure 11.
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3.4. Simulation Results

The damage process of bending fretting fatigue can be understood through the experi-
mental research, but the evolution of stress and strain in the contact area during bending
fretting is not clear. Therefore, the finite element software ABAQUS should be used to
simulate the bending fretting behavior by using an advanced cyclic constitutive equation
to verify the ability in Section 3.2.

Based on the refined 2-D finite element model introduced in Section 3.3, the bending
fretting fatigue for 6061-T6 aluminum alloy with various peak cyclic loads (3000 N, 2750 N,
2500 N, 2250 N, and 2000 N, respectively) under the same normal load with 1000 N were
simulated. The force ratio was prescribed as 0.1. Figure 12 illustrates the simulation results of
peak strains εx, εy, and γxy along Path 2 in the 100th cycle. From these figures, the following
conclusions can be drawn. First, two extreme points exist on two sides of Point O for all
the distributions of εx, εy, and γxy. Point O is defined in Section 3.3. It demonstrates that
there is a partial slip of specimen–pad in the fretting process which is in strong agreement
with the experiments. Second, the lower extreme values of strains εx, εy, and γxy on the left
side of Point O suggest that crack initiation occurs on the right of the contact center, which is
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consistent with the experiment. Third, as the peak value of cyclic loading increases, the strains
εx, εy, and γxy on both sides of Point O grow which causes early crack initiation and a short
bending fretting fatigue life. Moreover, there is a slight shift of the extreme points located on
both sides of Point O which is similar to the cyclic stable material such as LZ50 steel [20].
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4. Prediction of Fatigue Life

In recent decades, the SWT critical plane approach has been used by more and more
researchers to estimate the crack initiation of fretting fatigue. This method indicates that
the fatigue crack initiation occurs in the plane where the maximum SWT parameter takes
place. In this work, the SWT critical plane approach was introduced to estimate the bending
fretting fatigue lives and the crack initiation locations for cyclic softening material 6061-T6
aluminum alloy.

The damage parameter of the SWT approach is defined by the following equation:

SWT = σmaxεa =
σ′2f
E

(2N f )
2b + σ′f ε′f (2N f )

b+c (10)
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where σmax is the maximum normal stress, εa is the strain range, and E is the Elastic
modulus. b, c, σ′f , and ε′f are the fatigue strength exponent, fatigue ductility exponent,
fatigue strength coefficient, and fatigue ductility coefficient, respectively. The value of these
four material constants b, c, σ′f , and ε′f for 6061-T6 aluminum alloy should be determined
from the plain fatigue by referring to Reference [24]. They are −0.085, −1.063, 573.8 MPa,
and 2.912.

Considering the influence of ratchetting behavior and to save calculation time, the
results of the 100th cycle were selected for the fatigue life prediction of bending fretting.
Based on the calculated stress–strain values for all nodes along Path 2 under various peak
cyclic loads and the identical normal force, the maximum SWT values along Path 2 can
be calculated. Figure 13 shows the process of calculating the maximum value of SWT.
Then, according to the location with the largest SWT value, the predicted crack initiation
positions are about 0.1 mm to the right of the original contact center for all loading cases
which are consistent with the experimental results. The obtained maximum SWT parameter
is substituted into Equation (10), and the fatigue lives of bending fretting were calculated
referring to a volume average method [25]. The critical volume Vc is about one grain
volume, taken as 1.25 lc × lc × unit thickness in z direction. The grain length lc of 6061-T6
aluminum alloy was about 60 µm. Figure 14 exhibits the estimated fatigue lives of bending
fretting. All the results are located within the triple error band. It demonstrates that the
estimated fatigue lives of 6061-T6 aluminum alloy are consistent with the experiments.
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5. Conclusions

(1) The fatigue life of plain bending with zero normal load is clearly higher than that of
bending fretting under the same cyclic bending load.

(2) The bending fretting fatigue lifespan of 6061-T6 aluminum alloy decreases signifi-
cantly with the increase in peak bending force under the same normal load. So, the
bending load is an important factor that cannot be ignored in analyzing bending
fretting fatigue failure.

(3) Based on the calculated finite element results, the bending fretting fatigue lives and
crack initiation positions can be assessed reasonably using the SWT critical plane
approach referring to a critical averaging dimension method.
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σ0.2 yield stress
HV hardness
ε total strain tensor
εe elastic strain tensor
σ stress tensor
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ε

p plastic strain rate tensor
α back stress tensor
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α(i) back stress component
µ,µ(i) ratchetting parameter
.
p accumulated inelastic strain
f (i) critical surface
v Poisson’s ratio
F equivalent normal force per unit length applied in the 2-D finite element model
N f fatigue life
εa strain range
c fatigue ductility exponent
ε′f fatigue ductility coefficient
lc the length of cubic grain
σb strength limit
E elastic modulus
εp plastic strain tensor
D Hooke’s elasticity tensor
(:) inner product of tensors
s deviatoric stress tensor
Fy yield function
r(i),ζ(i) material constants for kinematic hardening
K(i) direction tensor of i-th back stress
H( f (i)) Heaviside function
Qsa resistance of saturated isotropic deformation
γ material parameter that controls evolution rate
εx, εy, γxy peak strain components
σmax maximum normal stress
b fatigue strength exponent
σ′f fatigue strength coefficient
Vc critical volume
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