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A B S T R A C T   

In this paper, a continuous runout method (CRM) is proposed to evaluate the fatigue strength in 
high cycle and very high cycle fatigue regimes based on the probability and statistics theory. The 
CRM features the simultaneous testing of multiple samples such that the testing period could be 
1/5–1/3 of that by the common up-and-down method for 16 samples. It is validated by the 
experimental data for G20Mn5QT steel, 40 Cr steel, and Ti-6Al-4V alloy. The predicted lower 
limits of fatigue strength by CRM are a little more conservative than those by the up-and-down 
method.   

1. Introduction 

Fatigue is one of the main failure modes of materials and components. An effective way to avoid the losses caused by fatigue failure 
is to evaluate accurately the fatigue life or fatigue strength. Due to the capability of quantitatively assessing the likelihood of a certain 
fatigue failure [1–3], the probabilistic method has gained great popularity and it has also played an important role in the assessment of 
fatigue performance in very high cycle fatigue regime [4–6]. The up-and-down method (UDM) is one of the most widely used 
probabilistic-based methods for evaluating the fatigue strength and it is recommended by ISO [7,8]. However, the UDM provides an 
inaccurate standard deviation with a small size of samples although it provides accurate estimation of the mean fatigue strength [9,10]. 
The UDM is not applicable for D<0.3 (the meaning of this inequality will be explained in Sec. 3) when evaluating the standard de-
viation using Dixon-Mood formulas [7,8]. In some cases of D<0.3 with three stress levels, the standard deviation cannot even be 
evaluated by the more general maximum likelihood method [5]. Furthermore, the UDM is time-consuming, especially when evaluating 
the fatigue strength in very high cycle fatigue regime since the testing stress of the latter sample must be determined according to the 
result of the prior one [10]. For example, it takes at least 696 d (~1.9 y) for the UDM with sixteen samples to evaluate the fatigue 
strength at 109 cycles under the testing frequency of 100 Hz. 

Many modified methods have been proposed to improve the accuracy and efficiency of UDM. For example, Mao et al. [9] proposed 
a fatigue strength estimation method based on sample expansion and standard deviation correction and validated it by the staircase 
test of gears. Pollak et al. [11] studied the effectiveness of a bootstrapping algorithm on the standard deviation estimation of traditional 
Dixon and Mood formulas. They found that the scatter in standard deviation estimation was significantly reduced by incorporating 
bootstrapping algorithm. Lin et al. [12] compared the staircase, ray-projected, and parallel-projected accelerated methods based on 
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simulations. Their results showed that the parallel-projected method is the best for a regular coefficient of variation of fatigue limits, 
whereas Dixon and Mood method is better when the coefficient of variation is extremely large. 

Some other methods, e.g., the advanced IABG method [10], small sampling up-and-down method (SSUDM) [13], and SSUDM with 
a new maximum likelihood approach [14], have also been proposed. Nevertheless, all these methods are either too time-consuming or 
too complicated to utilize in engineering when evaluating the fatigue strength in high cycle and very high cycle fatigue regimes. 
Therefore, it is urgent to develop a new fatigue strength testing method with high efficiency and convenience to meet the requirement 
of long-life service, especially the ultra-long life service of materials and components [15–18]. 

In this article, a continuous runout method (CRM) is proposed for the fatigue strength evaluation based on the probability and 
statistics theory. The main aim of the paper is to improve the testing efficiency for the fatigue strength evaluation in high cycle and very 
high cycle fatigue regimes. According to this method, the testing is stopped if all np (determined according to the number of samples 
that could be provided, reliability, etc.) samples tested under a certain stress level do not fail at the given fatigue life. In this method, 
multiple samples can be tested at the same time, and the testing time is greatly reduced in comparison with UDM. The method is 
validated by the experimental data of three different metallic materials at 107 (or 108) cycles. The results of fatigue strength evaluation 
and testing efficiency are also compared with UDM. 

2. Experimental materials and testing methods 

Three materials are used for the method validation: the G20Mn5QT steel, the Ti-6Al-4V alloy, and the 40Cr steel. The G20Mn5QT 
steel was cut from new axle box bodies of a high-speed train [19]. The Ti-6Al-4V alloy was from as-received solid bars with 11 mm 
diameter. The 40Cr steel was from the solid bars with 11 mm diameter. Two groups of specimens are used. One group was as-received. 
The other group was first heated at 850 ◦C for 2 h and then quenched in oil. Finally, they were tempered at 200 ◦C for 2 h and cooled in 
air. The tensile strength and yield strength of the tested materials are presented in Table 1. The shapes of fatigue specimens are shown 
in Fig. 1, respectively. 

All the fatigue tests were conducted in air and at room temperature with the stress ratio R = − 1. The G20Mn5QT steel, Ti-6Al-4V 
alloy, and as-received 40Cr steel were tested by rotating bending fatigue machines (f=50 Hz). The heat-treated 40Cr steel was tested 
with the ultrasonic fatigue testing system USF-2000A (f=20 kHz) with an intermittent loading sequence of 200 ms pulse and 1 s pause 
[20,21]. The surface of the tested section was ground and polished for all the specimens before fatigue tests. 

3. Description of UDM 

At first, the mean and standard deviation of fatigue strength are estimated at a given fatigue life [7]. Then, the first stress level close 
to the estimated fatigue strength is chosen, and a stress step near the standard deviation is selected. Afterward, the first sample is tested 
at the first stress level. If it fails before the given fatigue cycles (e.g., 107), the tested stress level is decreased with a stress step; if the 
sample runs out, a stress step is added to the tested stress level. The samples are tested one after another until all samples have been 
tested. 

Dixon and Mood [8] divided the test results into two sets: failure and runout, and only the data of a smaller set were used in the 
calculation. The stress levels of the chosen set can be arranged in order as SD− M,0 < SD− M,1 < ⋯ < SD− M,l. They then deduced the simple 
formulas for the evaluation of the mean and standard deviation based on the maximum likelihood method: 

μ̂D− M = SD− M, 0 + d
(

A
C
±

1
2

)

(1)  

σ̂D− M = 1.62d
(

D +
1
2

)

, D > 0.3 (2)  

where SD− M, 0 indicates the minimum stress level in the chosen set; d denotes the stress step; “–” is taken if the failure set is selected and 
“+” is taken for the runout set. Other parameters are calculated as follows: 

A =
∑l

i=0
ifi, B =

∑l

i=0
i2fi, C =

∑l

i=0
fi, D =

BC − A2

C2 (3)  

where i = 0, 1,⋯, l . The subscript i in SD− M,i denotes the ith stress level, and the subscript l denotes the maximum stress level. fi denotes 
the frequency of events at the ith stress level in the selected group (failure or runout). A and B are the parameters used to compute the 
first two moments of stress levels SD− M,i, C is the total frequency of selected events, and D is a linear approximation to determine the 

Table 1 
Tensile strength and yield strength of the three tested materials.  

Material G20Mn5QT steel [19] Ti-6Al-4V alloy 40Cr steela 40Cr steelb 

Tensile strength (MPa) 582 1042 860 1905 
Yield strength (MPa) 399 1006 606 1429  

a As-received. b Heat-treated. 
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estimate of σD− M. A detailed discussion of these parameters can be found in [8]. 
Eq. (2) is only valid for D > 0.3. It can be proved that D < 0.3 always holds when the total number of stress levels is equal to three 

and D < 0.3 can also occur in some cases with more than three levels. Dixon and Mood [8] emphasized that the standard deviation 
should not be estimated by Eq. (2) when D < 0.3, and it should be evaluated based on the maximum likelihood method. However, the 
maximum likelihood method may also fail in some cases of three levels of stress, because the extreme value of the maximum likelihood 
function does not always exist in this situation. 

4. Description of CRM 

4.1. Fatigue strength testing 

The testing process of CRM is as follows: 
Step 1: The mean and standard deviation of fatigue strength are estimated at the given fatigue life, similar to that in UDM [7]. 

Determine the estimated fatigue strength S′ and stress step d between two adjacent stress levels. The stress step should be close to the 
standard deviation of the fatigue strength. If the standard deviation cannot be obtained before the test, the stress step d could be taken 
as 5% of the estimated average fatigue strength [7]. 

Step 2: Fatigue tests are carried out at the estimated fatigue strength and the higher or lower stress levels near it until three data 
indicated by “*” in Fig. 2 (failure at a higher level and running out at the two adjacent lower levels) are obtained. Denote the stress 
levels of the three samples in descending order as S1, S2, and S3, respectively. 

Step 3: Samples are tested at the stress level of S3. If all the tested samples run out and the number of runout samples reaches np − 1, 
the fatigue tests are accomplished and proceed to Step 5. Otherwise, proceed to Step 4. 

Step 4: Samples are tested at the next lower stress level until all np samples run out at this level. 
Step 5: The statistical analysis is performed for the tested data at the stress levels S1, S2,…, SN (the stress at which all the tested 

Fig. 1. Shapes of fatigue specimens (mm). a: G20Mn5QT steel; b: 40Cr steel (as-received) and Ti-6Al-4V alloy; c: 40Cr steel (heat-treated).  

Fig. 2. Sketch map of the CRM.  
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samples run out and the number is np), and the fatigue strength at a given failure probability and confidence is obtained. 
As indicated in Fig. 2, np − 1 samples can be tested at the stress level S3 simultaneously when the testing capacity is sufficient. If any 

sample does not reach the given fatigue life, np samples can also be tested simultaneously at the next stress level S4, and so on. 
Furthermore, the specimens can also be tested simultaneously when determining the stress levels indicated by “*” in Fig. 2 in step 2; 
then np − 1 samples are tested at the stress level S3 and/or np samples are tested simultaneously at the stress level S4 if the testing 
capacity is sufficient. Therefore, the proposed CRM could significantly improve the testing efficiency. The flow chart of the CRM is 
depicted in Fig. 3. 

4.2. Parameter estimation 

The maximum likelihood method is used for the parameter estimation [8]. Assuming that the fatigue strength S at a given fatigue 
life follows normal distribution with mean μ and standard deviation σ, the probability that ni specimens fail and mi specimens do not 
fail for ni +mi specimens tested at the ith stress level is [8]: 

P(ni,mi|Si ) = Cni
ni+mi

pni
i qmi

i (4) 

Fig. 3. Flow chart of the CRM.  

H. Wu et al.                                                                                                                                                                                                             



Engineering Fracture Mechanics 290 (2023) 109482

5

where pi and qi are the probabilities of failure or non-failure of a specimen at stress level Si, respectively, i.e., 

pi = P(S < Si) =

∫ Si

− ∞

1̅̅̅
̅̅

2π
√

σ
e−

(t− μ)2

2σ2 dt =
∫ Si − μ

σ

− ∞

1̅̅
̅̅̅

2π
√ e− t2

2 dt (5)  

qi = P(S⩾Si) = 1 − pi (6) 

The likelihood function can be derived from Eq. (4) as 

L(μ, σ) = K
∏I

i=1
pni

i qmi
i (7)  

where K =
∏I

i=1Cni
ni+mi and I is the total number of stress levels. If K > 1, the likelihood function corresponds to various possible testing 

sequences. 
If Eq. (7) has the extreme value, taking the natural logarithm of Eq. (7) and the partial derivatives with respect to μ and σ, the 

following equations are obtained 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑I

i=1

1̅̅
̅̅̅

2π
√ e

− 1
2

(
Si − μ

σ

)2⎛

⎜
⎜
⎝

mi

1 −

∫ Si − μ
σ

− ∞

1̅̅
̅̅̅

2π
√ e− t2

2 dt

−
ni

∫ Si − μ
σ

− ∞

1̅̅
̅̅̅

2π
√ e− t2

2 dt

⎞

⎟
⎟
⎠ = 0

∑I

i=1

Si − μ
σ

1̅̅
̅̅̅

2π
√ e

− 1
2

(
Si − μ

σ

)2⎛

⎜
⎜
⎝

mi

1 −

∫ Si − μ
σ

− ∞

1̅̅
̅̅̅

2π
√ e− t2

2 dt

−
ni

∫ Si − μ
σ

− ∞

1̅̅
̅̅̅

2π
√ e− t2

2 dt

⎞

⎟
⎟
⎠ = 0

(8) 

It is indicated in Eq. (8) that, for a given stress level, μ and σ are only related to the cumulative numbers of failure or non-failure 
events, and independent of the sequence in which events happen. 

Introducing the error function erf(x) = 2̅̅
π

√
∫ x

0 e− t2 dt, the following relation is given 

∫ Si − μ
σ

− ∞

1̅̅
̅̅̅

2π
√ e− t2

2 dt =
1
2
+

1
2

erf
(

Si − μ
̅̅̅
2

√
σ

)

(9) 

Substitution of Eq. (9) into Eq. (8), we have 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑I

i=1
e
− 1

2

[
S1 − (i− 1)d− μ

σ

]2⎛

⎜
⎜
⎝

mi

1 − erf
(S1 − (i − 1)d − μ

̅̅̅
2

√
σ

) −
ni

1 + erf
(S1 − (i − 1)d − μ

̅̅̅
2

√
σ

)

⎞

⎟
⎟
⎠ = 0

∑I

i=1

S1 − (i − 1)d − μ
σ e

− 1
2

[
S1 − (i− 1)d− μ

σ

]2⎛

⎜
⎜
⎝

mi

1 − erf
(S1 − (i − 1)d − μ

̅̅̅
2

√
σ

) −
ni

1 + erf
(S1 − (i − 1)d − μ

̅̅̅
2

√
σ

)

⎞

⎟
⎟
⎠ = 0

(10) 

Eq. (10) is a system of nonlinear equations with two independent variables μ and σ. We can easily perceive from Eq. (10) that the 
solution (μ̂, σ̂) is not only related to the cumulative numbers of failure or non-failure events at each stress level but also dependent on 
the values of the stress level S1 and the stress step d in specific tests. Therefore, Eq. (10) is too specific and fails to reflect the intrinsic 
characteristics of various testing results. 

To deduce more universal equations other than Eq. (10), three dimensionless parameters are defined and introduced: 

α =
d
S1
, k =

μ − S1

σ =
μ/S1 − 1

σ/S1
, r =

d
σ =

α
σ/S1

(11) 

Substitution of Eq. (11) into Eq. (10), a system of equations with respect to k and r can be obtained as follows: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑I

i=1
e− 1

2[(i− 1)r+k ]2

⎛

⎜
⎜
⎝

mi

1 + erf
((i − 1)r + k

̅̅̅
2

√

) −
ni

1 − erf
((i − 1)r + k

̅̅̅
2

√

)

⎞

⎟
⎟
⎠ = 0

∑I

i=1
[(i − 1)r + k ]e− 1

2[(i− 1)r+k ]2

⎛

⎜
⎜
⎝

mi

1 + erf
((i − 1)r + k

̅̅̅
2

√

) −
ni

1 − erf
((i − 1)r + k

̅̅̅
2

√

)

⎞

⎟
⎟
⎠ = 0

(12) 
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It is obvious that the solution (k, r) of Eq. (12) only depends on the tested stress levels and the cumulative numbers of failure or non- 
failure events at each stress level. The values of the stress level S1 and the stress step d do not influence the solution (k, r) in Eq. (12), 
indicating that Eq. (12) is a more universal form compared to Eq. (10). 

The parameters μ and σ could be estimated by solving Eq. (10) or Eq. (12) through numerical approaches. If the extreme value of Eq. 
(7) does not exist, one possible method is to take the maximum likelihood estimation of Eq. (7) if the range of values of μ and σ is 
known, and then find the estimated values of μ and σ. In this situation, maximizing the maximum likelihood function (i.e., Eq. (7)) 
could be transformed to solving the following constrained optimization problem: 

max
μ,σ

L(μ, σ)
s.t. μ ∈ M, σ ∈ Σ

(13)  

where M and Σ are intervals of μ and σ, respectively. Apparently, the optimal solutions of (13) should be located on the boundaries of 
the feasible region, which means that the priori knowledge of μ and σ has a significant influence on the parameter estimation. It is 
noted that the maximum likelihood method is used here as that for the UDM [8]. Other methods for the parameter estimation can be 
found in Ref. [10]. 

4.3. Survival probability 

The survival probability of the ith (i=1, 2,…, M, and M is the number of stress levels) stress level Si is 

1 − pi = 1 −

∫ Si

− ∞

1̅̅̅
̅̅

2π
√

σ
e−

(t− μ)2

2σ2 dt

= Φ(k + (i − 1)r )

=
1
2
+

1
2

erf
(

k + (i − 1)r
̅̅̅
2

√

)
(14) 

Note that S1− p0 denotes the stress level at a given survival probability 1 − p0, we have 

S1− p0 = S1 + k1− p0 d (15) 

From Eq. (11), the following expression is obtained 

S1− p0 = μ −
(
k − rk1− p0

)
σ (16) 

The relation between the survival probability 1 − p0 and k1− p0 is written as 

1 − p0 = Φ
(
k − rk1− p0

)
(17) 

or 

k1− p0 =
1
r
[
k − Φ− 1(1 − p0)

]
(18) 

Substitution of Eq. (18) into Eq. (15), the stress level S1− p0 associated with the survival probability 1 − p0 is expressed as 

S1− p0 = S1 +
1
r
[
k − Φ− 1(1 − p0)

]
d (19) 

or 

S1− p0 = S1

{

1 +
1
r
[
k − Φ− 1(1 − p0)

]
α
}

(20)  

4.4. One-sided tolerance limit 

When examining whether the fatigue strength of an individual specimen meets the requirement, the one-sided tolerance limit is 
usually employed since it encompasses the uncertainty from the parameter estimation. 

From Eq. (11), the sample mean μ̂ and standard deviation σ̂ can be derived as 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ̂
S1

= α k̂
r̂
+ 1

σ̂
S1

= α 1
r̂

(21) 

or 
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⎧
⎪⎪⎨

⎪⎪⎩

μ̂ = S1 +
k̂
r̂

d

σ̂ =
d
r̂

(22) 

Then, the lower limit of the fatigue strength S(p,1− β,v) at a confidence level of 1 − β, a failure probability of p and degree of freedom v 
can be determined as [7] 

S(p,1− β,v)

S1

=
μ̂
S1

− k’
(p,1− β,v)

σ̂
S1

=
α
r̂

(
k̂ − k’

(p,1− β,v)

)
+ 1

(23) 

The coefficient k′
(p,1− β,v) in Eq. (23) can be obtained from Table B.1 [7] or calculated by the following formula [22] 

k′
(p,1− β,v) =

1
̅̅̅
v

√ F− 1
tv− 1 ,

̅̅
v

√
zp
(1 − β) (24)  

where zp is the upper quartile of the standard normal distribution, and Ftv− 1 ,
̅̅
v

√
zp 

is the cumulative distribution function of a noncentral t- 
distribution with the degree of freedom v − 1 and non-centrality parameter 

̅̅̅
v

√
zp. 

It is noted that the testing strategy and analysis in Sec. 4.1–4.4 are independent of the fatigue life under the assumption that the 
fatigue strength follows normal distribution. So, the CRM can evaluate the testing results at any stress range in high cycle and very high 
cycle fatigue regimes. 

5. Several special cases of CRM 

Here, further analysis is performed for the case of three and four levels of stress, and detailed results are provided for the case of 
np = 7. The reason is that the occurrence of the probability of more than four levels for CRM is relatively small (as shown in Sec. 6.1) 
and the case of three and four levels of stress with seven continuous runout specimens in CRM could correspond to the number of 
samples required for exploratory research in UDM [7]. 

If np samples tested at the stress level of S3 do not fail at the given fatigue life, we have the case of three levels of stress for the CRM 
in Fig. 2. According to the principle of maximum likelihood, the standard deviation σ derived from Eq. (7) tends to zero, which 
contradicts the fact that fatigue performance of the material or component generally has a certain dispersion. That is, if the fatigue 
strength at a given fatigue life approximately follows the normal distribution, the standard deviation is a finite and non-zero value. 
Therefore, the value of σ should be reasonably estimated or restricted. Otherwise, the values of μ and σ could not be estimated by the 
maximum likelihood method. In this situation, a special case of four levels of stress in Fig. 4a is introduced for the fatigue strength 

Fig. 4. Sketch maps of the CRM. a: Transformed case of three levels of stress into four levels of stress; b: Case of four levels of stress.  
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evaluation. In Sec. 6.1, it will be demonstrated that the case of four levels of stress in Fig. 4a does not underestimate the fatigue strength 
largely due to the much smaller stress step d compared to the fatigue strength. Therefore, the fatigue strength evaluation for the case of 
three levels of stress can be obtained approximately from the case of four levels of stress in Fig. 4a. It is noted that the conventional 
UDM [7] also fails to evaluate the standard deviation of fatigue strength when the tested results are three stress levels. 

The case of four levels of stress in Fig. 2 will be obtained when at least one specimen fails before the given fatigue life at the stress 
level S3 and np samples running out tested at the stress level S4. Without loss of universality, the case of four levels of stress in Fig. 4b is 
considered, i.e., assume that np samples exist at the stress level S3 even though the tested specimens are fewer than np. It is recom-
mended to test np samples if the testing resources are sufficient because, in this situation, specific results can be obtained according to 
the following analysis. 

As an example, Table 2 shows the dimensionless mean μ̂/S1, dimensionless standard deviation σ̂/S1, and the lower limit of fatigue 
strength at 95% confidence levels and different failure probabilities (10%, 5%, 1%) for the case of np = 7 in Fig. 4b, with different 
numbers of runout specimens m3 and d = 0.05S1. Table 2 is calculated using Eqs. (11) and (12). By employing Table 2, one can make a 
conservative estimation according to the actual number of runout specimens tested at the third stress level. For example, if there is one 
failed specimen and five runout specimens at the stress level S3 in the test, one can utilize the column m3 = 5 to estimate the fatigue 
strength. One can also evaluate the fatigue strength by the actually tested results through the approach presented in Sec. 4. The 
calculated dimensionless mean and standard deviation for one failed specimen and five runout specimens at S3 is 0.9543 and 0.0445, 
respectively. The dimensionless lower limits of fatigue strength are 0.8605, 0.8380 and 0.7948, respectively, which is a little bigger 
than the corresponding results for m3 = 5 in Table 2. The lower limits of the fatigue strength at other confidence levels and failure 
probabilities can be calculated by substituting the dimensionless mean and standard deviation in Table 2 along with the associated 
coefficient k′

(p,1− β,v) from Table B.1 [7] or Eq. (24) into Eq. (23). 
When stress step d takes other values (e.g., 0.03S1), one can at first substitute the dimensionless mean and standard deviation of the 

corresponding column (according to numbers of runout specimens m3) in Table 2 into Eq. (25) to determine the mean and standard 
deviation. Then, obtain the coefficient k′

(p,1− β,v) from Table B.1 [7] or Eq. (24) at the given confidence level and failure probability. 
Finally, the associated lower limits of the fatigue strength can be calculated by substituting the coefficient together with the mean and 
standard deviation into Eq. (23). 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μ̂ = 20d

[(
μ̂
S1

)

d=0.05S1

− 1

]

+ S1

σ̂ = 20d
(

σ̂
S1

)

d=0.05S1

(25) 

It is noted that Eq. (25) applies to any cases in CRM as long as d = 0.05S1 because Eq. (25) is derived by substituting the 
dimensionless quantity α = 0.05 into Eq. (11). 

6. Discussion 

6.1. Influence of stress step on testing results 

In fact, for the given material (or component) and fatigue life, the occurrence of either testing situation (three, four, or more levels 
of stress) is related to the selection of the stress step d, i.e., the relationship between the stress step d and the standard deviation (fatigue 
strength is assumed to follow the normal distribution at the given fatigue life). Considering that at least 15 samples are required for 
exploratory experiments and at least 30 samples for reliability experiments [7], two cases of CRM (i.e., np = 7 and np = 14) are chosen 
for the following analysis since the total sample number for the parameter estimation in CRM could be 16 and 30 respectively in these 
two situations according to Fig. 2 and Sec. 5. Fig. 5 shows the probabilities of the occurrence of seven continuous runout samples (i.e., 
np = 7) and fourteen continuous runout samples (i.e., np = 14) under the ith (i = 2,3,4,…,8) stress level for the CRM under different 
values of d/σ [8]. In Fig. 5, the mean value and standard deviation of the fatigue strength are estimated by the results of the samples 
marked by “*” in Fig. 2, and the probabilities of occurrence are obtained by Eq. (14). 

It is seen from Fig. 5 that, for the given value of d/σ, the probability of occurrence of both the seven and fourteen continuous runout 
samples increases with the increase of the number of the stress level i. When the value of d/σ is small (e.g., d/σ=0.75), the probabilities 

Table 2 
Dimensionless mean, dimensionless standard deviation, and the lower limit of fatigue strength at different confidence levels and failure probabilities 
for the case of np = 7 in Fig. 4b with different numbers of runout specimens m3 tested at the stress level of S3 and d = 0.05S1.  

m3 1 2 3 4 5 6 

μ̂/S1  0.8956  0.9053  0.9163  0.9286  0.9420  0.9558 
σ̂/S1  0.04127  0.04450  0.04716  0.04873  0.04829  0.04363 
S(0.10,0.95,15)/S1  0.8117  0.8148  0.8204  0.8295  0.8439  0.8671 
S(0.05,0.95,15)/S1  0.7914  0.7930  0.7973  0.8056  0.8202  0.8457 
S(0.01,0.95,15)/S1  0.7526  0.7512  0.7529  0.7598  0.7748  0.8047  
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of occurrence are 49.0 % and 24.0 % for the seven and fourteen continuous runout samples at the stress level of S3, respectively. In 
addition, probabilities are 86.7% and 75.1% at the stress level of S4 and 98.2% and 96.5% at the stress level of S5, respectively. This 
indicates that the case of four levels or five levels of stress will probably occur for the CRM. For the given number of stress level i, the 
probabilities of occurrence of both the seven and fourteen continuous runout samples increase with an increase of d/σ. For instance, 
when d/σ=1, the probabilities of occurrence of seven and fourteen continuous runout samples are 68.1% and 46.3% at the stress level 
of S3 and 96.9% and 93.9% at the stress level of S4, respectively. In this case, the case of four levels of stress for the CRM will probably 
be present. When the value of d/σ is relatively large (e.g., d/σ=1.5), the probabilities of the occurrence of seven and fourteen 
continuous runout samples become very high at the stress level of S3, which are 92.4% and 85.4%, respectively. While the probabilities 
of occurrence are low at the stress level of S2, which are 18.1% and 3.3% for seven and fourteen continuous runout samples, 
respectively. In this situation, the case of three levels of stress will probably appear for the CRM. 

The results in Fig. 5 also indicate that when the value of d/σ ranges from 0.5 to 2.0, the probabilities of occurrence of both the seven 
and fourteen continuous runout samples are very low at the stress level of S2, which ranges from 7.5% to 30.2% and from 0.6% to 9.1%, 
respectively. This is the reason why the continuous fatigue test begins at the stress level of S3 rather than S2 in the CRM. Therefore, for 
the reasonable value of d/σ, there is usually a high probability for the occurrence of three or four levels of stress, a certain probability 
for the occurrence of five levels of stress, and a very small probability for the occurrence of more than five levels of stress in the tests by 
CRM. In other words, CRM does not require testing numerous samples in most situations. For example, after the stress levels indicated 
by “*” in Fig. 2 are determined, usually only six (thirteen) more samples need to be tested for the case of three (four) levels of stress to 
occur if np = 7. 

Moreover, for the case of three levels of stress with np = 7 and d = 0.05S1 in Fig. 2, the lower limit of the fatigue strength at 95% 
confidence and 5% failure probability is 0.8457S1 (i.e., 0.94S3) through the transformed case of four levels of stress shown in Fig. 4a. 
For the case of three levels of stress with np = 14 and d = 0.05S1 in Fig. 2, the lower limit of the fatigue strength at 95% confidence and 
5% failure probability is 0.8758S1 (i.e., 0.97S3). Based on the consideration that the probabilities of occurrence are very low for both 
the seven and fourteen continuous runout samples at the stress level S2 when d/σ ranges from 0.5 to 2.0 (Fig. 5), the transformation 
from three levels of stress in Fig. 2 to four levels of stress in Fig. 4a would not induce an excessively low mean value when evaluating 
the fatigue strength, since the stress step d is generally small with respect to the fatigue strength. 

6.2. Comparison with UDM 

6.2.1. Evaluation of fatigue strength 
As examples, the CRM with np = 7 is used for the fatigue strength evaluation of the G20Mn5QT steel, the Ti-6Al-4V alloy, and the 

40Cr steel (as-received and heat-treated). Specimens are considered runout if fatigue lives exceed 107 cycles for the G20Mn5QT steel, 
Ti-6Al-4V alloy and as-received 40Cr steel, and exceed 108 cycles for the heat-treated 40Cr steel. The estimated average fatigue 
strength is 240 MPa for the G20Mn5QT steel, 500 MPa for the Ti-6Al-4V alloy, 400 MPa for the as-received 40Cr steel and 600 MPa for 
the heat-treated 40Cr steel. Stress steps are all taken as 5% of the estimated average fatigue strength of the tested materials for both 
CRM and UDM. 

Fig. 6 shows the experimental results for the G20Mn5QT steel, Ti-6Al-4V alloy, and 40Cr steel (as-received and heat-treated) by 
CRM and UDM, in which six specimens were tested simultaneously at the third stress level for Ti-6Al-4V in CRM. It is seen from Fig. 6 
that the case of three levels of stress occurs for all three tested materials in CRM. Here, the transformed four levels of stress in Fig. 4a are 
used to evaluate the fatigue strength for the CRM. For G20Mn5QT steel, d = 0.05S1. Referring to the case m3 = 6 in Table 2, the lower 
limits of the fatigue strength at different failure probabilities with 95% confidence at 107 cycles can be obtained directly and the results 
are shown in Table 3. For Ti-6Al-4V alloy, d/S1 = 0.037 ∕= 0.05. By using Table 2 and substituting S1 = 675 MPa and d = 25 MPa into 
Eq. (25), the mean value and standard deviation of the fatigue strength at 107 cycles are obtained as 653 MPa and 22 MPa, respectively. 

Fig. 5. Probabilities of occurrence of seven and fourteen continuous runout samples under the ith (i=2, 3, 4, …, 8) stress level for the CRM at 
different values of d/σ. 
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Taking the calculation of the lower limit of the fatigue strength at the failure probabilities of 10%, 5%, and 1% with 95% confidence as 
an example, it is to determine the one-sided tolerance limit associated with the confidence and failure probability by referring to 
Table B.1 in Ref. [7], which are 2.032, 2.523 and 3.463, respectively. Then, substitute these values and the obtained mean value and 
standard deviation in Eq. (23), and the lower limits of the fatigue strength at the failure probabilities of 10%, 5%, and 1% with 95% 
confidence are obtained (Table 3). For 40Cr steel, similar to the Ti-6Al-4V alloy, by the employment of Table 2 and substitution of S1 
and d in Eq. (25), the mean value and standard deviation of the fatigue strength are determined as 362 MPa and 17 MPa for the as- 
received 40Cr steel and 513 MPa and 26 MPa for the heat-treated 40Cr steel, respectively. The lower limits of the fatigue strength at the 
failure probabilities of 10%, 5% and 1% with 95% confidence are shown in Table 3. 

While for the UDM, four levels of stress are obtained for G20Mn5QT steel and the heat-treated 40Cr steel, and three levels of stress 
are obtained for Ti-6Al-4V alloy and the as-received 40Cr steel, as shown in Fig. 6. For G20Mn5QT steel, the lower limits of the fatigue 
strength at the failure probabilities of 10%, 5% and 1% with 95% confidence are calculated through the conventional UDM due to the 
value of D>0.3 [7,8], as shown in Table 3. For Ti-6Al-4V alloy and the as-received 40Cr steel, the fatigue strengths cannot be calculated 
through the conventional UDM due to the value of D<0.3 [7,8]. This case can also not be dealt with by the maximum likelihood 
method [8] since no extreme value exists for the likelihood function Eq. (7). For the heat-treated 40Cr steel (D<0.3), the fatigue 
strengths are calculated by Eq. (12), which can also be calculated through a cut-and-trial method described in Appendix B in Ref. [8]. 
The results by UDM are shown in Table 3. 

Table 3 indicates that, for the same number of samples used for statistical analysis, the lower limits of the fatigue strength obtained 

Fig. 6. Testing results by CRM and UDM, in which the stress denotes the nominal stress amplitude in a-f and the stress amplitude in g and h. a, c, e 
and g: CRM. b, d, f and h: UDM. 
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by the CRM are generally a little smaller than those obtained by the UDM at the same confidence and failure probability. One main 
reason is attributed to the difference in the testing strategy between CRM and UDM. The CRM is toward the low stress, which increases 
the sample size at relatively low stresses. While the stress levels of samples oscillate around the mean of fatigue strength for the strategy 
of UDM. Therefore, the CRM gives more reliable evaluations of the fatigue strength because more samples are tested at relatively low- 
stress levels. 

6.2.2. Testing efficiency 
The testing efficiency between CRM and UDM is also compared. Based on the analysis in Fig. 5, the CRM usually presents the results 

of three or four levels of stress for the cases of seven continuous runout specimens (i.e., np = 7) and fourteen continuous runout 
specimens (i.e., np = 14) if d/σ is within a reasonable range. Considering that CRM could test multiple samples at the same time, it 
could be found that only twice the testing time of the given fatigue life is needed to finish the whole tests of the three- or four-stress- 
level cases when the test condition is allowable. The first part of testing time is the simultaneous test of specimens at the estimated 
fatigue strength and several stress levels near it to determine the stress levels indicated by “*” in Fig. 2. The other part of the time is the 
simultaneous test of np − 1 specimens at the stress level of S3 or/and np specimens at the stress level of S4. If the same number of samples 
are used for analysis in the UDM, sixteen and thirty samples are needed corresponding to the case of np = 7 and np = 14 in CRM, 
respectively. Since the stress levels of specimens in UDM depend on the tested result of the previous one, there are at least seven (or 
fourteen) runout specimens if the tested results are three levels of stress. And there are at least six (or thirteen) runout samples if the 
tested results are four or five levels of stress. Take the Ti-6Al-4V alloy test in Fig. 6 as an example, the specimens were tested one by one 
for UDM until the number of valid samples reached sixteen. For CRM, first several samples were tested simultaneously to obtain the 
three samples by “*” in Fig. 2; then six specimens were tested simultaneously at S3 and the testing procedure was accomplished because 
all the np (np = 7) specimens at S3 ran out. If the testing time of failed samples is excluded, the time consumed for UDM is 18.5 d (the 
testing time of samples that are not used for analysis is not involved) while that for CRM is only 4.63 d. The testing efficiency of CRM is 
improved by 75.0% compared with UDM. 

Fig. 7 shows a further comparison of the testing time between CRM and UDM. In Fig. 7, the cases of three to five levels of stress are 
taken into consideration for the tested results. Testing time of samples that fail before the given fatigue life and that are not used for 
analysis is not involved in UDM. It is seen from Fig. 7a that, if the test condition allows, the testing time of CRM could be independent of 
the number of test specimens, which significantly reduces the testing time and improves the testing efficiency in comparison with 
UDM. For example, when sixteen samples are used for the evaluation of the fatigue strength at 109 cycles in Fig. 7b, at least 696 d are 
needed for UDM at the testing frequency of 100 Hz, but only 232 d are needed for CRM. Compared to UDM, the actual testing time is 

Table 3 
Lower limits of fatigue strength at different failure probabilities with 95% confidence for different materials at 107 (or 108) cycles.  

Materials S(0.10,0.95,15)/MPa S(0.05,0.95,15)/MPa S(0.01,0.95,15)/MPa 

G20Mn5QT steel a 208 203 193 
G20Mn5QT steel b 225 220 210 
Ti-6Al-4V alloy a 609 598 577 
Ti-6Al-4V alloy b – – – 
40Cr steel (as-received) a 307 298 282 
40Cr steel (as-received) b – – – 
40Cr steel (heat-treated) a 460 447 423 
40Cr steel (heat-treated) b 467 460 447  

a CRM. b UDM. 

Fig. 7. Comparison of testing time between CRM and UDM. a: Dimensionless testing time vs number of samples, in which the dimensionless testing 
time denotes the ratio of the total testing time to the given fatigue life; b: Testing time at 100 Hz vs fatigue life for 16 samples. 
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reduced by 464 d, and the testing efficiency of CRM is improved by at least 66.7%. Fig. 7a also indicates that CRM could have the same 
dimensionless testing time for the fatigue strength evaluation in high cycle and very high cycle fatigue regimes when the test condition 
is allowable. 

It is noted that the failure mechanism may be different for the samples at different tested stress levels for some materials [23,24]. In 
this case, the fatigue strength at the given fatigue life may not follow well the normal distribution, and CRM might not give accurately 
evaluated results. 

7. Conclusions 

In this paper, the CRM is proposed for the fatigue strength evaluation based on the probability and statistics theory. The main 
results are as follows: 

(1) The new method allows testing multiple samples at the same time, which greatly improves the testing efficiency especially for 
the evaluation of fatigue strength at ultra-long fatigue life. For example, it could save at least 66.7% of the time with sixteen samples 
compared with UDM. 

(2) The CRM could deal with test results with three levels of stress, while the UDM usually fails in some cases with three levels of 
stress. It gives a more reliable evaluation of the fatigue strength in high cycle and very high cycle fatigue regimes since the testing stress 
is towards the low stress and more specimens are tested at relatively lower levels. 

(3) This novel method is validated by the experimental data of three kinds of materials, and it is promising for fatigue strength 
evaluation, especially in very high cycle fatigue regime. 
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