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This work uses a bio-inspired flapping wing model to numerically investigate the effect of morphing wingspan on wake structures.
The model consists of a rectangular flat-plate wing heaving harmonically in a uniform incoming flow at the Reynolds number of
300 and Strouhal number of 0.3. The wingspan changes during heaving, with a maximum wingspan at the middle of downstroke
and minimum wingspan at the middle of upstroke. The wake is characterized by two oblique chains of interconnected vortex
loops. Although the morphing wingspan has little effect on the wake topology, it significantly affects the magnitude and size of
the vortices near the wing surface, which leads to an asymmetric distribution of vortex loop chains in the wake. The shrinking of
leading-edge vortex under the lower surface of the wing in downstroke and the destructive interaction of tip vortices in upstroke
are identified as the two vortex dynamics corresponding to the asymmetric wake structures. The analysis on the lift coefficients
shows that the above vortex interactions are mainly caused by the change of span length instead of spanwise velocity.
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1. Introduction

Wake has been widely investigated in biolocomotion [1-8]
and has provided a feasible way to understand the complex
vortex dynamics in swimming and flying. Natural swim-
mers and flyers have wings or fins with complex kinemat-
ics and geometric shapes. Simplified flapping wing mod-
els are usually used to clarify the interactions between flu-
ids and wings/fins. The flapping foils in three-dimensional
(2D) flows have successfully modeled the large aspect-ratio
flapping wings or fins, and helped to identify the typical vor-
tex phenomena in biolocomotion, such as the generation of
leading-edge vortex [9-13], formation of reverse Karmann
vortex street [14-19], interaction of wake vortices [20-24],
and transition of wake patterns [25-30].

The wake of flapping foils in 2D flows consists of infi-
nite long vortex tubes because of the ignorance of spanwise
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variation. The flapping low-aspect-ratio wing improved the
2D flapping foil by taking into account the effect of finite
wingspan, resulting in a wake consisting of vortex loops. von
Ellenrieder et al. [31] visualized the wake structures of a
flapping rectangular wing with an aspect ratio of 3 by flow
dyeing. The wing heaves and pitches in a uniform incoming
flow at a Reynolds number of 164. By varying the Strouhal
number (based on the flapping frequency and tip-to-tip am-
plitude) from 0.2 to 0.4, they show that the wake is featured
by a chain of zigzag connected vortex loops. Blondeaux et
al. [32] found that the dynamics of vortex loop depends on
the Strouhal number and the wake pattern might change at
relatively high Strouhal number. Dong et al. [33] numeri-
cally investigated the wake of flapping thin ellipsoid wings
with three finite different aspect ratios ranging from 1.27 to
5.09. The flow structures are investigated in detail for the
case with a Reynolds number of 200 and Strouhal number
of 0.6. The wakes are found to be dominated by two chains
of interconnected vortex loops that convect downstream at
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an angle with respect to the wake centerline. Buchholz and
Smits [34, 35] identified three types of wake patterns by vi-
sualizing the vortex structures of a pitching rectangular flat
plate wing at different Strouhal numbers. The three types
of wake patterns are: (1) a zigzag chain of interconnected
vortex loops when the Strouhal number is approximately be-
tween 0.2 and 025, (2) two oblique chains of interconnected
vortex loops when the Strouhal number is approximately be-
tween 0.25 and 0.5, (3) wake of type II but with additional
vortex structures forms from the streamwise vortex when
the Strouhal number is higher than 0.5. These three types
of wake patterns are confirmed by the consequent works
[36-40]. The wake structures are found to be quite robust
within a certain Strouhal number range, and not sensitive to
the changes of wing planform, kinematics, and the Reynolds
number.

The above studies established a general wake pattern
paradigm for flapping low-aspect-ratio wing. However,
most of the studies use a flapping wing model with a fixed
wingspan. An important characteristic of three-dimensional
flapping wing motion, the wingspan morphing, has not been
included in those models. The morphing wingspan widely
exists in the flight of birds and bats [41-45]. Birds and bats
often extend their wings during downstroke, and retract their
wings during upstroke. The ratio between the minimum and
maximum wingspan in a slow-flying bat can be as low as 0.6
[45]. Hedenström et al. [46] showed that the bat flight gener-
ates a more complex wake consisting of multiple-connected
vortex loops. Wang et al. [47] simulated a flapping rectan-
gular flat plate with morphing wingspan, and found that the
morphing wingspan can significantly affect the evolution of
leading-edge vortex. But the effects of morphing wingspan
on wake have not been reported in details. The relation be-
tween the morphing wingspan and the generation of the more
complex wake is still not clear.

This work aims to look into the effect of morphing
wingspan on the wake generated by flapping wings. The vor-
tices in the wake are investigated by numerically simulating
the flows around a bio-inspired flapping wing model, which
isolates the spanwise morphing from the complex morphol-
ogy and flapping kinematics of real flyers. The details of
the generation and evolution of vortices in the wake are re-
ported and compared with those generated by flapping wings
with fixed wingspan. The effects of morphing wingspan on
lift coefficients are also investigated. The organization of the
paper is as follows. The numerical model and method are re-
ported in Sect. 2. The characteristics and evolution of wake
structures are reported in Sect. 3. The relations among the
morphing wingspan, vortex structures and lift coefficient
are discussed in Sect. 4. Finally, conclusions are drawn in
Sect. 5.

2. Numerical model and method

2.1 Numerical model

This work uses the same bio-inspired morphing wing model
as that in Wang et al. [47]. For the completeness, the model
is briefly described as follows. The model wing has a flat-
plate cross section with zero thickness and a chord length,
and heaves vertically in an incoming uniform flow, U∞, as
shown in Fig. 1. The heaving is specified as

zc = z0 + Asin(2π f t), (1)

where zc is the vertical position of the flapping wing cen-
ter, z0 is the time-averaged vertical position of the flapping
wing center, A and f are flapping amplitude and frequency,
respectively, and t is time. All the variables in Eq. (1) are
non-dimensional. The characteristic length, velocity, time,
and fluid density are the chord length c, the upstream flow
velocity U∞ , the reference time c/U∞, and the fluid density
ρ, respectively. The flapping Strouhal number is defined as St
= 2A∗ f ∗/U∞, where A∗ and f ∗ are the dimensional flapping
amplitude and frequency, respectively. For convenience, a
non-dimensional time T = t − 0.25 is used to describe the
kinematics of the wing, according to which the downstroke
of the wing starts at T = 0, 1, 2, ..., and so on.

The wingspan varies with time during the flapping. The
length of the wingspan is specified as

L(t) = L0[a − bsin(2π f t + φ)], (2)

where L0 is the maximum wingspan, a and b (with the con-
straint of a + b = 1) are the parameters to control the ratio
between the maximum and minimum wingspan, and φ is the
phase difference between the heaving motion and the span-
wise motion. The morphing wingspan results in a dynami-
cally changing aspect ratio of

AR(t) = L(t)/c. (3)

An example of the phase relation between heaving and
spanwise morphing is illustrated in Fig. 2, for the case of
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Figure 1 Schematic of flapping rectangular wing with morphing wingspan.
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φ = π/2, a = 0.75, b = 0.25.
The flow around the flapping wing is determined by the

incompressible Navier-Stokes equations and the mass con-
servation constraint:
∂u
∂t
+ u · ∇u = −∇p +

1
Re
∇2u + f, (4)

∇ · u = 0, (5)

where u and p are the non-dimensional velocity and pressure,
f is a body force to represent the effect of boundaries on the
flow in immersed boundary (IB) method, and Re = U∞c/ν
is the Reynolds number, where ν is the kinematic viscos-
ity of fluid. The non-dimensional vorticity is calculated by
ω = ∇×u.

2.2 Numerical method and settings

Equations (4) and (5) are solved numerically by using an
IB method based on the discrete stream-function formula-
tion [48]. In this method, the flow field is solved on the Eu-
lerian grid by using the discrete stream-function method (or
the null space method, the exact projection method), in which
the mass conservation constraint is satisfied in the level of
machine precision. The body force that represents the effect
of boundary on the flow is calculated implicitly by solving a
linear equation to ensure the non-slip boundary condition, in
which a discrete delta function provided by Yang et al. [49] is
used. The computational scheme has formally second-order
accuracy in time and space. The details of the numerical
method can be found in the previous work [48].
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Figure 2 Histories of the heaving and spanwise morphing.

According to the robustness of the lift and flow structures
reported in Wang et al. [48] where they varied flapping am-
plitude, flapping frequency, maximum aspect-ratio, phase lag
between the heaving and spanwise motion, and span ratio
(the ratio between the minimum wingspan and maximum
wingspan), this work uses a typical case to investigate the
evolution of the wake structures. The flapping and morphing
parameters of this typical case are as follows: the flapping
Strouhal number St = 0.3, the flapping amplitude A = 0.25,
the phase difference between the spanwise motion and heav-
ing φ = π/2, the span ratio SR = Lmin/Lmax = 0.5, the max-
imum aspect ratio AR = Lmax/c = 4, the time-averaged ver-
tical position of the center of the wing z0 = 0, and the ge-
ometric angle of attack of the wing α = 0. The wingspan
varies from 2 to 4 in this case. We refer to this typical case
as the “morphing wingspan case” hereafter. Two additional
cases with the same heaving kinematics but with the fixed
wingspan are also investigated to help to identify the effect
of morphing wingspan on wake structures. These two fixed
wingspan cases have the parameters as follows: (1) St = 0.3,
A = 0.5, φ = π/2, SR = Lmin/Lmax = 1.0, AR = Lmax/c = 4,
z0 = 0, and (hereafter refer to as the fixed wingspan case with
) (2) St = 0.3, A = 0.25, φ = π/2, SR = Lmin/Lmax = 1.0,
AR = Lmax/c = 2, z0 = 0, and α = 0 (hereafter refer to as the
fixed wingspan case with AR = 2). Notice that the span ratio
SR = Lmin/Lmax = 1.0 means that the wingspan remains fixed
during the flapping. The Reynolds number is fixed at 300 in
this study, considering that the wake structures are not sensi-
tive to the Reynolds number for a flapping wing with sharp
leading-edge [33, 34].

The computational domain is [−16, 32] × [−16, 16] ×
[−24, 24] in the streamwise, spanwise and vertical directions,
respectively. The uniform streamwise velocity is set at the in-
let, and the free convection boundary condition is set at the
outlet. The non-slip boundary condition is imposed at the
surface of flapping wing. The zero-shear slip wall is used
on the other boundaries. The computational domain size has
been tested to assure that it is sufficiently large for develop-
ment of the wake structures. The unstructured Cartesian grid
with hanging node is used to refine the Eulerian grid around
the wing and in the wake. The minimum Eulerian grid length
dh = 0.02 is used in a region of [−1, 1] × [−3, 3] × [−1, 1]
around the flapping wing, and the grid length dh = 0.04 is
used in a region of [−2, 16] × [−4, 4] × [−6, 6] to resolve the
flow structures in the wake. The time step is calculated dy-
namically by fixing the maximum Courant-Friedrichs-Lewy
(CFL) number at 0.5. The distance among the Lagrangian
grids varies as the wingspan changes during the flapping. The
Lagrangian grid length is set as 0.01 ≤ ds ≤ 0.02. The valida-
tions of the numerical method can be found in our previous
work [48, 50, 51]. The test of grid-size independences was
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conducted in a fixed wingspan case with AR = 2. The results
showed the lift coefficient with the minimum Eulerian grid
length of dh = 0.02 matched perfectly with that on a finer
mesh with the minimum Eulerian grid length of dh = 0.01.

3. Wake

We use the λ2 criterion introduced by Jeong and Hussain [52]
to identify the vortex structures near wing and behind wings.
Figure 3 plots the vortex structures around the wings of the
morphing and fixed wingspans. In both cases, the wake struc-
tures behind the wings consist of two oblique chains of inter-
connected vortex loops. Therefore, the morphing wingspan
does not change the wake pattern. However, the morph-
ing wingspan significantly changes the vortex structures near
wings, leading to an asymmetric distribution of vortex loops
in the vertical direction. It is also noted that the vortex inten-
sities become smaller with AR decreasing.

In the rest part of this section, the wake structures be-
hind the fixed wingspan will be discussed in Sect. 3.1, which
is used as a baseline to investigate the effect of morphing
wingspan on wake structures. The wake structures behind
the morphing wingspan are studied in Sect. 3.2 and used to
understand the effect of morphing wingspan on wake.

3.1 Wake pattern for fixed wingspans

It is observed from Fig. 3(b) and (c) that two vortex loops
with the opposite signs in each flapping period are generated
by flapping of the wing with the fixed wingspans. The two

(a)

(c)

(b)

-1 -0.6 -0.2 0.2 0.6 1

Figure 3 The top-view (left column) and side-view (right column) of vortex
structures in the flapping rectangular when the wing is at the middle upstroke,
(a) the morphing wingspan case, (b) the fixed wingspan case with AR = 4,
(c) the fixed wingspan case with AR = 2. The iso-surfaces of λ2 = −0.1
are shown. The gray (color online) indicates the value of non-dimensional
streamwise vorticity ωx.

vortex loops have the same geometry and vorticity magni-
tude. They shed in the consecutive flapping periods and con-
nect to each other. Two oblique chains are formed by vortex
loops and move downstream in a ‘V’ shape with a separation
in the vertical direction.

Figure 4 plots the vortex loops for the flapping wings with
the morphing and fixed wingspan at the end of downstroke.
The vortex loops in the wakes are generated by leading-edge,
trailing-edge and wing-tips, such as the leading-edge vortex
V3 and the tip vortices TV2 in Fig. 4(b). The sizes of the
vortex loops in Fig. 4(a) are comparable with those in Fig.
4(b) but larger than those in Fig. 4(c).

Figure 5 plots the vortex loops for the flapping wings with
the morphing and fixed wingspan at the middle of upstroke.
In Fig. 5(b), the tip vortices TV2 are convected downward
during the upstroke and are connected to V4 near trailing-
edge. The vortices V2, TV2 and V4 are connected to form
a vortex loop which moves downward and is convected

(a)

(c)

(b)

Figure 4 Vortex structures of the flapping rectangular wing at the instant
when the wing is at the end of downstroke, (a) the morphing wingspan case,
(b) the fixed wingspan case with AR = 4, (c) the fixed wingspan case with
AR = 2. The flow structures are identified by the iso-surfaces of λ2 = −4.



X. He, et al. Acta Mech. Sin., Vol. 39, 323061 (2023) 323061-5

(a)

(c)

(b)

Figure 5 Vortex structures of the flapping rectangular wing at the instant
when the wing is at the middle upstroke, (a) the morphing wingspan case,
(b) the fixed wingspan case with AR = 4, (c) the fixed wingspan case with
AR = 2. The flow structures are identified by the iso-surface of λ2 = −4.

downstream. In comparison with Fig. 4(b), the vortices V1
and TV1 generated during the previous upstroke form a vor-
tex loop are connected to V2. They form a vortex loop and
moves upward as being convected downstream. The vortex
loops generated in sequential flapping periods are connected
to form a V-shaped chains with a certain vertical separation,
as shown in Fig. 3(b). The wake structures for the fixed
wingspan with AR = 2 are similar to those with AR = 4.
However, their sizes for AR = 2 are smaller than those for
AR = 4, seeing Figs. 3(c), 4(c) and 5(c).

The pattern and evolution of wake structures in present pa-
per are consistent with those reported in the previous stud-
ies [32-35, 53, 54], although different wing planforms and
flapping kinematics are used. The consistency confirms the
present results and implies that the wake patterns of a flap-

ping wing are relatively robust.
In Fig. 6, the leading-edge vortex, V3, does not directly

connect to tip vortices to form a vortex loop. The vortex V3
sheds from the wing during the transition from downstroke
to upstroke, and convects downstream along the upper sur-
face of the wing. Subsequently, it merges with the trailing-
edge vortex in the next upstroke. This is different from the
vortex V3 in Fig. 5(b) for the fixed wingspan with AR = 4,
which is fairly uniform along the wingspan, except that the
induced velocity of tip vortices tends to push the vortex to-
ward the wing surface near the wingtip. The uniform portion
of the vortex V3 is relatively short in the fixed wingspan with
AR = 2 and the vortex becomes smaller Λ-like, since the tip
vortices have a stronger effect at lower aspect ratio. The res-
idence of the separated leading-edge vortex is also reported
in the work of Blondeaux et al. [32] and Visbal et al. [55],
although the flapping wing geometry and kinematics are dif-
ferent. Visbal et al. [55] did not report the merging of the
shed leading-edge vortex with the trailing-edge vortex. It is
reasonable inferred that the small angle of attack in the up-
stroke generates a weak trailing-edge vortex because of the

(a)

(b)

Figure 6 Flow structures in a spanwise slice crossing the flapping wing
center for the fixed wingspan case with AR = 4. The contours show the
value of spanwise vorticity in the slice, (a) at the end of downstroke, (b) in
the middle of upstroke. The label V6 T indicates the part of vortex V6 con-
tributed by the trailing-edge vortex, where the vortex V6 is the combination
of V3 and the trailing-edge vortex.
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non-zero pitch-bias angle in the work of Visbal et al. [55].
The merging of the shedding leading-edge vortex with the
trailing-edge vortex is reported in the work of Blondeaux et
al. [32], where the flapping wing has a zero pitch-bias angle,
and indicates that no new vortex loops appear in the wake.
As will be shown in the next subsection, this merging pro-
cess leads to the unchanged topology of the wake structures
although the morphing wingspan changes the evolution of
leading-edge vortex.

3.2 Wake pattern of the flapping rectangular wing with
morphing wingspan

The wake structures behind the flapping wing with morphing
wingspan share some characteristics with those behind the
fixed wingspan, such as two vortex loops with opposite signs
in each flapping period and forming two oblique chains of in-
terconnected vortex loops. The differences are that the mor-
phing wingspan generates a much larger and stronger vortex
loops in downstroke than those in upstroke. As a result, the
two branches of the oblique vortex chains are asymmetric,
while the lower branch is much wider and stronger than the
upper branch, as shown in Fig. 3(a). It is easy to understand
that the smaller diameters of the vortex loops result from the
smaller wingspan in the upstroke. However, the effects of
morphing wingspan are not limited to changing the diameter
of the vortex loop. The non-linear interactions between the
wing and vortices play an important role. This subsection
is devoted to discussing two main vortex dynamics for the
evolution of vortex structures.

3.2.1 Shrinking of leading-edge vortex on lower surfaces
in downstroke

Figure 4(a) shows the flow structures around the wing at the
instant when the wing reaches the end of the downstroke. The
leading-edge vortex V3 and the tip vortices TV2 are gener-
ated in the downstroke. Because of wingspan retracting, TV2
and part of V3 start to shed from the wing after the middle
of the downstroke and are connected to each other. The con-
nection of V3 to TV2 can be seen more clearly in Fig. 5(a),
where the wing reaches the middle of upstroke. The vortices
V3, TV2 and V2 form a vortex loop in the downstroke. This
vortex loop is then cut off by the stretching wingspan after the
end of upstroke, as shown in Fig. 7. In the following down-
stroke, V3 remains on the upper surface of the wing until
it merges with the trailing-edge vortex generated in the next
upstroke. The geometry and evolution of V3 are similar to
those for the fixed wingspan. However, TV2, together with
part of V3 cut by the wing, attaches to the lower surface of
the wing. The attachment of TV2 to the lower surface of the

(a)

(b)

Figure 7 Flow structures around the wing at the end of upstroke, (a) top
view, (b) bottom view. The iso-surfaces of λ2 = −4 are shown.

wing is significantly different from that for the fixed wing.
The TV2, part of V3 cut by the wing, and the newly gen-
erated tip vortices form a complex vortex system under the
lower surface of the wing (as shown in Figure 7(b)). The non-
uniform velocity induced by this complex system destroys
the column structure of leading-edge vortex V7, resulting in
a weaker V7 on the lower surface of the wing during down-
stroke, as shown in Fig. 8(a). As discussed in the last sub-
section, the shedding leading-edge vortex merges with the
trailing-edge vortex. Both the V3 and V7 do not indepen-
dently form vortex structures in the wake. Thus, the morph-
ing wingspan has little effect on the wake topology, although
it significantly affects the evolution of leading-edge vortex
near the wing surface. Instead of changing wake topology,
the shrinking leading-edge vortex, V7, weakens the merg-
ing effect and causes a weaker vortex ring in the upstroke.
The leading-edge vortex V7 under the lower surface of the
wing contributes to a negative lift. The weaker V7 indicates
a weaker negative lift. The effect of shrinking leading-edge
vortex on the lift coefficient is confirmed in Sect. 4.

3.2.2 Destructive interaction of tip vortices in upstroke

The morphing wingspan also decreases the circulation of the
vortex loop by the destructive interactions of the tip vortices.
The interactions between tip vortices can be seen from the
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(a)

(b)

(c)

Figure 8 Flow structures around the flapping rectangular wing at the mid-
dle downstroke, bottom view, (a) the morphing wingspan case, (b) the fixed
wingspan case with AR = 4, (c) the fixed wingspan case withy AR = 2. The
iso-surfaces of λ2 = −4 is shown.

streamwise vorticity contours at the slice location of x = 0.25
(3/4 chord from the leading edge) in Fig. 9, where a weaker
tip vortex is generated during the upstroke. The weaker tip
vortices generated during upstroke are as follows. The tip
vortices generated during the downstroke are able to convect
to the lower surface of the plate as the wingspan becomes
smaller during upstroke. The tip vortices generated during
downstroke carry the opposite sign to that of the tip vortices
generated during upstroke. Through their interactions, part
of the opposite-sign vorticity of the downstroke tip vortices is
involved into the upstroke tip vortices, resulting in weakened
upstroke tip vortices. According to the Kelvin-Helmholtz
vorticity conservation theorem, the weaker tip vortices cause
a decrement in circulation when they connect to the trailing-

(a)

(b)

(c)

(d)

(e)

(f)

Figure 9 Contours of streamwise vorticity at the slice location of x = 0.25.
(a) T ∗ = 4.11, about T/10 after the start of downstroke; (b) T ∗ = 4.23, near
the middle of downstroke; (c) T ∗ = 4.47, near the end of downstroke; (d)
T ∗ = 4.59, about T/10 after the start of upstroke; (e) T ∗ = 4.71, near the
middle of upstroke; (f) T ∗ = 4.95 near the end of upstroke.

edge vortices to form a weaker uprising vortex loop than the
downward vortex loop. Therefore, this destructive interac-
tion of tip vortices is another vortex dynamics mechanism
caused by the morphing wingspan to change the vortex struc-
tures.

From the point of view of vorticity impulse, the asymmetry
of the tip vortices during downstroke and upstroke, as shown
in Fig. 9, clearly results in a net downward impulse. This
is because the z-direction impulse in the Trefftz plane can
be calculated as the integration of the first y-moment of x-
vorticity [56]:

Iz =

∫
Ω

yωxdΩ, (6)

where Ω is the area of the Trefftz plane in the wake. Dur-
ing downstroke, the stronger tip vortices lead to higher ωx

and, along with the wider-spread tip vortices due to wingspan
stretching, resulting in a larger downward impulse. This is
also evident in the larger, stronger downward branch of the
wake in comparison to the smaller, weaker upward branch of
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the wake shown in Fig. 3(a). The downward asymmetry of
the wake provides the same reason that there is a net upward
force on the flapping wing exerted by the flow.

4. Lift coefficient

4.1 Lift enhancement by the morphing wingspan

Aerodynamic forces are used to investigate the lift enhance-
ment by morphing wingspan, which are dependent on vortex
intensity. The lift coefficient is defined as

Cl(t) =
Fz(t)

0.5ρU2
∞S (t)

, (7)

where Fz(t) is the vertical component of the instantaneous
aerodynamic force, and S (t) is the instantaneous planform
area of the wing. Based on the definition of Eq. (7), the non-
circulation added mass effect contributes the same portion to
the lift coefficient in all the cases of this work, since the same
heaving kinematics is used. Figure 10 shows the time history
of lift coefficient in one single period.

In the case of the fixed wingspan (SR = 1.0), the lift co-
efficients are symmetric which is consistent with the sym-
metric vortex distribution in the wake. In the case of the
morphing wingspan, the positive lift coefficients generated in
downstroke are larger than the negative lift coefficients gen-
erated in upstroke, which is consistent with the asymmetric
vortex distributions in the wake. The time-averaged lift co-
efficient is 0.42, which is the net lift coefficient generated by
the morphing wingspan effect. This amount of the lift in-

crease is significant. For instance, in the study by Taira and
Colonius [57], the maximum time-averaged lift coefficient of
a stationary rectangular wing with a fixed aspect ratio of 4 is
0.8, achieved near a post-stall angle of attack of 30◦ at the
same Reynolds number of 300. It is noted that the angle of
attack for the steady wings in the present study is zero.

The asymmetric of the lift coefficient or wake structures
results from the morphing wingspan. The effect of morphing
wingspan is two-fold: (1) the influence of aspect ratio; (2)
spanwise flow motion and wingtip position due to spanwise
motion of the plate. Their effects on the lift coefficient and
wake structures are discussed in the following subsections.

4.2 Effect of aspect ratio

According to the classical aerodynamics [58] for a fixed rect-
angular wing in steady flow, the lift coefficient of the wing
with the same cross section can be given in the form of
Cl = βCl0. Here Cl0 is the lift coefficient of the wing with
an infinite wingspan and β is a factor related to aspect ratio.
In case of morphing wings, the lift coefficient increases with
the wingspan, since the large distance between the tip vor-
tices causes a weak negative induced angle of attack due to
decreased downwash.

The present work for the flapping flat-plate rectangular
wing shows that the changes of lift coefficients have the same
trend as those for a stationary wing when the aspect ratio
changes. This can be seen from Fig. 11 in which the peak
lift coefficient monotonously increases with the aspect ratio.
Since the time-averaged aspect-ratio in downstroke is larger
than that in upstroke in the morphing wingspan, there will be
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Figure 10 Comparisons of (a) lift coefficients and (b) wing area for the morphing wingspan case and fixed wingspan cases.
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positive lift generated in one flapping cycle. However, Fig.
10 indicates that the positive peak of the lift coefficient of the
morphing wingspan is larger than that of the fixed wingspan
case with AR = 4 and the magnitude of the negative peak of
the lift coefficient of the morphing wingspan is smaller than
that of the fixed wingspan case with AR = 2. Therefore, the
morphing wingspans exhibit the dynamic effect in additional
to the geometrical effect.

The present work for the flapping flat-plate rectangular
wing shows that the changes of lift coefficients have the same
trend as those for a stationary wing when the aspect ratio
changes. This can be seen from Fig. 11 in which the peak
lift coefficient monotonously increases with the aspect ratio.
Since the time-averaged aspect-ratio in downstroke is larger
than that in upstroke in the morphing wingspan, there will be
positive lift generated in one flapping cycle. However, Fig.
10 indicates that the positive peak of the lift coefficient of the
morphing wingspan is larger than that of the fixed wingspan
case with AR = 4 and the magnitude of the negative peak of
the lift coefficient of the morphing wingspan is smaller than
that of the fixed wingspan case with AR = 2. Therefore, the
morphing wingspans exhibit the dynamic effect in additional
to the geometrical effect.

4.3 Effect of slip boundary conditions on lift coefficients

We consider the fixed wingspan (SR = 1) with the follow-
ing slip velocity on wing surface, which represents the fluid
motion associated with the spanwise morphing:

Vw = −2π f bL0s · cos(2π f t + φ), (8)

C
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SR=1.0,AR=1

SR=1.0,AR=2
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Figure 11 Instantaneous lift coefficient histories of a heaving flat plate
with AR = 1.0, 2.0, and 4.0.

where s = y0/(0.5L0) and y0 is the initial spanwise coordi-
nate of each point on the wing. Therefore, Eq. (8) represents
a linear velocity profile in the spanwise directions and gives
the boundary condition for the flows on wing surface. The
lift coefficients obtained are compared with those of the fixed
wingspan (SR = 1) and the morphing wingspan (SR = 0.5),
where the non-slip velocity boundary conditions are imposed
on the wing surfaces. Figure 12 plots the lift coefficients for
the above three cases with AR = 4. It is observed that there
are no much differences between the slip and non-slip bound-
ary conditions. It may imply that spanwise flows have little
effects on the list coefficients.

We change the slip velocity on wing surface as Vw = 0
to better understand its effects on lift coefficients. Figure 13
compares the three lift coefficients for the morphing wing (SR
= 0.5) and the fixed wingspans (SR = 1.0) with the slip and
nonslip velocity boundary conditions. Obviously, the three
lift curves are very closed to each other, which is consistent
with the observation in Fig. 12.

4.4 Effect of the non-symmetric span length changes

This subsection is devoted to isolating the effect of changing
the position of the tips to investigate the effects of the non-
symmetric wingspan changes. For this purpose, the spanwise
velocity is forced to zero on the surface of the wing, i.e.,
Vw = 0, instead of the velocity that moves with the wingspan
morphing motion. Therefore, the wingspan changes the size,
but the fluid on the wing surface does not move along the
wingspan. Figure 13 shows that the lift coefficients in this
case are almost the same as those in the case of morphing
wingspan. The morphing wingspans generate not only the
geometrical effect discussed in Sect. 4.2, but also the vortex
dynamic effects. The vortex loops are cut to cause shrinkage
of the leading-edge vortex under the wing and thus destruc-
tive interactions of wing-tip vortices during upstroke. The
obtained result is also consistent with the discussion in Sect.
4.3, where the spanwise flows associated to the spanwise ve-
locity of the wing are shown to have little effect on the lift
coefficients and flow structures.

5. Conclusions

The effects of morphing wingspan on the wake structures are
not well understood, although the morphing wingspan widely
exists in biolocomotions. This work employs a bio-inspired
flapping wing model to investigate the effect of morphing
wingspan on wake structures. The model consists of a rect-
angular flat-plate wing heaving harmonically in a uniform in-
coming flow. The wingspan changes during heaving, with a
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SR=1.0,AR=4
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Figure 12 Comparisons of lift coefficient for the morphing wingspan case,
the fixed wingspan cases with AR = 4. The forced v in the label represents
the modified fixed wingspan case with forced spanwise velocity

SR=1.0,AR=2~4

SR=1.0,AR=1
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Figure 13 Histories of the lift coefficient of morphing wingspan cases and
fixed wingspan case. The lable SR = 0.5, AR = 2 ∼ 4 represents the morph-
ing wingspan case. The label AR = 1.0, AR = 2 ∼ 4 represents the modified
morphing wingspan case.

maximum wingspan at the middle of downstroke and min-
imum wingspan at the middle of upstroke. The Reynolds
number based on the velocity magnitude of the incoming
flow and chord length is 300. The wake structures of the
typical morphing wingspan case at the Strouhal number
(based on the flapping frequency and tip-to-tip flapping am-
plitude) of 0.3 and span ratio (the ratio between the minimum
wingspan and maximum wingspan) of 0.5 are studied in de-

tail by comparing with the corresponding fixed wingspan
cases. The results show that the morphing wingspan does not
change the topology of the wake structures, but significantly
affects the circulation and evolution of the vortices near the
wing surface.

The wake structures of all the morphing and fixed
wingspan cases in this work can be described by the same
wake model: two oblique chains of interconnected vortex
loops, convecting downstream in the “V” shape with a sepa-
ration in the vertical direction. The difference is that the mor-
phing wingspan case has an asymmetric distribution of the
vortex chains in the wake, with the lower branch of the vor-
tex loop much wider and stronger than the upper branch. The
asymmetric distribution of vortex chains results from both
the geometrical effect and the vortex interactions. The vortex
interactions are identified as: (1) the shrinking of the leading-
edge vortex under the lower surface of the wing in down-
stroke; (2) the destructive interactions of tip vortices during
upstroke. The analysis on the lift coefficients shows that the
above vortex interactions are mainly caused by the asymmet-
ric change of the wingspan in the downstroke and upstroke.
The spanwise flow associated to the spanwise morphing con-
tributes little to the asymmetric distribution of vortex chains.

This work indicates morphing wingspan can generate
complex flow structures near the flapping wing surface. But
the change of wake topology reported in the bat flight may
not be solely contributed by the morphing wingspan. The
change of the wake topology may be related to the other par-
ticular kinematics in bat flight, such as bias-pitching, flexion
between outer wing and inner wing, or their combined effect
with morphing wingspan, which is a topic for future work.
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变变变翼翼翼展展展的的的仿仿仿生生生扑扑扑翼翼翼尾尾尾迹迹迹特特特征征征

何心怡,刘毅,陈一鑫,王士召
摘要 本文基于仿生扑翼流动的数值模拟研究变形翼展对尾迹结构的影响.所采用的扑翼模型为一个在均匀来流中上下扑动的平

板.翼展随着扑动而变化,最大翼展在下扑行程的中间,最小翼展在上挥行程的中间. 其尾迹的特征表现为两条相互连接的倾斜涡链.

虽然变形翼展对尾流拓扑结构的影响不大,但它显著影响了扑翼附近涡结构,导致尾流中涡环链的分布不对称. 下扑过程中,位于扑翼

下表面的前缘涡收缩,与上挥中翼尖涡相互作用,通过分析升力系数,发现上述涡的相互作用是由翼展长度的变化引起的.
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