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Abstract
Binary compact objects will be among the important sources for the future space-based
gravitational wave detectors. Such binary compact objects include stellar massive
binary black hole, binary neutron star, binary white dwarf and mixture of these com-
pact objects. Regarding to the relatively low frequency, the gravitational interaction
between the two objects of the binary is weak. Post-Newtonian approximation of gen-
eral relativity is valid. Previous works about the waveform model for such binaries
in the literature consider the dynamics for specific situations which involve detailed
complicated matter dynamics between the two objects. We here take a different idea.
We adopt the trick used in pulsar timing detection. For any gravity theories and
any detailed complicated matter dynamics, the motion of the binary can always be
described as a post-Keplerian expansion. And a post-Keplerian gravitational wave-
form model will be reduced. Instead of object masses, spins, matter’s equation of
state parameters and dynamical parameters beyond general relativity, the involved
parameters in our post-Keplerian waveform model are the Keplerian orbit elements
and their adiabatic variations. Respect to current planning space-based gravitational
wave detectors including LISA, Taiji and Tianqin, we find that the involved waveform
model parameters can be well determined. And consequently the detail matter dynam-
ics of the binary can be studied then. For binary with purely gravitational interactions,
gravity theory can be constrained well.
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1 Introduction

Binary stars are unique astrophysical laboratories for the study of fundamental physics
and cosmology. Such laboratories have been realized through pulsar timing detection
of binary pulsar [1, 2] and gravitational wave detection of binary coalescence [3]. But
pulsar timing detection and current gravitational wave detection concern two different
life stages of the binary system. Pulsar timing detection is about the early inspiral stage.
While current gravitationalwave detection by ground based detectors is about the stage
near merger. In the coming future the space-based gravitational wave detectors will
change this situation. Then gravitational wave detection can also provides information
about early inspiral stage [4, 5]. For example, LISA may resolve ∼ 104 double white
dwarfs (DWDs) [6, 7].

Waveform model is important for gravitational wave data analysis and for extract-
ing the information of the sources. For the merger stage of a binary, extremal general
relativity (GR) conditionmakes numerical relativity calculation necessary to construct
the waveform model [8–10]. For the early inspiral stage, the gravitational interaction
is much weaker. And Newtonian approximation is valid. The binary compact objects
including stellar massive binary black hole, binary neutron star, binary white dwarf
and mixture of these compact objects belong to such early inspiral binaries for the
future space-based gravitational wave detectors. The simplest waveform model for
such sources is based on quadrupole formula for monochromatic approximation [5].
When the GR leading order of inspiral behavior is taken into consideration, the chirp
waveform model has been widely used [11]. Besides the GR effect, the mass transfer
between the two compact objects [12] and the tidal deformation of the two objects
[13, 14] can also contribute to the chirp signal. Recently, the Ref. [4] used Newto-
nian approximation to construct a waveform model and focused on the effect of white
dwarf interior on the periastron precession. These different waveform models focus
on different physical mechanism and introduce different waveform parameters conse-
quently. Such diversity of waveform models make data analysis and source property
study hard. In order to catch weak GW signals, ones have to analyze the same data
many many times with different specific waveform models. Even worse, some signals
may be lost due to the uncomplete analysis. As promising laboratory to test gravity
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theories, it is interesting and important to construct waveform model for different
gravity theories other than GR. Unfortunately such waveform models have not been
studied yet.

In contrast to the aforementioned specific waveform models for different physical
situations, an unifiedwaveformmodel will be useful. Such an unifiedwaveformmodel
will definitely facilitate the data analysis for the space-based detectors. With such an
unified waveform model, ones can not only catch the signal much easier but also
distinguish different physical situations and even constraint different gravity theories.
We will propose such an unified waveform model in the current paper.

Since the component objects of a binary in early inspiral stage are well separated,
the orbital dynamics can be well described by a perturbation to a Kepler orbit. Such
perturbation may come from gravity theory, environment, tidal interaction and mass
transfer between the two components. All kinds of effects on the binary dynamics
can be included. Consequently, the parameterized post-Keplerian formalism [15, 16]
is a good framework to describe the system. This unified waveform model uses post-
Keplerian parameters instead of component masses and other physical parameters.
This unified waveform model is consequently valid for any kinds of gravity theories
and any detailed complicatedmatter dynamics. If ones canmeasure the post-Keplerian
parameters accurately, gravity theory and the theory of stellar structure and evolution
can be tested and investigated [1, 4]. We will show later in the current paper that
this is exactly true for the current planning space-based gravitational wave detectors
including LISA, Taiji and Tianqin.

The arrangement of the rest of this paper is as following. We will present the
post-Keplerian waveform model in the next section. Then we relate the involved post-
Keplerian parameters to general relativity (GR) effect, gravity theory effect beyond
GR, tidal interaction and the mass transfer effect between the two components of the
binary.When we construct such relation we also give guide lines to use post-Keplerian
parameters to distinguish these different effects. After that we use Fisher matrix tech-
nique to estimate the measurement accuracy of the post-Keplerian parameters based
on LISA, Taiji and Tianqin respectively. We find that the involved post-Keplerian
parameters can be well determined. And consequently the detail matter dynamics of
the binary can be studied then. For binary with purely gravitational interactions, grav-
ity theory can be constrained well. That is to say, equipped with our post-Keplerian
waveform model, the future space-based gravitational wave detectors can do good
science for compact object binary observations. Throughout this paper we will use
units c = G = 1.

2 Post-Keplerian waveformmodel

The general bound Keplerian orbit is an eccentric orbit. The binary moves along an
eccentric orbit and the corresponding gravitational wave form respect to the detector
can be written as [4, 11, 17]
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h =
√
3

2

∞∑

n=1

[F+h+
n + F×h×

n ], (1)

h+
n (t) = A{(1 + cos2 ι)an(e) cos[nφ(t)] cos(2γ )

− (1 + cos2 ι)bn(e) sin[nφ(t)] sin(2γ )

+ (sin2 ι)cn(e) cos[nφ(t)]}, (2)

h×
n (t) = −2A cos ι{bn(e) sin[nφ(t)] cos(2γ )

+ an(e) cos[nφ(t)] sin(2γ )}, (3)

an(e) = n[Jn−2(ne) − 2eJn−1(ne) + (2/n)Jn(ne)

+ 2eJn+1(ne) − Jn+2(ne)], (4)

bn(e) = n
√
1 − e2[Jn−2(ne) − 2Jn(ne) + Jn+2(ne)], (5)

cn(e) = Jn(ne), (6)

where Ji (x) is the i-th order Bessel function of the first kind. The amplitude A depends
on the gravity theory and the specific dynamics of the binary. n corresponds to higher
harmonics excited by the eccentric orbit. In [10], we call it tones to distinguish with
the spherical harmonics. φ(t) is the Doppler shifted orbital phase

φ(t) = φ0 + 2π f t (7)

with initial phase φ0.
Perturbations to the above Kepler orbit may result in changing of orbital frequency

f , inclination angle ι, orbit eccentricity e, periastron direction γ . In all we have
adiabatic changing

f = f0 + ḟ0t, (8)

ι = ι0 + ι̇0t, (9)

e = e0 + ė0t, (10)

γ = γ0 + γ̇0t . (11)

Suitable coordinate choice can eliminate γ0 = 0. The investigation in [4] neglected
parameters ι̇0 and ė0. The authors in [14] only considered the changing of f but to
second order.

On the first glance, our waveform model has nothing to do with the masses of
the two components of the binary. That is because the information of mass and spin
are coded in post-Keplerian parameters like ḟ0. And just because of this fact, our
post-Keplerian waveform model is quite generic for stellar binary sources of space
detector.

Besides the above intrinsic parameters, the pattern function F+,× will introduce
three more extrinsic parameters [18]

F+(α, δ, ψ) ≡ 1

2
(1 + sin2 δ) cos 2α cos 2ψ
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− sin δ sin 2α sin 2ψ, (12)

F×(α, δ, ψ) ≡ 1

2
(1 + sin2 δ) cos 2α sin 2ψ

+ sin δ sin 2α cos 2ψ. (13)

The above pattern functions depends on the source right ascension α and declination
δ, and the wave polarization angle ψ .

Including both the intrinsic and extrinsic parameters we have 12 parameters
(A, f0, ḟ0, ι0, ι̇0, e0, ė0, γ̇0, φ0, α, δ, ψ) in all. Source localization can be analyzed
as [19–24]. Since we do not care about the source localization in the current work
and the source location can not be determined by a single detector, we instead fix
α = ψ = 0 and δ = π/2 in the current work. So we need only consider 9 parameters
(A, f0, ḟ0, ι0, ι̇0, e0, ė0, γ̇0, φ0) and the pattern functions become

F+ = 1, F× = 0. (14)

Equations (1)–(11) correspond to the post-Keplerian waveformmodel. The approx-
imated pattern function shown above is only for simplified discussion involved in the
next sections. Such simplification does not affect the general conclusion. And the
post-Keplerian waveform model can be straight forwardly applied to any realistic
situations.

3 Theoretical predictions on the post-Keplerian parameters

Assuming the masses of the two components of the binary are M1,2, the chirp mass,
symmetric mass ratio and total mass are given by

M = η3/5M2/5, (15)

η = M1M2

M
, (16)

M = M1 + M2. (17)

In order to make the mass transfer between the two compact objects stable till merger,
the mass ratio should be limited in (0, 0.24) [25–27].

3.1 Leading order gravitational radiation reaction effect in GR

The general relativity contribution to the post-Keplerian parameters can be calculated
through post-Newtonian approximation as [28–33]

A = (2πM f0)2/3

1 − e20

M
DL

, (18)
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ḟ0 = π8/3M5/3 f 11/30

5(1 − e20)
7/2

[96 + 292e20 + 37e40], (19)

ι̇0 = 0, (20)

ė0 = −2

3

σ

σ ′
ḟ0
f0

, (21)

σ = e12/190

1 − e20

[
1 + 121

304
e20

]870/2299
, (22)

σ ′ = 1

21181/229919870/2299

× 96 + 292e20 + 37e40
e7/190 (1 − e20)

2(304 + 121e20)
1429/2299

, (23)

where DL is the luminosity distance between the source and the detector. f0, ι0, e0
and γ̇0 correspond to the orbital status of the binary. Approximately [28]

f0 ≈ 1

2π

√
M

a3
, (24)

γ̇0 = 6π f0
M

a(1 − e20)
(25)

≈ 24π3 a2 f 30
1 − e20

(26)

≈ 3(2π)7/3
M2/3 f 5/30

1 − e20
(27)

where a is the separation of the two components of the binary, approximately the
semi-major axis of the binary orbit. In principle ι0 ∈ (0, π), e0 ∈ (0, 1). Since ι̇0 = 0
and (ė0, γ̇0) can be determined by other parameters, there are only six independent
parameters involved for pure GR situation.

From the above relations we can find that for a binary with given components mass
and source localization

A ∝ f 2/30 , (28)

ḟ0 ∝ f 11/30 , (29)

ė0 ∝ e0 f
8/3
0 , (30)

γ̇0 ∝ f 5/30 . (31)

This is to saywhen the system frequency f0 increases, all the aboveparameters increase
correspondingly. If just the eccentricity increases, only ė0 is affected. But if we only
consider e0 takes order 0.1 which means e0 ∈ (0.1, 1), the difference of ė0 due to e0
is small compared to the difference due to f0.
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If we use the above gravitational radiation reaction to estimate the post-Keplerian
parameters, we have typically [34–36]

M ≈ 1M
 ≈ 10−6 s, (32)

A ≈ 10−20, (33)

f0 ≈ 10−3 Hz, (34)

a ≈ 1 s, (35)

ḟ0 ≈ 10−18 Hz2, (36)

ė0 ≈ 10−16 Hz, (37)

γ̇0 ≈ 10−6 Hz. (38)

Here Eq. (32) is because we care about compact stars including neutron star and
white dwarf. Equation (33) corresponds to the verification binaries for space-based
detectors. Equation (34) is determined by the sensitive frequency band of space-based
detectors. Equations (35)–(38) are determined by the relations shown in (18)–(27). The
variation time scale is much smaller than the orbit period indicate. This fact means
that our post-Keplerian waveform model introduced in the above section is valid quite
well for gravitational radiation reaction.

We have two clues to show whether the detected binary is dominated by GR effect
or not. The first one is the detected ι̇0 strongly deviates from 0, and/or ḟ0, ė0 and γ̇0
strongly deviate from the predicted values (36)–(38). The GR effect on the orbit plan
precession comes from the compact object spin precession [37]

�̇L = 1

a3

[
4M2

1 + 3M1M2

2
�χ1 + 4M2

2 + 3M1M2

2
�χ2

]
× �L

− 3

2

M2
1M

2
2

a3

[
( �χ2 · L̂) �χ1 + ( �χ1 · L̂) �χ2

]
× L̂

− 32

5

μ2

a

(
M

a

)5/2

L̂, (39)

where �L is the total angularmomentumof the binary system, �χ1,2 are the dimensionless
spin vectors of two individual components. For black holes, the dimensionless spin
parameter χ is less than 1 due to the cosmic censorship. For other objects like neutron
star and white dwarf, it will be even much smaller, typically χ < 0.1. So we can
estimate the GR induced

ι̇GR0 < χ

[
2
M2

a3
+ 3

2

M2
1M

2
2

a3M
√
aM

]
∼ χ

M2

a3
∼ 10−13 (40)

which can be safely neglected compared to themeasurement accuracy (check Table 1).
The second clue is the relation between ḟ0 and γ̇0. Using the analysis technique

similar to the one in pulsar timing [38], we can draw lines relating M1 and M2 based
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Fig. 1 Plot of companion mass
(M2) versus compact object
mass (M1) for an example case
M1 = M2 = 1M
. Constraints
derived from the measured
post-Keplerian parameters
assuming GR are shown pairs of
lines with separation indicating
the uncertainty range. The
measurement accuracy is taken
from Table 1. The red lines
correspond to ḟ0 and the green
lines correspond to γ̇0. The blue
point corresponds to the
expected value from general
relativity
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on the measurement of post-Keplerian parameters ḟ0 and γ̇0. As an example, we plot
such a diagram in Fig. 1 which is similar to Fig. 6 of [38] in pulsar timing.

3.2 Gravitational effect beyond GR

Using the Brans–Dicke theory as an example [39, 40], the gravity theory beyond GR
will introduce extra driving terms beside the ones predicted by GR in (19) and (21)

ḟ0BD = 96π2

5
bMη2/5 f 30

1 + 1
2e

2
0

(1 − e20)
5/2

, (41)

ė0BD = −48π2

5
bMη2/5 f 20

e0
(1 − e20)

3/2
. (42)

Here b is a parameter determined by the gravity theory [41]. When b = 0 GR is
recovered. Periastron precession becomes

γ̇0 = 6π f0
M

a(1 − e20)

P
G (43)

where parameters P and G are determined by the gravity theory. For black holes we
have

G = 1 − ξ

2
, (44)

P = G2, (45)

ξ = 1

2 + ωBD
. (46)
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For neutron star and white dwarf, b, P and G also depend on the sensitivity of the
stars.

If we use parametrized post-newtonian (PPN) formalism to describe the alternative
gravity theory other than GR, the factor P

G becomes [42, 43]

P
G = 2γ + 2 − β

3
. (47)

When the PPN parameters γ = β = 1, GR is recovered. In addition, PPN will correct
the relation (24) to

f0 ≈ 1

2π

√
M

d3
×

⎡

⎣1 − (3β + 6γ − 9η + 6)
M

d
√
1 − e20

+ (2γ − 7η + 4)
M

d

⎤

⎦ .

(48)

If the gravitational constant G is varying, additional driving term beside the one
predicted by GR in (19) comes in [44]

ḟ0VG = −2
Ġ0

G0
f0, (49)

where G0 is the current value of the gravitational constant.
If dipole radiation exists which results from the equivalence principle violation, the

post-Keplerian parameter ḟ0 will change to [45, 46]

ḟ0 =
[
1 + B

d

M

]
ḟ0GR, (50)

B = 5

96
|�α|2, (51)

where �α describes the difference between the effective scalar couplings of two
objects in the binary. Here we have used ḟ0GR to denote the expression (19).

If monopole radiation exists, the post-Keplerian parameter ḟ0 will change to [1, 47,
48]

ḟ0 =
[
1 + Ce20

(
1 + e20

4

)]
ḟ0GR, (52)

where C depends on specific gravity theory.
Here we just calculated typical gravity theories beyond GR. General gravity theory

can be similar related to the post-Keplerian parameters. If only we find a GR effect
dominated binary with space-based gravitational wave detector, such binary will be a
very good laboratory for gravity theory study.
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3.3 Tidal interactions

Tidal interactions may affect the properties of the binary compact objects and their
evolutions [12, 27, 49, 50]. Since the gravitational wave amplitude just depends on
the collective motion of the two components, Eq. (18) still holds even tidal interaction
appears. But the dynamical variables ḟ0, ι̇0, ė0 and γ̇0 will evolve following different
rule. Theoretical models of tidal interaction include equilibrium type [51–53] and
dynamical type [54–56]. All of these models predict

ḟ0 = C1( f1 − f0), (53)

ι̇0 = − 2π f0
(1 − e20)

2
×

2∑

i=1

ki

(
Ri

a

)5 (
fi
f0

)2 (
1 + M3−i

Mi

)
cosαi cos γi , (54)

ė0 = −C2e0, (55)

γ̇0 = 2π f0
(1 − e20)

2
×

2∑

i=1

ki
Mi

(
Ri

a

)5
[
15M3−i

1 + 3
2e

2
0 + 1

8e
4
0

(1 − e20)
3

+ M

(
fi
f0

)2
]

(56)

where Ri is the radius of the i-th component star, fi is its self-rotation frequency, and
ki ∈ (0, 0.75) is its quadrupolar apsidal-motion constant.αi denotes the angle between
the i-th component’s rotation axis and the normal to the orbit plane. γi denote the angle
between the rotation axis and the binary’s line of ascending node. The factor C1 in
(53) depends on the orbital separation, the internal structure of the two components.
The factor C2 in (55) depends on the orbital separation, the internal structure of the
two components and their rotation.

When f0 is relatively small the contribution of tidal interaction to γ̇0 will be larger
than the contribution ofGR. So if the detected γ̇0 is explicitly bigger than the prediction
of GR, we can use relation (56) to analyze the matter property of the binary [4]. In
contrast, if the detected γ̇0 is consistent to the one predicted by GR we are sure the
binary is dominated by GR effect.

3.4 Mass transfer effect

When the two compact objects approach to each other, the material of one component
may be accreted by another one. And the mass transfer happens consequently [57, 58].
The mass transfer effect will affect the post-Keplerian parameters strongly [59, 60].

The mass transfer between a close binary can be dived into three types [57]. Case
A: If the orbital separation is small enough (less than a few days), the star can fill
its Roche lobe during its slow expansion through the main-sequence phase while still
burning hydrogen in its core. Case B: If the orbital period is less than about 100 days,
but longer than a few days, the star will fill its Roche lobe during the rapid expansion
to a red giant with a helium core. If the helium core ignites during this phase and
the transfer is interrupted, the mass transfer is case B. Case C: If the orbital period
is above 100 days, the star can evolve to the red supergiant phase before it fills its
Roche lobe. In this case, the star may have a CO or ONe core. Since we care about the
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related gravitational wave in mini-Hz band, we only concern Case A mass transfer in
the current work.

When no ejected matter leaves a binary system, the mass transfer is said to be
conservative. Consequently we have J̇ = Ṁ = 0 where J is the total orbital angular
momentum

J = M1M2

√
a(1 − e2)

M
. (57)

Differentiating the above equation we get

ȧ

a
= 2

J̇

J
− 2

Ṁ1

M1
− 2

Ṁ2

M2
+ Ṁ

M
, (58)

= 2Ṁ1
M2 − M1

M1M2
. (59)

Together with the Kepler’s third law 1
a3

= 4π2 f 20
M , we get the additional contribution

of post-Keplerian parameters due to mass transfer

ḟ0MTC = 3
Ṁ1(M1 − M2)

M1M2
f0. (60)

In case of non-conservative mass transfer both mass and angular momentum can
be removed from the system. We can use the moment of inertia of the binary

I = M1M2

M
a2 (61)

to express the orbital angular momentum

J = 2π I f0 = 2π
q

(1 + q)2
Ma2 f0. (62)

For the non-conservative mass transfer part we can approximately assume the mass
ratio q ≡ M1

M2
is a constant. Consequently we have

J̇

J
= Ṁ

M
+ 2

ȧ

a
+ ḟ0

f0
. (63)

Based on the Kepler’s third law we have additional relation

Ṁ

M
= 3

ȧ

a
+ 2

ḟ0
f0

. (64)
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Combine the above two equations we get

J̇

J
= 5

3

Ṁ

M
− 1

3

ḟ0
f0

. (65)

If we additionally assume isotropic mass loss from the surface of the components we
have

J̇ = 2π
q

(1 + q)2
Ṁa2 f0. (66)

Combine Eqs. (62)–(66) we have additional contribution of post-Keplerian parameters
due to mass transfer

ḟ0MTN = −2
Ṁ

M
f0. (67)

Put the conservative and non-conservative mass transfer together we have

ḟ0MT =
[
3
(Ṁ1 − Ṁ)(M1 − M2)

M1M2
− 2

Ṁ

M

]
f0. (68)

Mass transfer and tidal interaction also affect the stellar oscillations [61]. If both
gravitational wave and stellar oscillations are observed, the combined information can
be used to infer the property of the binary.

Typically ḟ0MT is comparable to ḟ0GR. So if the mass transfer does happen we
expect the detected ḟ0 is different to the one predicted by GR. For such case we can
subtract ḟ0GR from the detected ḟ0 to get the effects coming from mass transfer and
tidal interaction. Following that the interesting analysis related to matter property can
be done then.

4 Measurement accuracy estimation of the post-Keplerian
parameters

In this section we will use Fisher information matrix to estimate the measurement
accuracy of the post-Keplerian parameters

�i j =
〈

∂h

∂ pi
| ∂h

∂ p j

〉
, (69)

where pi represents the i-th parameter among the9parameters (A, f0, ḟ0, ι0, ι̇0, e0, ė0,
γ̇0, φ0). Inversing the Fisher matrix we can estimate the measurement error as

�pi =
√

�−1
i i . (70)
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The inner product in the above equation is defined as

〈g|h〉 = 2

Sn( f0)

∫ T

0
g(t)h(t)dt, (71)

where f0 corresponds to the post-Keplerian parameter and the adiabatic approximation
has been used [14].

Regarding to the sensitivity of a space-based detector, we use the following approx-
imation (Eq. (13) of [62])

Sn( f ) = 10

3L2

(
POMS + 2(1 + cos2( f / f∗))

Pacc
(2π f )4

)
×

(
1 + 6

10

(
f

f∗

)2
)

, (72)

f∗ = c/(2πL). (73)

For LISA [62] we have

POMS = (1.5 × 10−11 m)2 Hz−1, (74)

Pacc = (3 × 10−15 ms−2)2

(
1 +

(
4 × 10−4 Hz

f

)2
)

Hz−1, (75)

L = 2.5 × 109 m. (76)

For Taiji [21] we have

POMS = (8 × 10−12 m)2 Hz−1, (77)

Pacc = (3 × 10−15 ms−2)2

(
1 +

(
4 × 10−4 Hz

f

)2
)

Hz−1, (78)

L = 3 × 109 m. (79)

For Tianqin we have [36]

POMS = (1 × 10−12 m)2 Hz−1, (80)

Pacc = (1 × 10−15 ms−2)2

(
1 +

(
1 × 10−4 Hz

f

)2
)

Hz−1, (81)

L = √
3 × 108 m. (82)

Due to the relation (71), the measurement accuracy for different detector is similar
only upto the factor 1/Sn( f0). Since this fact we calculate the measurement accuracy
for LISAfirst and deduce the accuracy for other detectors accordingly in the following.
As [5], we take the observation time as T = 5 years.

We list the typical measurement accuracies of post-Keplerian parameters in Table 1.
Four typical post-Keplerian parameters are investigated. Each set corresponds to a
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Table 1 Typical measurement
accuracy of post-Keplerian
parameters. The second column
represents the assumed values
taken by the parameters
themselves. The rest three
columns correspond to the
measurement accuracy detected
by LISA, Taiji and Tianqin
respectively. Here four sets of
parameters are investigated.
Each set corresponds to one
group listed below

Value LISA Taiji Tianqin

A 10−20 9.5 × 10−23 7.9 × 10−23 4.3 × 10−22

f0 10−3 3.1 × 10−12 2.6 × 10−12 1.4 × 10−11

ḟ0 10−21 1.3 × 10−20 1.1 × 10−20 5.9 × 10−20

ι0
π
4 1.4 × 10−2 1.2 × 10−2 6.4 × 10−2

ι̇0 0 1.0 × 10−11 8.7 × 10−12 4.7 × 10−11

e0 0.1 2.6 × 10−4 2.2 × 10−4 1.2 × 10−3

ė0 10−18 2.9 × 10−12 2.4 × 10−12 1.3 × 10−11

γ̇0 10−7 1.5 × 10−11 1.2 × 10−11 6.7 × 10−11

φ0 0 4.6 × 10−4 3.8 × 10−4 2.1 × 10−3

A 10−20 9.4 × 10−24 4.4 × 10−24 9.4 × 10−24

f0 10−2 3.1 × 10−13 1.4 × 10−13 3.1 × 10−13

ḟ0 10−18 1.3 × 10−21 6.1 × 10−22 1.3 × 10−21

ι0
π
4 1.4 × 10−3 6.6 × 10−4 1.4 × 10−3

ι̇0 0 1.0 × 10−12 4.8 × 10−13 1.0 × 10−12

e0 0.1 2.6 × 10−4 1.2 × 10−5 2.6 × 10−4

ė0 10−16 2.9 × 10−13 1.3 × 10−13 2.9 × 10−13

γ̇0 10−6 1.5 × 10−12 6.8 × 10−13 1.5 × 10−12

φ0 0 4.6 × 10−5 2.1 × 10−5 4.6 × 10−5

A 10−20 1.4 × 10−23 1.1 × 10−23 6.1 × 10−23

f0 10−3 8.0 × 10−13 6.6 × 10−13 3.6 × 10−12

ḟ0 10−21 4.7 × 10−21 3.9 × 10−21 2.1 × 10−20

ι0
π
4 2.2 × 10−3 1.8 × 10−3 9.7 × 10−3

ι̇0 0 9.2 × 10−12 7.7 × 10−12 4.1 × 10−11

e0 0.6 1.8 × 10−4 1.5 × 10−4 8.1 × 10−4

ė0 10−18 2.0 × 10−12 1.7 × 10−12 8.9 × 10−12

γ̇0 10−7 3.5 × 10−12 2.9 × 10−12 1.6 × 10−11

φ0 0 1.7 × 10−4 1.4 × 10−4 7.4 × 10−4

A 10−20 9.5 × 10−23 7.9 × 10−23 4.3 × 10−22

f0 10−3 3.1 × 10−12 2.6 × 10−12 1.4 × 10−11

ḟ0 10−18 1.3 × 10−20 1.1 × 10−20 5.9 × 10−20

ι0
π
4 1.4 × 10−2 1.2 × 10−2 6.4 × 10−2

ι̇0 0 1.0 × 10−11 8.7 × 10−12 4.7 × 10−11

e0 0.1 2.7 × 10−4 2.2 × 10−4 1.2 × 10−3

ė0 10−16 2.9 × 10−12 2.4 × 10−12 1.3 × 10−11

γ̇0 10−6 1.5 × 10−11 1.2 × 10−11 6.7 × 10−11

φ0 0 4.6 × 10−4 3.8 × 10−4 2.1 × 10−3
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Fig. 2 Approximated sensitivity
curves respectively for LISA
[62], Taiji [21] and Tianqin [36]
used in the current work. Note
that the designed sensitivity of
these three detectors is still
changing because the final
decision has not been reached
yet. But such detail does not
affect our analysis done in the
current paper
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Fig. 3 Typical post-Keplerian waveforms correspond to the parameters shown in Table 1. Group 2 admits
higher frequency than others. Group 3 admits higher eccentricity than others. Consequently the waveform
of group 3 shows clear higher tone behavior. Compared to group 1, group 4 admits higher ė0 and γ̇0. But
these parameters difference only affect long term behavior. The short term waveform shown here can not
indicate such difference

typical binary system. The corresponding waveforms of these four groups parameters
are shown in Fig. 3.

The first group corresponds to a typical binary white dwarf with pure GR effect. We
can see all three detectors including LISA, Taiji and Tianqin can accurately measure
almost parameters except ḟ0 and ė0. Here when we say ‘accurately’ we mean the
relative error is less than one percent. Regarding to φ0, it’s value takes order 0.1 as
the angle ι0 although the assumed value is 0 here. Regarding to ι̇0, if the effect like
(54) comes in, its value will be order 10−8. Relative to these values, the measurement
error bar is small.

The well estimated γ̇0 can be used to judge whether the matter effect is strong or
not based on (56). If the matter effect is ignorable, the well estimated γ̇0 can be used
to constrain gravity theory beyond GR based on (43). Note that �γ̇0

γ̇0
� 10−4, we can

123



76 Page 16 of 29 L.-F. Li, Z. Cao

constrain
∣∣∣∣
P
G − 1

∣∣∣∣ � 10−4, (83)

|2γ − β − 1| � 10−4. (84)

If we can further make sure the source is two black holes, we can get

|G − 1| � 10−4, (85)

|ξ | � 10−4, (86)

|ωBD| � 104. (87)

If everything indicates that only GR dominates, we can plug M and DL into the
the Eqs. (18)–(27) and do the parameters estimation again. Then the chirp mass M
can be well estimated [4, 14]. With the information of γ̇0, e0 and f0, the Eq. (27) gives
us the information of total mass M . Combining M andM we can deduce mass ratio.
Consequently the individual mass can be well estimated. And more we can use detail
waveform model according to specific gravity theory and plug in component masses
at this stage. Then the involved parameters may be constrained more strictly.

If the matter of the compact stars is very stiff, the two components may be very
close. Possibly the frequency f0 may be as high as 10−2 Hz. We investigate such case
in the second group of Table 1. This set of parameters also corresponds to stellar origin
binary black hole or binary neutron star. If the mass transfer and the tidal interaction
between two white dwarfs are very strong, the binary’s frequency may also fall in
this group. Firstly we can see LISA and Tianqin get roughly the same measurement
accuracy. This is because the sensitivity for LISA and Tianqin roughly equals at 10−2

Hz. Compared to the first group, the measurement accuracy improves roughly one
order. This is due to that the detector sensitivity at 10−2 Hz is about 10 times better
than that at 10−3 Hz. Consequently the afore mentioned parameter constrain and
gravity theory constrain may be improved one order based on this kind of sources.

Compared to the first group, now we consider more eccentric binary with e0 =
0.6 in the third group. Along with the increasing of the eccentricity, the waveform
becomes more complicated. As shown in Fig. 3, higher tones appear clearly [10, 63].
As expected, higher eccentricity improves much the measurement accuracy [39, 64–
68]. Compared to the first group, the measurement accuracy improves one order. This
means more eccentric binary even facilitate more the study of the gravity theory and
the nuclear matter property.

In the fourth group we consider higher ḟ0, ė0 and γ̇0 compared to the first group.
This may happen if the tidal interaction and the mass transfer between the two binary
components take effect. We find that the measurement accuracy is roughly the same
to the ones got in the first group. This result indicates only A, f0 and e0 affect the
measurement accuracy strongly. At the same time we can conclude that the current
planning space-based gravitational wave detectors can determine the post-Keplerian
parameters as well as that shown in the first group of Table 1. If the signal is stronger
(larger A), and/or the frequency is higher (larger f0), and/or the orbit is more eccentric
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(larger e0),we canget evenbetter parameter estimation.Consequentlywecan constrain
gravity theory tight and give deep insight to the nuclear matter.

5 Conclusion and discussion

Compact object binary provides ones a valuable laboratory for fundamental physics
and astronomy. Pulsar timing detection hasmade a good use of binary pulsars, Existing
gravitational wave detection has made a good use of coalescence of binary black hole,
binary neutron star and neutron star-black hole binary. In the near future, the space-
based gravitational wave detectors will facilitate us to make early inspiraling compact
object binaries also become good laboratories. To do so, feasible waveform model is
important.

In the current work, we propose a post-Keplerian waveform model for early inspi-
raling compact object binaries. Such a waveform model takes all kinds of gravity
theories and all kinds of matter dynamics involved in the binary into consideration.
This post-Keplerian waveform model can be looked as a unification of all previous
existing waveform models for early inspiraling compact object binaries.

The post-Keplerian expansion parameters of the binary orbit are the waveform
model parameters instead of binary component mass and other matter parameters.
Based on this waveformmodel we can constrain gravity theorywithout the assumption
of specific gravity theory. This trick is quite similar to that used in pulsar timing
experiments. Based on the post-Keplerian expansion, we have constructed a ready-to-
use unified waveform model of binary compact object for space-based detectors.

We have also checked the parameter estimation accuracy for the post-Keplerian
parameters. Based on the current planning space-based gravitational wave detectors
including LISA, Taiji and Tianqin, we find that the post-Keplerian parameters can be
determined accurately. Consequently gravitational interaction dominating or matter
dynamics dominating can bewell distinguished. Following that themodel independent
constrain on gravity theory can be well done for gravitational dominated binary. And
thenuclearmatter properties canbewell studied formatter dynamics dominatedbinary.
Detail parameter estimation accuracy has been shown in Table 1. Using our waveform
model, ones can not only catch theGWsignalmuch easier but also distinguish different
physical situations and even constraint different gravity theories based on LISA, Taiji
or Tianqin detectors. When specific gravity theory or matter dynamics is determined,
more specific waveform model can be used to fine tune the involved parameters.

Phenomenologically the effects of spin precession and orbital eccentricity will
result in similar waveforms. Like event GW190521, it is hard to distinguish spin
precession and orbital eccentricity for ground-based detectors [69]. In the GW190521
case, we are limited by the small number of observed GW cycles. For the space-based
detectors we considered in the current work, this will not be an issue. This is because
the observation time is 5 years and many wave cycles will be accumulated.

In conclusion, our post-Keplerian waveform model provides a good toolkit for the
future space-based gravitational wave detectors to study early inspiraling compact
object binaries.
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Appendix A: Waveform derivative respect to post-Keplerian
parameters

Based on the setting in the main text, the derivative respect to the i-th parameter can
be written as

∂h

∂ pi
=

√
3

2

∞∑

n=1

[
F+

∂h+
n

∂ pi
+ F×

∂h×
n

∂ pi

]
(A1)

Consequently we have

∫ T

0

∂h

∂ pi

∂h

∂ p j
dt = 3

4

∞∑

n,m=0

∫ T

0

[
F+

∂h+
n

∂ pi
+ F×

∂h×
n

∂ pi

] [
F+

∂h+
m

∂ p j
+ F×

∂h×
m

∂ p j

]
dt

= 3

4

∞∑

n,m=0

[
F2+

∫ T

0

∂h+
n

∂ pi

∂h+
m

∂ p j
dt + F2×

∫ T

0

∂h×
n

∂ pi

∂h×
m

∂ p j
dt

+F+F×
∫ T

0

(
∂h+

n

∂ pi

∂h×
m

∂ p j
+ ∂h×

n

∂ pi

∂h+
m

∂ p j

)
dt

]
(A2)

Derivative respect to A

∂h+
n

∂A
= {(1 + cos2 ι)an(e) cos[nφ(t)] cos(2γ )

− (1 + cos2 ι)bn(e) sin[nφ(t)] sin(2γ )

+ (sin2 ι)cn(e) cos[nφ(t)]}, (A3)

∂h×
n

∂A
= −2 cos ι{bn(e) sin[nφ(t)] cos(2γ )

+ an(e) cos[nφ(t)] sin(2γ )}. (A4)

Derivative respect to φ0

∂h+
n

∂φ0
= −A{(1 + cos2 ι)an(e)n sin[nφ(t)] cos(2γ )

+ (1 + cos2 ι)bn(e)n cos(nφ(t)) sin(2γ )]
+ (sin2 ι)cn(e)n sin[nφ(t)]}, (A5)
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∂h×
n

∂φ0
= −2A cos ι{bn(e)n cos[nφ(t)] cos(2γ )

− an(e)n sin[nφ(t)] sin(2γ )}. (A6)

Due to φ(t) dependence we have ∂h
∂ f0

= 2π t ∂h
∂φ0

and ∂h
∂ ḟ0

= 2π t2 ∂h
∂φ0

. Derivative
respect to ι0

∂h+
n

∂ι0
= −A{an(e) sin(2ι) cos[nφ(t)] cos(2γ )

− bn(e) sin(2ι) sin[nφ(t)] sin(2γ )

− cn(e) sin(2ι) cos[nφ(t)]}, (A7)

∂h×
n

∂ι0
= 2A sin ι{an(e) cos[nφ(t)] sin(2γ )

+ bn(e) sin[nφ(t)] cos(2γ )}. (A8)

Due to ι dependence we have ∂h
∂ι̇0

= t ∂h
∂ι0

. Derivative respect to e0

∂h+
n

∂e0
= A{(1 + cos2 ι)a′

n(e) cos[nφ(t)] cos(2γ )

− (1 + cos2 ι)b′
n(e) sin(nφ(t)) sin(2γ )]

+ (sin2 ι)c′
n(e) cos[nφ(t)]}, (A9)

∂h×
n

∂e0
= −2A cos ι{b′

n(e) sin[nφ(t)] cos(2γ )

+ a′
n(e) cos[nφ(t)] sin(2γ )}, (A10)

a′
n(e) = n2

2
[Jn−3(ne) − 2eJn−2(ne)

− (
2

n
+ 1)Jn−1(ne) + 4eJn(ne)

+ (
2

n
− 1)Jn+1(ne) − 2eJn+2 + Jn+3], (A11)

b′
n(e) = − 2ne√

1 − e2
[Jn−2(ne) − 2Jn(ne) + Jn+2(ne)]

+ n2
√
1 − e2

2
[Jn−3(ne) − 3Jn−1(ne)

+ 3Jn+1(ne) − Jn+3(ne)], (A12)

c′
n(e) = n

2
[Jn−1(ne) − Jn+1(ne)]. (A13)
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Due to e dependence we have ∂h
∂ ė0

= t ∂h
∂e0

. Derivative respect to γ̇0

∂h+
n

∂γ̇0
= −2At(1 + cos2 ι){an(e) cos[nφ(t)] sin(2γ )

+ bn(e) sin[nφ(t)] cos(2γ )}, (A14)

∂h×
n

∂γ̇0
= −4A cos ι{an(e) cos[nφ(t)] cos(2γ )

− bn(e) sin[nφ(t)] sin(2γ )}. (A15)

Appendix B: Calculation of the inner product

In order to calculate the inner product (71), we need calculate the integrate∫ T
0 g(t)h(t)dt . Here functions g(t) and h take form

g(t) = g(φ(t); �ξ(t)) (B1)

�ξ are adiabatic parameters set including (ι, e, γ ) which slowly change respect to time
t . Consequently we have

g(t) ≈ g(φ(t); �ξ0) + ∂g

∂�ξ · �̇ξ t, (B2)

∫ T

0
g(t)h(t)dt ≈

∫ T

0
g(φ(t); �ξ0)h(φ(t); �ξ0)dt

+ �̇ξ ·
∫ T

0
t

[
g(φ(t); �ξ0)∂h

∂�ξ + h(φ(t); �ξ0)∂g
∂�ξ

]
dt, (B3)

∫ T

0
t

[
g(φ(t); �ξ0)∂h

∂�ξ + h(φ(t); �ξ0)∂g
∂�ξ

]
dt

≈ T

2

∫ T

0

[
g(φ(t); �ξ0)∂h

∂�ξ + h(φ(t); �ξ0)∂g
∂�ξ

]
dt . (B4)

Related to the Fisher information matrix calculation we will met following form∫ T
0 t2g(φ(t); �ξ0)h(φ(t); �ξ0)dt . We approximate it as

∫ T

0
t2g(φ(t); �ξ0)h(φ(t); �ξ0)dt

≈ T 2

3

∫ T

0
g(φ(t); �ξ0)h(φ(t); �ξ0)dt . (B5)

In addition we have relations
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∫ T

0
sin(nφ) sin(mφ)dt

≈
∫ �

0
sin(nφ) sin(mφ)

dφ

2π f0

≈ δnm
�

4π f0
= T

2
δnm, (B6)

∫ T

0
cos(nφ) cos(mφ)dt ≈ T

2
δnm (B7)

∫ T

0
cos(nφ) sin(mφ)dt ≈ 0, (B8)

which will be used in the Fisher information matrix calculation.
According to the above approximation we have

∫ T

0

∂h+
n

∂A
(φ(t); �ξ0)∂h

+
m

∂A
(φ(t); �ξ0)dt

≈
∫ T

0
{(1 + cos2 ι0)an(e0) cos[nφ(t)] cos(2γ0)

− (1 + cos2 ι0)bn(e0) sin[nφ(t)] sin(2γ0)
+ (sin2 ι0)cn(e0) cos[nφ(t)]}
× {(1 + cos2 ι0)am(e0) cos[mφ(t)] cos(2γ0)
− (1 + cos2 ι0)bm(e0) sin[mφ(t)] sin(2γ0)
+ (sin2 ι0)cm(e0) cos[mφ(t)]}dt (B9)

≈ T δnm

2
{[(1 + cos2 ι0)an(e0) cos(2γ0) + (sin2 ι0)cn(e0)]2

+ (1 + cos2 ι0)
2b2n(e0) sin

2(2γ0)}, (B10)
∫ T

0
t
∂h+

n

∂A
(φ(t); �ξ0) ∂

∂ι

∂h+
m

∂A
(φ(t); �ξ0)dt

≈ T

2

∫ T

0
{(1 + cos2 ι0)an(e0) cos[nφ(t)] cos(2γ0)

− (1 + cos2 ι0)bn(e0) sin[nφ(t)] sin(2γ0)
+ (sin2 ι0)cn(e0) cos[nφ(t)]}
× {− sin(2ι0)am(e0) cos[mφ(t)] cos(2γ0)
+ sin(2ι0)bm(e0) sin[mφ(t)] sin(2γ0)
+ sin(2ι0)cm(e0) cos[mφ(t)]}dt (B11)

≈ T 2δnm

4
{sin(2ι0)[cn(e0) − an(e0) cos(2γ0)]

· [(1 + cos2 ι0)an(e0) cos(2γ0) + (sin2 ι0)cn(e0)]
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− (1 + cos2 ι0) sin(2ι0)b
2
n(e0) sin

2(2γ0)}, (B12)
∫ T

0
t
∂h+

n

∂A
(φ(t); �ξ0) ∂

∂e

∂h+
m

∂A
(φ(t); �ξ0)dt

≈ T

2

∫ T

0
{(1 + cos2 ι0)an(e0) cos[nφ(t)] cos(2γ0)

− (1 + cos2 ι0)bn(e0) sin[nφ(t)] sin(2γ0)
+ (sin2 ι0)cn(e0) cos[nφ(t)]}
× {(1 + cos2 ι0)a

′
n(e0) cos[mφ(t)] cos(2γ0)

− (1 + cos2 ι0)b
′
n(e0) sin[mφ(t)] sin(2γ0)

+ (sin2 ι0)c
′
n(e0) cos[mφ(t)]}dt (B13)

≈ T 2δnm

4
{[(1 + cos2 ι0)an(e0) cos(2γ0) + (sin2 ι0)cn(e0)]

· [(1 + cos2 ι0)a
′
n(e0) cos(2γ0) + (sin2 ι0)c

′
n(e0)]

+ (1 + cos2 ι0)
2bn(e0)b

′
n(e0) sin

2(2γ0)}, (B14)
∫ T

0
t
∂h+

n

∂A
(φ(t); �ξ0) ∂

∂γ

∂h+
m

∂A
(φ(t); �ξ0)dt

≈ T

2

∫ T

0
{(1 + cos2 ι0)an(e0) cos[nφ(t)] cos(2γ0)

− (1 + cos2 ι0)bn(e0) sin[nφ(t)] sin(2γ0)
+ (sin2 ι0)cn(e0) cos[nφ(t)]}
× {−2(1 + cos2 ι0)am(e0) cos[mφ(t)] sin(2γ0)
− 2(1 + cos2 ι0)bm(e0) sin[mφ(t)] cos(2γ0)}dt (B15)

≈ −T 2

2
δnm{[(1 + cos2 ι0)an(e0) cos(2γ0) + (sin2 ι0)cn(e0)]

· (1 + cos2 ι0)an(e0) sin(2γ0)

+ (1 + cos2 ι0)
2b2n(e0) sin(2γ0) cos(2γ0)}, (B16)

∫ T

0

∂h+
n

∂A

∂h+
m

∂A
dt

≈ T δnm

2
{[(1 + cos2 ι0)an(e0) cos(2γ0) + (sin2 ι0)cn(e0)]2

+ (1 + cos2 ι0)
2b2n(e0) sin

2(2γ0)}

+ T 2 ι̇0δnm

2
{sin(2ι0)[cn(e0) − an(e0) cos(2γ0)]

· [(1 + cos2 ι0)an(e0) cos(2γ0) + (sin2 ι0)cn(e0)]
− (1 + cos2 ι0) sin(2ι0)b

2
n(e0) sin

2(2γ0)}
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+ T 2ė0δnm
2

{[(1 + cos2 ι0)an(e0) cos(2γ0) + (sin2 ι0)cn(e0)]
· [(1 + cos2 ι0)a

′
n(e0) cos(2γ0) + (sin2 ι0)c

′
n(e0)]

+ (1 + cos2 ι0)
2bn(e0)b

′
n(e0) sin

2(2γ0)}
− T 2γ̇0δnm{[(1 + cos2 ι0)an(e0) cos(2γ0) + (sin2 ι0)cn(e0)]
· (1 + cos2 ι0)an(e0) sin(2γ0)

+ (1 + cos2 ι0)
2b2n(e0) sin(2γ0) cos(2γ0)}. (B17)

∫ T

0

∂h×
n

∂A
(φ(t); �ξ0)∂h

×
m

∂A
(φ(t); �ξ0)dt

≈
∫ T

0
4 cos2 ι0{bn(e0) sin[nφ(t)] cos(2γ0)

+ an(e0) cos[nφ(t)] sin(2γ0)}
× {bm(e0) sin[mφ(t)] cos(2γ0)
+ am(e0) cos[mφ(t)] sin(2γ0)}dt (B18)

≈ 2T cos2 ι0δnm[b2n(e0) cos2(2γ0) + a2n(e0) sin
2(2γ0)], (B19)

∫ T

0
t
∂h×

n

∂A
(φ(t); �ξ0) ∂

∂ι

∂h×
m

∂A
(φ(t); �ξ0)dt

≈ T

2

∫ T

0
−4 sin ι0 cos ι0{bn(e0) sin[nφ(t)] cos(2γ0)

+ an(e0) cos[nφ(t)] sin(2γ0)}
× {bm(e0) sin[mφ(t)] cos(2γ0)
+ am(e0) cos[mφ(t)] sin(2γ0)}dt (B20)

≈ −T 2 sin ι0 cos ι0δnm[b2n(e0) cos2(2γ0)
+ a2n(e0) sin

2(2γ0)], (B21)
∫ T

0
t
∂h×

n

∂A
(φ(t); �ξ0) ∂

∂e

∂h×
m

∂A
(φ(t); �ξ0)dt

≈ T

2

∫ T

0
4 cos2 ι0{bn(e0) sin[nφ(t)] cos(2γ0)

+ an(e0) cos[nφ(t)] sin(2γ0)}
× {b′

m(e0) sin[mφ(t)] cos(2γ0)
+ a′

m(e0) cos[mφ(t)] sin(2γ0)}dt (B22)

≈ T 2 cos2 ι0δnm[bn(e0)b′
n(e0) cos

2(2γ0)

+ an(e0)a
′
n(e0) sin

2(2γ0)], (B23)
∫ T

0
t
∂h×

n

∂A
(φ(t); �ξ0) ∂

∂γ

∂h×
m

∂A
(φ(t); �ξ0)dt
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≈ T

2

∫ T

0
4 cos2 ι0{bn(e0) sin[nφ(t)] cos(2γ0)

+ an(e0) cos[nφ(t)] sin(2γ0)}
× {−2bm(e0) sin[mφ(t)] sin(2γ0)
+ 2am(e0) cos[mφ(t)] cos(2γ0)}dt (B24)

≈ 2T 2 cos2 ι0 sin(2γ0) cos(2γ0)δnm[a2n(e0) + b2n(e0)], (B25)
∫ T

0

∂h×
n

∂A

∂h×
m

∂A
dt

≈ 2T cos2 ι0δnm[b2n(e0) cos2(2γ0) + a2n(e0) sin
2(2γ0)]

− 2ι̇0T
2 sin ι0 cos ι0δnm[b2n(e0) cos2(2γ0)

+ a2n(e0) sin
2(2γ0)]

+ 2ė0T
2 cos2 ι0δnm[bn(e0)b′

n(e0) cos
2(2γ0)

+ an(e0)a
′
n(e0) sin

2(2γ0)]
+ 4γ̇0T

2 cos2 ι0 sin(2γ0) cos(2γ0)δnm[a2n(e0) + b2n(e0)], (B26)
∫ T

0

∂h+
n

∂A
(φ(t); �ξ0)∂h

×
m

∂A
(φ(t); �ξ0)dt

≈ −
∫ T

0
{(1 + cos2 ι0)an(e0) cos[nφ(t)] cos(2γ0)

− (1 + cos2 ι0)bn(e0) sin[nφ(t)] sin(2γ0)
+ (sin2 ι0)cn(e0) cos[nφ(t)]}
× 2 cos(ι0){bm(e0) sin[mφ(t)] cos(2γ0)
+ am(e0) cos[mφ(t)] sin(2γ0)}dt (B27)

≈ −T δnm cos(ι0){an(e0) sin(2γ0)
× [(1 + cos2 ι0)an(e0) cos(2γ0) + (sin2 ι0)cn(e0)]
− (1 + cos2 ι0)b

2
n(e0) sin(2γ0) cos(2γ0)}, (B28)

∫ T

0
t
∂

∂ι

∂h+
n

∂A
(φ(t); �ξ0)∂h

×
m

∂A
(φ(t); �ξ0)dt

≈ −T

2

∫ T

0
{−2 cos ι0 sin ι0an(e0) cos[nφ(t)] cos(2γ0)

+ 2 cos ι0 sin ι0bn(e0) sin[nφ(t)] sin(2γ0)
+ 2 cos ι0 sin ι0cn(e0) cos[nφ(t)]}
× 2 cos(ι0){bm(e0) sin[mφ(t)] cos(2γ0)
+ am(e0) cos[mφ(t)] sin(2γ0)}dt (B29)

≈ −T 2δnm cos2(ι0) sin ι0 sin(2γ0){an(e0)
× [cn(e0) − an(e0) cos(2γ0)] + b2n(e0) cos(2γ0)}, (B30)

123



Post-Keplerian waveform model for binary compact object as . . . Page 25 of 29 76

∫ T

0
t
∂h+

n

∂A
(φ(t); �ξ0) ∂

∂ι

∂h×
m

∂A
(φ(t); �ξ0)dt

≈ T
∫ T

0
{(1 + cos2 ι0)an(e0) cos[nφ(t)] cos(2γ0)

− (1 + cos2 ι0)bn(e0) sin[nφ(t)] sin(2γ0)
+ (sin2 ι0)cn(e0) cos[nφ(t)]}
× sin(ι0){bm(e0) sin[mφ(t)] cos(2γ0)
+ am(e0) cos[mφ(t)] sin(2γ0)}dt (B31)

≈ T 2 sin(ι0)δnm
2

{[(1 + cos2 ι0)an(e0) cos(2γ0)

+ (sin2 ι0)cn(e0)]an(e0) sin(2γ0)
− (1 + cos2 ι0)b

2
n(e0) sin(2γ0) cos(2γ0)}, (B32)

∫ T

0
t

∂

∂e

∂h+
n

∂A
(φ(t); �ξ0)∂h

×
m

∂A
(φ(t); �ξ0)dt

≈ −T

2

∫ T

0
{(1 + cos2 ι0)a

′
n(e0) cos[nφ(t)] cos(2γ0)

− (1 + cos2 ι0)b
′
n(e0) sin[nφ(t)] sin(2γ0)

+ (sin2 ι0)c
′
n(e0) cos[nφ(t)]}

× 2 cos(ι0){bm(e0) sin[mφ(t)] cos(2γ0)
+ am(e0) cos[mφ(t)] sin(2γ0)}dt (B33)

≈ −T 2

2
δnm cos(ι0){an(e0) sin(2γ0)

× [(1 + cos2 ι0)a
′
n(e0) cos(2γ0) + (sin2 ι0)c

′
n(e0)]

− (1 + cos2 ι0)bn(e0)b
′
n(e0) sin(2γ0) cos(2γ0)}, (B34)

∫ T

0
t
∂h+

n

∂A
(φ(t); �ξ0) ∂

∂e

∂h×
m

∂A
(φ(t); �ξ0)dt

≈ −T

2

∫ T

0
{(1 + cos2 ι0)an(e0) cos[nφ(t)] cos(2γ0)

− (1 + cos2 ι0)bn(e0) sin[nφ(t)] sin(2γ0)
+ (sin2 ι0)cn(e0) cos[nφ(t)]}
× 2 cos(ι0){b′

m(e0) sin[mφ(t)] cos(2γ0)
+ a′

m(e0) cos[mφ(t)] sin(2γ0)}dt (B35)

≈ −T 2

2
δnm cos(ι0){a′

n(e0) sin(2γ0)

× [(1 + cos2 ι0)an(e0) cos(2γ0) + (sin2 ι0)cn(e0)]
− (1 + cos2 ι0)bn(e0)b

′
n(e0) sin(2γ0) cos(2γ0)}, (B36)
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∫ T

0
t

∂

∂γ

∂h+
n

∂A
(φ(t); �ξ0)∂h

×
m

∂A
(φ(t); �ξ0)dt

≈ T
∫ T

0
{(1 + cos2 ι0)an(e0) cos[nφ(t)] sin(2γ0)

+ (1 + cos2 ι0)bn(e0) sin[nφ(t)] cos(2γ0)}
× 2 cos(ι0){bm(e0) sin[mφ(t)] cos(2γ0)
+ am(e0) cos[mφ(t)] sin(2γ0)}dt (B37)

≈ T 2δnm(1 + cos2 ι0) cos(ι0)

× [a2n(e0) sin2(2γ0) + b2n(e0) cos
2(2γ0)], (B38)

∫ T

0
t
∂h+

n

∂A
(φ(t); �ξ0) ∂

∂γ

∂h×
m

∂A
(φ(t); �ξ0)dt

≈ −T

2

∫ T

0
{(1 + cos2 ι0)an(e0) cos[nφ(t)] cos(2γ0)

− (1 + cos2 ι0)bn(e0) sin[nφ(t)] sin(2γ0)
+ (sin2 ι0)cn(e0) cos[nφ(t)]}
× 2 cos(ι0){−2bm(e0) sin[mφ(t)] sin(2γ0)
+ 2am(e0) cos[mφ(t)] cos(2γ0)}dt (B39)

≈ −T 2δnm cos(ι0){[(1 + cos2 ι0)an(e0) cos(2γ0)

+ (sin2 ι0)cn(e0)]an(e0) cos(2γ0)
+ (1 + cos2 ι0)b

2
n(e0) sin

2(2γ0)}, (B40)
∫ T

0

∂h+
n

∂A

∂h×
m

∂A
dt

≈ −T δnm cos(ι0){an(e0) sin(2γ0)
× [(1 + cos2 ι0)an(e0) cos(2γ0) + (sin2 ι0)cn(e0)]
− (1 + cos2 ι0)b

2
n(e0) sin(2γ0) cos(2γ0)}

− T 2 ι̇0δnm[cos2(ι0) sin ι0 sin(2γ0){an(e0)
× [cn(e0) − an(e0) cos(2γ0)] + b2n(e0) cos(2γ0)} (B41)

− sin(ι0)

2
{[(1 + cos2 ι0)an(e0) cos(2γ0)

+ (sin2 ι0)cn(e0)]an(e0) sin(2γ0)
− (1 + cos2 ι0)b

2
n(e0) sin(2γ0) cos(2γ0)}]

− T 2

2
ė0δnm cos(ι0){an(e0) sin(2γ0)

× [(1 + cos2 ι0)a
′
n(e0) cos(2γ0) + (sin2 ι0)c

′
n(e0)]

− (1 + cos2 ι0)bn(e0)b
′
n(e0) sin(2γ0) cos(2γ0)

+ a′
n(e0) sin(2γ0)
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× [(1 + cos2 ι0)an(e0) cos(2γ0) + (sin2 ι0)cn(e0)]
− (1 + cos2 ι0)bn(e0)b

′
n(e0) sin(2γ0) cos(2γ0)}

+ T 2γ̇0δnm cos(ι0){(1 + cos2 ι0)

× [a2n(e0) sin2(2γ0) + b2n(e0) cos
2(2γ0)] (B42)

− {[(1 + cos2 ι0)an(e0) cos(2γ0)

+ (sin2 ι0)cn(e0)]an(e0) cos(2γ0)
+ (1 + cos2 ι0)b

2
n(e0) sin

2(2γ0)}}. (B43)

The calculation of other elements of the Fisher information matrix is similar.
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