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ABSTRACT

Flexible aquatic vegetation exists widely in nature and serves multiple hydro-environmental functions mainly through fluid—structure inter-
actions. The waving motion of vegetation arrays, known as Monami, is predominantly governed by Kelvin—-Helmholtz (KH) instability, and
its characteristic scales, such as wave height and wavelength, are still being explored. In this paper, the interactions between a large array of
flexible vegetations and a laminar boundary-layer flow are investigated using direct numerical simulation. The parameters used are the
Reynolds number Re =400, mass ratio f = 1.0, bending rigidity y =0.04-0.22, and gap distance d =0.4-1.6. A low frequency in Monami is
found to be related to the fluctuation frequency of the onset position of the KH instability, which leads to the identification of four different
Monami modes: regular Monami, quasi-regular Monami A, quasi-regular Monami B, and irregular Monami. The influences of the bending
rigidity and gap distance on the Monami modes, KH instability onset position, and Monami characteristic scales are discussed. It was found
that the causes of spatial and temporal variations in the characteristic scales of Monami vary depending on the mode. In the regular Monami
mode, these variations result from the evolution of the KH vortex. In the quasi-regular Monami A mode, they are strongly affected by the
shifting of the onset position of the KH instability. In the other two modes, these variations are caused by a combination of the fluctuation in
the KH instability onset position and the complex interaction between vortices.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0155506

I. INTRODUCTION

Widely existing in natural rivers and lakes, aquatic vegetations
are an integral part of the aquatic ecosystem and provide a wide range
of ecosystem services. For example, they provide food and habitat for
other organisms,' change the sediment transport,” and purify water
bodies.” In addition, they also play an important role in ecological pro-

the dominant factor in the Monami phenomenon is mixing layer
instability or Kelvin-Helmholtz (KH) instability.” In order to better
understand the mechanisms of such interactions, it is necessary to
investigate the dynamic responses of vegetations and flow features of
fluid under various conditions, such as the Reynolds number, vegeta-
tion properties (bending rigidity, mass ratio, etc.), and distribution
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tection engineering, since they can be used to weaken waves,” reduce
coastal erosion,” and protect submarine pipelines.” Aquatic vegetations
achieve their multiple functions mainly through the interactions with
the fluid flow, i.e., fluid-structure interactions (FSI). Under certain
conditions, flexible vegetation arrays exhibit coherent waving motions,
and this wave-like motion is widely observed in both terrestrial and
aquatic plants. This phenomenon is known as Monami in aquatic
plants and Honami in terrestrial plants.”® It is generally accepted that

sparsity. In recent years, using simplified models, such as filaments,
flaps, and plates, the relevant studies from different perspectives have
been conducted theoretically,'”'" experimentally,'”” '* and numer-
ically.'” *” A comprehensive review of this topic can be found in
Nepf.”!

Under different conditions, flexible vegetation can display a range
of oscillation characteristics, resulting in different vortex structures
observed in the flow field. Therefore, researchers have classified
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different dynamic modes. Jin et al."” focused on the dynamics of wall-
mounted flexible plates under inclined flows and experimentally
identified three distinct modes of tip oscillation in different Cauchy
numbers (the ratio between the hydrodynamic force on the vegetation
and the vegetation elastic restoring force) and flow inclination angles.
Zhang et al.'” found three dynamic modes, namely, lodging, regular
VIV (vortex-induced vibration), and static reconfiguration for a
single-filament system in the laminar boundary layer and additionally
identified a cavity oscillation mode for a dual-filament system. Wang
et al.”” investigated the interactions of single, double, and triple plates
with the incoming Poiseuille flow and revealed the effects of bending
rigidity and spacing on the dynamic modes and vortex structures.
Chen et al." extended the study of Wang et al.”” by performing three-
dimensional simulations.

As the number of plants increases to form arrays, the dynamic
behaviors of the array become more complex. O’Connor and Revell'®
found that vegetation arrays show four patterns at different bending
rigidities and mass ratios: static, flapping, regular waving, and irregular
waving. Fang et al.” suggested that the imbalance between the devel-
opment of mixing layer instability and the dissipation of vegetation
response causes temporal and spatial variations in the waving ampli-
tude of vegetation, leading regular waving to irregular waving.
However, the associated mechanisms behind the transition are still
unclear. In addition to the above four patterns, a new pattern called
“dual,” which is a natural combination of both flapping and waving,
appears in Fang et al.”” Zhang et al."” studied the dynamic modes of
an array of plates in a laminar boundary flow at different values of
bending rigidity and gap distance and found modes named static
reconfiguration, sectional waving (periodic and quasiperiodic), regular
waving (periodic and quasiperiodic), upright oscillation, and cavity
oscillation. In fact, the sectional waving found by Zhang et al."” and
the “dual” found by Fang et al.” are the same mode. Xu et al.”* studied
the dynamic response of an array of flexible slender rods in turbulent
open channel flow and found that in longer and narrower open chan-
nels, rod arrays can exhibit two interesting types of impulsive wave
motion, namely, the o and f§ modes. The o mode is the serpentine
wave motion of the vegetation in the cross-flow direction, while the
mode is the periodic gathering—diverging behaviors of vegetation.

The phenomenon of frequency lock-in in different modes has
also been extensively explored, and the relationship among oscillation
frequency, natural frequency, and KH instability frequency has been
discussed. For the single-filament and dual-filament systems,'” the
oscillation frequency is locked onto the second natural frequency in
the regular vortex-induced vibration mode, while the oscillation fre-
quency is locked onto the first natural frequency in the cavity oscilla-
tion mode. For vegetation arrays, Ghisalberti and Nepf’ performed
experiments, which indicate strong correlations between the waving
frequency, velocity spectrum peak frequency, and the predicted KH
frequency. O’Connor and Revell'® numerically investigated the waving
interactions of a flexible vegetation array with an open channel flow,
and their results showed that regular waving mode occurs when the
mean waving frequency of the array approaches the KH frequency. A
disparity between the natural frequency of the array and the predicted
KH frequency leads to transitions between different behavioral states.
Fang et al.” found that the vegetation oscillation frequencies follow
the first-order natural frequency in the waving branch and the second-
order natural frequency in the flapping branch. The same conclusions
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are also drawn in Zhang et al. ' Moreover, in Fang et al. .7 the lock-in
effect is observed again between the KH frequency and the natural fre-
quency of the array, and an attraction effect of the mixing layer is
revealed.

All of the above-mentioned dynamic modes, except the static
mode, are manifestations of instabilities. Recently, some studies have
focused on the intensity of the mixing layer and the onset of instability.
Zhang et al."” identified three flow instabilities that drive vegetation
oscillation, with the KH instability being the source of excitation for
the vegetation’s waving branch. Using the drag coefficient amplitude
to measure both the onset and scale of the coherent vortices, Fang
et al.”’ found that increasing vegetation density increases the mixing
layer strength and shifts the onset position of the mixing layer instabil-
ity upstream. However, as vegetation density and bending rigidity fur-
ther increase, the initial perturbation of the vegetation is suppressed,
inhibiting the generation and development of mixing layer instability.
Vieira et al.”” studied the intensity of instability as a function of the
Reynolds number and buoyancy parameter (where larger values indi-
cate more rigid vegetation). The results showed that from the fluid
perspective, the instability strength increases with increasing
Reynolds number and buoyancy parameter, saturating for high val-
ues of both parameters. However, from the vegetation’s perspec-
tive, the instability strength monotonically increases with
increasing Reynolds number, but the maximum value of the insta-
bility strength occurs at an intermediate value of the buoyancy
parameter. This means that vegetation with little flexibility can
delay the onset of instability. However, there are few relevant stud-
ies, and the variations of the initial onset position of the KH insta-
bility with respect to the parameters remain unclear.

As mentioned earlier, the Monami phenomenon is a wave-like
motion. Some scholars have studied the characteristic scales, such as
wavelength, wave height, period, and wave phase velocity of Monami
waves under different conditions. Patil and Singh™ found through the-
oretical derivation that the amplitude and frequency of coherent wav-
ing of vegetations are closely related to the bending angle, height,
diameter, and elasticity of the vegetation. Okamoto et al.”’ found
experimentally that the number of flexible vegetations oscillating
simultaneously in the Monami phenomenon depends on the length
scale of the turbulence structure within the mixing layer, and that
under their experimental conditions, large scale vortices almost simul-
taneously deflect four individuals. He et al.”® simulated the dynamic
response of vegetations at different Cauchy numbers and distribution
densities and obtained the Monami scale as well as the phase velocity
of the waves using wave number spectra and frequency-wave number
spectra. Wang et al.”’ performed the fast Fourier transform to analyze
the factors affecting the characteristics of Monami scales. They
revealed that as the flow velocity increases, the Monami wavelength
decreases, while the Monami amplitude (wave height) and Monami
frequency increase. In addition, as the spacing increases, the Monami
wavelength and Monami amplitude increase, while the Monami fre-
quency decreases.

Despite the insights gained from previous studies, the dynamic
behavior of a large array of flexible vegetations, especially the Monami
phenomenon, and the associated mechanisms are still not fully under-
stood. In particular, to the best of the authors’ knowledge, no research
has investigated the temporal and spatial fluctuations of the KH insta-
bility onset position quantitatively. Additionally, how the Monami
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characteristic scales are affected by the fluctuation of this position is
still unclear.

In this study, numerical simulations are carried out to investigate
the interactions of an array of 100 flexible vegetations with a two-
dimensional (2D) laminar boundary-layer flow. From the perspective
of the KH instability onset position, four distinct Monami modes are
classified, and the characteristics of these modes are discussed. The
influences of bending rigidity and gap distance on the Monami insta-
bility are also explored. The spatial and temporal variations of the
Monami characteristic scales in different modes are elucidated.

The rest of the paper is organized as follows: Sec. II describes the
numerical methods and computational setup. Section III presents the
results and main findings. Finally, Sec. IV draws the conclusions.

1. METHODOLOGY
A. Numerical methods

The flow field is solved using direct numerical simulation com-
bined with the immersed boundary (IB) method. The incompressible
Navier—Stokes and continuity equations that govern the fluid flow can
be written as follows:

Ou 1 )
a+(u~V)u—fp—pr+l/V u+f, 1)

V- u=0. (2)

In these equations, u is the velocity vector, ¢ is the time, p is the
pressure, pyis the fluid density, v is the kinematic viscosity, and fis the
extra body force that represents the actions of immersed objects on the
fluid.

Vegetation is modeled as flexible plates, and the dynamics of
individual vegetation are simulated using the Vector Form Intrinsic
Finite Element (VFIFE) method. Based on point-value descriptions,
the structure is discretized into a set of spatial nodes that are connected
to each other by rod elements. The motion of each node J is used to
describe the movement and deformation of the structure and satisfies
Newton’s second law,

mV + {mV + F™ = F™,

. int __ ext (3)
Io + o + M™ = M,

where m and I are the mass and moment of inertia matrix of the node,
respectively. V, V, @, and o are the acceleration, velocity, angular
acceleration, and angular velocity of the node, respectively. F int - pext,
M™ and M®" are the internal force, external force, internal moment,
and external moment, respectively. { is the structural damping coeffi-
cient, which is set to zero in the present study. An explicit iterative
scheme based on central differencing is utilized to solve Eq. (3) as
follows:

Fext _ Fint B
xn+1 — h52 + 2x" — x" 17
m
Mext _ Mint (4)
ot = p? ——+ 20" — "
n+1 n n+1 n
X — X a —a
n+l __ ntl __
L A e A ®)
s s

where x, &, and h, denote the position of the node, the angle of rotation
of the node, and the time step, respectively. The temporal trajectory of
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any node on the structure is described by a set of time points, and the
process between the time points is defined as a path element. Proper
division of the path elements allows the properties of each node to be
changed between two path elements, making the VFIFE method
advantageous in modeling the discontinuous and nonlinear behavior
of structures, such as large deformations, fractures, collapses, colli-
sions, and penetrations. For more detailed information about the
VFIFE method, readers are referred to Ting et al*”?" and Shih et al.”*

The IB method is used to couple the fluid flow and structural
deformation in the simulation. This method was first introduced by
Peskin™ in the simulation of blood flow in the human heart. In the IB
method, the fluid variables are discretized on an Eulerian grid, which
is Cartesian and fixed in space, while the structure is represented by a
series of IB points on a Lagrangian grid, which is curvilinear and free
to move. The main idea of the IB method is to satisfy the non-slip
boundary conditions along the surface of the structure by introducing
a force term in the fluid momentum equation. To discretize Egs. (1)
and (2), the second-order Adams—Bashforth time scheme and the
second-order central differencing space scheme are used, which leads
to the following conservation form:

3 1 3 1 1
ntl _ n otl = __anl = n - n—1 n+55t
u u" + (2 5 ZVp +2Vp +f ,

(6)
V-u"l =0, 7)

where I1 = V - (—uu + v(Vu + VuT)) is composed of the convec-
tive and diffusive terms, in which the superscript T is the transpose of
a matrix. Superscripts n + 1, n+ 1/2, n, and n—1 denote the time step.
The extra body force can be calculated as

1 3 1 3 1
f”+§5t:D(Vn+1 —I(u"Jrét (EH" —EHrHl —EVp" +5Vp”71) >) s
(8)

where v = V"' 1 r x @™ is the desired velocity on the IB points
obtained by solving Eq. (3), in which r is a vector from a node to an IB
point. D and I are the distribution and interpolation functions,
respectively, which are responsible for data transfer between the non-
conforming Eulerian and Lagrangian grids. For the sake of concise-
ness, further descriptions of this method and its solution procedure
can be found in our previous work.” ** Thanks to the advantages of
the VFIFE and IB method, the present fully coupled and fully resolved
FSI model is suitable for solving structures with large deformations
and can reflect the realistic dynamic behaviors of vegetation array very
well.

B. Computational setup

The schematic diagram of the computational model is shown in
Fig. 1. An array of V=100 flexible vegetations is clamped on the bot-
tom surface, and each vegetation is indexed by #. Each vegetation ele-
ment is of length L and thickness b and evenly spaced by a gap
distance D. The inclination (tilt) angle 0 is defined as the angle
between the chord line and the vertical axis, given as 0 = arctan[J,/(L
+ 6,)], where 0, and 0, are the tip displacements in the x and y direc-
tions, respectively. A uniform velocity of U, is applied at the left
entrance, and a laminar boundary-layer flow is developed along the
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FIG. 1. Schematic diagram of the computational model.

bottom surface with a varying thickness h. The distance between the
inlet and the first vegetation is D;, which is set to 16L in the present
study. Four parameters, the Reynolds number Re, non-dimensional
bending rigidity y, mass ratio 5, and the non-dimensional gap distance
d, are considered here. They are defined as

Usl EI p.b D

d:_7 (9)

R -
‘ oL’ L

v ) Y prgoLS I

where E, I, b, and p; are the Young’s modulus, the moment of inertia
of vegetation’s cross section, the vegetation thickness, and the vegeta-
tion density, respectively.

With Reynolds number and mass ratio fixed, the ranges of the
influencing parameters used in the simulations are summarized in
Table I. The values of y are from 0.04 to 0.22 in steps of 0.02, while the
values of d are from 0.4 to 1.6 with an increment of 0.1 and 0.2 in the
range of 0.4-12 and 1.2-1.6, respectively. These values were mainly
selected based on the previous studies.*'*** Our focus is on the ranges
of parameters, in which the Monami, or waving mode, occurs, while the
lodging, static, and flapping modes are beyond the scope of this paper.

As shown in Fig. 2, the computational domain is set as [0, 204L]
x [0, 8L] in the x and y directions. A non-uniform Cartesian mesh is
employed in the simulations. In the subdomain of [9L, 195L] x [0, L]
that contains all vegetations, grids with a width of L/48 in both x and y
directions are used to resolve the small flow structures. The grids are
stretched outside the subdomain with a stretching coefficient of 1.016
in the x direction and 1.030 in the y direction. In addition, the dimen-
sionless time step (AtU,,/L) is chosen carefully to satisfy the CFL
(Courant-Friedrichs—Lewy) criteria (AtU,./Ax < 0.5). The boundary
and initial conditions for the fluid flow and flexible vegetations are set
as follows: For the fluid flow, Dirichlet boundary conditions (u = U,
v=0) are imposed on the inflow boundary, while Neumann boundary
conditions (Ou/0x= 0v/Ox=0) are applied to the outflow boundary.
The upper and bottom boundaries are set as free-slip (Ou/dy=0,
v=0) and non-slip (u=0, v=0) boundaries, respectively. For the
clamped flexible vegetation, one end is fixed, while the other end is free.
Initially, all vegetations stand vertically (6 = 0°) with zero velocity.

Based on the Blasius solution for a laminar flow past a flat plate,
the thickness of the boundary layer at the distance x from the entrance

TABLE I. Influencing parameters applied in the simulations.

Parameters Values
Reynolds number (Re) 400
Dimensionless bending rigidity (y) 0.04-0.22
Dimensionless gap distance (d) 0.4-1.6
Mass ratio (f5) 1.0
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FIG. 2. Schematic diagram of the computational domain.

can be computed by h= 5x/(Re,)’?, where Re, = U .x/v represents
the Reynolds number based on the distance from the entrance. The
distance between the inlet and the first vegetation is x =D, = 16L, so
hy = L, which means that the vegetation array is fully immersed in the
boundary layer. The critical Reynolds number for the transition of a
smooth flat plate based on the distance and incoming flow velocity is
as high as O(10°)."”*" In the present study, the largest Reynolds num-
ber at the exit is Reyj = Usox/v = 81 600, which is far below the criti-
cal value. That is to say, the flow in the whole computational domain
is 2D and laminar. Note that the existence of vegetation increases the
flow instability and affects the critical Reynolds number. However,
considering that Re.y is two orders of magnitude smaller than the
critical value, it is reasonable to consider the vegetation flow in the pre-
sent study as laminar flow. In addition, the largest boundary layer
thickness at the exit is 3.57L, the Reynolds number based on which is
around 1428.

It is also necessary to give a short description of the rationality of
the 2D restriction used in this study. Compared to a real three-
dimensional (3D) vegetation canopy, the blockage effect (i.e., the fluid
is deflected upward due to the existence of vegetation) in a 2D model
is enhanced owing to the fact that the out-of-plane flow around the
vegetation is restricted. According to Nepf,”' such a restriction is sig-
nificant for terrestrial and deeply submerged canopies where the
coherent flow structures are highly 3D because of their interactions
with the boundary-layer turbulence. However, for shallowly sub-
merged canopies like the setup presented in this study, the boundary
layer is laminar and the coherent vortices (KH vortices) remain 2D in
nature. Therefore, the 2D restriction here is reasonable, and such a
simplification has been widely used in many similar
researches.' """

To verify the accuracy of the present numerical methodology,
simulation results were compared with those of Zhang et al.'” under
the same conditions at Re =400, y = 0.2, f = 1.0, d= 0.5, and V= 90.
The good agreement between the two sets of results shows that the
present numerical methodology is accurate. Furthermore, tests were
performed on both the number of vegetations in the array and the grid
resolution to ensure a configuration-independent solution. Additional
details are provided in the Appendix.

lll. RESULTS AND DISCUSSION

A. Definition of instability onset position and Monami
characteristic scales

Before proceeding further, we will first introduce how KH insta-
bility is present in vegetated flow and then define two important terms:
the KH instability onset position and the Monami characteristic scales.

In the vegetated flow, due to the presence of vegetation, the verti-
cal drag distribution is discontinued. As a result, the flow velocity
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between the interstitial flow inside the canopy and the bulk flow above
the canopy varies greatly, which causes an inflection point in the verti-
cal velocity profile.”" This inflection point makes the flow susceptible
to KH instability, which leads to the generation of KH vortices’ as
shown in Fig. 3(a). In a free shear layer, KH vortices are symmetric
around the inflection point and their convection speed matches the
velocity at the inflection point. However, in a vegetated flow, the KH
vortices are displaced higher than the inflection point and as a result,
their convection velocity is higher than the velocity at the inflection
point. In addition, due to the vegetation’s drag, the vortices rotate
more slowly than that formed in a free shear layer of comparable shear
strength.”!

The vegetation inclination angle’s instantaneous amplitude is
non-zero, where the mixing layer is unstable. According to Fang
et al,”” the instability in the mixing layer arises due to the small oscilla-
tions of vegetation in the foremost part of the array. These oscillations
are then amplified progressively downstream and eventually induce
the KH instability. Therefore, the oscillation amplitude can be consid-
ered a measure of the mixing layer instability, while the KH instability
is excited downstream when the oscillations are amplified to a certain
extent, as shown in Fig. 3(a). Thus, we define the position where the
fluctuation amplitude of the vegetation inclination angle first reaches
at least 1° as the KH instability onset position,

n(t) = {nn|é(n =,t) > 1°A é(n <, t) < 1"}7 (10)

where

B 1 (oA
0(n,t) = 0(n,t) ——J 0(n, t)dt. (11)
At ),

Here, f, is selected to ensure the fully developed laminar boundary
layer flow and statistically stable vegetation oscillations, while At is
chosen long enough to capture the low-frequency oscillations. It
should be noted that the selection of 1° has no physical significance,
but changing its value slightly affects the onset position.

In the Monami motion, the envelope curve at the tip of the vege-
tation resembles a wave. To describe the wave characteristics, we
define the crest and trough of the Monami wave,

crest(xu,, Yuo ) = {1y, (8) = no—1(6) Ay (£) > yu1 (1) },
trough(xs,,Yn,,t) = {1e|yn, () < -1 (£) Ay, (£) <y 1 (1) }.

(12)

(@

T T T T T Tz
®)

wave trough Wave,crest
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Consider that the crests and troughs of the Monami wave may not be
exactly located at the vegetation tips. Therefore, a simple correction is
applied: A parabola is fitted to the coordinates of the stem tips between
which a crest (or trough) is located, and the coordinates of the vertex
of this parabola define the position of the crest (or trough).
Furthermore, we define the horizontal distance between two adjacent
crests or troughs as the wavelength, and the vertical distance between
the adjacent crest and trough as the wave height, as shown in Fig. 3(b).
At any moment t, the array forms multiple wavelengths L,,,;, L2, ..,
and wave heights H,,;, H,,, ..., and the mean wave height and mean
wavelength during At can be calculated.

B. Characteristics of different Monami modes

. . 16,19,23 . P .
In previous studies, ~ Monami patterns were divided into

regular waving and irregular waving. Under regular waving, the vege-
tation oscillates at a single frequency, while under irregular waving, the
vegetation oscillates at several different frequencies. In the present
study, a low frequency component in the irregular waving mode is
found to modulate the dominant frequency of the vegetation oscilla-
tions, causing the vegetations to oscillate at multiple frequencies. More
importantly, this low frequency is found to be related to the fluctuation
of the KH instability onset position.

In this section, the dynamic behaviors of the vegetation array
with different bending rigidity and gap distance are systematically
investigated. Based on the oscillatory characteristics of the KH instabil-
ity onset position, four Monami modes, namely, regular Monami,
quasi-regular Monami A, quasi-regular Monami B, and irregular
Monami, are distinguished. The characteristics of these different
modes are revealed and compared.

For the regular Monami mode, we take the case y =0.2, d=0.4
as an example. Figure 4(a) shows the spatial and temporal variations
in tilt fluctuations across the array, where each stripe represents a pro-
cess in which a KH vortex is generated and gradually moves down-
stream, causing the vegetations to bend accordingly. The vertical
distance between two adjacent stripes represents the oscillation period
of the vegetations. It can be seen that in the regular Monami mode,
the oscillation period of the vegetation remains constant. This is con-
firmed in Fig. 4(b), where the inclination angles of the selected vegeta-
tions vary regularly with time and the vegetations oscillate at a single
dimensionless frequency of 0.2067. The solid black line in Fig. 4(a)
indicates the contours for the instantaneous vegetation inclination

u@)

m“., point

FIG. 3. (a) A contour of z-vorticity containing KH instability onset position and subsequent development of KH vortex. The vertical velocity profile u(y) with an inflection point is
drawn at the KH instability initial onset position. (b) Schematic diagram of the wave-like motion, Monami, of the vegetation array and its characteristic scales, wavelength L,
and wave height H,,. The green lines represent the vegetations. The Monami is represented by the blue envelope connecting the vegetation tips and travels to the right.
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angle at 1°. Based on the definition in Sec. III A, the KH instability
onset position is located near n = 13, indicated by the red solid line. It
is obvious that in the regular Monami mode, the KH instability onset
position is fixed and does not vary with time, meaning that at any
given moment, the KH vortex is excited at the same position and then
propagates downstream. As a result, the KH vortices generated at dif-
ferent time instants have the same intensity when they propagate to
the same position. Therefore, the vegetation at a given position oscil-
lates with the same amplitude and frequency.

For the quasi-regular Monami A mode, the case y = 0.06, d= 0.6
is taken as an example. Figure 5(a) shows the spatial and temporal var-
iations in tilt angle fluctuations across the array, and again, by

definition, the KH instability onset position is determined as shown by
the solid red line in the figure. It can be seen that in the quasi-regular
Monami A mode, the onset position is no longer fixed, but moves
upstream and downstream regularly with time. As the location of the
instability excitation changes, the KH vortices excited at different time
instants move downstream and pass the same position with different
intensities, resulting in a periodic change in the oscillation amplitude
of the vegetations. This is supported by the left column of Fig. 5(b),
which shows the variations of the inclination angle and its upper
envelope over time for representative vegetations. A fast Fourier trans-
form of the tilt angle gives the spectra shown in the middle column
of Fig. 5(b). It can be seen that the vegetations oscillate at several
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FIG. 5. (a) The spatial and temporal variations in tilt angle fluctuations across the array. (b) From left to right, the columns show time histories (solid red line) and upper enve-
lope (solid blue line) of tilt angle fluctuations of representative vegetations, spectra of tilt angle fluctuations, and spectra of upper envelope of tilt angle fluctuations, respectively.

(c) The spectrum of KH instability onset position (y = 0.06, d = 0.6).

frequencies, including the dominant frequency of 0.1300, a low fre-
quency of 0.0100, and other frequencies of 0.1100, 0.1200, and 0.1400.
This is also reflected in Fig. 5(a), where the stripes show discontinuity
regularly, matching the fluctuation pace of the KH instability onset
position. Moreover, the frequencies 0.1100, 0.1200, and 0.1400 can be
taken as the results of the nonlinear interactions of the dominant fre-
quency 0.1300 and low frequency 0.0100. As shown in the right col-
umn of Fig. 5(b), it can be seen that the frequency of the upper
envelope of the tilt angle f.,, ie., the frequency of variation of the

vegetation oscillation amplitude, equals the low frequency in the mid-
dle column of Fig. 5(b). As mentioned earlier, the change in the vege-
tation oscillation amplitude is caused by the change in the KH
instability onset position. The frequency spectrum in Fig. 5(c) shows
that the dominant frequency of the KH instability onset position
matches well the low frequency of the vegetation oscillation. In other
words, in the quasi-regular Monami A mode, the oscillation of the
vegetations is modulated by both its own oscillation frequency f,
and the fluctuation frequency of KH instability onset position f, .
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The periodic variation of the vegetation oscillation amplitude origi-
nates from the periodic variation of the instability excitation position,
and the relationship f,,ses = fen, is satisfied.

In fact, the majority of quasi-regular Monami modes studied in
our research do not show regular variation of instability excitation
positions within the parameter ranges we have examined. To differen-
tiate this mode from the quasi-regular Monami A mode, we have
named it the quasi-regular Monami B mode. The variation of instabil-
ity excitation position with time for the case y = 0.06, d = 1.2 is shown

ARTICLE

pubs.aip.org/aip/pof

by the solid red line in Fig. 6(a). It is evident that the variation of insta-
bility excitation position is less regular in comparison with the quasi-
regular Monami A mode. The fast Fourier transform of the inclination
angle and its upper envelope yields the spectra shown in the middle
and right columns of Fig. 6(b). Near the position of the instability exci-
tation (at around n =20-40), many frequencies in the low-frequency
region are present, but they are multiply related to each other. This is
also indicated by Fig. 6(c), where the spectrum of the instability onset
position shows a dominant frequency f,,.r=0.0040 and its
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FIG. 6. (a) The spatial and temporal variations in tilt angle fluctuations across the array. (b) From left to right, the columns are time histories (solid red line) and upper envelope
(solid blue line) of tilt angle fluctuations of representative vegetations, spectra of tilt angle fluctuations, and spectra of upper envelope of tilt angle fluctuations, respectively. (c)
The spectrum of KH instability onset position (y = 0.06, d=1.2).
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non-negligible harmonics. Clearly, in this case, the vegetation oscilla-
tion is modulated by not only the f,, but also its harmonics.
Furthermore, it is worth noting that the frequency of the upper enve-
lope and the low frequency of vegetation oscillation are no longer
equal from n =60 onward, as shown in Fig. 6(b). This is due to the
fact that in the selected case, the KH vortices can no longer be sus-
tained and break at this position, which will be discussed in Sec. IIT D.
In summary, the imperfect periodicity of fluctuations of the KH insta-
bility onset position leads to significant higher harmonics of f,,,.. The

ARTICLE pubs.aip.org/aip/pof

difference between mode B and A is whether the harmonics of £,
are dominant or not.

For the irregular Monami mode, the case with y=0.12 and
d=1.0 is taken as an example. It can be seen from Fig. 7(a) that in the
irregular Monami mode, the KH instability onset position varies irreg-
ularly with time. In the middle column of Fig. 7(b), there are multiple
incommensurate frequencies with comparable intensities. The spectra
of the upper envelope of the tilt angle in the right column of Fig. 7(b)
and the spectrum of the fluctuation of instability onset position in
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FIG. 7. (a) The spatial and temporal variations in tilt angle fluctuations across the array. (b) From left to right, the columns are time histories (solid red line) and upper envelope
(solid blue line) of tilt angle fluctuations of representative vegetations, spectra of tilt angle fluctuations, and spectra of upper envelope of tilt angle fluctuations, respectively. (c)

The spectrum of KH instability onset position (y =0.12, d=1.0).
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TABLE IIl. A summary and comparison of different Monami modes.

ARTICLE pubs.aip.org/aip/pof

Regular Monami  Quasi-regular Monami A Quasi-regular Monami B Irregular Monami
KH instability onset position Fixed Varying Varying Varying
The fluctuation frequency of None Single frequency with Single frequency with Multiple incommensurate
KH instability onset position f,,,ser negligible harmonics significant harmonics frequencies
The oscillation of vegetation Soib Soiv and fopcer Soiv and fopser Soiv and fopser

is modulated by

Fig. 7(c) both indicate the presence of these incommensurate low-
frequency components. For vegetation #n = 20, the oscillation is modu-
lated by the f,,,,5r; = 0.0090, while for vegetation n = 40, the oscillation
is modulated by the f,,,r2 =0.0070. The oscillations downstream of
n =40 are further complicated by the complex variation of KH vorti-
ces. In other words, under irregular Monami mode, although the vege-
tation oscillation is still modulated by its own oscillation frequency,
the fluctuation frequency of the instability onset position is no longer
unique. Compared to the quasi-regular Monami modes, the oscillation
of vegetation in the irregular mode is more complex. Finally, the main
characteristics of different Monami modes are summarized and com-
pared in Table II.

C. Influences of bending rigidity and gap distance
on the Monami instability

As stated in the preceding section, previous studies have demon-
strated that the Reynolds number, buoyancy parameter, and canopy
density affect the intensity and onset position of the mixing layer. In
this section, the influences of bending rigidity and gap distance on
Monami instability are explored, including the effects on the Monami
mode, the KH instability onset position, and the Monami characteris-
tic scales.
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The distribution of the different Monami modes in the (y, d)
parameter space is shown in Fig. 8. The figure reveals that the distribu-
tion of the Monami modes changes significantly for different bending
rigidity y and gap distance d. In the region where both y and d are
small (0.04 < 7 < 0.10, 04 <d<0.7), four Monami modes with a
scattered distribution are observed as there is no clearly dominant
parameter. Small changes in parameters can lead to a shift in the dif-
ferent modes, indicating their sensitivity to parameter changes. In the
region where y is small and d is large (0.04 < y < 0.10,0.8<d < 1.6),
the gap distance d plays a dominant role, and the KH instability excita-
tion position is prone to oscillation, with only quasi-regular Monami B
mode in this region. In the region where y is larger and d is smaller
(0.12 < y <022, 04<d<0.7), the increased y makes the mixing
layer more stable, and the KH instability excitation positions are less
likely to oscillate, with mostly regular Monami modes in this region
and only a few quasi-regular Monami modes scattered around the
boundaries. When both y and d are large, all modes are present except
for the quasi-regular Monami A mode, and the transition between
modes is closely related to y and d. The diagonal green dashed line is
taken as the dividing line where the two parameters have an equal
effect. Near this line, the vegetation arrays exhibit an irregular
Monami mode due to the competition of y and d. Moving away from
the line in the direction of increasing 7y, the dynamic mode changes

B Regular Monami
® Quasi-regular Monami A
® Quasi-regular Monami B

A Trregular Monami

FIG. 8. A map for the classification of
Monami modes in the space of (y, d). The
black squares, green circles, red circles,
and blue triangles denote the regular
Monami mode, quasi-regular Monami A
mode, quasi-regular Monami B mode, and
irregular Monami mode, respectively.

Phys. Fluids 35, 074113 (2023); doi: 10.1063/5.0155506
Published under an exclusive license by AIP Publishing

35, 074113-10

05:G1:20 €202 Isnbny 80


pubs.aip.org/aip/phf

Physics of Fluids

from irregular Monami to regular Monami, while moving away from
the line in the direction of increasing d, the dynamic mode transitions
from irregular Monami to quasi-regular Monami B mode. In general,
it is found that higher rigidity and smaller gap distance lead to a fixed
pattern of KH instability onset and thus, regular Monami waves are
observed for such vegetation patterns. Lower rigidity and larger gap
distance lead to a quasi-regular B pattern of KH instability onset; thus,
quasi-regular Monami B modes are presented. On the other hand,
both higher rigidity and larger gap distance and lower rigidity and
smaller gap distance can lead to different KH instability onset patterns
and thus cause different Monami modes, and especially, KH instability
onset patterns and the corresponding Monami modes are extremely
sensitive to lower rigidity and smaller gap distance.

The characteristics of the KH instability onset position, such as
the mean value and its standard deviation, are clearly influenced by
the bending rigidity y and gap distance d. As shown in Fig. 9(a), it can
be seen that the mean value of the instability onset position decreases
as the gap distance increases, i.e., the instability onset position moves
upstream, which is consistent with the findings of Fang et al.”’ As the
bending rigidity increases, the onset position also shifts upstream. This
means that y and d play the same role in shifting the mean onset posi-
tion. When both bending rigidity and gap distance are small (0.04 < y
< 0.10, 0.4 <d<0.6), the instability onset position moves sharply
upstream with increasing y and d, up to a maximum of An=30.
Further increasing y or d results in a smaller upstream shift of the
onset position, about An = 10. When both bending rigidity and gap
distance are large (0.16 < y < 0.22, 1.0 < d < 1.6), the onset position is
more stable, and changing y and d has an insignificant shift, An <5,
in the onset position.

The variation of the standard deviation of the onset position is
given in Fig. 9(b). It can be seen that the variation of the standard devi-
ation is closely related to the Monami mode. In the range of 0.04 < y
< 0.10 and 0.8 <d < 1.6, dominated by the quasi-regular Monami B
mode, the standard deviation decreases with increasing bending rigid-
ity. However, the variation with the gap distance is complicated. In the
range of 0.14 <y < 0.22 and 0.4 <d < 0.7, the standard deviation is
zero because of the prevailed regular Monami mode in which the onset
position is constant. In the other regions, due to the mode transition,

(a)

60

50

ARTICLE pubs.aip.org/aip/pof

the standard deviation varies intricately with y and d and is not further
discussed here.

In addition to the mean and standard deviation of the KH insta-
bility onset position, it is also important to consider the upstream and
downstream boundaries, ie., the most upstream and downstream
positions that can be reached, when describing how the onset position
fluctuates. Figures 10(a) and 10(b) show the variation of the upstream
and downstream boundaries of the onset position in the (y, d) parame-
ter space, respectively. It can be seen that the variation of the upstream
boundary of the onset position follows the same trend as the mean
onset position. However, for the downstream boundary, the variation
with respect to y and d is more complex, indicating that the down-
stream boundary is more sensitive to these parameters and the
Monami modes.

At the end of this section, the distributions of Monami mean
wavelength and mean wave height in the parameter space are given
according to the definitions in Sec. IIT A, and their variations with
the parameters are explored and compared with the results in the lit-
erature. As shown in Fig. 11(a), the Monami mean wave height H ,
is significantly affected by bending rigidity 7, while it is less affected
by the gap distance d. Note that the axes in this figure are switched
in comparison with Figs. 9 and 10 to present the variations of the
mean wave height and mean wavelength more clearly. In general,
H,, decreases gradually with increasing 7, and the larger the gap dis-
tance, the larger the decrease. In the range of 0.18 <y < 0.22, H,, is
very small, and changing the bending rigidity has almost no effect
on it. As seen from Fig. 11(a), H,, increases with increasing d at
small values of y. However, it is marginally affected by the gap dis-
tance when the bending rigidity is high. The Monami mean wave-
length T,,, is also significantly affected by both y and d. As shown in
Fig. 11(b), L,, mildly decreases with increasing 7, while it sharply
increases with increasing d, and this increase is particularly pro-
nounced in the range of 1.2 <d <1.6. In summary, Monami wave
height and wavelength decrease with increasing bending rigidity and
increase with increasing gap distance, consistent with the findings of
Wang et al.”’ However, the mean wave height relies more on the
bending rigidity, while the mean wavelength depends more on the
gap distance.

(®)

FIG. 9. Variations of the (a) mean and (b) standard deviation of the KH instability onset position with bending rigidity y and gap distance d. The same color indicates the same

bending rigidity .
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(®)

FIG. 10. Variations of the (a) upstream boundary and (b) downstream boundary of the KH instability onset position with bending rigidity y and gap distance d. The same color

indicates the same bending rigidity ;.

D. The spatial and temporal variations of the Monami
characteristic scales in different Monami modes

Section 11 C discusses the distributions of the space and time-
averaged features of the KH instability onset position and Monami
characteristic scales in the parameter space. However, the Monami
characteristic scales also experience spatial and temporal variations.
This section investigates the spatial and temporal variations of the
Monami characteristic scales for four different Monami modes and
explains the underlying physics.

For the regular Monami mode, the spatiotemporal variations of
wave height and wavelength are shown in Figs. 12(a) and 12(b),
respectively, for the case y=0.2 and d= 0.4, with the red solid line
indicating the location of the instability excitation. The wave height
shows a first-increase-then-decrease variation with spatial position.
Near the instability onset position, the KH vortex is initially excited
with a small size and low intensity, resulting in a small wave height as
shown in Fig. 3(a). As the KH vortices develop and increase in size
and intensity, the Monami wave height gradually increases and

reaches a maximum at around »n = 30—40. After this, the KH vortex
gradually moves upward away from the vegetation and reaches a
matured size. As it continues to move downstream, the KH vortex
gradually dissipates and loses strength due to fluid viscous effects.
Because of the uplifted and weakened KH vortex, the oscillation of the
vegetation decreases, resulting in a decrease in the Monami wave
height.

As for wavelength, the Monami wavelength after # = 40 is signifi-
cantly larger than that before n = 40, and the wavelength varies less in
the region with # > 40. This can be explained by the fact that the scales
of KH vortices after n =40 are almost fixed and larger than those
before n =40, which is also reflected by the tilt angle fluctuation
results shown in Fig. 4(a). Since the angle between the stripes and
the ordinate axis is related to the wave velocity ¢, it can be seen from
Fig. 4(a) that the wave velocity downstream of the array is slightly
greater than that upstream, due to the higher velocity flow away from
the vegetation, which convects the KH vortices faster when they are
uplifted in the downstream. However, the vegetation oscillation

FIG. 11. Variations of the (a) mean wave height and (b) mean wavelength of Monami with bending rigidity y and gap distance d. The same color indicates the same bending

rigidity 7.
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FIG. 12. The spatial and temporal varia-
tions in Monami (a) wave height and (b)
wavelength across the array in the regular
Monami mode (y=0.2, d=04). The
solid red line and the dashed black box
indicate the KH instability onset position
and the region where the stripes exist,
0.50 respectively.
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period, i.e., the Monami waving period T in the regular mode, is equal
in the upstream and downstream. According to L=cT, it can be
obtained that the Monami wavelength downstream of the array is
larger than that upstream.

It is also worth noting that the spatiotemporal variations of wave
height and wavelength show a streaky pattern in the range of
about # =25-40, as shown by the black dashed boxes in Figs. 12(a)
and 12(b). This implies that the wave height and wavelength are con-
stantly changing in this region. Take the vegetation n = 31 as an exam-
ple, where the KH vortex is not yet completely detached from the
vegetation array. When the vegetation is located between two adjacent
KH vortices, as shown in Fig. 13(a), the wavelength is L,,; = 1.66.
However, when the vegetation is subjected to the direct action of the
KH vortex, as shown in Fig. 13(b), the wavelength is L,,; = 1.49. As
the vegetation periodically experiences both “gap” and “direct action,”
the Monami wave alternates between large and small wavelengths at
different times, resulting in stripes in the spatial and temporal diagram
of wavelengths. When the KH vortex is completely detached from the
vegetation array, at n = 63, for example, the wavelengths at which the
vegetation is located are approximately equal, i.e., L, ~ L}, = 1.90,
regardless of whether the vegetation is located directly below the KH
vortex or between two adjacent KH vortices. The same is true for the

60 80 100

variation in the wave height. That is to say, in the regular Monami
mode, the spatial and temporal variations of the Monami characteris-
tic scales are the results of KH vortex evolution along the array.

For the quasi-regular Monami A mode, the spatiotemporal varia-
tions of wave height and wavelength at y = 0.06 and d = 0.6 are given
in Figs. 14(a) and 14(b), respectively. The red solid line indicating the
KH instability onset position fluctuates roughly between n = 32-40. It
can be seen from the figure that the spatiotemporal variation of
Monami wave height and wavelength shows an obvious periodicity,
which is closely related to the fluctuation of the instability onset position.
In the following, the variation of Monami wave height in Fig. 14(a) is
taken as an example to elaborate on the mechanisms behind this phe-
nomenon, and the same applies to the variation of wavelength.

When the instability onset position is near n = 32, the KH vortex
is excited at a position where the boundary layer thickness is relatively
thin. As a result, the excited KH vortex has a larger horizontal velocity
u and a higher height of vortex core when it passes by a given vegeta-
tion, compared with the vortices excited at other times (ie., at other
positions), as shown in Fig. 15(a) for vortex 1. The higher position of
the vortex core causes vortex 1 to penetrate less deeply and interact
less with the vegetation, forming a small wave height everywhere it
passes [see the blue spikes in Fig. 14(a)], which continues until around

FIG. 13. Contours of z-vorticity at (a)
t=1068 and (b) t=1100. Ly and L'y
represent wavelengths for n=31 at
t=1068 and 1100, respectively. L,,, and
L'y represent wavelengths for n =63 at
t=1068 and 1100, respectively.
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(b)

n=60. The larger 1 makes vortex 1 move faster than the vortices gen-
erated at other times, thus catching up with the previous vortex, ie.,
vortex 2, near the 65th vegetation, as shown in Fig. 15(b). This merg-
ing results in an instantaneous increase in the wave height around
n =70, as shown in Fig. 14(a). As vortex 1 and vortex 2 slow down
during the merging, the two are caught up and merge again with vor-
tex 3, forming vortex 4 and vortex 5. Actually, vortex 5 consists of a
vortex pair with opposite rotational directions and an upward gap
flow in between, due to which vortex 5 breaks away from the array
near n= 85, as shown in Figs. 15(e) and 15(f). As a result, the sweep
effect on the vegetation is significantly weaker, and a small wave height
appears in the last part of the array. The above-mentioned process is
shown by the dashed black line P in Fig. 14.

When the onset position is near n =40, the KH vortex excited
here moves at a lower speed due to the thicker boundary layer, as
shown by vortex 1 in Fig. 16(a). In this case, vortex 1 is caught up and
merges with vortex 2 near n =85, as shown in Figs. 16(b) and 16(c).
However, the merged vortex 4 moves very slowly and is soon caught
up again by vortex 3 behind it. A shear layer, which is unstable and is
briefly maintained before rapidly rolling up, is thus formed locally, cre-
ating a small wave height at the end of the vegetation array, as shown

70
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FIG. 14. The spatial and temporal varia-
tions in Monami (a) wave height and (b)
wavelength across the array in the quasi-
regular Monami A mode (y=0.06,
d=0.6). The solid red line and the
dashed black lines indicate the KH insta-
bility onset position and the process of the
KH vortex propagating downstream,
respectively.

in Fig. 16(d). The above process is shown by the dashed black line Q
in Fig. 14.

The above-mentioned analysis suggests that changes in the posi-
tion of the KH instability onset lead to KH vortices generating at dif-
ferent thicknesses of the boundary layer. This results in variations in
the convection velocities of the KH vortices and the positions and pat-
terns of their merging as they move downstream. Therefore, the spatial
and temporal variations in the Monami characteristic scales in the
quasi-regular Monami A mode are closely related to the fluctuations
in the KH instability onset position. The regular variation in the onset
position leads to periodic patterns of vortex merging, resulting in the
regular variation of Monami wave height and wavelength.

Figure 17(a) shows the spatiotemporal variation of the wave
height in the case where y=0.06 and d=1.2 for the quasi-regular
Monami B mode. It is evident that the variation of wave height with
the KH instability onset position is more complex because the fluctua-
tion of the onset position is no longer regular. However, there is still
some periodicity in this complex variation, particularly in the range of
n=24-40, as indicated by the black dashed circles in this figure. It is
not difficult to determine that this periodicity occurs at a frequency of
approximately f=0.0080, which matches well with the fluctuation
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FIG. 15. Contours of z-vorticity representing process P in Fig. 14 from t= 1418 to 1443.
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frequency of the KH instability onset position in this case. This means
that the variation of the Monami wave height in this range is still gov-
erned by the onset position. However, in the range of n = 50-100, the
wave height variation is very complex and exhibits no trace of period-
icity. This is primarily due to the fact that, at this downstream position,
the KH vortex continues to dissipate during its convection and cannot
continue to hold and breaks up near n =60, thus making the vortex
field downstream of this position chaotic and disordered, as shown in
Fig. 18(a). The complex variation in the Monami wave height is
mainly caused by the chaotic flow field. A similar situation arises in
the irregular Monami mode. Figure 17(b) presents a plot of the spatio-
temporal variation of the wave height for the case where y =0.12 and
d=1.0. In the range of n = 2240, the “periodic” variation marked by

@

FIG. 17. The spatial and temporal varia-
tions in the Monami wave height across
the array in (a) the quasi-regular Monami
B mode (y=0.06, d=1.2) and (b) the
irregular  Monami  mode (y=0.12,
d=1.0). The solid red line and dashed
black circles indicate the KH instability
onset position and some periodic varia-
tions in wave height, respectively.

the black dashed circles occurs at a frequency of 0.0071, which is one
of several KH instability onset frequencies (0.0010, 0.0070, and
0.0090). However, the so-called periodicity does not persist for an
extended period, and it disappears during ¢=1000-1150. That is to
say, the variation of the Monami wave height is only partially con-
trolled by the KH instability onset position in this range. Downstream
of this range, the wave height variation and the vortex evolution
exhibit no periodicity at all, similar to the quasi-regular Monami B
mode, as shown in Figs. 17(b) and 18(b). In summary, the spatiotem-
poral variations of the Monami characteristic scales in these two
Monami modes are modulated by the fluctuation of the KH instability
onset position and complex interactions between vortices at different
temporal and spatial scales.

(b)

20 40

U 4 LA LA A iU DR
80 100

FIG. 18. Contours of instantaneous z-vorticity in (a) the quasi-regular Monami B mode (y = 0.06, d = 1.2) and (b) the irregular Monami mode (y =0.12, d=1.0).
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IV. CONCLUSION

Direct numerical simulations were conducted to investigate the
behavior of a large array of flexible vegetations submerged in a 2 D lami-
nar boundary-layer flow. The simulations used the immersed boundary
method with a parameter combination of Re=400, f=1.0,
7 =0.04-0.22, and d =0.4-1.6. The time histories and spectra of incli-
nation angle fluctuations and their upper envelope, as well as the spectra
of fluctuation of KH instability onset position, were analyzed to identify
four Monami modes: regular Monami, quasi-regular Monami A, quasi-
regular Monami B, and irregular Monami. The influences of the bend-
ing rigidity and gap distance on the Monami modes, KH instability
onset position, and Monami characteristic scales were discussed in
detail. The causes of spatial and temporal variations of the Monami
characteristic scales in different Monami modes were also elucidated.

The fluctuation frequency of the KH instability onset position
modulates the Monami modes, resulting in different dynamic features.
In regular Monami, the vegetations oscillate at a single frequency
because the KH instability onset position remains fixed. For quasi-
regular Monami A, the modulation of onset position fluctuation
frequency induces different oscillation frequencies of vegetations.
Quasi-regular Monami B is modulated by both the fluctuation fre-
quency of onset position and its higher harmonics, while irregular
Monami is modulated by multiple incommensurate frequencies of
onset position fluctuation.

The Monami modes, onset position, and Monami scales are influ-
enced by the bending rigidity and gap distance. The mean value of KH
instability onset position moves upstream with increasing bending rigid-
ity and gap distance due to the joint upstream shift of both the upstream
and downstream boundaries. The standard deviation of the onset posi-
tion mostly relies on its corresponding Monami mode. Moreover, the
mean Monami wave height and wavelength decrease with the increasing
bending rigidity, while they increase with the increasing gap distance.

The causes of spatial and temporal variations of the Monami
characteristic scales differ across the four modes. In the regular
Monami mode, spatial and temporal variations are a result of KH vor-
tex evolution along the array. In the quasi-regular Monami A mode,
the regular variation of onset position causes different vortex merging
patterns occurring at different positions over a fixed period, leading to
regular spatiotemporal variations of Monami scales. In quasi-regular
Monami B and irregular Monami modes, some periodicity appears in
the spatiotemporal variations of Monami scales near the onset position
due to the onset position fluctuation, while the complex interactions
between vortices play an important role far from the onset position.

Overall, this study reveals a new underlying mechanism that the
fluctuation of KH instability onset position has an influence on the
Monami phenomenon, which has never been discussed quantitatively
in previous studies. The frequency of KH instability onset position
fluctuation is manifested as a low frequency in Monami, based on
which four Monami modes are classified. In general, the mean onset
position moves upstream with increasing bending rigidity and gap dis-
tance. The temporal variations of this onset position can lead to spatial
and temporal variations of the Monami characteristic scales. The fluc-
tuation of KH instability onset position should be paid more attention
in future studies of similar flows since KH instability and its vortices
affect the vertical transport of momentum, vertical scalar fluxes, mean
velocity profile, as well as turbulent diffusivity. Our analysis is there-
fore expected to have a wider impact in other related scenarios.
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APPENDIX: NUMERICAL METHODOLOGY VALIDATION
AND ARRAY LENGTH AND MESH GRID
INDEPENDENCE TESTS

To verify the accuracy of the present numerical methodology,
numerical simulations were performed at Re =400, y=0.2, d=0.5,
and V=90, and the results were compared with those of Zhang

130 T
-=-0 ——0
= ® = G —*— Guin
=T = gmax gmax
Zhang et al (2022) Present
110 A i
B
S 9ot 1
|
70 1
50 t
0 20 40 60 80 100
n

FIG. 19. Comparison of the mean, minimum, and maximum values of the inclina-
tion angle for selected representative vegetations with y=0.2, d=0.5, f=1.0,
Re =400, and V= 90.
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FIG. 20. Results of the array length independence test. (a) The mean and (b) standard deviation of the inclination angle along the array by using a different number of vegeta-
tions in the array. The black square, red circle, and blue triangle represent the results for the vegetations number of 70, 100, and 130, respectively.
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FIG. 21. Results of the mesh size independence test. (a) The mean and (b) standard deviation of the inclination angle along the array by using different meshes. The black
square, red circle, and blue triangle represent the results for the mesh size of L/96, L/48, and L/24, respectively.

et al."” using the same setups. Figure 19 displays the comparison of
the mean (6), minimum (0,,,;,), and maximum (6,,,,) values of
inclination angle for selected representative vegetations. The results
indicate that the differences between the present results and those
of Zhang et al.'” fall within a reasonable range, thus confirming the
accuracy of the present numerical methodology.

To ensure that the FSI simulation results in the present study
are independent of the number of vegetations in the array and the
mesh resolution, tests were conducted on a representative case with
7=02,d=05, = 1.0, and Re = 400.

Figures 20(a) and 20(b) show the mean value and standard devia-
tion of the inclination angle for each vegetation along the array under
three cases of V=70, V=100, and V'=130. From the figures, it can
be seen that adding more vegetations to the array has almost no effect
on 0, and it only affects 0z near the end of the array. Figure 20(b) also

shows that no matter how much the number of vegetations V is
increased, from 70 to 100 or to 130, the slope of 6,; downstream of the

array remains almost constant. To study a longer array of vegetations
with as little computational effort as possible, the number of vegeta-
tions V=100 is selected in the simulations.

Similarly, a mesh grid independence test was conducted on the
same case with an array length of V=100. Figure 21 shows that
both 0 and 0y have significantly smaller discrepancies between
Ax=1L/96 and Ax=L/48 than between Ax=L/48 and Ax=L/24.
In view of the convergence, the grid width Ax = L/48 is used in the

present study.
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