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Abstract

The extremely high dimensionality and nonlinearity in the Boltzmann equation bring
tremendous difficulties to the study of rarefied gas dynamics. This paper addresses a neural
network-based surrogate model that provides a structure-preserving approximation for the
fivefold collision integral. The idea and notion originate from the similarity in structure be-
tween the BGK-type relaxation model and residual neural network (ResNet) when a particle
distribution function is treated as the input to the neural network function. Therefore, we ex-
tend the ResNet architecture and construct what we call the relaxation neural network (Re-
laxNet). Specifically, two feed-forward neural networks with physics-informed connections
and activations are introduced as building blocks in RelaxNet, which provide bounded and
physically realizable approximations of the equilibrium distribution and velocity-dependent
relaxation time respectively. The evaluation of the collision term is thus significantly ac-
celerated due to the fact that the convolution in the fivefold integral is replaced by tensor
multiplication in the neural network. We fuse the mechanical advection operator and the
RelaxNet-based collision operator into a unified model named the universal Boltzmann equa-
tion (UBE). We prove that UBE preserves the key structural properties in a many-particle
system, i.e., positivity, conservation, invariance, H-theorem, and correct fluid dynamic limit.
These properties promise that RelaxNet is superior to strategies that naively approximate
the right-hand side of the Boltzmann equation using a machine learning model. The im-
plementation of RelaxNet and training strategy are demonstrated. The construction of the
RelaxNet-based UBE and its solution algorithm are presented in detail. Several numerical
experiments, where the ground-truth datasets for the supervised learning task are produced
by the Shakhov model, velocity-dependent ν-BGK model, and the full Boltzmann equation,
are investigated. The capability of the current approach for simulating non-equilibrium
flow physics is validated through excellent in- and out-of-distribution performance. The
open-source codes to reproduce the numerical results are available under the MIT license
[1].
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Table 1: Nomenclature.
t, x, v time, space, and particle velocity variables
f particle distribution function
Q, A collision and advection operators of the Boltzmann equation
ν relaxation frequency
ψ collision invariants
H function used in the H-theorem
M Maxwellian distribution function
ρ, V, T , E density, bulk velocity, temperature, and energy
c peculiar velocity
m molecular mass
k Boltzmann constant
E equilibrium state in the relaxation model
σ activation function
E-net subnet in RelaxNet to approximate equilibrium state
τ -net subnet in RelaxNet to approximate relaxation time
D dimension
τ relaxation time
ν̄, τ̄ mean relaxation frequency and time
µ viscosity
p pressure
M+ correction term for equilibrium distribution
α, β outputs of E-net and τ -net
ELU, ReLU Exponential Linear Unit and Rectified Linear Unit functions
θ trainable parameters
NNθ RelaxNet function
θ1, θ2 The parts of θ belonging to E-net and τ -net
C cost function
λ, ξ regularization strengths
ε minimum value of cost function
α̂ Coefficients of Maxwellian in summation form of collision invariants
α̃ product of α and α̂
P, q pressure tensor and heat flux
m moment variables
φ basis functions
Nm polynomial degree of φ
γ Lagrange multipliers of the entropy closure problem
H Heaviside step function
Ni number of samples
fref , Qref referenced distribution function and collision term in the dataset
Nh number of hidden layers
CFL Courant–Friedrichs–Lewy number
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1. Introduction

The advances in machine learning are increasingly incorporated in computational physics
to enable versatile data-driven modeling and simulation. Interestingly, not so long ago, many
were convinced that there are significant differences between scientific computing and ma-
chine learning tasks. For example, scientific computing generally processes smaller but more
computationally intensive amounts of data. These data from different locations are expected
to be linked by physical principles, whereas classical machine learning mainly deals with dis-
crete and localized data. However, recent progress, e.g., physics-informed neural networks
[2], suggests that there is ample room for building data-efficient and physics-enhanced ma-
chine learning approaches for scientific applications at the intersection of classical numerical
methods.

Among possible applications, a key use of scientific machine learning (SciML) is to help
establish reliable physical models. This approach is especially crucial when first-principle
models are missing, e.g., fitting potential-energy hypersurfaces whose topographical features
are sufficiently close to those of real but unknown surfaces such that the simulation results
from molecular dynamics (MD) or Monte-Carlo (MC) methods are experimentally meaning-
ful [3, 4]. Another promising direction is to seek simplified models for high-dimensional and
nonlinear terms. An appropriate surrogate model can significantly reduce the dimensional-
ity and complexity of differential and integral equations, thereby improving computational
efficiency while maintaining satisfactory accuracy [5, 6].

The SciML-integrated model is expected to be as universally accurate as possible to the
ground-truth physics. It should state fundamental physical laws, e.g., the conservation of
mass in fluid dynamic equations. It is desirable to preserve the structural properties under
physical constraints, e.g., symmetry, invariance, and non-decreasing entropy. Different from
the brute-force solution, this requires us to design physics-oriented architectures, parameters,
and connections in the machine learning model, or seek efficient regularization approaches [7–
10]. Ideally, one would like to perform a small set of experiments under idealized situations
and obtain a model that works under more general conditions [11]. In other words, we
expect the trained model to extrapolate well for both in- and out-of-distribution cases [12]
and the generalization gap to be as small as possible [13]. This further requires that the
model should have clear physical meaning and interpretability rather than pure black-box
nature.

In this paper, we focus on the kinetic theory of gases. Lying at its core, the Boltz-
mann equation describes the evolution of a many-particle system in a statistical manner,
which serves as a cornerstone of many hydrodynamic and thermodynamic theories [14, 15].
The Boltzmann equation is an integro-differential equation defined in a high-dimensional
phase space. The extremely high dimensionality and nonlinearity pose a notorious challenge
for theoretical analysis and numerical simulation. Starting from the introduction of the
relaxation-type model [16], tremendous efforts have been made to seek a sufficiently accu-
rate simplified model of the Boltzmann equation. To further improve the accuracy in highly
dissipative regions and preserve the correct fluid dynamic limit, without changing the form of
the relaxation model, explorations have been conducted to modify the objective equilibrium
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function [17, 18] and the relaxation frequency [19, 20]. Although these improved models can
provide the correct Prandtl number, the accuracy in describing strongly non-equilibrium
flows is less satisfactory [21].

The burgeoning scientific machine learning offers an alternative for establishing simplified
models of the Boltzmann equation. The existence of the multifold integral term precludes
direct use of automatic differentiation-based techniques [2, 22]. Preliminary attempts have
been made to build simplified surrogate models for the Boltzmann collision integral. The
underlying techniques of related work involve neural differential equations [23], reduced
order modeling [24], and spectral representations [25]. Despite the good results obtained by
these methods, very limited proof has been provided showing that the numerical method
preserves the key structures, e.g., the H-theorem [26], of a many-particle system. Therefore,
the preservation of such physical constraints must rely on the quality of training and the
reliability of the dataset. It is notoriously known that both tasks are difficult to be perfect,
and the generalization performance of machine learning models based on this paradigm can
be questionable.

In this paper, we exploit the structural similarity of the BGK-type relaxation model
and the residual neural network (ResNet) to construct the relaxation neural network (Re-
laxNet), which plays as a surrogate model for the Boltzmann collision integral with quanti-
tative interpretability. Specifically, two feed-forward neural networks with physics-informed
connections and bounded activation functions are introduced as building blocks to pro-
vide physically realizable approximations of the parameterized equilibrium distribution and
velocity-dependent relaxation time. The evaluation of collision term is thus significantly
accelerated since the computation of convolutions in the fivefold integral is replaced by the
tensor multiplication in the neural network. The advection operator (left-hand side) of the
original Boltzmann equation and the neural network-based collision term are fused into a
trainable framework, i.e., the so-called universal Boltzmann equation (UBE) [6, 23]. We
prove that the RelaxNet-based UBE preserves key structural properties. The positivity,
invariance, correct fluid dynamic limit, and hyperbolicity of advection operator hold in-
dependent of trainable parameters. The conservation and H-theorem are preserved up to
the training error. The implementation of the RelaxNet-based UBE, training strategy, and
solution algorithm are presented in detail.

The paper is organized as follows. In Section 2, we introduce some fundamental concepts
in the kinetic theory of gases. Section 3 presents the idea and architecture of RelaxNet as
well as the training method. Section 4 describes the methodology for generating datasets for
training and testing. Section 5 details the numerical solution algorithm for the RelaxNet-
based universal Boltzmann equation. Section 6 contains the numerical experiments for both
spatially homogeneous and inhomogeneous cases to validate the current methodology. The
last section is the conclusion. The nomenclature of this paper can be found in Table 1.

2. Kinetic Theory

The kinetic theory of gases describes the evolution of a many-particle system in terms of
the particle distribution function f(t,x,v), where t ∈ Γ ⊆ R+ is time variable, x ∈ D ⊆ R3
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is space variable, and v ∈ R3 is particle velocity.. For dilute monatomic gas in the absence
of external force, the Boltzmann equation can be written as

∂tf + v · ∇xf = Q(f, f) =

∫
R3

∫
S2

[f (v′) f (v′∗)− f(v)f (v∗)]B(cos θ, g)dΩdv∗, (1)

where {v,v∗} denotes the pre-collision velocities of two classes of colliding particles, and
{v′,v′∗} is the corresponding post-collision velocities. The collision kernel B(cos θ, g) mea-
sures the probability of collisions in different directions, where θ is the deflection angle and
g = |g| = |v − v∗| is the magnitude of relative pre-collision velocity. The solid angle Ω
denotes the unit vector along the relative post-collision velocity v′ − v′∗, and the deflection
angle satisfies the relation θ = Ω · g/g. Note that if we define the collision frequency as

ν(v) =

∫
R3

∫
S2
f (v∗)B (cos θ, g) dΩdv∗, (2)

the collision term in Eq.(1) can be written as a combination of gain and loss, i.e.,

Q(f, f) = Q+(f, f) +Q−(f),

Q+ =

∫
R3

∫
S2
f (v′) f (v′∗)B(cos θ, g)dΩdv∗, Q− = ν(v)f(v).

(3)

The Boltzmann equation possesses structural properties that reflect the physical con-
straints of a many-particle system. Such structure is manifested in the properties of the
collision operator Q and the advection operator A = ∂t + v · ∇x, and it plays a key role
in design of the analytical and numerical solution algorithms of the Boltzmann equation.
These structural properties can be highlighted as follows [27].

(1) Invariant range: There exists a set B ⊆ [0,∞) consistent with the physical bounds of
f such that Range(f(t, ·, ·)) ⊆ B if Range(f(0, ·, ·)) ⊆ B. A minimum requirement for
the invariant range is f ≥ 0 since f represents the density of particles.

(2) Conservation: There exists the collision invariants ψ = (1,v,v2/2)T such that

〈ψQ(g, g)〉 = 0, ∀g ∈ Dom(Q), (4)

where 〈·〉 =
∫
R3 ·dv denotes the integral over particle velocity space. This property

leads to the conservation laws

∂t〈ψf〉+∇x · 〈vψf〉 = 0, (5)

where W(t,x) = (ρ, ρV, ρE)T = 〈ψf〉 are named as conservative variables in fluid
mechanics. These velocity-space integrals are also commonly referred as moments of
particle distribution function f .

(3) Hyperbolicity : For each fixed v, the advection operator A is hyperbolic over (t,x) ∈
5



Γ×D.

(4) H-theorem: There exists a differentiable function H(f) = −f log f such that

〈H ′(g)Q(g, g)〉 ≤ 0, ∀g ∈ Dom(Q) s.t. Range(g) ⊆ D, (6)

which further results in the dissipation law

∂t〈H(f)〉+∇x · 〈vH(f)〉 ≤ 0. (7)

The H-theorem implies that H is a Lyapunov function for the Boltzmann equation,
and the logarithm of its minimizerM must be a linear combination of the collision in-
variants ψ, which can be further proved to have the following form, i.e., the Maxwellian
distribution function [28],

M := ρ
( m

2πkT

)3/2

exp
(
− m

2kT
c2
)
, (8)

where m is molecular mass, k is the Boltzmann constant, T is temperature, and
c = v −V is the peculiar velocity.

(5) Galilean invariance: There exists the Galilean transformation defined by

G(g)(t,x,v) = g(t,x− ωt,v − ω), (9)

where ω ∈ R3 is a translational velocity, that commute with the advection and collision
operators, i.e.,

A(G(g)) = G(A(g)), ∀g ∈ Dom(A),

Q(G(g)) = G(Q(g)), ∀g ∈ Dom(Q).
(10)

As a consequence, the transformed particle distribution function g = G(f) still satisfies
Eq.(1) if f is a solution of it.

Following the structure in Eq.(3) and the H-theorem, several relaxation models have
been developed to simplify the computation of the fivefold integral on the right-hand side
of the Boltzmann equation. These simplified models take the form

Q(f) = ν(E − f), (11)

where E denotes the target equilibrium state and ν is the relaxation frequency. In the Bhat-
nagar–Gross–Krook (BGK) model [16], the equilibrium distribution E is set as Maxwellian,
and ν is independent of v, which implies that particles with different velocities share the
same probability of collision. Although the BGK model can satisfy the structural properties
shown in Section 2, the underlying assumption becomes particularly unreasonable when the
magnitude of ν in rarefied gases is moderate, which makes the BGK model inaccurate in
describing highly dissipative flows. One direction to improve the BGK model is to introduce
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v-dependent relaxation frequency in Eq.(11) [19, 20]. Following the principle that high-speed
particles should have a greater probability of collision, these models attempt to recover the
true collision frequency in Eq.(2). Another idea is to supplement correction terms in E based
on high-order moments of f , e.g., stress tensor [17] and heat flux [18], which builds a multi-
level relaxation mechanism towards Maxwellian. It is shown that both strategies above can
provide the correct Prandtl number. However, no model has yet provided as satisfactory the
solution as the full Boltzmann equation in describing the evolution of gases far away from
equilibrium.

3. Relaxation Neural Network

3.1. Deep residual learning

Our idea is to build a surrogate model of the nonlinear function described by the Boltz-
mann equation based on a neural network. To preserve as many structural properties as
shown in Section 2, we prefer a physics-oriented architecture rather than a naive feed-forward
neural network.

We choose to construct the model on the basis of residual neural network (ResNet). To
clarify this, we briefly introduce here the basic principles of ResNets. The concept of residual
learning was proposed to mitigate the degradation problem in deep neural networks, i.e., as
the network depth increases, the accuracy gets saturated and then degrades rapidly. This
phenomenon implies that it is non-trivial to learn a deeper model based on its shallower
counterpart in which the added layers only perform identity mapping. Therefore, instead
of building each few stacked layers to fit a desired underlying mapping directly, one can
explicitly let these layers fit a residual mapping. It has been shown that it is easier to
optimize the residual mapping than the original unreferenced mapping [29].

Figure 1 shows the schematic diagram of the building block in a ResNet. We denote
H(u) as the underlying mapping to be fit by a few stacked layers and u as the input to the
first layer. If a continuous function can be approximated asymptotically by multiple non-
linear layers, then we can equivalently conclude that they can asymptotically approximate
the residual function, i.e., F(u) = H(u)− u, provided that the input and output are of the
same dimensions. The original function thus becomes H(u) = F(u)+u, and its formulation
is realized by adding shortcut connections [30] to feedforward or convolutional neural net-
works. The shortcut can skip one or several hidden layers and performs identity mapping.
The nonlinear activation function inside the hidden layers is denoted as σh. The addition
operation can be regarded as the connection function which combines the contributions from
F and identity mapping of u. The residual block is further activated with σ, and the final
output can be written as

N (u) = σ(F(u) + u). (12)

It is noticeable that the relaxation model of the Boltzmann equation in Eq.(11) has a
similar structure to the ResNet. Specifically, if the particle distribution function is considered
as the input to the solver of relaxation term, then the equilibrium distribution function
E = E(f) plays an equivalent role to that of H. Next, unlike in neural networks where
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weight layer

weight layer

Figure 1: Schematic diagram of a building block in the residual neural network (ResNet).

addition is employed as the connection function, subtraction is used in the relaxation model.
Finally, the relaxation frequency can be viewed as an activation function acting on the
equilibrium function E and the shortcut connection from f . The building block of the solver
of relaxation term can thus be written as

Q(f) = ν(E(f)− f). (13)

The structural similarity between the relaxation model of Boltzmann equation in Eq.(13)
and ResNet in Eq.(12) can be easily noticed. This provide us an opportunity to build a
physics-oriented neural network based on the relaxation model and preserve the structural
properties of the Boltzmann equation.

3.2. Relaxation neural network

Following the spirit of the relaxation model and ResNet, we build a novel neural net-
work model which is named as relaxation neural network (RelaxNet). The neural network is
built on top of the discrete velocity formulation of the Boltzmann equation, i.e., the particle
distribution function is discretized in the velocity space and the macroscopic variables as
its moments can evaluated by numerical quadrature. The schematic diagram of the model
with forward pass is shown in Figure 2. As can be seen, RelaxNet consists of two feedfor-
ward subnets and the corresponding activation and connection functions. We describe these
components in detail below.

(1) Neural networks

• E-net: feedforward networkNE : RNv → RD+2, where Nv is the number of quadra-
ture points to discretize f in the velocity space and D ∈ {1, 2, 3} is the dimension
of interest. The neural network takes the difference between Maxwellian and dis-
tribution function, i.e.,M−f , as input. The output of neural network is a vector
α = (α1,α2, α3)T , where α2 is a vector of dimension D. The hyperbolic tangent
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-net

-net

ReLU

ELU

Figure 2: Schematic diagram of forward pass in the relaxation neural network (RelaxNet).

(tanh) function is employed as the activation function for the hidden layers. We
require the E-net to have only weights without biases.

• τ -net: feedforward network Nτ : RNv+1 → RNv . The input to the neural network
(M− f, τ̄)T is a vector of dimension Nv + 1. Here τ̄ is the mean relaxation time
calculated by

τ̄ =
µ

p
, (14)

where µ is the viscosity that can be decided from a molecular model, and p is
the pressure. The relationship between mean relaxation time and frequency is
ν̄τ̄ = 1. The output of neural network β is a vector of the same dimension as f .
The hyperbolic tangent (tanh) function is used as the activation function for the
hidden layers. We require the τ -net to have only weights without biases.

(2) Structure functions

• M(f): Maxwellian function described in Eq.(8), where the macroscopic variables
can be evaluated as

ρ = 〈f〉, V =
〈vf〉
〈f〉

, T =
m

3kρ
〈c2f〉. (15)

• M+(α): Constructor of the correction term for equilibrium distribution via α,
i.e.,

M+ = exp

(
α1 +α2 · v +

1

2
α3v

2

)
, (16)

(3) Connection and activation functions
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• ELU: Exponential Linear Unit function defined as

R(z) =

{
z, z > 0,

ez − 1, z <= 0.
(17)

• ReLU: Rectified Linear Unit function defined as

R(z) =

{
z, z > 0,
0, z <= 0.

(18)

• ⊕: Addition.

• 	: Subtraction.

• ⊗: Multiplication.

Based on the proposed RelaxNet, a neural network enhanced Boltzmann equation can
be formulated as

∂tf + v · ∇xf = NNθ(f, τ̄), (19)

where θ denotes trainable parameters in the model. Such an equation is consistent of the idea
of universal differential equation [6], where the mechanical advection operator A = ∂t+v·∇x

and the neural collision operator NNθ constitute a differentiable surrogate model. Therefore,
we can call Eq.(19) as the universal Boltzmann equation (UBE).

3.3. Training strategy
UBE in Eq.(19) is a data-driven model and it forms a typical supervised training task.

Given a dataset consisting of reference solutions to the Boltzmann equation, an optimization
problem can be set up which minimizes the difference between the current prediction of UBE
model and ground-truth solution. We define the cost function as

C(θ) =
∑
n,i,j

‖NNθ −Qref‖(tn,xi,vj) + λ
∑
n,i

‖〈ψNNθ〉‖(tn,xi) + ξ
L∑
l

‖θl‖, (20)

where ‖ · ‖ denotes the Euclidean distance, and {n, i, j} are the indices of the solution
collocation points at {tn,xi,vj}. The generation of datasets used for the above function will
be detailed in Section 4.

The latter two terms in Eq.(20) serve as regularization terms to mitigate overfitting. The
second term in Eq.(20) comes naturally from the physical constraint (2) shown in Section
2, i.e., the collision term should conserve mass, momentum and energy in the Boltzmann
equation. This physics-informed regularization [31] leads to more accurate preservation of
conservation laws, and improves the physical interpretability of the model. The last term
in Eq.(20) sums over the squared weight parameters of the network, where θl denotes the
weight parameters of l-th layers and L is the total number of layers. The parameters {λ, ξ}
are the regularization strengths. We require

λNtNx > 1, ξNtNxNv > 1, (21)
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where {Nt, Nx, Nv} are the number of time steps, physical cells, and velocity points respec-
tively in the dataset.

The cost function in Eq.(20) can then be minimized by different optimization algorithms.
In this paper, we adopt the Adam [32] method which is an improvement of the stochastic
gradient descent method with adaptive moment estimation. The gradient of Eq.(20) with
respect to θ is computed with the help of reverse-mode automatic differentiation (AD).
Consider a smooth function y = F (x), the reverse-mode AD computes the dual (conjugate-
transpose) matrix of Jacobian J = ∇F at x = x0 with the chain rule

(J (F ) (x0))∗ = (J (G1) (x0))∗ × · · · × (J (Gk) (xk−1))∗ , (22)

with xi := Gi (xi−1) for i = 1, . . . , k − 1. The implementation of the reverse-mode AD can
be found in the open-source library Zygote [33].

3.4. Structure of RelaxNet

The universal Boltzmann equation based on RelaxNet preserve the structural properties
illustrated in Section 2. We prove these properties in detail below.

Theorem 1. Let f be the solution of the RelaxNet-based universal Boltzmann equation given
in Eq.(19), then the range of f satisfy

Range(f(t,x,v)) ⊆ B = {f : 0 ≤ f <∞} , (23)

given Range(f(0,x,v)) ⊆ B.

Proof. We define shifted f along characteristics as

f#(t,x,v) = f(t,x + vt,v). (24)

Then UBE in Eq.(19) can be written as

d

dt
f# + νf# = νE#, (25)

where d/dt denotes the full derivative. Given the initial value

f(0,x,v) = f0(x,v), (26)

then the solution of the initial value problem consisting of Eq.(25) and (26) can be written
as [34]

f#(t,x,v) = f0(x,v)e−νt +

∫ t

0

e−ν(t−s)νE#(s,x,v)ds. (27)

Proving Theorem 1 is equivalent to proving that Range(f#) ⊆ B. As shown in Section 3.2,
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E and ν can be expressed as

E = ReLU(MM+), M+ = exp(αθ1 ·ψ),

ν =
1

τ
, τ = τ̄(1 + ELU(βθ2)),

(28)

where θ = (θ1, θ2)T denotes all the trainable parameters. With the help of the physics-
informed activation functions, i.e., ELU and ReLU, it is clear that E and ν in Eq.(28) are
non-negative independent of θ. Besides, since the hidden layers inside E-net and τ -net are
activated by the tanh function, the following relation holds,

Range(E) ⊆ B, Range(ν) ⊆ B (29)

given any finite layers and parameters. So far, Theorem 1 is proved.

Theorem 2. Let NNθ be the optimized RelaxNet, then the moments of NNθ with respect to
the collision variants ψ satisfy

‖〈ψNNθ(g, τ̄)〉‖ ≤ ε, ∀(g, τ̄) ∈ Dom(NNθ), (30)

where ε is the minimum value of the cost function.

Proof. The optimized cost function in Eq.(20) satisfy

C(θ) =
∑
n,i,j

‖NNθ −Q‖(tn,xi,vj) + λ
∑
n,i

‖〈ψNNθ〉‖(tn,xi) + ξ
L∑
l

‖θl‖ = ε, (31)

which results in
λ
∑
n,i

‖〈ψNNθ〉‖(tn,xi) ≤ ε. (32)

Due to the requirement in Eq.(21), we have

‖〈ψNNθ〉‖ ≤ ε, (33)

at any solution point in the dataset.

Theorem 3. For each fixed v, the advection operator A in the RelaxNet-based universal
Boltzmann equation is hyperbolic over (t,x) ∈ Γ×D.

Proof. As RelaxNet surrogates only the right-hand side of the Boltzmann equation, this
theorem naturally holds according to Property (3) in Section 2.

Theorem 4. The function H(f) = −f log f satisty

∂t〈H(f)〉+∇x · 〈vH(f)〉 ≤
∑
i

χiε, (34)
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where χ =
∑

i χi is a vector of the same dimension of α. The H-theorem holds asymptotically
as ε→ 0.

Proof. Substituting H ′(f) = −(1 + log f) into the RelaxNet-based UBE in Eq.(19) and
considering Eq.(28) yield

〈(∂tf + v · ∇xf)(1 + log f)〉 = ∂t〈H(f)〉+∇x · 〈vH(f)〉 = 〈ν(E − f)(1 + log f)〉. (35)

Notice that the Maxwellian distribution in Eq.(8) can be written as

M = exp(α̂ ·ψ), (36)

where
α̂ = (α̂1, α̂2, α̂3)T ,

α̂1 = log

(
ρ
( m

2πkT

)D/2
− mV2

2kT

)
, α̂2 =

mV

kT
, α̂3 = − m

kT
.

(37)

Given the structure function M+ defined in Eq.(16), the equilibrium state can be written
as

E =MM+ = exp(α̃ ·ψ) (38)

where α̃i = αiα̂i. From Theorem 2, we obtain

〈ν(E − f) log E〉 =

〈
ν(E − f)

(
α̃1 + α̃2 · v +

1

2
α̃3v

2

)〉
≤
∑
i

α̃iε. (39)

The right-hand side of Eq.(35) can be written as

〈ν(E − f)(1 + log f)〉 = 〈ν(E − f)〉+ 〈ν(E − f) log f〉 ≤ ε+ 〈ν(E − f) log f〉. (40)

We rewrite the last term of the above equation as

〈ν(E − f) log f〉 = 〈ν(E − f)(log f − log E)〉+ 〈ν(E − f) log E〉. (41)

Since the logarithm is a monotonically increasing function, the first in the above equation
is non-positive. Considering Eq.(35), (39), and (41), we end up with

∂t〈H(f)〉+∇x · 〈vH(f)〉 ≤

(
1 +

∑
i

α̃i

)
ε. (42)

So far, Theorem 4 is proved.

Theorem 5. The RelaxNet-based universal Boltzmann equation is Galilean invariant.

Proof. We assume f is a solution to UBE in Eq.(19) and consider the Galilean transformation
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defined in Eq.(9), i.e.,

g(t,x,v) = G(f) = f(t,x− ωt,v − ω). (43)

As the advection operator in UBE is the same as the original Boltzmann equation, the
commute naturally holds, i.e.,

A(G(f)) = G(A(f)). (44)

Besides, the inputs to RelaxNet, i.e., {f, τ̄}, are scalar and Galilean invariant, and thus we
have

Q(G(f), τ̄) = G(Q(f, τ̄)). (45)

Therefore, g is also a soslution to Eq.(19).

Theorem 6. The RelaxNet-based universal Boltzmann equation preserves the correct con-
tinuum limit.

Proof. Based on Theorem 2, we obtain the transport equations for conservative variables

∂t〈ψf〉+∇x · 〈vψf〉 ≤ ε, (46)

or specifically,

∂

∂t

 ρ
ρV
ρE

+∇x ·

 ρV
ρVV
ρEV

 ≤ −∇x ·

 0
P

P ·V + q

+

 ε
ε
ε

 , (47)

where

P = 〈ccf〉, q =
1

2
〈cc2f〉, (48)

denote the pressure tensor and heat flux respectively. UBE in Eq.(19) can be rewritten as

f = E − τNNθ(f, τ̄), (49)

where τ = 1/ν is the relaxation time. In the continuum limit, infinitely many intermolecular
interactions happen in a unit of time, i.e., ν →∞. From Eq.(28), we have τ → 0 and thus
f → E . We next prove that E converges to M in the continuum limit. Note that the
difference between Maxwellian and distribution function, i.e., M− f , are used as input to
the zero-bias E-net in RelaxNet. As a result, the E-net produces α→ 0 and M+ → 1, and
thus we have

E =MM+ ∼M (as f →M). (50)

In addition, given 〈ψ(M− f)〉 = 0, the residuals in Eq.(46) converge to zero,

ε→ 0 (as f →M), (51)
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and we recover the exact Euler equations independent of θ, i.e.,

∂

∂t

 ρ
ρV
ρE

+∇x ·

 ρV
ρVV
ρEV

 = −∇x ·

 0
pI
pV

 , (52)

given the following relationship as f =M,

P = pI, q = 0. (53)

4. Data Sampling

As presented in Section 3.3, a dataset with ground-truth distribution functions fref and
collision termsQref is needed in Eq.(20) to perform the supervised learning task. We consider
the space of f as a sample space under the constraint,

f(t,x,v) ∈ B = {f : 0 ≤ f <∞} , (54)

where B can be referred as the physically realizable set. A data-distribution pf can be
incorporated to generate f from B.

A common strategy for data-driven modeling is to first perform deterministic simulations
and extract solutions in the intermediate steps as sample data. One disadvantage of this
approach is that pf is implicitly determined by the chosen test cases and can thus be heavily
biased. It may not be possible to cover enough different particle distributions and flow
regimes. The high expense of CFD simulations makes it challenging to establish an all-
round database.

In this paper, we provide an alternative sampling strategy to generate particle distribu-
tion functions and corresponding collision terms. The theoretical basis of this approach is
the closure hierarchies of moment system of the Boltzmann equation [35]. In the following
we briefly explain the principle and implementation of the approach.

4.1. Generation of distribution function

A closure strategy of the Boltzmann equation aims to reconstruct the particle distribution
function f from moments

m = 〈φf〉, (55)

under the constraint

f(t,x,v) ∈ BM = {f : f ≥ 0, ‖〈φf〉‖ <∞} , (56)

where φ(v) ∈ RNm is a set of basis functions. Here we choose the basis in such a way that
the first moments in m are consistent with the conservative variables W = (ρ, ρV, ρE)T .
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Therefore, we can write φ as
φ(v) = (ψ, φ̃(v))T (57)

where φ̃(v) are chosen as monomials and mixed polynomials of v up to degree Nm.
The entropy closure seeks for a unique map m 7→ f by forming an optimization problem.

The objective function of the optimization problem is built with the help of a convex entropy
function. For classical Maxwell-Statistics statistics, the minimal entropy closure problem
writes

min
g∈Bm

〈g log(g)− g〉, s.t. m = 〈φg〉. (58)

The solution of the above optimization problem can be expressed as

fu(v) = exp(γu · φ), (59)

where γu ∈ RNm is a vector of Lagrange multipliers of the dual formulation of the optimiza-
tion problem, which reads

γu = argmax
γ∈RNm

{γ ·m− 〈exp(γ · φ)〉}. (60)

The idea is to sample particle distribution functions from Eq.(59). Note that the condi-
tion number of the minimal entropy closure at a moment u can be computed via the positive
semi-definite Hessian of the dual problem, i.e.,

Hu = 〈φφ exp(γu · φ)〉. (61)

where φφ denotes the union of φ. As analyzed in [36, 37], generally the lower the condition
number, the less the reconstructed particle distribution differs from the Maxwellian. There-
fore, by controlling the condition number of Hu, we can generate distribution functions that
are close and far from equilibrium. We let the first three elements of γ be consistent with
α̂ in Eq.(37), and sample γn for n > 3 with a prescribed probability density.

It is worthwhile to mention that the condition number cannot be arbitrarily large due to
the constraint of realizability. The realizable set of the minimal entropy problem in Eq.(58)
writes

R = {m : m = 〈φg〉, g ∈ Bm}. (62)

It is known that the minimal entropy problem near the boundary of R, denoted as ∂R,
may become ill-conditioned [38]. Therefore, we keep the condition number within a certain
range, and employ an upwind reconstruction to enable the capability to generate highly non-
equilibrium distribution functions that may exist in highly dissipative flows. The distribution
functions produced from Eq.(59) are divided randomly into two parts, and the referenced f
is reconstructed as

fref = fLH (n · v) + fR(1−H (n · v)), (63)

where {fL, fR} are the distribution functions from these two parts, n is a randomly generated
unit vector, and H (x) is the heaviside step function. Figure 3 shows typical near-equilibrium
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and non-equilibrium particle distribution functions reconstructed from Eq.(63) using the
degree Nm = 4. As the polynomial degree increases, the non-equilibrium effect is expected
to be stronger. The detailed sampling strategy is summarized in Algorithm 1. Note that
the sampling strategy here can work together with classical simulation-based data samplers,
where the data produced by a specific simulation can be employed as reinforcement data on
top of the pre-generated data. We will explain this further in Section 5.

u
-3 0 3

f
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0.4

Left
Right
Maxwellian
Reconstructed

(a) Near-equilibrium reconstructed distribu-
tion function

u
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f

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Left
Right
Maxwellian
Reconstructed

(b) Non-equilibrium reconstruction distribu-
tion function

Figure 3: Typical one-dimensional near-equilibrium and non-equilibrium particle distribution functions gen-
erated by the sampling strategy in Section 4.1 with the polynomial degree Nm = 4. The values of velocity
u and distribution function f are normalized by (2RT0)1/2 and ρ0/(2RT0)1/2, respectively.

4.2. Computation of collision term

After the particle distribution functions are collected, the collision terms need to be
computed and used in the cost function Eq.(20). In this paper, we consider three different
collision terms for the Boltzmann and its model equations, which are briefly introduced
below.

(1) Full Boltzmann collision integral with fast spectral method : The full Boltzmann term
can be transformed into Carleman-type [39],

Q(f, f) =

∫
R3

∫
S2

Θg

[
f

(
v +

gΩ− g

2

)
f

(
v∗ −

gΩ− g

2

)
− f(v)f (v∗)

]
dΩdv∗

= 2

∫
R3

∫
R3

Θδ
(
2y · g + y2

) [
f
(
v +

y

2

)
f
(
v1 −

y

2

)
− f(v)f (v∗)

]
dydv∗

= 4

∫
R3

∫
R3

Θδ(y · z)[f(v + y)f(v + z)− f(v)f(v + y + z)]dydz,

(64)
which can be solved with a discrete Fourier transform-based spectral method with a
computational cost of O(N3 logN) [40]. Specifically, the particle distribution function
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Algorithm 1: Sampling of reference particle distribution functions

Input: Number of dataset entries Ni, maximum moment order Nm, and spatial
dimension D
Range of density, velocity, and temperature to formulate α̂
Standard deviation σ to sample γ
Condition number threshold c

Result: Dataset of reference distribution functions f
for i = 1, . . . , 2Ni do

Sample ρ ∈ [ρmin, ρmax]
Sample V ∈ [Vmin,Vmax]
Sample T ∈ [Tmin, Tmax]
Compute mean for (γu,1,γu,2, γu,3)T = α̂
do

Sample γu,n, n = 4, . . . , Nm

Compute Hu(γu)

while σHu(γu) < c
Compute fent,i = exp(γu · φ)

end
Divide fent into fL and fR equally
for i = 1, . . . , Ni do

Sample unit vector n
Reconstruct fref,i = fL,iH (n · v) + fR,i(1−H (n · v))

end
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and collision term discretized with Nv quadrature points are expanded into the Fourier
series,

f(t,x,v) =

Nv/2−1∑
k=−Nv/2

fk(t,x) exp (iξk · v) ,

fk =
1

LD
〈f(t,x,v) exp (−iξk · v)〉,

Q(t,x,v) =

Nv/2−1∑
k=−Nv/2

Qk(t,x) exp (iξk · v) ,

Qk =

Nv/2−1∑
l,m=−Nv/2,(l+m=k)

flfm[β(l,m)− β(m,m)],

(65)

where L is the span of velocity space in each dimension, and β is the kernel mode, and
the convolutions defined in Eq.(64) can be solved in the frequency domain. The details
of this method can be found in [40], and its numerical implementation is available in
[1].

(2) Shakhov relaxation model : The Shakhov relaxation model builds a heat flux-based
correction term on top of the BGK model to ensure that the Chapman-Enskog expan-
sion of the model has the correct Prandtl number [18]. The equilibrium state in the
Shakhov model writes

E =M
[
1 + (1− Pr)c · q

(
c2

RT
− 5

)
/(5pRT )

]
, (66)

where Pr is the Prandtl number, c is the peculiar velocity, q is the heat flux, and
R = k/m is the gas constant. It has been shown that the Shakhov model is more
accurate in predicting highly non-equilibrium flows in normal shock wave compared to
the BGK model [41]. With the inclusion of heat flux, the Shakhov model loses some
of the structural properties shown in Section 2. For example, non-negative solution
of particle distribution function can appear, and the H-theorem is no longer strictly
valid in the Shakhov model. Using the Shakhov model to construct the dataset is to
validate the ability of RelaxNet to correctly approximate E .

(3) ν-BGK model : Another strategy to improve the BGK model is to introduce velocity-
dependent relaxation frequency. Here we choose the ν-BGK model [19], where the
relaxation term writes

Q = ν(v)(M− f). (67)

Different curves of ν as a function of v can be fitted to provide the correct Prandtl
number of monatomic gas. Here we adopt the relaxation frequency defined in [42],
which is an improvement over the frequencies provided in [19] and can provide more
accurate solution in non-equilibrium flows. In this model, the relaxation frequency is
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defined as
ν(|v|) = A

p

µ

[
ν0
eq(ξ) + 2ν0

eq(ξ)
]
,

ν0
eq(ξ) =

3

2

[
exp(−ξ2) +

√
π

2

(
1

ξ
+ 2ξ

)
erf(ξ)

]
,

(68)

where ξ = |c|/
√

2kT/m, and A is a parameter depending on the viscosity index. Using
the ν-BGK model to construct the dataset is to validate the ability of RelaxNet to
correctly approximate velocity-dependent ν.

5. Solution Algorithm

5.1. Update algorithm

The finite volume method is employed to build the solution algorithm of the RelaxNet-
based universal Boltzmann equation. We denote the mean value of particle distribution
function in a control volume as

f(tn,xi,vj) = fni,j =
1

Ωi(x)Ωj(v)

∫
Ωi

∫
Ωj

f(tn,x,v)dxdv, (69)

where Ωi and Ωj are cell areas in the discrete physical and velocity space. The update
algorithm of distribution function in each control volume can be written as

fn+1
i,j = fni,j +

1

Ωi

∫ tn+1

tn

nf∑
r=1

Fr∆Srdt+

∫ tn+1

tn
NNθ(fi, τ̄i)jdt, (70)

where Fr is the time-dependent flux function of distribution function at r-th cell interface,
∆Sr is the interface area, and nf is the number of interfaces. Details of the update algorithm
can be found in [43].

5.2. Numerical flux

The numerical flux in Eq.(70) is evaluated from the reconstructed particle distribution
function at the cell interface. At the cell interface xi+1/2, the distribution function is con-
structed in an upwind fashion,

fi+1/2,j = fLi+1/2,jH
(
ni+1/2 · vj

)
+ fRi+1/2,j(1−H

(
ni+1/2 · vj

)
), (71)

where ni+1/2 is the unit normal vector of the interface, and H (x) is the heaviside step

function. The left and right value of distribution function fL,Ri+1/2,j can be obtained through
reconstruction and interpolation. For example, a second-order interpolation results in

fLi+1/2,j = fi,j +∇xfi,j · (xi+1/2 − xi),

fRi+1/2,j = fi+1,j +∇xfi+1,j · (xi+1/2 − xi+1),
(72)
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where ∇xf is the reconstructed gradient with slope limiters. The principle of higher-order
interpolation can be found in [44]. The numerical flux of particle distribution function can
then be evaluated as

Fi+1/2,j = fi+1/2,jni+1/2 · vj. (73)

5.3. Collision term

The RelaxNet-based collision operator in each cell reads

Qi,j = NNθ(fi, τ̄i)j. (74)

According to the kinetic theory of gases, the mean relaxation time is defined as τ̄ = µ/p
where p is pressure. In this paper, we adopt the variational hard-sphere (VHS) molecule
model to compute the viscosity coefficient, i.e.,

µ = µref

(
T

Tref

)ω
, (75)

where µref and Tref are the viscosity and temperature in the reference state, and ω is the
viscosity index.

Once the parameters in RelaxNet get optimized, the collision term can be integrated
with the help of time-integral algorithms. While the forward Euler method is the most
straightforward integrator for solving Eq.(70), it is feasible to adopt other higher-order
methods, e.g., Tsitouras’ 5/4 Runge-Kutta method [45]. When the time step is much larger
than mean relaxation time, it is preferable to employ implicit [46] and implicit-explicit
(IMEX) methods [47] to improve numerical stability of the scheme.

Note that the update procedure in Eq.(70) produces case-specific distribution functions
that may be beyond the dataset used for training and testing. The newly generated distri-
bution functions can be supplemented to the dataset on-the-fly by computing the collision
term Qi,j = Q(fi,j) with the methods shown in Section 4.2. We use the rise of residuals as
a criterion to generate supplementary data. A schematic diagram of the solution algorithm
of the RelaxNet-based UBE is presented in Figure 4.

6. Numerical Experiments

In this section, we present numerical experiments to validate the RelaxNet-based uni-
versal Boltzmann equation and its solution algorithm. The dimensionless variables are
introduced in the simulation, i.e.,

t̃ =
t

L0/(2RT0)1/2
, x̃ =

x

L0

, ρ̃ =
ρ

ρ0

, ṽ =
v

(2RT0)1/2
, Ṽ =

V

(2RT0)1/2
, T̃ =

T

T0

,

Ẽ =
E

2RT0

, P̃ =
P

2ρ0RT0

, q̃ =
q

ρ0(2RT0)3/2
, µ̃ =

µ

ρ0L0(2RT0)1/2
, f̃ =

f

ρ0/(2RT0)D/2
.
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Figure 4: Schematic diagram of solution algorithm of the RelaxNet-based universal Boltzmann equation.

The subscript zero represents the reference state. For brevity, the tilde notation for di-
mensionless variables will be removed henceforth. In all simulations we employ monatomic
hard-sphere gas, where the viscosity coefficient can be determined by Eq.(75).

6.1. Data generation

To further explain the principle of the data sampling strategy described in Section 4 and
illustrate its superiority, we first compare the distribution of the data generated by Algorithm
1 with the data collected directly from numerical simulation results of the Boltzmann equa-
tion. The computational setup for Algorithm 1 is presented in Table 2, where {ρs, Us, Ts}
is the macroscopic variables used for sampling distribution functions, γ is the Lagrange
multipliers in Eq.(58), and U(a, b), N (µ, σ), and T (µ, σ, a, b) denote uniform, normal, and
truncated normal distributions, respectively.
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Table 2: Computational setup for sampling particle distribution functions in the data generation problem.

Ni Nm D ρs Us Ts γ4 γ5

3000 4 1 U(0, 2) U(−1.5, 1.5) U(0, 4) N (0, 0.005) T (0, 0.005,−∞, 0)

Two problems are considered below as illustrative examples to produce simulation-based
datasets.

(1) Wave propagation problem. The initial particle distribution function is set to Maxwellian
everywhere in correspondence with the following flow field, ρ

U
p


t=0

=

 A(1 + a sin(2πx))
b
c

 .

The detailed computational setup is presented in Table 3.

(2) Sod shock tube problem. The initial particle distribution function is set to Maxwellian
everywhere in correspondence with the one-dimensional Riemann problem, ρ

U
p


t=0,xL

=

 ρL
0
pL

 ,

 ρ
U
p


t=0,xR

=

 ρR
0
pR

 .

The detailed computational setup is presented in Table 4.

Table 3: Computational setup for wave propagation problem.

t x Nx u Nu Quadrature Kn As
(0, 5] [0, 1] 200 [−8, 8] 80 Rectangular 10−3 U(0.5, 1.5)

as bs cs Collision Integrator Boundary CFL
U(0, 0.2) U(−1, 1) U(0.5, 1.5) Shakhov RK4 Periodic 0.5

Table 4: Computational setup for Sod shock tube problem.

t x Nx u Nu Quadrature Kn ρLs
(0, 0.2] [0, 1] 200 [−8, 8] 80 Rectangular 10−4 U(0, 2)

ρRs TLs TRs Collision Integrator Boundary CFL
U(0, 0.25) U(1, 3) U(0, 1.25) Shakhov IMEX Dirichlet 0.5

We compare the datasets generated from the algorithmic sampler described in Section
4 and the above two numerical examples with the same sample size Ni = 3000. Two
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cases are considered. In the first case, the input parameters of two examples are fixed as
{A, a, b, c} = {1, 0.1, 1, 1} and {ρL, ρR, TL, TR} = {1, 0.125, 2, 0.625} to analyze the dataset
produced by a single numerical simulation. In the second case, we sample the parameters
ten times according to the uniform distribution of the intervals given in Table 3 and 4 to
characterize the datasets collected from multiple numerical simulations with various inputs.

Figure 5 and 6 present the phase diagrams between macroscopic variables generated
by the algorithmic sampler using Algorithm 1 and the simulation results. As shown in
Figure 5, the samples from a single numerical simulation can suffer from a strong bias.
Such a phenomenon is caused by the physical constraints in a particular flow problem. In
the wave propagation problem, the density and temperature is linearly coupled due to the
isobaric pressure. In the Sod shock tube problem, the density, velocity and temperature
are correlated around wave structures, i.e., the rarefaction wave, contact discontinuity, and
shock wave. The discontinuous flow field in the Sod problem makes the samples show a
even sparser distribution in the phase diagram. As particle distribution functions generated
from multiple sampling of parameters and numerical simulations are added to the dataset,
as presented in Figure 6, a wider range of flow variables can be obtained. From this trend, it
may be feasible to generate reliable datasets through numerical simulations if the sampling
ranges of parameters are further extended, but this obviously requires the use of appropriate
physical problems and adequate sample size. To accomplish the goal, the use of trial-and-
error processes is inevitable.

In contrast, the algorithmic sampler generates a dataset of particle distribution function
with a much wider range of densities, velocities and temperatures. The obtained samples
are homogeneously distributed without a bias towards a preferred direction. Therefore, the
predefined domain of {ρ, U, T} is fully covered with a relatively small sample size. Note
that this also implies a broader and unbiased distribution of particle distribution functions,
since there is a one-to-one correspondence between distribution functions and macroscopic
quantities. Compared with the simulation-based sampling, the broader dataset provided by
the algorithmic sampler reduces the risk of overfitting and helps improve the generalization
of the neural network model. Table 5 provides the computation time and allocations for
the three methods (including the garbage collection with Julia programming language [48]).
Since the presented sampling strategy does not require a full simulation of the Boltzmann
equation with multiple cases or initial conditions, the computational cost is significantly
reduced by three to five orders of magnitude.

Table 5: Computational cost of the data generation problem.

Time Allocations Memory
Wave 197.12 s 1.49× 109 485.94 GB
Sod 41.46 s 4.18× 106 13.15 GB
Sampler 0.03 s 7.27× 103 13.33 MB
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6.2. Homogeneous relaxation

In this numerical experiment, we study the homogeneous relaxation problem of non-
equilibrium particle distribution functions. To fully validate the ability of RelaxNet to
approximate the solution of the Boltzmann and its model equations, three collision models,
i.e., the Shakhov model, the velocity-dependent ν-BGK model, and the full Boltzmann
integral model described in Section 4.2, are employed to provide ground-truth datasets for
training the neural network.

6.2.1. Shakhov model

First we consider the non-equilibrium distribution function in the initial state,

f(t = 0, u) =
1

2
√
π

(
exp

(
− (u− 1.5)2)+

7

10
exp

(
−(u+ 1.5)2

))
. (76)

We construct RelaxNet in such a way that there are two hidden layers of the same dimension
as the input layer in both E-net and τ -net. A dataset is generated by Algorithm 1 to train
RelaxNet, which is then used to solve the universal Boltzmann equation. The setups of the
neural network, training and computation are provided in Table 6, where Nh = 2 is the
number of hidden layers and Tsit5 denotes Tsitouras’ 5/4 Runge-Kutta method [45].

Table 6: Computational setup for the homogeneous relaxation problem based on the Shakhov model.

D u Nu Ni ρs Us
1 [−8, 8] 80 10000 U(0.1, 10) U(−1, 1)

Vs Ws Ts γ4 γ5 Kns
0 0 U(0.1, 5) N (0, 0.005) T (0, 0.005,−∞, 0) U(0.001, 1)

Nh Nm Reference Optimizer t Kn
2 4 Boltzmann Adam (0, 8] 1

Integrator Quadrature CFL
Tsit5 Rectangular 0.3

The values of cost function in Eq.(20) for both training and test datasets during the
training process are plotted in Figure 7. After the parameters of RelaxNet are optimized,
the initial value problem of the UBE model is solved. Note that the bimodal distribution
in Eq.(76) can fall outside the training set, so this example actually acts as a validation set.
Figure 8 presents the solutions of particle distribution functions at different time instants
computed by the BGK, Shakhov, and UBE model. It can be seen that the numerical
solution provided by UBE is closer to the Shakhov reference solution than the BGK model.
This is attributed to a more accurate approximation of the collision term of the Boltzmann
equation, which is shown in Figure 9. Figure 10 presents the evolution of macroscopic density
and energy with time. It is clear that the conservation of mass is exactly satisfied, which
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provides a corroboration of Theorem 2. The error in energy slightly exceeds the range of
the Shakhov reference solution. Due to the interpretability of RelaxNet, we can open the
black box of forward pass in the UBE model and explain the issue. Figure 11 presents the
equilibrium state E approximated by RelaxNet at different time instants, which intuitively
explains the mechanism of UBE. Note that the Shakhov model does not satisfy H-theorem
and the logarithm of equilibrium distribution corrected by heat flux cannot be written as a
sum of collision invariants. As a result, the approximation of RelaxNet deviates a bit from
the reference Shakhov solution.

6.2.2. ν-BGK model

Next we consider the same setup as in Section 6.2.1, except that the velocity-dependent
ν-BGK model shown in Section 4.2 is employed to produce reference solution. Figure 12
presents the solutions of particle distribution functions at different time instants computed
by the BGK, the ν-BGK, and the UBE model. It is clear that there is a more significant
difference between the BGK and ν-BGK solutions, while the solution provided by the UBE
model is in excellent agreement with the reference ν-BGK solution. As we explained E in
Section 6.2.1, RelaxNet allows us to quantitatively interpret the relaxation frequency ν in
the UBE model. Figure 13 and 14 show the collision terms and relaxation frequencies used in
RelaxNet, and compare them with the BGK and ν-BGK models. It is clear that the depen-
dence between relaxation frequencies and particle velocities are precisely recovered, bringing
a more accurate approximation of the collision term. Figure 15 presents the evolution of
macroscopic density and energy with time. It can be seen that although the parameters
in RelaxNet are optimized based on the solution of ν-BGK model in a supervised learning
manner, the physics-informed regularization in the cost function in Eq.(20) allows UBE to
better preserve the conservation property, which provides a corroboration of Theorem 2.

6.2.3. Full Boltzmann model

We then turn to the full Boltzmann equation. In this case, the initial particle distribution
function is set as

f(t = 0, u, v, w) =
1√
π

(
exp

(
− (u− 1)2)+

7

10
exp

(
−(u+ 1)2

))
exp

(
−v2

)
exp

(
−w2

)
.

RelaxNet is constructed in the same way as in Section 6.2.1 and 6.2.2. Following Algorithm
1, the fast spectral method introduced in Section 4.2 is employed to generate the dataset
used for training RelaxNet. The computational setup is presented in Table 7.

Figure 16 provides the evolution of particle distribution functions with time. The variable
used for display is the reduced distribution function on u axis, i.e.,

h(t, u) =

∫
R2

f(t, u, v, w)dvdw.

As shown, UBE based on RelaxNet provides a solution consistent with the full Boltzmann
equation, while the solution of the BGK model shows significant deviations. Figure 17
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Table 7: Computational setup for the homogeneous relaxation problem based on the full Boltzmann model.

D v Nu Nv Nw Ni

3 [−8, 8]3 80 28 28 10000

ρs Us Vs Ws Ts γ4

U(0.1, 10) U(−1, 1) 0 0 U(0.1, 5) N (0, 0.005)

γ5 Kns Nh Nm Reference Optimizer
T (0, 0.005,−∞, 0) U(0.001, 1) 2 4 Boltzmann Adam

t Kn Integrator Quadrature CFL
(0, 8] 1 Tsit5 Rectangular 0.3

presents the collision terms computed by the three approaches at different time instants.
Figure 18 shows the equilibrium distributions and relaxation frequencies approximated by
RelaxNet. It can be seen that the difference between the equilibrium distribution in RelaxNet
and the Maxwellian distribution is slight, and thus the correction of the BGK solution is
mainly achieved by the velocity-dependent relaxation frequency. Different from predefined
frequencies in the ν-BGK model, e.g., in Eq.(68), RelaxNet provides a variable relaxation
frequency that depends on the solution of local particle distribution function, and thus
provides an approximation that better fits the real collision frequency in Eq.(2). Figure 19
shows the evolution of entropy density defined as η = 〈f log(f)〉, from which the principle
of increase of entropy and the H-theorem demonstrated in Section 2 adn Theorem 4 are
validated.

Table 8 presents the computational costs of the three methods to simulate the time-
series solution of the homogeneous relaxation problem. Since a large number of convolution
operations for solving the Boltzmann collision integral are replaced by tensor multiplication,
the computational cost of RelaxNet is significantly reduced compared. Under the current
numerical setup, the simulation time is reduced to 1/50 of the fast spectral method for
the full Boltzmann equation, and the memory usage is reduced to 1/17. This numerical
experiment verifies the ability of the RelaxNet-based UBE to solve the Boltzmann equation
accurately and efficiently.

Table 8: Computational cost of computing time-series solutions in the homogeneous relaxation problem.

Time Allocations Memory
Boltzmann 2.167 s 90322 6.43 GB
BGK 1.076 ms 2939 3.38 MB
UBE 43.472 ms 14344 375.66 MB
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6.3. Normal shock structure

We then study flow transport in inhomogeneous gases. Due to the existence of non-
Maxwellian particle distribution functions [49], the normal shock wave problem is an ideal
case to validate the RelaxNet-based UBE in solving highly non-equilibrium flows. The initial
flow field is initialized according to the Rankine-Hugoniot jump conditions, i.e.,

ρ
U
V
W
T


t=0,xL

=


ρ−
U−
0
0
T−

 ,


ρ
U
V
W
T


t=0,xR

=


ρ+

U+

0
0
T+

 ,

where the upstream and downstream density, velocity, and temperature are denoted by
{ρ−, U−, T−} and {ρ+, U+, T+}, respectively. The initial particle distribution functions are
set to Maxwellian according to the local flow variables,

ρ+

ρ−
=

($ + 1)Ma2

($ − 1)Ma2 + 2
,

U+

U−
=

($ − 1)Ma2 + 2

($ + 1)Ma2 ,

T+

T−
=

(($ − 1)Ma2 + 2)(2$Ma2 −$ + 1)

($ + 1)2Ma2 ,

where Ma is the Mach number, and $ is the ratio of specific heat. The upstream flow
variables are used as references to dimensionaless the system. The detailed computational
setup is provided in Table 9. Note that the dataset used to optimize the parameters of
RelaxNet consists of two parts. In addition to the data generated by Algorithm 5 with
predefined parameters, as the numerical simulation progresses, the case-specific data can be
supplemented on the fly, as shown in Figure 4.

Figure 20 shows the profiles of density, velocity, temperature, viscous stress, heat flux,
and entropy density in the shock structure at Ma = 2. The definition of viscous stress is the
difference between the first element in the pressure tensor and the isotropic pressure, i.e.,

∆ = Pxx − p.

When the Mach number is small, the particle distribution functions inside the shock wave
deviate moderately away from Maxwellian, and thus the Boltzmann, BGK, and UBE solu-
tions are roughly equivalent. The discrepancy of the viscous stress and heat flux provided by
the Boltzmann and BGK models can be observed due to the fact that high-order moments
are more sensitive to the nuances of distribution function than density and bulk velocity.
Figure 21 presents the macroscopic flow field at Ma = 3. It is obvious that the difference be-
tween the Boltzmann and BGK solutions become more significant with the increasing Mach
number. The unit Prandtl number in the BGK model leads to an incorrect heat transfer rate
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Table 9: Computational setup for the normal shock structure problem.

D v Nu Nv Nw Ni

3 [−10, 10]3 80 28 28 10000

ρs Us Vs Ws Ts γ4

U(0.5, 5) U(−3, 3) 0 0 U(0.5, 5) N (0, 0.005)

γ5 Kns Nh Nm Reference Optimizer
T (0, 0.005,−∞, 0) U(0.01, 5) 2 4 Boltzmann Adam

t x Nx Kn Ma $
(0, 250] [−35, 35] 100 1 [2, 3] 5/3

Integrator Boundary Quadrature CFL
Tsit5 Dirichlet Rectangular 0.5

and an early rise in the temperature profile. Thanks to the solution-dependent equilibrium
and relaxation frequency, the current UBE is able to provide solutions equivalent to the
reference Boltzmann results in all cases.

Figure 22 and 23 provide the reduced distribution functions and collision terms in the
x − u phase space at Ma = 2 and Ma = 3. An one-to-one correspondence can be clearly
observed between the evolution of macroscopic quantities and particle distribution functions.
When Ma = 3, significant difference can be obtained between the BGK and UBE collision
terms, resulting in different distributions of particle distribution functions and macroscopic
flow variables. Table 10 shows the computational cost of computing the right-hand side
operator once in the Boltzmann, BGK, and UBE models. The benchmark verifies that the
RelaxNet-based UBE increases the computational efficiency by a factor of 108 and reduces
the memory load to 1/43 compared to the fast spectral method of the Boltzmann equation.

Table 10: Computational cost of computing the right-hand side of the kinetic model in the normal shock
structure problem.

Time Allocations Memory
Boltzmann 32.114 ms 1446 102.98 MB
BGK 5.893 µs 36 12.92 KB
UBE 295.947 µs 93 2.38 MB

6.4. Lid-driven cavity

In the last numerical experiment, we study the lid-driven cavity to validate the ability
of current approach to solve non-equilibrium flows under multi-dimensional geometry. The
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initial flow field inside the square cavity is set as
ρ
U
V
W
T


t=0

=


1
0
0
0
1

 ,

and the particle distribution function is set to Maxwellian everywhere. The flow domain is
enclosed by four isothermal solid walls. The upper wall moves in the tangent direction with
Vu
w = (0.15, 0, 0)T , with the rest three walls kept still with Vd,l,r

w = (0, 0, 0)T . Maxwell’s
diffusive boundary is considered at all wall boundaries. The detailed computational setup
is provided in Table 11.

Table 11: Computational setup for the lid-driven cavity problem.

D v Nu Nv Nw Ni

3 [−5, 5]3 28 28 28 10000

ρs Us Vs Ws Ts γ4

U(0.5, 5) U(−1, 1) U(−1, 1) 0 U(0.5, 5) N (0, 0.005)

γ5 Kns Nh Nm Reference Optimizer
T (0, 0.005,−∞, 0) U(0.01, 1) 2 4 Boltzmann Adam

x Nx Ny Vu
w Vd,l,r

w Tw
[0, 1]2 45 45 (0.15, 0, 0)T (0, 0, 0)T 1

$ Kn Integrator Boundary Quadrature CFL
5/3 0.075 Tsit5 Maxwell Rectangular 0.5

Figure 24 shows the contours of density with streamlines and temperature with heat flux
vectors inside the cavity. Consistent with the report in [50], the inverse-Fourier heat flux
driven by the viscous stress in the non-equilibrium regime is accurately identified. Figure
25 presents the velocity profiles along the horizontal and vertical central lines of the cavity.
The validity of UBE and the corresponding numerical method is fully validated by a quanti-
tative comparison with the reference DSMC solution. Figure 26 and 27 further provide the
particle distribution functions and collision terms along the two central lines. For low-speed
microflows, the non-equilibrium effect is weak and the difference between the Boltzmann and
BGK solutions is mild. The correction provided by the RelaxNet-based UBE for the BGK
model can be observed, which ensures the correct heat transfer rate and Prandtl number.
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Conclusion

Scientific machine learning is increasingly showing its power and versatility in modeling
and simulation in computational physics. In this paper, a novel relaxation neural network
(RelaxNet) is proposed as a surrogate model of the collision operator in the Boltzmann
equation. Based on the architecture of residual neural networks, RelaxNet builds a param-
eterized relaxation model with solution-dependent equilibrium state and frequency. The
quantitative interpretability of RelaxNet makes it the first machine learning model that
strictly preserves all the key structural properties of the Boltzmann equation, including in-
variance, conservation, H-theorem, and the correct continuum limit. Since the convolution
in the original Boltzmann equation is simplified by the tensor multiplication in RelaxNet,
the dimensionality and computational complexity of the collision term are greatly reduced.
Based on RelaxNet, a universal Boltzmann equation (UBE) model is developed, which fuses
mechanical and neural models into a single differentiable framework that is compatible with
source-to-source automatic differentiation. Based on the entropy closure of the Boltzmann
moment system, an algorithmic sampler is designed to generate datasets for model training
and testing, and the superiority of this strategy over simulation-based samplers is demon-
strated through numerical experiments. The solution algorithm for solving the RelaxNet-
based UBE model is described in detail. Both spatially homogeneous and inhomogeneous
test cases are presented to validate UBE and its solution algorithm. The current approach
provides an accurate and efficient tool for the study of non-equilibrium flow physics. Like
the network chain that contains multiple ResNet blocks, it is promising to extend RelaxNet
to build multi-level relaxation models [51], which remains to be investigated in future work.
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Figure 5: phase diagrams of the data generated by the algorithmic sampler and a single simulation.
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Figure 6: phase diagrams of the data generated by the algorithmic sampler and multiple simulations.
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Figure 7: Values of cost function versus optimization time in the training and test datasets for the homoge-
neous relaxation problem.
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Figure 8: Particle distribution functions at different time instants in the homogeneous relaxation problem
(Shakhov model as reference solution).
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Figure 9: Collision terms at different time instants in the homogeneous relaxation problem (Shakhov model
as reference solution).
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Figure 10: Evolution of total density and energy with time in the homogeneous relaxation problem (Shakhov
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Figure 11: Equilibrium functions at different time instants in the homogeneous relaxation problem (Shakhov
model as reference solution).
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Figure 12: Particle distribution functions at different time instants in the homogeneous relaxation problem
(ν-BGK model as reference solution).
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Figure 13: Collision terms at different time instants in the homogeneous relaxation problem (ν-BGK model
as reference solution).
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Figure 14: Relaxation frequencies at different time instants in the homogeneous relaxation problem (ν-BGK
model as reference solution).
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Figure 15: Evolution of total density and energy with time in the homogeneous relaxation problem (ν-BGK
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Figure 16: Particle distribution functions at different time instants in the homogeneous relaxation problem
(full Boltzmann model as reference solution).
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Figure 17: Collision terms at different time instants in the homogeneous relaxation problem (full Boltzmann
model as reference solution).
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Figure 18: Equilibrium (dark colors) and relaxation frequencies (light colors) at different time instants in
the homogeneous relaxation problem (full Boltzmann model as reference solution).
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Figure 20: Profiles of macroscopic variables at Ma = 2 in the normal shock structure.
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Figure 21: Profiles of macroscopic variables at Ma = 3 in the normal shock structure.
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Figure 22: Contours of particle distribution function (first row) and collision term (second row) at Ma = 2
in the normal shock structure.
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Figure 23: Contours of particle distribution function (first row) and collision term (second row) at Ma = 3
in the normal shock structure.
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Figure 24: Contours of density with streamlines and temperature with heat flux vectors inside the cavity.
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Figure 25: Velocity profiles along vertical and horizontal central lines of the cavity. The results are normalized
with the wall speed Uw.
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Figure 26: Particle distribution functions along vertical (first row) and horizontal (second row) central lines
of the cavity.
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Figure 27: Collision terms along vertical (first row) and horizontal (second row) central lines of the cavity.
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