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A B S T R A C T

Gradient structures with enhanced performance are ubiquitously observed in nature and in engineering
materials. In this paper, we studied the impact resistance of two types of broadly used honeycomb structures
(HCSs), a hexagonal HCS and an auxetic HCS. We developed a neural network (NN) which could effectively
help to find an optimal gradient design for energy absorption of HCSs in contrast with their uniform
counterpart. The optimal density gradient for both hexagonal HCS and auxetic HCS was identified, which
are 66% and 40% higher in energy absorption than their respective uniform control. Followed finite-element
analysis revealed that density gradient of HCSs enables loading transfer among a greater deformation zone,
consequentially more cells involving in energy absorption. The initially graded sample promotes a de-gradient
process and leads to more homogeneous density; conversely, a uniform sample develops localized deformation
when subject to impact loading. Such an equal-load-partition (ELP) strategy in graded HCSs is responsible
for their supreme energy absorption. The developed machine learning (ML) method for impact resistance
optimization and the revealed deformation mechanisms in graded HCSs would be meaningful for the design
of new advanced graded materials.
1. Introduction

Gradient structures have evolved over millions of years through
natural selection and optimization in many biological systems such
as bones, horse hooves and plant stems [1], where the microstruc-
tures change gradually from the surface to interior. The advantage
of gradient structures is to improve a particular property or several
ones at stringent material cost. By partially knowing the mechanical
environment as a prior, the structure may then be adapted to better
its mechanical reliability, and materials bearing such a design motif
are now termed as mechanomaterials [2]. Microstructural gradients
are increasingly utilized in a wide range of engineering materials
for enhanced mechanical properties through an equal-load-partition
(ELP) or equal-deformation-partition (EDP) mechanism that is distinct
from those operating in their gradient-free counterparts [3–6]. One
typical example is functionally gradient coatings (FGCs) with compo-
sition [7,8] or structure [9] gradually varying crossing the coating
thickness. It was reported that application of FGCs could not only
improve the sintering resistance of thermal barrier coatings [9], but
also enhance the resistance of protective coatings to contact dam-
ages [10–12]. Another important application of gradient strategy is
gradient metals. Generally, microstructure gradient of grain size, twin
thickness and material composition in metals can be realized through
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either work hardening (e.g., shot peening [13], surface rolling [14],
surface spinning [15], laser shock peening [16]) or phase transforma-
tion strengthening (e.g., laser transformation hardening [17], surface
carburization [18] and nitridation [19]) in the surface layer, which
could not only bring about a negative hardness gradient from sur-
face to interior but also high residual compressive stress near the
surface [16,19]. Such microstructural gradient in metals was found
able to achieve strength-ductility synergy [20–22], as well as enhanced
fracture toughness [4,5], fatigue life [6,23,24] and wear resistance
[25,26].

Honeycomb structures (HCSs) have long been used in various im-
pact energy absorbing applications due to their excellent performance
and low-density properties [27,28]. Their primary energy absorption
mechanism lies in the collapse of cell walls and the plastic deforma-
tion undergone, which cannot be significantly improved by merely
tuning the geometrical parameters of the composing cells. Inspired by
nature, researchers implemented graded design in HCSs by spatially
varying the cell wall thickness [29], cell configuration and parameters
[30,31], matrix material [32] and hierarchical filling [33], and inves-
tigated their energy absorption capacity under diverse loading condi-
tions [30,32,34–36]. When subjected to in-plane impact, the graded
HCSs were found to exhibit greater specific energy absorption than
https://doi.org/10.1016/j.tws.2023.110794
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Fig. 1. (a) Schematic diagram showing the quasi three-dimensional graded hexagonal HCS for finite element simulation. Parameters adopted in simulation: 𝐻 = 182 mm,
𝐿 = 2040 mm, 𝑎 = 100 mm, 𝑙 = 5 mm, 𝑡 = 1 mm (uniform control), 𝑣 = 5 m∕s. (b) Idealized tensile stress–strain curve of aluminum 2024-T351 walls in a HCS in comparison with
the experimental stress–strain curve from Ref. [45].
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the uniform ones [37], and such superiority can be attributed to
their distinct deformation modes. Current studies are mainly focused
on circumstances where the HCSs are subjected to uniform in-plane
impact, that is, all honeycomb cells participate in deformation. In
many practical engineering applications, however, they serve as buffer
components and often carry local impact, under which the deformation
in HCS is more complicated. Regardless of studies regarding the de-
formation in uniform HCSs under local impact [38–40], there remains
controversy about the implementation of gradient strategy, e.g., could
those structures boost the energy absorption? if yes, is there an optimal
gradient design? Zhang et al. [31] investigated the crashworthiness of
aluminum foam subjected to local ball impact, and an optimal design
of functionally graded foam with maximum crush force efficiency was
found, which exhibits 66% higher specific energy absorption over
uniform counterpart. In their study, however, the density gradient is
only assigned in three layers, implying the explored design space is
quite limited. Therefore, the optimal gradient strategy might be of
limited reference value for the design of graded HCSs with many more
layers.

It is tedious to find the optimal gradient profile in HCSs with
multiple layers. The surging of machine learning (ML) in scientific
discoveries seems to offer a solution to this problem at low cost
[41–44]. Through the method of ML, for instance, Wan et al. [41]
found the optimal hole distribution in graphene with minimum thermal
conductivity; Gu et al. [42] obtained the optimal distribution of hard
and soft phases in composites for maximum strength and toughness.
In this study, we investigate the impact resistance of graded HCSs
under local impact, and search for optimal gradient in HCSs for highest
impact resistance via ML technique, aiming to provide guideline for
the design of graded cellular materials. Two types of broadly used
HCSs, i.e., conventional hexagonal HCS and re-entrant auxetic HCS,
were studied, mainly because of their distinction in Poisson’s ratio, with
positive value for the former and negative for the latter.

2. Conventional hexagonal HCS

We start with the conventional hexagonal HCS with positive Pois-
son’s ratio. Different from aforementioned coatings and metallic mate-
rials whose compositional or structural gradient is technically challeng-
ing to be finely tuned for property optimization, the density gradient
in HCSs can be well regulated layer by layer. Given the large design
space of graded HCSs, exhaustive FE calculations to find an optimal
profile are computationally prohibitive. To the contrary, ML with a
few numbers of computational samples may dramatically expedite the
searching process.
2

Table 1
Properties of aluminum alloy 2024-T351 adopted in simulation.

Property Value

Density/(kg/m3) 2780 [48]
Elastic modulus/GPa 73.1 [48]
Poisson’s ratio 0.33 [48]
Yield strength/MPa 324 [48]
Fracture strain (Stress-triaxiality dependent) 0.08–0.6 [46]
Fracture energy 2 mJ/mm3

2.1. Dataset generation

To evaluate the effect of graded density on the impact resistance of
hexagonal HCS, finite element simulations are performed with commer-
cial FEA package ABAQUS (Version 6.14, Dassault Systèmes, France).
As schematically shown in Fig. 1(a), the simulating parts are composed
of the hexagonal HCS, up indenter and bottom base. The indenter and
base are both assumed to be rigid materials. The constituent material
employed for HCS is a typical aluminum alloy 2024-T351, which is
assumed to be elastic-perfectly-plastic in our simulation and whose
properties are listed in Table 1. A ductile damage model is adopted
to capture cell-wall failure. The equivalent plastic strain at the onset
of damage is assumed to be stress-triaxaiality dependent with values
adopted from literature [46]. Given the low strain-rate sensitivity of
aluminum alloy [47] within the strain-rate range of interest, we neglect
its rate-sensitivity. To model the damage evolution, the energy with
linear softening law is chosen and a failure energy 2 mJ/mm3 is
sed. Fig. 1(b) gives its uniaxial tensile stress–strain curve employed
n simulation in comparison with the experimental curve.

The height and length of HCS are taken as 𝐻 = 182 mm and
= 2040 mm, corresponding to 21 and 272 cells in the vertical and

ongitudinal directions, respectively. To reduce calculation costs, the
ut-of-plane width of HCS is taken as 1 mm. The indenter has a semi-
ircular tip with a diameter 𝑎 = 100 mm, which is 20 times of the cell
all length l (𝑙 = 5 mm) to avoid over-localized deformation. Shell

lement (S4R) is adopted to simulate the HCS. For uniform hexagonal
CS, its density 𝜌∗ relative to that of its fully dense counterpart 𝜌s is
iven as [49]: 𝜌∗

𝜌s
= 2

√

3
𝑡
𝑙

(

1 − 1
2
√

3
𝑡
𝑙

)

. For samples with equal thickness

𝑡 = 1 mm and 𝑙 = 5 mm, 𝜌∗

𝜌s
= 0.218. In simulation, the vertical

degree of freedom of HCS is fixed on the bottom, and periodic boundary
condition is applied on its lateral sides. The out-of-plane deformation of
HCS is constrained to simulate the plane-strain condition. The friction
between the indenter tip and the material is considered by assigning
a constant friction coefficient 0.3. Penetration between collapsed cell
walls is prohibited by assuming hard contact, and their relative sliding
follows a friction law with a friction coefficient of 0.3. A constant
velocity of 5 m/s is applied to the indenter along the vertical direction
for a time of 0.03 s (150 mm in displacement). Then the total energy
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Fig. 2. (a) The variation of cell wall aspect ratio along vertical direction in power law for different m. (b) Calculated energy absorption capability of randomly selected 1100
graded samples. Here, their energy absorption capability is normalized by that of the uniform control.
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absorbed by HCS can be obtained by calculating the area below the
indenter’s force–displacement curve.

By contrast, the graded hexagonal HCSs are constructed by assign-
ing different thickness to the shell element layer by layer (see Fig. 1(a))
while keeping its total mass equal to that of the uniform counterpart. In
practical applications, the impact-resistant components might not only
subject to impact loading but also loadings of other modes, and it would
be safer to place a stiffer layer outside. This might somewhat explain
why the density in many biological materials is decreased from surface
to interior [1]. In this study, therefore, we focus on the negative graded
HCS with relative density decreased from impact end to fixed end. Since
the relative density of hexagonal HCS (𝜌∗∕𝜌s) is roughly proportional
to the aspect ratio of 𝛼 = 𝑡∕𝑙, the density gradient is then characterized
by 𝛼. For simplicity, we assume the ratio 𝛼 of graded HCS decreases
monotonically from the impact end to the fixed end in the form of (see
Fig. 2(a)):

𝛼
( 𝑦
𝐻

)

= 𝛼min +
(

𝛼max − 𝛼min
)

( 𝑦
𝐻

)𝑚
(0 ≤ 𝑦 ≤ 𝐻) (1)

n which 𝛼min and 𝛼max represent the aspect ratio of cell wall on the fixed
nd and impact end, respectively, and m is a power index. Given that its
otal mass is constant, the index m can be solved uniquely from Eq. (1)
ith known 𝛼min and 𝛼max. Therefore, in the dataset for ML, 𝛼min and
max of the graded HCS will be taken as inputs while the total energy
bsorption (𝐺) as output. The parameter space of the input variables is
efined as 𝛼min ∈ (0, 0.2], 𝛼max ∈ (0.2, 0.4]. The total mass of the graded
CS is equal to that of the uniform control when 𝛼 = 0.2.

To fully explore the parameter space of input variables, a grid-
earch strategy is adopted to generate the dataset for ML. Each input
omain is discretized into 𝑛𝑖 uniform intervals and a grid of all possible
nput variables is then constructed inside the parameter space. This
ives rise to 𝑁 =

(

1 + 𝑛1
) (

1 + 𝑛2
)

…
(

1 + 𝑛𝑖
)

different samples. In this
tudy, the intervals of the two input variables are taken as 0.002, thus
ielding a total number of 104 samples. For some combinations of
min and 𝛼max, however, solving Eq. (1) for index m cannot produce
real number, which would be excluded from the dataset. Finally,

720 available combinations of 𝛼min and 𝛼max are attained for the
nput dataset. To save calculation costs, we randomly shuffle the 7720
amples in the dataset and select 1100 samples (see Fig. 2(b)) from
hem. Finite element analysis is performed to evaluate the energy
bsorption of the 1100 samples, as shown in Fig. 2(b), which will be
aken as training data for subsequence ML. The energy absorption of
raded HCSs mentioned in this study is all normalized by that of the

niform control.

3

.2. NN model training

By using the dataset generated last subsection, a NN model will
e trained to predict the energy absorption of graded HCSs in the
ontext of supervised learning. The dataset (1100 samples) is split
nto training dataset (70%), validation dataset (20%), and test dataset
10%). The validation dataset is used to find better architectures, and
he test dataset is used to assess the model performance. The goal of
he parameter optimization is to minimize the root mean square error
RMSE) between the predictions and targets with Adam optimizer:

MSE =

√

√

√

√

√

√

𝑛
∑

𝑖=1

(

𝐺𝑖
t − 𝐺𝑖

p

)2

𝑛
(2)

in which 𝑛 is the number of data, and for the 𝑖th sample, 𝐺𝑖
t and 𝐺𝑖

p are
the true energy absorption from FE simulation and the predicted one
by NN model, respectively. We also introduce the following quantity
(𝑅2) to measure the quality of the regression performance of the model
as

𝑅2 = 1 −

∑𝑛
𝑖=1

|

|

|

𝐺𝑖
t − 𝐺𝑖

p
|

|

|
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𝑖=1

|

|

|

𝐺𝑖
t −

1
𝑛
∑𝑛

𝑖=1 𝐺
𝑖
t
|

|

|

2
(3)

During the tuning, a learning rate of 0.0001 is chosen for the optimizer
with a batch size of 10 and the number of maximum epochs is set 5000.
A NN model with two hidden layers (2/25/25/1) is found to achieve
𝑅2 = 0.92 on the test dataset, indicating that the trained NN model
can extract major features of graded HCSs and accurately predict their
energy absorption performance.

2.3. Inverse design

Based on the developed NN model, we will present an inverse design
scheme [41,43,50] to search for the graded HCS with maximum impact
resistance. As shown in Fig. 3, at first, we randomly select 100 samples
from the library of all possible structures (7720) and calculate their
energy absorption using FE simulation, which are taken as training
data. The NN model is trained by the train set as the first generation
NN model, which is then used to predict the energy absorption of all
the remaining samples in the library. Based on both the NN-predicted
data and the calculated training data, the top 100 graded structures of
all possibilities can be found. For the top 100 structures that are not
included in the training set, their true energy absorption is computed
by FE simulations. The data of these newly calculated structures is
then added to the training set, and the extended training set is used
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Fig. 3. Schematic of NN model-based search algorithm.
Fig. 4. Searching for optimal graded hexagonal HCSs via inverse design. (a) Initial training dataset (100 samples) for one typical searching process, and (b) corresponding top
100 performers in the 6th generation. (c) Average energy absorption of the top 100 and top 5 performers as a function of searching generations. The energy absorption of graded
HCSs is normalized by that of the uniform counterpart. (d) The relative density distribution of the ML-searched top 5 graded hexagonal HCSs.
to train the next-generation NN model. To evaluate the performance
of the search scheme, we use the average energy absorption of the
top 100 structures in the extended training set of each generation as
the convergence measurement. It should be noted that in the searching
process, the size of the training set increases gradually with iteration.
In each generation of the inverse design process, the NN model is
initialized at first and then trained based on the training set to predict
the energy absorption of the remaining samples. To demonstrate the
effectiveness of this search scheme, this searching process is repeated
multiple times by choosing totally different initial training data.
4

Fig. 4(a) and (b) display the initial training data of one typical
searching process and corresponding top 100 performers in the 6th
generation, respectively. Clearly, even starting with randomly dispersed
data points, structures with supreme performance can be well found
through such search algorithm. Fig. 4(c) shows the variation of the
average energy absorption of the top 100 and top 5 structures in the
training set with searching generations. Here, the searching process is
repeated 5 times with totally different initial training data, which are
represented by distinct colored lines. As can be seen, regardless of the
initial training dataset, the average energy absorption of the top 100
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structures converges quickly to the same level (around 1.5 times of that
of uniform control), affirming the effectiveness of the inverse design
search algorithm. In the 6th generation, the same top 5 performers are
found (see Fig. 4(c)), which exhibit similar gradient in density (see
Fig. 4(d)). That is, the aspect ratio of cell wall on the impact end
(𝛼max) is around 0.4, which is the upper limit assumed in this study,
while around 0.05 on the fixed end (𝛼min). Here, the demand for ultra-
igh density on the impact end is associated with the deformation
echanism of graded hexagonal HCSs, which will be elaborated in the

ollowing.
We next take a closer look at the deformation mechanism of the

L-explored optimal performer. Fig. 5 presents the computed force–
isplacement curves of the optimal graded HCS and the uniform con-
rol, in company with the snapshots showing their deformation evo-
utions. For both of them, three characteristic deformation stages,
.e., elastic stage, plateau stage and densification stage, can be clearly
dentified in their stress–strain curves (see Fig. 5(a)). By calculating
he area below the force–displacement curve with displacement ranging
rom 0 to 150 mm, which well covers the region before densification,
he optimal structure is found to exhibit 66% improvement in energy
bsorption than the uniform control. Despite significant enhancement
n energy absorption, its crashing force is maintained at a roughly
teady level in the plateau stage with peak crashing force increased
y 77% (see Fig. 5(a)), which is roughly proportional with the im-
rovement in energy absorption. Such superiority over gradient-free
ounterpart can be ascribed to their distinct deformation mechanisms.
or the uniform HCS, as illustrated in Fig. 5(b), only the cells in
irect contact with indenter are gradually collapsed and fractured as
mpact proceeds, during which the initially uniform sample develops
ocalized deformation with high density gradient (see Fig. 5(c)). By
ontrast, for the optimized graded HCS, the locally applied loading
ould be transferred over a larger deformation zone (see Fig. 5(d)), thus
acilitating more energy absorption. As opposed to the uniform control,
his is a de-gradient process and the density distribution becomes more
niform as deformation proceeds (see Fig. 5(e)). Such an ELP strategy
n graded HCSs is considered responsible for their supreme energy
bsorption.

Since the superiority of graded HCSs primarily arises from the extra
ell deformation and collapse beyond the impact trajectory that occur
ear the fixed end, one should cause as much energy absorption near
he fixed end as possible for high impact resistance. When the struc-
ural density near the fixed end is ultra-low, large-scale cell collapse
annot absorb much energy. For higher energy absorption, therefore,
he density on the fixed end should be increased. At the same time, the
ensity on the impact end should be increased synergistically to ensure
hat it is stiff enough to trigger large-scale cell collapse near the fixed
nd. Then the maximum energy absorption can be realized when either
he minimum density on the fixed end (𝛼min) or the maximum density
n the impact end (𝛼max) increases to its upper limit. This may explain
he demand for ultra-high density (upper limit) on the impact end of
he optimized graded hexagonal HCS.

. Re-entrant auxetic HCS

Above section demonstrates the effectiveness of graded design on
mplifying the impact resistance of conventional hexagonal HCSs. In
he following, our study will be extended to re-entrant HCSs with
egative Poisson’s ratio.

.1. Dataset generation

Likewise, finite element simulations are carried out to evaluate
he effect of graded density on the impact resistance of re-entrant
CSs. Here, except for the HCS, the finite element model employed

or simulation is identical to that of last section. As shown in Fig. 6,
he overall height and length of HCS are taken as 𝐻 = 182 mm and
5

= 2040 mm, corresponding to 21 and 227 cells in the vertical and
ongitudinal directions respectively, and its out-of-plane width is taken
s 1 mm to save calculation costs. For the re-entrant unit cell, the
orizontal and inclined lengths are taken as ℎ = 7 mm and 𝑙 = 5 mm,

respectively, with cell angle 𝜃 = 60◦. For the uniform structure, equal
cell wall thickness is assigned to each layer as 𝑡 = 0.7 mm, with relative
density calculated as [51]: 𝜌∗

𝜌s
= 𝑡∕𝑙(ℎ∕𝑙+2)

2 sin 𝜃(ℎ∕𝑙−cos 𝜃) ≈ 0.305. The graded HCSs
re constructed by assigning different thickness to the shell element
ayer by layer (see Fig. 6) while keeping the total mass identical to
hat of the uniform control. Here, the gradient in the aspect ratio of cell
all (𝛼 = 𝑡∕𝑙) is used to depict the density gradient in re-entrant HCSs,
hich is assumed to follow the power law (see Eq. (1) and Fig. 2(a)).
he parameter space of the input variables is defined as 𝛼min ∈ (0, 0.14],
max ∈ (0.14, 0.24]. Here, the upper bound for 𝛼max sets the high end of
CS’s density to be around 52%. The total mass of the graded HCS

s equal to that of the uniform control with 𝛼 = 0.14. Taking the
ntervals of the two input variables as 0.002, a total number of 2459
ombinations of 𝛼min and 𝛼max for the input dataset can be found. It
hould be mentioned that, due to the high relative density of re-entrant
CSs and resultant earlier densification, the impact displacement for
alculating the energy absorption of re-entrant HCSs is shortened to
40 mm.

.2. NN model training

In general, different ML models should be trained for different
roblems due to their distinct mapping relationships between inputs
nd outputs. However, it usually takes vast computation and time
esources to train a new model. As a matter of fact, a model specifically-
eveloped for one problem can be applied to solve other problems of
ome similarities with high efficiency [52], which is termed as transfer
earning [53]. Considering the structural similarity between the hexag-
nal and re-entrant HCSs in this study (21 layers along the vertical
irection and constrained out-of-plane deformation), we will now apply
he NN model with two hidden layers (2/25/25/1) developed in last
ection to search for the optimal graded re-entrant HCS.

.3. Inverse design

By using the NN model, we explored the optimal graded re-entrant
CS based on the search algorithm shown in Fig. 3. Fig. 7(a) and (b)
isplay the initial training dataset for one typical searching process and
he corresponding top 100 performers in the 6th generation, respec-
ively. With the increase of searching generations, the average energy
bsorption of top 100 performers converges quickly to the same level
around 1.3 times of that of the uniform control) despite completely
ifferent initial training datasets in different searching processes, as
hown in Fig. 7(c), demonstrating the effectiveness of the searching
lgorithm. Additionally, in the 6th generation, the same top 5 designs
re found (see Fig. 7(c)), which share similar density gradient (see
ig. 7(d)). Specifically, the aspect ratio of cell wall on the impact end
𝛼max) is around 0.21, while approaching zero (the lower limit assumed
n this study) on the fixed end (𝛼min). The requirement for ultra-low
ensity on the fixed end arises from its deformation mechanism, which
ill be explained below.

Fig. 8(a) presents the force–displacement curve of the optimized
raded re-entrant HCS, and an overwhelming advantage over the uni-
orm control can be observed. In contrast with a steady stress level for
he uniform counterpart, an ever-increasing stress is observed in the
lateau deformation stage of the optimized graded HCS. By calculating
he area below the force–displacement curve with displacement ranging
rom 0 to 140 mm, the energy absorption of the graded HCS is found
round 40% higher than that of the uniform control, while accompa-
ied with the increment of peak crashing force by more than 100%.
pparently, by enlarging the impact distance, more extra energy con-
umption can be realized at the expense of even higher peak crashing
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Fig. 5. FEM simulations to show the impact resistance of hexagonal HCS. (a) Force–displacement curves of the optimized graded HCS and the uniform control. Snapshots showing
b, d) the deformation evolution and (c, e) corresponding relative density distribution in (b, c) uniform and (d, e) optimized graded HCSs at different loading moments (denoted
s A-D as indicated in (a)). For clarity, cells far from the deformation zone are not shown in (b-e).
orce. To account for such superiority, their deformation mechanisms
re further examined. For the uniform re-entrant HCS, the re-entrant
ells in contact with the indenter are gradually collapsed and fractured
s deformation proceeds. Meanwhile, the neighboring cells surrounding
he indenter contract laterally due to the negative Poisson’s ratio (see
6

Fig. 8(b)). The deformation process of the optimized graded HCS is
depicted in Fig. 8(d). At early deformation stage, the weak cells on the
fixed end are firstly collapsed on a large scale, followed by cell collapse
near the impact end (‘A’ in Fig. 8(d)). As deformation proceeds, re-
entrant cells near the fixed end and impact end collapse simultaneously
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𝑎

Fig. 6. Schematic diagram showing the quasi three-dimensional graded re-entrant HCS for impact simulation. Parameters adopted in simulation: 𝐻 = 182 mm, 𝐿 = 2040 mm,
= 100 mm, 𝑙 = 5 mm, ℎ = 7 mm, 𝜃 = 60◦, 𝑡 = 0.7 mm (uniform control), 𝑣 = 5 m∕s.
Fig. 7. Searching for optimal graded re-entrant HCSs via inverse design. (a) Initial training dataset (100 samples) for one typical searching process, and (b) corresponding top 100
performers in the 6th generation. (c) Average energy absorption of the top 100 and top 5 performers as a function of searching generations. The energy absorption is normalized
by that of the uniform counterpart. Here, the searching process is repeated twice with totally different initial training data, which are represented by different colored lines for
distinction. (d) The relative density distribution of the ML-searched top 5 graded samples.
(‘B’ in Fig. 8(d)). Meanwhile, the compressed cells could contract
laterally before complete densification owing to the auxetic effect, thus
densifying the structure well below the indenter and yielding higher
crashing force. During this stage (from ‘A’ to ‘C’ in Fig. 8(a)), the
advantage of graded HCS is fully demonstrated. As opposed to the
development of high density gradient in the initially uniform HCS
(see Fig. 8(c)), the graded re-entrant HCS could facilitate gradient
elimination and lead to a more homogeneous density distribution (see
7

Fig. 8(e)). This contributes to ELP in graded HCSs for supreme energy
absorption.

The reinforcing mechanism of density gradient in re-entrant HCSs
can be summarized in two aspects. On the one hand, negative den-
sity gradient enables loading transfer over a larger deformation zone,
thereby more cells involved in energy absorption. On the other hand,
early deformed cells due to density gradient can shrink laterally before
complete densification, thus yielding higher structural density below



Y. Gao, X. Chen and Y. Wei Thin-Walled Structures 188 (2023) 110794
Fig. 8. FEM simulations to show the impact resistance of re-entrant HCS. (a) Force–displacement curves of the optimal graded sample and its uniform control. Snapshots showing
(b, d) the deformation evolution and (c, e) corresponding relative density distribution in (b, c) uniform and (d, e) optimized graded HCSs at different loading moments (denoted

as A-C as indicated in (a)). For clarity, cells far from the deformation zone are not shown in (b-e).
the indenter and therefore higher crashing force. The optimization of
density gradient is to modulate the cooperation of the two mechanisms
to maximize its overall performance on energy absorption. Clearly, the
ML-searched optimal design with ultra-low density near the fixed end
enables the latter one to play a dominant role, and such allocation may
be dependent on the height (H) of a re-entrant HCS.

4. Discussion and conclusion

In search for the optimal density gradient by inverse design, the ini-
tial training dataset (100 samples) is randomly selected from the whole
8

library, which may somewhat represent the average impact-resistance
performance of all available samples. The average energy absorption
of the initial training data is around 1.05 times (see Fig. 4(c)) of the
uniform control for hexagonal HCSs, while 1.15 times (see Fig. 7(c))
for re-entrant HCSs. Such contrast suggests that the implementation of
gradient strategy in re-entrant HCSs is more effective in improving the
impact resistance. This can be further confirmed by comparing Fig. 4(a)
(or Fig. 2(b)) and Fig. 7(a). As can be seen, a large portion of graded
hexagonal HCSs underperform their uniform control, while almost all
graded re-entrant designs outperform their uniform counterpart. There-
fore, in some less-demanding conditions, it may not necessary to cost
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too much efforts to optimize the density gradient in re-entrant HCSs for
maximum energy absorption, while a randomly determined gradient
profile might be able to bring about great extra energy consumption.
However, this is often accompanied by high peak crashing force, which
is often unfavorable since it might cause damage to the objects they
protect. In some conditions that require for both high energy absorption
and low crashing force, the graded hexagonal HCS is a better choice,
whose density gradient needs to be well optimized before use.

Although the impact resistance of graded HCSs has been largely
improved through structural optimization, limitations remain present
in our work. Firstly, to simplify the optimization process by ML, the
density of graded HCS was assumed to decrease monotonically follow-
ing the power law, while the true optimal density gradient might not
necessarily follow the power law exactly. In addition, some biological
materials, such as the stomatopod dactyl club that is well-known for
high damage-tolerance [54], were found to exhibit periodic gradient
stiffness distribution, which was demonstrated to be much superior
than uniform control in terms of impact resistance [55]. This inspires us
to upgrade the present monotonic density gradient in HCSs to periodic
ones for higher impact resistance. On the other hand, the indenter size
(a) and the characteristic length of the honeycomb structure (H) were
both assumed to be constant in this work. Further studies are required
to shed light on the dependence of the optimal gradient profile and the
corresponding energy absorption capability on the ratio H/a. Lastly, we
focused on the deformation of HCSs under low-velocity (quasi-static)
impact. It has been demonstrated that mechanical behavior of HCSs
under impact are highly dependent on the impact velocity [38,56–
58]. Further investigations are needed to take velocity as a factor for
structure optimization.

In summary, we investigated the impact resistance of two types
of HCSs, hexagonal HCS and re-entrant HCS. To find the optimal
gradient design in HCSs with highest impact resistance, ML was used to
approximate the energy absorption capability as a function of density
gradient. A straightforward NN model was found able to effectively
predict the energy absorption of graded HCSs. By incorporating the
inverse design algorithm and ML technique, the optimal graded HCSs
were found for both hexagonal HCS and re-entrant HCS, whose energy
absorption is 66% and 40% higher than that of their respective uniform
control. Such superiority of graded HCSs can be attributed to the ELP
deformation strategy, which enables loading transfer over a larger
deformation zone, thus more cells are involved in energy absorption.
Our work not only demonstrates the effectiveness of ML approach to
find the optimal graded HCSs with high impact resistance, but also
reveals the deformation mechanisms of graded HCSs responsible for
such exceptional performance.
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