
1.  Introduction
Internal waves are ubiquitous in coastal waters, whose primary restoring force is a resultant force of gravity and 
buoyancy due to the ocean's stratification and the Coriolis force due to the Earth's rotation. Since the restoring 
force is weak, at order 𝐴𝐴 

(

10−5 − 10−3
)

 of gravity, two principal sources, the disturbance of the ocean's upper 
mixed layer by wind and barotropic tides passing over the topography, consequently trigger large-amplitude inter-
nal waves. Among them, internal solitary waves (ISWs) embodying a character of relatively stronger nonlinearity 
and larger amplitude have received extensive attention and research in the past decades (Guo & Chen, 2014).

Some studies found that the effect of the Earth's rotation on internal waves becomes significant when waves 
propagate over long distances and several periods of inertia, see Chao et al. (2006); Farmer et al. (2009); Li and 
Farmer  (2011); Deng and Cai  (2017); Helfrich and Ostrovsky  (2022) for example, One of the earliest works 
examining the rotational effects on ISWs are based on a variation of the Korteweg-de Vries (KdV) equation, 
that is, the KdV equation with an additional rotation term, known as the Ostrovsky equation (Ostrovsky, 1978). 

Abstract  Oblique interactions between internal solitary waves (ISWs) in the ocean have been frequently 
recorded by satellite images, nonetheless, only a limited number of studies concentrate on these phenomena, 
which found that both the Earth's rotation and varying topography are important factors for the underlining 
wave dynamics. However, the effects of rotation at different latitudes and furthermore, their combined 
effects with the shoaling topography are still unclear. Thus, the aim of this paper is to investigate these 
combined effects on oblique ISW wave-wave interactions. Referring to observed obliquely interacting 
patterns, three scenarios initiated by two ISWs posing a V shape are explored using the variable-coefficient 
Kadomtsev-Petviashvili (KP) equation under the circumstance of continuous stratification and idealized 
shoaling topography. In all three experiments, rotation alone disintegrates the coherent waveforms and 
suppresses the emergence of a Mach stem (a wave generated at the interaction zone, characterized by the 
maximum of four-fold initial waves). When shoaling topography is also included, which increases the 
nonlinearity leading to a competition with dispersion induced by rotation, and the result is a magnification 
of wave amplitudes and emergence of additional trailing waves. The combined effect of these two factors 
modulates the birth and subsequent development of the Mach stem, alters the post-interaction patterns and 
determines the emergence of a nascent KdV-like undular bore, which plausibly explains the discrepancies 
between previous theoretical results (when the combined effect is not considered) and the measured horizontal 
surface signatures for ISW wave-wave interactions.

Plain Language Summary  Internal solitary waves (ISWs) are large-amplitude internal waves 
featuring a robust hump shape and they are ubiquitous in the World's oceans. ISWs originating from different 
sources can propagate long distances in different directions, creating a high possibility for oblique interactions, 
which, indeed, have been frequently observed in satellite images. However, these three-dimensional phenomena 
are rarely studied, partly owing to the difficulty of collecting in situ data with appropriate spatial and temporal 
coverage. One of the remarkable features of wave resonance between oblique ISWs is the Mach stem wave 
which is characterized by an up to four-fold amplitude enhancement. Nevertheless, the combined effect of 
shoaling topography and Earth's rotation on oblique ISW wave-wave interactions is still unclear. In this paper, it 
is found that the post-interaction waveforms, the birth and development of the Mach stem, and the emergence of 
nascent wave packets akin to undular bores are influenced by this combined effect.
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The incorporation of rotation amounts to exerting a long-wave dispersion on ISWs, whereby the existing 
balance between nonlinearity and dispersion is broken, and soliton-like waves decompose into weakly nonlin-
ear inertial gravity waves and eventually a nonlinear coherent wave packet. Indeed, Grimshaw et al. (1998) and 
Grimshaw  (2012) showed that no stable KdV solitary wave solutions exist in the rotational system using an 
asymptotic theoretical method and numerical simulations. Instead, the emergence of a wave packet was confirmed 
by Farmer et al. (2009) and Li and Farmer (2011) using in situ observational data, Grimshaw (2012) through 
theoretical analyses, Vlasenko et al.  (2010); Zhang et al.  (2011); Deng and Cai (2017) via numerical simula-
tions of the Navier-Stokes equations, Grimshaw et al. (2013) laboratory experiments and Grimshaw et al. (2017) 
satellite images. Moreover, some relevant equations are also used to confirm this wave packet, for example, 
the weakly non-hydrostatic interfacial MCC equation (Helfrich, 2007), the higher order nonlinear Schrödinger 
equation (Grimshaw & Helfrich,  2008), and the forced Ostrovsky equation (Yuan et  al.,  2020). These wave 
packets can pass through each other or merge to form a longer wave packet when one wave packet catches up 
with another (Helfrich, 2007). Clearly, there are no stable “sech 2”-type solitary waves in the circumstance of the 
Earth's rotation; then one question arises: are there any stable solutions? The affirmative answer to this question 
was provided by Gilman et al.  (1996), who constructed an approximate asymptotic solution to the Ostrovsky 
equation amounting to a solitary wave running adiabatically on a weak background long wave. More importantly, 
Grimshaw et  al.  (2014) examined the combined effect of the Earth's rotation and another important factor—
shoaling topography—on the propagation of ISWs, and they demonstrated the presence of a secondary wave 
packet with the structure of a KdV-like undular bore, following the leading waves.

In the ocean, internal waves originating from different sources propagate along different directions, resulting in 
the possibility of oblique wave-wave interactions. In addition, the complex bathymetry and varying background 
leading to waves being reflected, refracted, or cut off into two branches (Jackson, 2004; Ramp et al., 2022) boost 
this possibility, among which catch-up and head-on collisions between solitary waves have been heavily studied 
and documented, see Su and Mirie  (1980); Mirie and Su (1984); Cai and Xie (2010); Chen and Yeh (2014); 
Maderich et al. (2017); Zou et al. (2020); Yuan and Wang (2022) amongst many others. In contrast, oblique ISW 
wave-wave interactions have been sparsely investigated, partly done to the lack of observational data on this 
three-dimensional (3D) phenomenon, although Chen et al. (2011); Xue et al. (2014) examined this using satellite 
images. More importantly, distinguished from the studies solely using the horizontal snapshots from the orbital 
satellites, Wang and Pawlowicz (2012) conducted comprehensive analyses based on aerial photographs and the 
corresponding vertical thermohaline and current profiles. The numerical simulations on oblique ISW wave-wave 
interactions need a very subtle effort on model configuration, and they are generally time-consuming and expen-
sive; one of the rare studies we have noted is Shimizu and Nakayama (2017), who investigated oblique ISW 
wave-wave interactions in the Andaman Sea based using high-resolution three-dimensional MITgcm simulations 
and extended Miles theory. In addition, the theoretical models applicable to this horizontally two-dimensional 
phenomena are sparse as well, among which, the Kadomtsev-Petviashvili (KP) equation (Grimshaw, 1981, 1985; 
Kadomtsev & Petviashvili,  1970), one of the variants of the KdV-type equations, is mainly used, see Yuan, 
Grimshaw, Johnson, and Wang (2018) for example.

The pioneering work investigating oblique ISW wave-wave interactions is by Miles (1977a); Miles (1977b), who 
found the Mach stem wave may appear in the interaction zone and classified the interaction as strong and weak 
according to the magnitude of the inclination angle. Recently, Kodama (2010); Yeh et al. (2010) modified and 
extended the applicability of the Miles theory to smaller incident angles, and Li et al. (2011) conducted labora-
tory water-tank experiments to verify these theories. It is noted that most of these previous researches explained 
the evolution of oblique ISW wave-wave interactions based on the recorded images where the emergence of a 
Mach stem born from interaction point is the main focus. Chakravarty and Kodama (2008); Chakravarty and 
Kodama (2009) found multi-soliton solutions to the KP equation, which embody the character of an arbitrary 
number of line solitons in the far field and complex interaction patterns in the near field. The most significant 
advantage of their method is that the KP equation's solutions delineating the observed ISW wave-wave patterns 
can be asymptotically constructed based on the amplitudes and angles of line solitons. Indeed, Chakravarty 
and Kodama (2013) applied this method to surface solitary waves and successfully constructed some analytic 
solutions from the photographed wave-wave interactions. Recently, Yuan, Grimshaw, Johnson, and Wang (2018) 
adopted this method to investigate the oblique interactions of internal solitary waves, in which the evolution 
regime of two initial waves in the form of a V shape is classified in one of six types, albeit two pairs of them 
can be transformed through an inversion of symmetry. More importantly, it illustrates that shoaling topography 
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significantly modulates the evolution regime. Yuan and Wang (2022) derived a bidirectional and isotropic modi-
fied Benney-Luke (mBL) equation and used it to examine the evolution of X-shaped ISW wave-wave interactions, 
where no conspicuous disparities between the KP equation (when inclination angles are smaller than 33°) were 
found and nonetheless, for the evolution of waves in the open ocean (waves are far from the computational bound-
aries), the mBL equation illustrates more closed results with the MITgcm model than the KP equation.

In aggregate, the combined effect of the Earth's rotation and shoaling topography on ISW wave-wave interac-
tions is insufficiently studied, although Shimizu and Nakayama  (2017) considered low latitude (9°N) with a  
small Coriolis parameter. The Earth's rotation amounts to exerting a long-wave dispersion on ISW wave-wave 
interactions, which competes with the extra nonlinearity induced by the shoaling topography, and expectedly, 
this competition would shape wave patterns and modulate wave amplitudes. Thus, in this paper, we examine 
the Earth's rotational effect and its combined effect with shoaling topography comprehensively by consider-
ing different Coriolis parameters imposed in distinguished evolution regimes. The governing equation is the 
variable-coefficient KP equation with an additional rotational term. Its mathematical expression and the corre-
sponding numerical treatment are introduced in Section 2, together with the construction of the initial V-shaped 
solitary waves. Based on the frequently observed wave-wave interacting patterns in remote sensing images, three 
combinations of amplitudes and angles are selected to study the evolution scenarios under different rotational 
strength with (or without) shoaling topography in Section 3, where we highlight the modulation on the develop-
ment of a Mach stem and the emergence of a nascent KdV-like undular bore. Finally, we conclude and discuss 
in Section 4.

2.  Formulation
2.1.  The Variable Coefficient KP Equation

In a rotating fluid, considering the varying background environment, the variable-coefficient KP (vKP) equation 
(Grimshaw, 1981, 1985) with the rotational term describing wave amplitude η(x, y, t) can be expressed as

[

𝜂𝜂𝑡𝑡 + 𝑐𝑐𝑐𝑐𝑥𝑥 +
𝑐𝑐𝑐𝑐𝑥𝑥

2𝑄𝑄
𝜂𝜂 + 𝛼𝛼𝛼𝛼𝛼𝛼𝑥𝑥 + 𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑥𝑥

]

𝑥𝑥

+
𝛾𝛾

2
𝜂𝜂𝑦𝑦𝑦𝑦 = 𝜐𝜐𝜐𝜐𝜐� (1)

where x, y, t are the respective horizontal spatial and temporal variables, and here the subscripts signify deriv-
atives. The linear phase speed c, magnification factor Q, nonlinear coefficient α, dispersive coefficients β (x 
direction) and γ (𝐴𝐴 𝐴𝐴  direction) and rotational coefficient υ are all obtained from the modal problem in the vertical 
z-direction pointing upward with z = 0 at the surface,

⎧

⎪

⎨

⎪

⎩

[

𝜌𝜌0(𝑐𝑐 − 𝑢𝑢0)
2
𝜙𝜙𝑧𝑧

]

𝑧𝑧
+ 𝜌𝜌0𝑁𝑁

2
𝜙𝜙 = 0, for − ℎ < 𝑧𝑧 𝑧 0,

𝜙𝜙 = 0, at 𝑧𝑧 = 0 and 𝑧𝑧 = −ℎ,

� (2)

where the rigid lid assumption is invoked (see Yuan, Grimshaw, Johnson, and Chen (2018) for the scenario of the 
free surface). To illuminate the dynamics clearly, here the intrinsically two-dimensional topography is affirmed 
to vary solely in the x direction, h = h(x); the background stratification is assumed to be horizontally uniform, 
ρ0 = ρ0(z), whereby the buoyancy frequency N 2 = −ρ0/g∂zρ0 (g is the acceleration due to gravity). Background 
current shear is given by ignored, u0(z)  ≡  0. Equation  2 forms a classical Sturm-Liouville problem, with an  
infinite number of solution pairs (cn, ϕn) corresponding to internal waves of mode n = 1, 2, 3⋯. In this paper, only 
mode-1 waves are considered. A pseudo-spectral method based on Chebyshev interpolants is used to numerically 
obtain the first eigenvalue c(x) and eigenvector ϕ(z; x) for mode-1 waves. Then all the coefficients are expressed 
as follows

� = 2�3 ∫ 0
−ℎ �0�

2
�d�, � =

(

3� ∫ 0
−ℎ �0�

3
�d�

)/(

2 ∫ 0
−ℎ �0�

2
�d�

)

,

� =
(

� ∫ 0
−ℎ �0�

2d�
)/(

2 ∫ 0
−ℎ �0�

2
�d�

)

, � = �, � = � 2∕(2�),

⎫

⎪

⎬

⎪

⎭

� (3)

where the Coriolis parameter f = 2 Ωsinφ (Ω is the Earth's angular speed and φ is the latitude).
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It is difficult to obtain analytical solutions to Equation 1 when the coefficients are not constants, as in this paper; 
thus, we have to resort to numerical methods. A transformation is introduced to increase the efficiency of numer-
ical schemes,

𝜉𝜉 = 𝑄𝑄
1∕2

𝜂𝜂𝜂 𝜂𝜂 =
∫

𝑥𝑥

𝑥𝑥0

d𝑥𝑥

𝑐𝑐
− 𝑡𝑡𝑡 𝑡𝑡 =

∫

𝑥𝑥

𝑥𝑥0

d𝑥𝑥

𝑐𝑐
,� (4)

where x0 is the initial location along x direction. After a straightforward calculation, Equation 1 is asymptotically 
equivalent to

[𝜉𝜉𝜏𝜏 + 𝜇𝜇𝜇𝜇𝜇𝜇𝑋𝑋 + 𝜉𝜉𝑋𝑋𝑋𝑋𝑋𝑋]𝑋𝑋 + 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 = 𝜅𝜅𝜅𝜅𝜅� (5)

where

𝜏𝜏 =
∫

𝑇𝑇

0

𝜆𝜆
(

𝑇𝑇
′
)

d𝑇𝑇
′
, 𝜇𝜇(𝑦𝑦𝑦𝑦𝑦 ) =

𝛼𝛼𝛼𝛼
2

𝛽𝛽𝛽𝛽1∕2
, 𝜎𝜎(𝑦𝑦𝑦𝑦𝑦 ) =

𝛾𝛾𝛾𝛾
4

2𝛽𝛽
, 𝜅𝜅(𝑦𝑦𝑦𝑦𝑦 ) =

𝜐𝜐𝜐𝜐
4

𝛽𝛽
, 𝜆𝜆 = 𝛽𝛽∕𝑐𝑐

3
.� (6)

2.2.  Initial Waves

The vKP Equation 5 admits stable internal solitary waves in the absence of varying topography and the Earth's 
rotation, in which can the equation simplifies to

[𝜉𝜉𝜏𝜏 + 𝜇𝜇0𝜉𝜉𝜉𝜉𝑋𝑋 + 𝜉𝜉𝑋𝑋𝑋𝑋𝑋𝑋]𝑋𝑋 + 𝜎𝜎0𝜉𝜉𝑦𝑦𝑦𝑦 = 0,� (7)

where μ0 and σ0 are constants. It can further be written in the canonical form,
[

4𝐴𝐴𝑠𝑠 + 6𝐴𝐴𝐴𝐴𝜁𝜁 + 𝐴𝐴𝜁𝜁𝜁𝜁𝜁𝜁

]

𝜁𝜁
+ 3𝐴𝐴𝑌𝑌𝑌𝑌 = 0,� (8)

under the following transformation

𝜏𝜏 = 𝑅𝑅𝑅𝑅𝑅 𝑅𝑅 = 𝐿𝐿𝐿𝐿𝐿 𝐿𝐿 = 𝐿𝐿𝐿𝐿 𝐿 𝐿𝐿 = 𝑃𝑃𝑃𝑃𝑃� (9)

where R = L 3/4, L 2 = 3/σ0, and P = 2σ0/μ0. Now the solution to this equation delineating internal solitary waves 
in any direction can be written as

𝐴𝐴 = 𝐴𝐴0sech
2

√

𝐴𝐴0

2
(𝜁𝜁 + 𝑌𝑌 tan𝜓𝜓 − 𝐶𝐶𝐶𝐶),

𝐶𝐶 =
1

2
𝐴𝐴0 +

3

4
tan2𝜓𝜓𝜓

⎫

⎪

⎬

⎪

⎭

� (10)

where A0 is the wave amplitude, C is the phase speed, and the crest line has a slope tanψ, measured counterclock-
wise from the Y-axis, see Figure 1. Then, the V-shaped wave composed of two internal solitary waves can be 
obtained by adding two waves as described in Equation 10; thereby, referring to the transformation (Equation 9), 
the initial waves inserted in Equation 5 for numerical results can be constructed as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜉𝜉(𝑋𝑋𝑋 𝑋𝑋𝑋 𝑋𝑋 = 0) = 𝜉𝜉
0

1
(𝑋𝑋𝑋 𝑋𝑋) + 𝜉𝜉

0

2
(𝑋𝑋𝑋 𝑋𝑋),

𝜉𝜉
0

1
= 𝜉𝜉1𝐻𝐻(𝑦𝑦)sech

2

√

𝜉𝜉1

2
(𝑋𝑋 − 𝑦𝑦tan𝜓𝜓0),

𝜉𝜉
0

2
= 𝜉𝜉2𝐻𝐻(−𝑦𝑦)sech

2

√

𝜉𝜉2

2
(𝑋𝑋 + 𝑦𝑦tan𝜓𝜓0),

� (11)

where ξ1 and ξ2 are the amplitudes of the upper (y > 0) and lower (y < 0) branches, respectively, and ψ0 is the incli-
nation angle. H(y) is the Heaviside step function, which equals 0 for y < 0 and 1 for y ≥ 0. A sketch of the initial 
wave is illustrated in Figure 1a, together with three potential subsequent evolution scenarios. A large number of 
remote sensing images confirm the frequent occurrence of these three types of ISW wave-wave interaction in the 
ocean and some examples are also exhibited in Figure 1.
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Note that Yuan, Grimshaw, Johnson, and Wang (2018) categorized the evolution of the initial V-shaped wave into  
six types, in addition to singular points, on the basis of analytical solutions to the KP equation. Among them, two 
pairs of evolution scenarios can be transformed via an inversion of symmetry; they possess the same dynamical 
features. Thus, there are four distinguished evolution scenarios for the initial V-shaped wave; however, one of 
them (case (e) or (f) of Figure 2 in Yuan, Grimshaw, Johnson, and Wang (2018)) has very complex structures and 
is susceptible to environmental background factors, which implies it is presumably more difficult to be recorded 
in the ocean. In this paper, we consider the three frequently observed evolution patterns, as shown in Figure 1.

2.3.  Boundary Conditions and Numerical Methods

To thoroughly investigate the evolution of the initial V-shaped wave, here we implement a window-scheme 
method (Schlatter et al., 2005) to suppress the dispersion effects induced by the open boundary, which confines 
our attention to the small interaction zone where the edges of wave crest lines have negligible impact. Essentially, 
it is a decomposition of ξ in Equation 5,

𝜉𝜉 = 𝑊𝑊 𝑊𝑊 + (1 −𝑊𝑊 )𝜉𝜉 = 𝜁𝜁 + (1 −𝑊𝑊 )𝜉𝜉𝜉� (12)

where W(y) is a window function, defined as

𝑊𝑊 (𝑦𝑦) = exp

(

−𝑎𝑎
|

|

|

|

𝑦𝑦

𝐿𝐿𝑦𝑦

|

|

|

|

𝑛𝑛
)

,� (13)

with n = 95 and a = 1.02 n ln10 after some pre-tests. Now ζ represents the interior component, which equals 
unity in a specified region |y| ≪ Ly and rapidly tapers to zero in the artificial boundary layers |y| > Ly. It remains 
to resolve the component in the artificial boundary layers and note that the analytical solution ξ is known when 
the environmental background is uniform, that is no rotation and varying topography are included. Thus it is 
supposed that in the artificial boundary layers |y| > Ly, the analytical solution ξ 0 in the form (Equation 11), but 
moving with the corresponding phase speed, is used. Nonetheless, here the rotation and shoaling topography are 
considered, and the adapted ξ 0 is not a solution, thus the inconsistency rendered at y = ±Ly would contaminate the 

Figure 1.  A sketch of the initial V-shaped wave with respective amplitudes (η1, η2), inclination angles (−ψ0, ψ0) and 
propagation directions (purple arrows) is shown in panel (a). Three types of frequently observed internal solitary wave-wave 
interactions are illustrated in panels (b1–b3), whose theoretical delineations evolving from the initial V-shaped wave are also 
shown in panels (c1–c3), indicating a significant similarity. These three scenarios are, respectively, labeled as Experiment 
1, Experiment 2 and Experiment 3 hereafter. The satellite remote sensing images are obtained from the NASA Worldview 
(https://worldview.earthdata.nasa.gov), and panels (b1–b2) were photographed on 21 August 2020, whereas (b3) was on 24 
May 2021.
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inner domain for long-time evolution. This error is generally small and propagates with the finite wave speed. So 
in the following numerical computations, the spatial range along the transverse y direction is chosen large enough 
to ensure that the central interaction region is not perceptibly affected by this error during the calculation time.

Now we illustrate the ultimate expression of the vKP equation incorporating the window-scheme method in 
numerics. We substitute

𝜉𝜉 = 𝜁𝜁 + (1 −𝑊𝑊 )𝜉𝜉
0� (14)

into Equation 5, and it follows that

[𝜁𝜁𝜏𝜏 + 𝜇𝜇𝜇𝜇𝜇𝜇𝑋𝑋 + 𝜁𝜁𝑋𝑋𝑋𝑋𝑋𝑋]𝑋𝑋 + 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 − 𝜅𝜅𝜅𝜅 = 𝐺𝐺1(𝑋𝑋𝑋 𝑋𝑋𝑋 𝑋𝑋) + 𝐺𝐺2(𝑋𝑋𝑋 𝑋𝑋𝑋 𝑋𝑋),� (15)

where

𝐺𝐺1(𝑋𝑋𝑋 𝑋𝑋𝑋 𝑋𝑋) = −(1 −𝑊𝑊 )
[(

𝜉𝜉
0
𝜏𝜏 + 𝜇𝜇𝜇𝜇

0
𝜉𝜉
0

𝑋𝑋
+ 𝜉𝜉

0

𝑋𝑋𝑋𝑋𝑋𝑋

)

𝑋𝑋
+ 𝜎𝜎𝜎𝜎

0
𝑦𝑦𝑦𝑦 − 𝜅𝜅𝜅𝜅

0
]

,

𝐺𝐺2(𝑋𝑋𝑋 𝑋𝑋𝑋 𝑋𝑋) = 𝜇𝜇(1 −𝑊𝑊 )
[

𝑊𝑊 𝑊𝑊
0
𝜉𝜉
0

𝑋𝑋
−
(

𝜁𝜁𝜁𝜁
0
)

𝑋𝑋

]

𝑋𝑋
+ 𝜎𝜎

(

2𝑊𝑊𝑦𝑦𝜉𝜉
0
𝑦𝑦 +𝑊𝑊𝑦𝑦𝑦𝑦𝜉𝜉

0
)

.

�

Since we have assumed that ξ 0 satisfies the vKP Equation 5 in the boundary layers, G1 ≡ 0. Considering here 
the coefficients μ, σ, and κ defined in Equation 6 vary with τ, Equation 15 is numerically solved using a hybrid 
discretization scheme in space with the pseudo-spectra method in the X direction and the fourth-order central 
finite difference method in the y direction. We rewrite Equation 15 as

[

𝜁𝜁𝜏𝜏 +
1

2
𝜇𝜇
(

𝜁𝜁
2
)

𝑋𝑋
+ 𝜁𝜁𝑋𝑋𝑋𝑋𝑋𝑋

]

𝑋𝑋

+ 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 − 𝜅𝜅𝜅𝜅 = 𝐺𝐺2.� (16)

Then taking the Fourier Transform in the X direction yields

𝑖𝑖𝑖𝑖

(

𝜁𝜁𝜏𝜏 +
1

2
𝑖𝑖𝑖𝑖𝑖𝑖𝜁𝜁 2 − 𝑖𝑖𝑖𝑖

3
𝜁𝜁

)

+ 𝜎𝜎𝜁𝜁𝑦𝑦𝑦𝑦 − 𝜅𝜅𝜁𝜁 = 𝐺𝐺2,� (17)

where 𝐴𝐴 𝐴𝐴  indicates the Fourier Transform and k is the wavenumber in Fourier space. To circumvent the stiffness 
problem and use large time step to increase the computational efficiency, we multiply the above equation by the 
integrating factor 𝐴𝐴 𝐴𝐴

−𝑖𝑖𝑖𝑖3𝜏𝜏 . After a straightforward calculation, Equation 17 becomes

𝑖𝑖𝑖𝑖

(

𝑀𝑀𝜏𝜏 +
1

2
𝑖𝑖𝑖𝑖𝑖𝑖

−𝑖𝑖𝑖𝑖3𝜏𝜏
𝜇𝜇𝜁𝜁 2

)

+ 𝜎𝜎𝜎𝜎
−𝑖𝑖𝑖𝑖3𝜏𝜏

𝜁𝜁𝑦𝑦𝑦𝑦 − 𝜅𝜅𝑀𝑀 = 𝑒𝑒
−𝑖𝑖𝑖𝑖3𝜏𝜏

𝐺𝐺2,� (18)

where 𝐴𝐴 𝑀𝑀 = 𝑒𝑒
−𝑖𝑖𝑖𝑖3𝜏𝜏

𝜁𝜁 . Next, we express ξ in forms of M; thus, the equation can be rewritten as

𝑖𝑖𝑖𝑖

{

𝑀𝑀𝜏𝜏 +
1

2
𝑖𝑖𝑖𝑖𝑖𝑖

−𝑖𝑖𝑖𝑖3𝜏𝜏
𝜇𝜇

[

(


−1

(

𝑒𝑒
𝑖𝑖𝑖𝑖
3
𝜏𝜏
𝑀𝑀

))2
]}

+

𝜎𝜎𝜎𝜎
−𝑖𝑖𝑖𝑖3𝜏𝜏

{



[

(


−1

(

𝑒𝑒
𝑖𝑖𝑖𝑖
3
𝜏𝜏
𝑀𝑀

))

𝑦𝑦𝑦𝑦

]}

− 𝜅𝜅𝑀𝑀 = 𝑒𝑒
−𝑖𝑖𝑖𝑖3𝜏𝜏

𝐺𝐺2,

� (19)

where 𝐴𝐴  is the Fourier Transform operator. The term 𝐴𝐴 𝐴𝐴
2
𝑦𝑦 is approximated by the fourth-order central finite differ-

ence method. To ensure numerical accuracy, 2,048 modes and 2,000 grid points are selected along the respective 
propagation X and transverse y direction. In the time domain, the fourth-order Runge-Kutta iteration scheme is 
invoked with step 1.0 in the transformed variables τ. Finally, to illuminate the results in physical space, the value 
of ζ is transformed back to η through Equation 4.

3.  Wave-Wave Interactions
We investigate three frequently observed ISW wave-wave interactions as shown in Figure 1, which are hereafter 
referred to as Experiment 1 (panel (c1)), Experiment 2 (panel (c2)), and Experiment 3 (panel (c3)), respec-
tively. The specific set-ups of experiments are illustrated in Table 1. The computational domain is x × y = [0, 
300] × [−400, 400] km 2, and an idealized y-independent shoaling topography h(x) ranging from 500 to 200 m lies 
along the x-axis, see Figure 2. The density profile is calculated through the Equation of State using the monthly 
averaged temperature and salinity data at 117.5°E, 21°N in the South China Sea, taken from the World Ocean 

 21699291, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JC

019634 by Institute O
f M

echanics (C
as), W

iley O
nline L

ibrary on [12/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Oceans

YUAN ET AL.

10.1029/2023JC019634

7 of 21

Atlas (WOA) 2013. Facilitated by the obtained density distribution, the 
buoyancy frequency N, the modal function ϕ, and linear wave phase speed c 
in Equation 2 are numerically solved, see Figure 2.

To comprehensively understand the dynamical role of shoaling topogra-
phy and the Earth's rotation on ISW wave-wave interactions, the following 
numerical results consider the cases with/without varying topography and 
involve the Earth's rotation of different strength, f = 0, 2.5 × 10 −5, 5.0 × 10 −5, 
7.5 × 10 −5, 1.0 × 10 −4 s −1, corresponding to latitudes φ = 0°, 9.9°, 20.1°, 
30.9°, 43.3°N, where internal solitary waves have been frequently recorded 
(Jackson, 2004).

3.1.  Experiment 1: Rotational Effect

We examine Experiment 1 with constant topography. Here the initial 
V-shaped wave has respective amplitudes η1  =  η2  =  −15  m for the two 
branches and inclination angle ψ0 = 16° (here the minus signs of amplitudes 
signify depression waves and do not affect the magnitude comparison), 
whose evolution regime falls into the scenarios akin to panel (b1) in Figure 1. 
When the rotational effect is absent, in a constant depth of h = 500 m, the 
initial V-shaped wave evolves to the so-called X-shaped wave featuring a 
phase shift in the interaction zone whose maximal amplitude could be four 
times that of the initial wave (double the superposition of the initial two 
branches) and a curved trailing wave train with positive polarity (also known 

Experiment 
labels

Amplitude of 
upper branch 

η1 (m)

Amplitude of 
lower branch 

η2 (m)
Inclination 
angle ψ0 (°)

Rotation f 
(s −1)

1 (1) −15 −15 16 0

1 (2) −15 −15 16 2.5 × 10 −5

1 (3) −15 −15 16 5 × 10 −5

1 (4) −15 −15 16 7.5 × 10 −5

1 (5) −15 −15 16 1 × 10 −4

2 (1) −20 −20 8 0

2 (2) −20 −20 8 2.5 × 10 −5

2 (3) −20 −20 8 5 × 10 −5

2 (4) −20 −20 8 7.5 × 10 −5

2 (5) −20 −20 8 1 × 10 −4

3 (1) −25 −10 3.67 0

3 (2) −25 −10 3.67 2.5 × 10 −5

3 (3) −25 −10 3.67 5 × 10 −5

3 (4) −25 −10 3.67 7.5 × 10 −5

3 (5) −25 −10 3.67 1 × 10 −4

Table 1 
The Set-Ups of Experiments

Figure 2.  Panel (a) is the density profile ρ0 used in the calculations, which is obtained at 117.5°E, 21°N in the South China 
Sea from the WOA data set, (b) the buoyancy frequency N, (c) the modal function ϕ in equation 2, (d) the linear phase speed 
c of long mode-1 ISWs in the absence of rotational effects, and (e) the y-independent depth h(x).
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as an elevation wave) occurs at the rear of leading waves due to conservation of mass, see panels (a1–a3) in 
Figure 3 and Yuan, Grimshaw, Johnson, and Wang (2018) for more details.

The attempt to take the Earth's rotation (f = 1.0 × 10 −4 s −1 at first) into consideration results in a train of oscil-
latory waves due to the additional long-wave dispersion exerted by the rotation, destroying the essential balance 
between the nonlinearity and dispersion of ISWs, which features wave patterns akin to the negative leading 
X-shaped waves, but with the positive polarity, and some other small waves occur at the rear, see panels (b2–b3) 
in Figure 3. More importantly, these two X-waves possessing opposite polarities intersect near the interaction 
zone. This superimposition renders two symmetric regions with zero wave amplitudes, which manifests as two 
blank patches approximately at y = ±10 km, cutting off the two otherwise coherent X-shaped waves as shown in 
Figure 4b1.

As expected, rotation diminishes the wave amplitudes. It is shown in Figures 3 and 4 that the leading wave ampli-
tude at the interaction midpoint is −15 m at time t = 33.2 hr, much smaller than its counterpart of −43.4 m when 
no rotation is considered. When rotation is not included the midpoint amplitude undergoes a rapid increase at 
first after which the growth rate decreases as the amplitude asymptotically approaches the theoretical maximum 
value −45 m as revealed by the blue X-marked lines (f = 0) in Figure 5a, see the theoretical predictions in Yuan, 
Grimshaw, Johnson, and Wang (2018). However, when rotation is considered, the results are different. Since rota-
tion needs a relatively long-time accumulation to have a conspicuous impact, initially the nonlinearity induced 
by wave resonance overwhelmingly dominants the evolution, and the midpoint amplitude keeps increasing, but 
afterward, when rotational effects become important and come into play, it manifests itself by decreasing the 
amplitude almost linearly with time, see the results when f ≠ 0 in Figure 5a. To gain more insights on rotational 
effects, we examine the ratios ηa/ηb of wave amplitudes in the interaction zone (ηa) in Figure 5c to amplitudes 
of upper branch waves far away from the interaction zone (ηb). One of most remarkable features is that stronger 
rotations render more severe reductions of the amplitudes in the interaction zone compared with the regions far 
away from the interaction zone.

Due to conservation of mass, the decrease of the leading X-shaped wave nourishes the sprout of a secondary 
X-shaped wave and small radiating wave trains (Figure 4). A noticeable feature is the intersection point of the 
secondary positive X-shaped wave, whose amplitude increases with time. When rotation is absent, the amplitude 
of the leading one is slightly larger than the rear one for the ultimate X-shaped wave, as the reverse polarity 
trailing waves occur at the cost of rear waves, see Figure 4a2. Nonetheless, the rotation modulates this character,  
and the trend could be reversal; see panels (b1) and (b2).

Figure 3.  Experiment 1 with a uniform depth of 500 m and inclination angle ψ0 = 16°. Panels (a1–a3) are selected to exhibit 
the evolution of wave amplitudes when the rotation and shoaling topography are absent at time t = 0, 16.6, and 33.2 hr, 
respectively. In contrast, panels (b1–b3) are for the cases with rotation parameter f = 1.0 × 10 −4 s −1 (flat bottom), at the same 
frame as in the top row. To exhibit the wave patterns in detail, the amplitudes η in regions specified by black arrows and the 
propagation directions of initial waves indicated by yellow dashed arrows are emphasized, respectively.
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The strength of rotation plays a vital role in modulating wave-wave interactions. We supplement the cases with 
Coriolis parameters f = 2.5 × 10 −5, 5.0 × 10 −5, 7.5 × 10 −5 s −1, as shown in Figure 6. The magnitude of rotation 
impacts the diminution of the leading X-shaped wave, the emergence of the secondary X-shaped wave, and 
the interference between them. From the perspective of long-time evolution, larger rotational terms reduce the 
increase of leading wave amplitude induced by wave resonance more quickly and commence the decrease earlier 
(Figure 5a).To quantify this point, the Ostrovsky number Os measuring the competition of the nonlinear and 
rotational terms (Farmer et al., 2009) is defined by

𝑂𝑂𝑠𝑠 = −
24𝜋𝜋2

𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓 2𝐿𝐿2
,� (20)

where L is the typical horizontal scale. For Os ≪ 1, rotation becomes significant. Here the Os is 0.074, 0.13, 0.30, 
and 1.2, respectively, in the order of largest to smallest f, as in Figure 6, which justifies the statement mentioned 
above.

3.2.  Experiment 1: Combined Effect of Rotation and Topography

When shoaling topography is considered, the evolution scenarios become significantly disparate from those 
with a flat bottom (panels a1–a3 of Figure 3 vs. those of Figure 7). No perceptible diversities can be remarked 
on prior to the initial V-shaped wave approaching the continental slope. Nevertheless, as the waves at two edges 
start to climb up the topography, their amplitudes are amplified, whereas their propagation speeds are slackened. 
Over time this tendency spreads to the wave-wave interaction zone, which amounts to decreasing the magnitude 
of inclination angle ψ0 (Figure 1). Then, a Mach stem, whose length along the y direction increases with time 
and whose amplitude along the y direction almost keeps uniform (Figure 8a1), develops from the interaction 
zone, different from the midpoint of the X-shaped wave for the absence of varying topography, see Figure 7a3 or 
Figure 8a1. The emergence of the Mach stem presumably implies the importance of shoaling topography on ISW 
wave-wave interactions. It is also indicative of high nonlinearity and a complicated wave resonance. In addition, 
small trailing waves with the same polarity as the leading waves emerge, followed by the trailing wave train with 
the opposite polarity, akin to the scenarios for the flat bottom.

Figure 4.  Panels (a1) and (b1) are the respective zoom-ins of panels (a3) and (b3) in Figure 3, where the amplitudes η in 
regions specified by black arrows are emphasized. Their corresponding wave amplitudes along y = 40 km and y = 0 are 
shown in panels (a2–a3) and (b2–b3), respectively. The time is at t = 33.2 hr.
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Suppose the rotation with f = 1.0 × 10 −4 s −1 is taken into account together with the shoaling topography. In that 
case, the most discernible characteristic should be the suppression of the Mach stem, resulting in an interaction 
pattern plausibly similar to its counterpart without shoaling topography, albeit the amplitudes and waveforms 
are different in a subtle way, see Figures 3b3 and 7b3 or more clearly, Figures 4b1 and 8b1. It is clear that the 
presence of rotation hinders the wave resonance and the development of the Mach stem. Moreover, to understand 
its long-time evolution, we elongate the computation time to 60 hr with a larger domain; however, the Mach stem 
still fails to occur (figures not shown).

It is worthwhile to illustrate the combined effect of rotation (f = 1.0 × 10 −4 s −1) and shoaling topography on 
ISW wave-wave interactions. At time t < 6 hr, the accumulation of rotational effect is insufficient to generate 
perceptible changes and the waves still propagate over the nearly flat continental shelf, whereby the dynamics are  
almost the same as those without rotation and varying topography, embodying the character of a drastic increase 
of midpoint wave amplitudes at the interaction zone, see purple triangular solid lines in Figure  5b. Then at 
6 < t < 18 hr, rotation starts to exert appreciable influence on the wave evolution, manifesting as the decrease of  
midpoint wave amplitude. Afterward, the waves climb up the continental slope, and the effect of shoaling 
topography comes into play in the evolution, which leads to additional nonlinearity and competes with the dispersion 
induced by the rotation, resulting in a delicate magnification of amplitudes until the waves thoroughly propagate  
into the shallow water at time t = 30 hr. After that, the midpoint amplitude tends to be constant, although the effects  
of rotation seems to be slightly stronger than the shoaling topography. Moreover, a comparison between panels (a)  
and (b) in Figure 5 conspicuously illuminates the augmentation of amplitudes by the shoaling topography. The 

Figure 5.  The time series of amplitudes in the middle of interaction zone (indicated by the black circle in the insets of 
panel (c)) are shown in panel (a) for the scenarios of flat bottom and their ratios to amplitudes of upper branch waves along 
y = 140 km (indicated by the red circle in the insets of panel (c)) are shown in panel (c), while the panels (b) and (d) are for 
the scenarios of shoaling topography. Note that the results with different rotational parameters are exhibited with different 
colored marked lines and the dark dashed line in panel (a) implies the theoretical maximum value −45 m. The insets in panels 
(b) and (d) indicate the water depth at specific times.
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amplitude ratios ηa/ηb shown in Figure 5d show that the combined effects of shoaling topography and rotation 
impose more influence on wave amplitudes in the interaction zone than in regions far away from the interaction 
zone and surprisingly, the largest ratios emerge at medium rotation, here f = 7.5 × 10 −5 s −1, presumably due to 
the complicated wave resonance occurs at the interaction zone.

Accompanied by the aforementioned variation of midpoint amplitude, the trailing waves develop and exhibit compli-
cated patterns whose complexity is closely related to the magnitude of rotation, as shown in Figure 9. It is clear that the 
wave dynamics manifest the nonlinear interference of the rotation, shoaling topography, and the essential resonance 
of ISW wave-wave interactions. When rotation becomes significant, the emergence of the Mach stem is inhibited.

Figure 6.  The top row is the horizontal view of amplitudes for Experiment 1 under f = 1.0 × 10 −4, 7.5 × 10 −5, 5.0 × 10 −5, 
2.5 × 10 −5 s −1 (flat bottom) in panels (a1–d1), respectively. The corresponding amplitudes along y = 40 km and y = 0 are 
exhibited in the second row (a2–d2) and the third row (a3–d3), respectively. The topography here is uniform, and the time is 
at t = 33.2 hr.

Figure 7.  Experiment 1 with shoaling topography. Panels (a1–a3) are selected to exhibit the evolution of wave amplitudes 
when the rotation is absent at time t = 0, 17.0, and 43.3 hr, respectively. In contrast, panels (b1–b3) are for the cases with 
rotation parameter f = 1.0 × 10 −4 s −1 (note that shoaling topography is in presence), and the layout is same as the top row. To 
exhibit the wave patterns in detail, the amplitudes η in regions specified by black arrows and the propagation directions of 
initial waves indicated by yellow dashed arrows are emphasized, respectively.
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3.3.  Experiment 2: Rotational Effect

In Experiment 1, one of the results induced by the combined effect of the rotation and topography on ISW 
wave-wave interactions is the generation and evolution of the Mach stem; thus, in this section, we further 
investigate this issue. Here the initial waves have the respective amplitudes η1 = η2 = −20 m and the inclination 
angle has been selected to ψ0 = 8° (hereafter labeled as Experiment 2), whose evolution regime falls into the 

Figure 8.  Panels (a1) and (b1) are the respective zoom-ins of panels (a3) and (b3) in Figure 7, where the amplitudes η in 
regions specified by black arrows are emphasized. Their corresponding wave amplitudes η along y = 40 km and y = 0 are 
shown in panels (a2–a3) and (b2–b3), respectively. The time is at t = 43.3 hr.

Figure 9.  The top row is the horizontal view of wave amplitude for Experiment 1 under the circumstance of shoaling 
topography and rotation parameters f = 1.0 × 10 −4, 7.5 × 10 −5, 5.0 × 10 −5, 2.5 × 10 −5 s −1 in panels (a1–d1), respectively. 
The corresponding amplitudes along y = 40 km and y = 0 are exhibited in the second row (a2–d2) and the third row (a3–d3), 
respectively. The shoaling topography is shown in Figure 2, and the time is at t = 43.3 hr.
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scenarios akin to panel (c2) in Figure 1. When rotation is absent, and the ISW wave-wave interactions occur 
over a flat bottom, a Mach stem arises in the interaction zone, and its length along the y direction increases 
linearly with time while its amplitude is approximately twice the initial wave, see panels (a1–a3) in Figure 10. 
In addition, two post-interaction wave branches (with an amplitude of −4 m) are much smaller than the two 
initial wave branches (with an amplitude of −20 m) and the Mach stem (with an amplitude of −42 m), as shown 
in Figures 11a1–11a3.

When rotation (f = 1.0 × 10 −4 s −1) is considered, the emergence of trailing waves with opposite polarity in the 
rear of leading waves is similar to that of Experiment 1. Nevertheless, distinguished from the ultimate extinc-
tion in Experiment 1, here the Mach stem is more robust and can resist the strong rotation (f = 1.0 × 10 −4 s −1 
amounts to those at a latitude of 43.3°N), although the length and strength are mitigated; see the comparisons 
between panels (a1–a3) and (b1–b3) in Figure 11. More importantly, the incorporation of rotation considerably 
perturbs wave-wave interactions, whereby the two post-interaction wave branches (inside the red rectangular 
boxes of Figure 11) are disintegrated and difficult to identify from the intricate trailing waves, even for rela-
tively weak rotational effect f = 5.0 × 10 −5 s −1 (at low latitude 20.1°N); see Figure 12. This property plausibly 
explains the indistinctness of the two wave branches when a Mach stem is clearly recorded in satellite images; 
see Figure 1a2 for instance. Indeed, by MITgcm numerical simulation results, Shimizu and Nakayama (2017) 
identified the Mach stem originating from oblique ISW wave-wave interactions at ∼9°N (f = 2.3 × 10 −5 s −1). 
In their Figures 4 and 9, one of the post-interaction branches is almost invisible, which is very similar to our 
experiments. It is clear that stronger rotation renders smaller leading wave amplitudes, more complicated trail-
ing wave patterns, and a shorter and weaker Mach stem (Figure 12). Moreover, the effect of rotation in this 
experiment is supposed to be weaker than that in Experiment 1, as the Ostrovsky number Os (Equation 20) is 
proportional to wave amplitudes which are larger in this experiment, recalling that Os ≪ 1 signifies a significant 
rotational effect.

3.4.  Experiment 2: Combined Effect of Rotation and Topography

Now we investigate the individual effect of shoaling topography as shown in Figure 13. In addition to the gener-
ation of two categories of trailing waves, one with the same polarity and the other with opposite polarity as 
the leading waves, the most remarkable feature is that the Mach stem is slightly arched with a smaller ampli-
tude at the midpoint, however, propagating faster than its periphery, see the specific magnitude in Figure 14a1, 

Figure 10.  Experiment 2 with uniform depth 500 m and inclination angle ψ0 = 8°. Panels (a1–a3) are selected to exhibit the 
evolution of wave amplitudes when rotation and shoaling topography are absent at time t = 0, 16.6, and 33.2 hr, respectively. 
In contrast, panels (b1-b3) are for the cases with rotation parameter f = 1.0 × 10 −4 s −1 (flat bottom), and the layout is same as 
the top row. To exhibit the wave patterns in detail, the amplitudes η in regions specified by black arrows and the propagation 
directions of initial waves indicated by yellow dashed arrows are emphasized, respectively.
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seemingly contradicting the wave theory. Nevertheless, this naturally occurring paradox presumably designates 
the complexity of nonlinearity.

Finally, we examine the combined effect of rotation and shoaling topography on ISW wave-wave interactions. 
It is clear that the scenarios are different from the cases considering individual rotational or topographic effects. 
These two factors jointly lead to nascent trailing wave packets at x = 220 km in Figure 14b3). After sufficiently 

Figure 11.  Panels (a1) and (b1) are the respective zoom-ins of panels (a3) and (b3) in Figure 10, where the amplitudes η 
in regions specified by black arrows are emphasized. Their corresponding wave amplitudes along y = 40 km and y = 0 are 
shown in panels (a2–a3) and (b2–b3), respectively. Note that the red rectangular boxes in (a1) accentuate the post-interaction 
waves, and the time is at t = 33.2 hr.

Figure 12.  The top row is the horizontal view of wave amplitude for Experiment 2 under the circumstance of f = 1.0 × 10 −4, 
7.5 × 10 −5, 5.0 × 10 −5, 2.5 × 10 −5 s −1 (flat bottom) in panels (a1–d1), respectively. The corresponding amplitudes along 
y = 40 km and y = 0 are exhibited in the second row (a2–d2) and the third row (a3–d3), respectively. The time is at t = 33.2 hr.
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long time, it develops into a KdV-like undular bore, as found in Grimshaw et al. (2014). Nevertheless, the absence 
of this striking feature for the cases with smaller f (Figure 15) indicates that this is a subtle result in which rota-
tion perturbs the trailing waves to a point where the nonlinear effect induced by topography comes into play and 
steepens the waves to generate such steep wave packets.

Figure 13.  Experiment 2 with shoaling topography as shown in Figure 2. Panels (a1–a3) are selected to exhibit the evolution 
of wave amplitudes in the absence of rotation at time t = 0, 17.0, and 43.3 hr, respectively. In contrast, panels (b1–b3) are for 
the cases with rotation parameter f = 1.0 × 10 −4 s −1 (note that shoaling topography is in presence), and the layout is same as 
the top row. To exhibit the wave patterns in detail, the amplitudes η in regions specified by black arrows and the propagation 
directions of initial waves indicated by yellow dashed arrows are emphasized, respectively.

Figure 14.  Panels (a1) and (b1) are the respective zoom-ins of panels (a3) and (b3) in Figure 13, where the amplitudes η 
in regions specified by black arrows are emphasized. Their corresponding wave amplitudes along y = 40 km and y = 0 are 
shown in panels (a2–a3) and (b2–b3), respectively. The time is at t = 43.3 hr.
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3.5.  Experiment 3: Rotational Effect

In this section, we examine wave-wave interaction scenarios as shown in panel (c3) of Figure 1. Thus the initial 
amplitudes are chosen to be η1 = −25 m and η2 = −10 m, respectively, and the inclination angle ψ0 = 3.67°. 
These cases, hereafter, are labeled as Experiment 3. The oblique ISW wave-wave interactions that occur over flat 
bottom without rotation are shown in Figure 16. Note that the remarkable characteristic is the appearance of a 
third wave branch originating from the interaction point whose amplitude is closely related to the amplitudes of 
the initial two wave branches; the interested readers are referred to Yuan, Grimshaw, Johnson, and Wang (2018) 

Figure 15.  The top row is the horizontal view of wave amplitude for Experiment 2 under the circumstance of shoaling 
topography and rotation parameters f = 1.0 × 10 −4, 7.5 × 10 −5, 5.0 × 10 −5, 2.5 × 10 −5 s −1 in panels (a1–d1), respectively. 
The corresponding amplitudes along y = 40 km and y = 0 are exhibited in the second row (a2–d2) and the third row (a3–d3), 
respectively. The shoaling topography is shown in Figure 2, and the time is at t = 43.3 hr.

Figure 16.  Experiment 3 with uniform depth 500 m and inclination angle ψ0 = 3.67°. Panels (a1–a3) are selected to 
exhibit the evolution of wave amplitudes when rotation and shoaling topography are absent at time t = 0, 16.6, and 33.2 hr, 
respectively. In contrast, panels (b1–b3) are for the cases with rotation parameter f = 1.0 × 10 −4 s −1 (flat bottom), and the 
layout is same as the top row. To exhibit the wave patterns in detail, the amplitudes η in regions specified by black arrows and 
the propagation directions of initial waves indicated by yellow dashed arrows are emphasized, respectively.
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for the theoretical asymptotic limit of the third wave. Due to the discrepancy in the propagation speed of the two 
initial wave branches (here, the upper branch is larger), the interaction point moves downward linearly with time. 
In addition, a small trailing wave with opposite polarity arises in the rear of the leading waves.

The inclusion of rotation (f = 1.0 × 10 −4 s −1) renders some distortions on the wave evolution patterns resembling 
those in Experiments 1–2; see panels (b1–b3) in Figure 16. Nonetheless, the disparities of amplitudes between 
the upper and lower branch are diminished by the rotational effect (15 m vs. 8 m), which leads to the interaction 
point moving downward more slowly. The nascent third wave possesses a small amplitude and is susceptible to 
disintegration led by rotation; thus, in the ocean, this wave branch may be hardly visible. The magnitude of the 
rotation f impacts the evolution at different levels akin to those in the other two experiments (results not shown).

3.6.  Experiment 3: Combined Effect of Rotation and Topography

The topographic effect alone is considered on the oblique ISW wave-wave interactions, which manifests as an 
augmentation of wave amplitudes and the emergence of two categories of trailing waves with the same and oppo-
site polarities, respectively (Figure 17a3). Nevertheless, when the combined effect of rotation and topography is 
investigated, the evolution scenarios are similar to those in Experiments 1–2, especially the appearance of new 
wave packets as in Experiment 2, see panels (a1–a3) in Figure 18. Again, the competition between topographic 
and rotational effects plays a vital role in oblique ISW wave-wave interactions.

4.  Discussions and Conclusions
Oblique ISW wave-wave interactions have received little attention in fluid dynamics and physical oceanogra-
phy, despite that many aerial photographs and satellite images illustrating their ubiquities in oceans (see Chen 
et al., 2011; Wang & Pawlowicz, 2012; Xue et al., 2014 for instance). Furthermore, previous studies put much 
effort into comparisons with the theory by Miles (1977b); however, the results are not wholly satisfactory. The 
reason was attributed to the limitations of Miles theory by Shimizu and Nakayama (2017), and they suggested the 
use of an extended theory developed in Li et al. (2011); Kodama and Yeh (2016). Note that most of the studies 
have been based on images of surface signatures. It is very difficult to use in situ observational data to conduct 
research on this 3D phenomenon due to the need for high spatial and temporal coverage on underwater measure-
ments, albeit we note Wang and Pawlowicz (2012) used single-point observational T/S and current profiles to 
supplement the image utilization. Another way to investigate this problem is to resort to numerical simulations; 

Figure 17.  Experiment 3 with shoaling topography as shown in Figure 2. Panels (a1–a3) are selected to exhibit the evolution 
of wave amplitudes in the absence of rotation at time t = 0, 17.0, and 43.3 hr, respectively. In contrast, panels (b1–b3) are 
for the cases with rotation parameter f = 1.0 × 10 −4 s −1 (shoaling topography is in presence), and the layout is same as the 
top row. To exhibit the wave patterns in detail, the amplitudes η in regions specified by black arrows and the propagation 
directions of initial waves indicated by yellow dashed arrows are emphasized, respectively.
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one of the rare studies is Shimizu and Nakayama (2017), in which they examined the oblique ISW wave-wave 
interactions in the Andaman Sea with the MITgcm model and the extended Miles theory. They discussed the 
emergence of stem-like waves and the inhibition of these waves induced by the Earth's rotation. Nevertheless, the 
magnitude of rotation they considered is relatively weak, and the topographic effect has a minor influence in their 
study as it occurred in water with depth ∼2,300 m at latitude 9°N.

In the ocean, some oblique ISW wave-wave interactions arise during the propagation up the continental slope/
shelf, such as the scenarios around Dongsha Atoll in the South China Sea, see Figure 1 in Yuan, Grimshaw, 
Johnson, and Wang (2018) and the collections of internal solitary waves in the World's oceans by Jackson (2004), 
in which the shoaling topography is supposed to have significant effects. Indeed, Yuan, Grimshaw, Johnson, 
and Wang (2018) used the variable-coefficient KP equation to examine the topographic effect on wave-wave 
interactions of an initial V-shaped wave. They illustrated six types of potential evolution regimes and chose 
three frequently recorded categories to exhibit the significance of varying topography. More recently, Yuan and 
Wang (2022) derived and utilized the bi-directional isotropic modified Benney-Luke equation, contrasting the 
uni-directional propagation and anisotropy of the KP equation, for the interactions between X-shaped internal 
solitary waves and the importance of shoaling topography was accentuated again.

While the deformation and the evolution regime shift due to shoaling of oblique ISW wave-wave interactions have 
been seldom studied, and the Earth's background rotational effect on the wave-wave interactions in a uniform 
environment has been rarely documented, especially for middle and high latitudes, their combined effects have 
not previously been examined in detail. This is the aim of this paper, and we have approached this task from 
a perspective of wave dynamics in the KP equation by designing experiments to check the evolution of initial 
V-shaped waves with/without shoaling topography under the circumstance of the Earth's rotation at the respective 
latitudes φ = 0°, 9.9°, 20.1°, 30.9°, 43.3°N. Generally speaking, the shoaling topography augments the leading 
wave amplitudes and renders trailing waves, whereas rotation disintegrates the coherent solitary wave into wave 
packets manifested as the decrease of leading wave amplitudes and the emergence of trailing waves. The compe-
tition between these two factors imposes more effects on the interaction zones than regions far away from the 
interaction zone and further, leads to disparate wave patterns.

In Experiment 1 (amplitudes η1 = η2 = −15 m and inclination angle ψ0 = 16°), when shoaling topography is 
considered, a Mach stem arises in the interaction zone, which, however, does not appear when rotation is included 
(f = 1.0 × 10 −4 s −1, latitude φ = 43.3°N). Smaller rotation parameters f modulate the evolution to a less extent, and 
when f < 7.5 × 10 −5 s −1, the Mach stem emerges again, despite it being weakened by rotation, which coincides 

Figure 18.  The top row is the horizontal view of wave amplitude for Experiment 3 under the circumstance of shoaling 
topography and rotation parameters f = 1.0 × 10 −4, 7.5 × 10 −5, 5.0 × 10 −5, 2.5 × 10 −5 s −1 in panels (a1–d1), respectively. 
The corresponding amplitudes along y = 40 km and y = 0 are exhibited in the second row (a2–d2) and the third row (a3–d3), 
respectively. The shoaling topography is shown in Figure 2, and the time is at t = 43.3 hr.

 21699291, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JC

019634 by Institute O
f M

echanics (C
as), W

iley O
nline L

ibrary on [12/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Oceans

YUAN ET AL.

10.1029/2023JC019634

19 of 21

with the findings in Shimizu and Nakayama (2017). In Experiment 2 (amplitudes η1 = η2 = −20 m and inclination 
angle ψ0 = 8°), the combination of initial wave amplitudes and inclination angle intrinsically determines a robust 
wave resonance, in which even the relatively large rotation f = 1.0 × 10 −4 s −1 can only impede the development 
of the amplitude and length of the Mach stem, but can not prevent its emergence. When the shoaling topogra-
phy is incorporated, it magnifies the wave amplitude and causes a nascent wavepacket akin to the early stage of 
a KdV-like undular bore as found in Grimshaw et al. (2014). Remarkably, this emergence of a undular bore is 
closely related to the competition of shoaling topography and rotation, and smaller parameters f fail to generate 
this wavepacket. In Experiment 3 (amplitudes η1 = −25 m, η2 = −10 m and inclination angle ψ0 = 3.67°), the 
scenarios with the combined effect of topography and rotation are generally similar to the previous two experi-
ments, except that the interaction point moves downward due to different propagation speeds of the two branches. 
Another notable characteristic is that topography and rotation jointly deform the wave patterns and make the 
small-amplitude post-interaction waves nearly invisible, which presumably indicates the discrepancies between 
previous theoretical results in the absence of this combined effect and the recorded waves in the ocean, see our 
Figure 1 and the figures in Chen et al. (2011); Shimizu and Nakayama (2017) for example,

This study suggests the potential significance of oblique ISW wave-wave interactions in the ocean, given that 
the realistic continuous stratification and Earth's rotation are used here. Note that Mach stem seems able to 
occur frequently and to be robust for the appropriate combination of amplitudes and inclination angle of two 
initial waves in the environmental fluid. More importantly, the well-known fourfold enhancement of the Mach 
stem amplitude can be intensified by the combined effect of rotation and shoaling topography, which renders 
large amplitude and strong shear, thereby leading to wave-breaking events and may have consequences to ocean 
mixing, sediment transportation, and offshore engineering (Boegman & Stastna, 2019; Whalen et al., 2020).

Finally, it is necessary to adumbrate other physical factors which are worth further investigation. Due to the 
assumptions of the KP equation, the transformation between mode-1 and mode-2 ISWs is essentially excluded in 
this paper, but, at specific situations, it is important for wave dynamics (Terletska et al., 2016; Yang et al., 2009; 
Yuan et al., 2018). Essentially, the KP equation is a weakly nonlinear equation, lacking of the capacity to describe 
large-amplitude waves, although some studies (see Ostrovsky and Stepanyants  (2005); Li et  al.  (2015) for 
instance) exhibited that it is also valid for relatively large amplitudes. The KP equation requires that variations 
in the transverse direction (here y) are one-order of magnitude smaller than those in the propagation direction 
(here x), indicating a potential failure for large inclination angles. Nevertheless, Yuan and Wang (2022) made 
comparisons with an isotropic (then no prescribed restrictions on inclination angles) equation for ISW wave-wave 
interactions, which illustrated that the KP equation is still valid when the angle is as large as 33° (much larger than 
the angles used in this paper). Background current are not considered in this paper, but they may considerably 
impact wave evolution for some cases (Lamb, 2010; Zhang, Xu, et al., 2018; Zhang, Huang, et al., 2018). To fully 
understand the dynamics, here the idealized shoaling topography varies along only one direction, while in the 
ocean, the variations of topography are complex (including undersea ridges, canyons, and plateau, etc.), as shown 
in Xie et al. (2019), even small bumpy features pose a perceptible modulation on wave dynamics. In addition, 
bottom friction becomes important when internal waves propagate into the shallow water and it can decrease the 
wave amplitude and affect the turbulent production (Henderson, 2016; Tan et al., 2019), whose impacts on the 
ISW wave-wave interactions are unclear.

Data Availability Statement
Figures were made with Matplotlib version 3.5.2 (Caswell et al., 2022), available under the Matplotlib license at 
https://matplotlib.org/. The computer codes used to perform data analyses are available in Yuan (2023).
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