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A B S T R A C T

Crack branching is ubiquitous in engineering practice, and it often takes place when a crack is
subjected to dynamic stress fields, or runs into heterogeneous regions. The mechanical analysis
of branched cracks is of great significance in safety analysis and crack-path engineering. In
this work we developed a theoretical method to calculate the stress intensity factors (SIFs) of
branched cracks. By employing both Schwarz–Christoffel mapping and Muskhelishvili approach,
we present an asymptotic approximation for the conformal mapping and SIFs of arbitrary
branched cracks are then readily derived. We further demonstrate the convenience of this
analytical approach to obtain the SIFs of forked crack as well as four-branched cracks. The
theoretical solutions are validated by using finite-element simulations. It is shown that the
semi-analytical approach agrees well with the FEM calculations on SIFs. The analytical methods
supply a general way to solve the SIFs and therefore the energy release rate of branched cracks.
It can then be adopted to understand crack splitting and crack network engineering.

. Introduction

When cracks are subjected to dynamic or non-uniform stress fields, or propagate in heterogeneous media, they often kink or
ranch. This phenomenon is widely observed in engineering practice, and has received lots of attention for its significance in
redicting crack propagation.

In order to understand the propagation of a branched crack, stress intensity factors (SIFs) of the crack-tip are often desired (Irwin,
957; Hutchinson et al., 1987). Once the SIFs are obtained, one may adopt the energy release rate criterion to predict the propagation
ath (Hussain et al., 1973; He and Hutchinson, 1989; He et al., 1991). Therefore, finding a way to accurately calculate the
IFs has become a core subject in fracture mechanics, and has received wide interests from researchers of the solid mechanics
ommunity (Williams, 1957; Andersson, 1969; Rice, 1972; Chatterjee, 1975; Cotterell and Rice, 1980; Hayashi and Nemat-Nasser,
981; Amestoy and Leblond, 1992; Salvadori and Fantoni, 2016; Leblond et al., 2019).

Dated back to 1960s, Andersson (1969) developed a method to calculate the SIFs of branched cracks by using complex variable
unctions, but it was found later on that the formula neglecting the discontinuity of the complex variable functions. A simplified
ersion of branched cracks with only two segments (kinked cracks) was then explored intensively. One attempt is to use the
ombination of the SIFs of the main crack to represent the SIFs of the kink (Bilby and Cardew, 1975; Bilby et al., 1977). Lo (1978)
ave an integral equation to solve the SIFs of a kinked crack by regarding a crack as continuous distribution of dislocations. Cotterell
nd Rice (1980) adopted a perturbation method to calculate the SIFs of a slightly curved or kinked crack. Karihaloo et al. (1981)

∗ Corresponding author at: LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
E-mail address: yujie_wei@lnm.imech.ac.cn (Y. Wei).
vailable online 15 June 2023
022-5096/© 2023 Elsevier Ltd. All rights reserved.

ttps://doi.org/10.1016/j.jmps.2023.105351
eceived 8 March 2023; Received in revised form 21 May 2023; Accepted 6 June 2023

https://www.elsevier.com/locate/jmps
http://www.elsevier.com/locate/jmps
mailto:yujie_wei@lnm.imech.ac.cn
https://doi.org/10.1016/j.jmps.2023.105351
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmps.2023.105351&domain=pdf
https://doi.org/10.1016/j.jmps.2023.105351


Journal of the Mechanics and Physics of Solids 179 (2023) 105351Z.-E. Liu and Y. Wei

e
a
t
m
o
m
m
(
w

t
g
p
l
t
t
b

c
2
a
m
i
S

2

w
t
c

extended this perturbation method by using two-order asymptotic expansions. Sumi et al. (1983) employed the same strategy to solve
the crack kinking problem in a finite body. Along this track, He et al. (1991) gave an expression of the SIFs of cracks with small kinks
by incorporating the influence of T-stress. Chen et al. (2009) carried out an asymptotic solution of the SIFs and T-stress of kinked
cracks with infinitesimal kink length by using singular integral equation method. Those perturbation methods often work well for
very short kinks relative to their original ones. The SIFs of kinked crack with an arbitrary sized was first solved by Chatterjee (1975).
He numerically solved the integral equation deduced from the boundary value problems through employing conformal mapping and
Muskhelishvili approach. With the help of these methods, Liu and Wei (2021) established a framework to calculate the stress fields of
arbitrarily sized kinked cracks theoretically. With known stress fields, SIFs are readily derived. Other than kinked crack, Wu (1978)
employed conformal mapping to solve the elastic problem of Z-shaped cracks. He also gave a three-order asymptotic solution of
SIFs of Z-shaped cracks with small kinking angle (Wu, 1979). A very recent effort developed by Vattré (2022), by adopting the
geometrical resemblance of a forked crack array in an anisotropic media with a continuously distributed dislocation, gave the stress
field of the forked crack array by using the Stroh formalism to the linear elastic theory of dislocations. The researches on quasi-static
state can be further extended to fracture dynamics. Adda-Bedia (2005) employed conformal mapping to solve the SIFs and energy
release rate of three-branched cracks with infinitesimal symmetrical branches subjected to general loading (mode I+II+III), and the
results are used to analyze the branching instability in dynamic propagation and predict the critical speed for branching. Within
this framework, Katzav et al. (2007) performed a quantitative study on the subsequent crack-path choice followed branching.

Rapid development in computing methods facilitates our understanding on crack-branching through numerical methods. Ferney
t al. (1999) employed a cohesive element method based on FEM to modeling crack propagation along arbitrary paths. Buehler
nd Gao (2006) used massively parallel large-scale atomistic simulations to show that hyperelasticity plays a governing role in
he onset of the instability at crack tips. Ruan et al. (2021) used peridynamics method to simulate the crack branching in asphalt
ixtures. Zhang and Dunne (2022) used 3D crystal plasticity extended finite element method (CP-XFEM) to simulate the interaction

f short fatigue cracks with grain boundary. Cheng and Zhou (2020) gave an energy based criterion for crack branching by using
ultidimensional space method. Hakimzadeh et al. (2022) investigated the finite deformation and branching of cracks in soft
aterials by using phase-field method. Recently, machine learning is introduced to solve complex mechanical problem, Liu et al.

2020) used machine learning model to analyze the fracture toughness. These methods provide new ways for engineering problems
hen analytical solutions are not available.

Observation from the fast crack propagation experiments shows the dynamic instability of brittle materials is related to a
ransition from a single crack to a branched crack (Sharon and Fineberg, 1996, 1999). Sundaram and Tippur (2016) used digital
radient sensing technique to investigate crack interaction and crack branching in the presence of dynamic loading. Crack path
rediction is not only of importance in safety control, but also of significance for the formation of crack networks in applications
ike energy harvesting (Li et al., 2022). In composite materials with abundant interfaces, a crack crossing the interface may lead to
he formation of a four-branched crack (Dönmez and Bažant, 2020). Fayyad and Lees (2017) used digital image correlation method
o investigate crack branching in reinforced concrete beams. It is also well known that indentation at brittle films also leads to crack
ranching (Xu et al., 2003).

Regardless of the significant progress upon the characteristics of branched cracks, a general method to tackle the SIFs of branched
racks is till lacking. In this work, following the previously used conformal mapping and Muskhelishvili approach (Liu and Wei,
021), we establish a theoretical framework to accurately calculate the SIFs of an arbitrary branched crack. We organize the content
s follows: in Section 2, we state the boundary value problem (BVP) and give the asymptotic solutions by employing the conformal
apping and the Muskhelishvili approach. We demonstrate in Sections 3 and 4 how to use the general method to solve the stress-

ntensity factors of forked cracks and four-branched cracks, respectively, accompanied with finite-element validations. We close in
ection 5 with some final remarks.

. Formulation

In the previous research we have given the analytical solution of the stress fields to kinked cracks (Liu and Wei, 2021). In this
ork we focus on the crack-tip SIFs of an arbitrary branched crack in an infinite space. We consider a branched crack subjected

o arbitrary stress status, as seen in Fig. 1a. For the convenience of analysis, let one of the branch be horizontal through rotating
ounter-clockwise the coordinate by an angle 𝛼. The stress status is characterized by two principal stresses 𝜎1 and 𝜎2, and the angle

between 𝜎1 and the 𝑥2-axis is characterized as 𝛽, as shown in Fig. 1b.

2.1. Conformal mapping

The fracture problem shown in Fig. 1b will be analyzed under linear elastic assumption and is two-dimensional in nature. For
the completeness of the presentation, we repeat the essential steps to solve the linear elasticity of a typical fracture problem using
the Muskhelishvili approach (Muskhelishvili, 1953). The stress field of a linear elastic problem can be derived from two complex
functions 𝛷(𝑧) and 𝛹 (𝑧) defined in the 𝑧-plane, with which we have the following equations associated with the planar stresses 𝜎𝑥,
𝜎𝑦 and 𝜏𝑥𝑦

′ ′ 𝛷′(𝑧)] (1a)
2

𝜎𝑥 + 𝜎𝑦 = 4ℜ[𝛷 (𝑧)] = 2[𝛷 (𝑧) +
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Fig. 1. The BVP of a branched crack and its conformal mapping to a unit circle. (a) A branched crack with one branch forming an angle 𝛼 with respect to the
𝑥1-axis. (b) We consider a configuration (rotating clockwise the coordinate in (a) by an angle 𝛼) so that one branch of the crack is horizontal. 𝜎1 and 𝜎2 are the
principal stresses and 𝛽 is the angle between 𝜎1 and the 𝑥2-axis. (c) A branched crack contains 𝑀 ends (from 𝑧1 to 𝑧𝑀 ) and 𝑀 joint points (from ℎ1 to ℎ𝑀 ).
The angle between branches 𝑘 and (𝑘 + 1) is 𝜃𝑘. (d) The mapping of these points are from 𝜁1 to 𝜁𝑀 and 𝜂1 to 𝜂𝑀 , in turn, on the unit circle.

nd

𝜎𝑦 − 𝜎𝑥 + 2𝑖𝜏𝑥𝑦 = 2[𝑧𝛷′′(𝑧) + 𝛹 ′(𝑧)] (1b)

where ℜ(⋅) denotes the real part of (⋅), (⋅) denotes the conjugate of (⋅), (⋅)′ and (⋅)′′ are the first and the second derivative of (⋅) with
espect to 𝑧, respectively, and 𝑧 = 𝑥 + 𝑖𝑦. The boundary condition on a general contour 𝐿 is given as

𝛷(𝑡) + 𝑡𝛷′(𝑡) + 𝛹 (𝑡) = 𝑖∫

𝑡

𝑡0
(𝑝𝑥 + 𝑖𝑝𝑦)𝑑𝑠 = 𝑖[𝐹𝑥(𝑡) + 𝑖𝐹𝑦(𝑡)] = 𝐹 (𝑡) (2)

where 𝑡0 is a fixed point on 𝐿 and 𝑡 is any point on 𝐿, and (𝑝𝑥, 𝑝𝑦) is the traction on the infinitesimal segment 𝑑𝑠 and (𝐹𝑥, 𝐹𝑦) is the
collective force exerted to the part of crack surface (from 𝑡 to 𝑡0).

Due to the complexity of possible boundary conditions, conformal mapping is usually used to simplify the above BVPs. As shown
n Fig. 1c to d, we seek a transformation in the form of 𝑧 = 𝜔(𝜁 ), where 𝑧 is a point in the 𝑧-plane and 𝜁 is its counterpart in the
𝜁 -plane. Usually, the boundary 𝐿 in the 𝑧-plane is mapping into a unit circle in the 𝜁 -plane. After employing the conformal mapping,

e obtain the equivalent expressions of Eq. (1), which can be rewritten in terms of 𝜁 as

𝜎𝜌 + 𝜎𝜃 = 2

[

𝜑′(𝜁 )
𝜔′(𝜁 )

+
𝜑′(𝜁 )

𝜔′(𝜁 )

]

(3a)

and

𝜎𝜃 − 𝜎𝜌 + 2𝜏𝜌𝜃 =
2𝜁2

𝜌2𝜔′(𝜁 )

[

𝜔(𝜁 )
(

𝜑′(𝜁 )
𝜔′(𝜁 )

)′
+ 𝜓 ′(𝜁 )

]

(3b)

ere we define 𝜁 = 𝜌e𝑖𝜃 in the 𝜁 -plane, and 𝜑(𝜁 ) and 𝜓(𝜁 ) are the counterparts of 𝛷(𝑧) and 𝛹 (𝑧), and 𝜎𝜌, 𝜎𝜃 and 𝜎𝜌𝜃 are the radial
tress, hoop stress and shear stress in the polar coordinate in the 𝜁 -plane. Therefore, the boundary condition in Eq. (2) is rewritten
s

𝜑(𝜉) +
𝜔(𝜉)

𝜔′(𝜉)
𝜑′(𝜉) + 𝜓(𝜉) = 𝑓 (𝜉) (4)

where 𝜉 is any point on the unit circle 𝐶.
3
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We start with a general branched crack with 𝑀 branches, as shown in Fig. 1c. The angle between two neighboring branches 𝑘
and 𝑘 + 1 is 𝜃𝑘. The length of those branches is labeled as 𝑙1,… , 𝑙𝑀 , in turn. As each branch has two ends, there are a total of 2𝑀
ey points for this branched crack in the 𝑧-plane: The free ends of the 𝑀 branches are referred to 𝑧1 = 𝑙1,… , 𝑧𝑀 = 𝑙𝑀e𝑖

∑𝑀−1
𝑛=1 𝜃𝑛 ,

nd those joint ends associated with each branch are labeled as ℎ1,… , ℎ𝑀 . The counterparts of these points in the 𝜁 -plane are
𝜁1 = e𝑖𝜇1 ,… , 𝜁𝑀 = e𝑖𝜇𝑀 for 𝑧1,… , 𝑧𝑀 , respectively, and 𝜂1 = e𝑖𝜈1 ,… , 𝜂𝑀 = e𝑖𝜈𝑀 for ℎ1,… , ℎ𝑀 , in turn.

Schwarz–Christoffel mapping is usually employed to solve such problems where the external region of the branched crack is
mapped into the outside part of a unit circle (Andersson, 1969). For the general branched crack shown in Fig. 1c, its corresponding
Schwarz–Christoffel mapping function is given as

𝜔(𝜁 ) = 𝑅
𝜁

𝑀
∏

𝑛=1
(𝜁 − 𝜂𝑛)𝜆𝑛 (5)

where 𝑅 is a real parameter and 𝜆𝑛 = 𝜃𝑛∕𝜋. There are a total of 2𝑀+1 real parameters in this mapping function, 𝜇1,… , 𝜇𝑀 , 𝜈1,… , 𝜈𝑀 ,
and 𝑅. These parameters can be obtained by solving the following 2𝑀 + 1 real equations (Andersson, 1969)

𝑀
∑

𝑛=1
𝜈𝑛𝜆𝑛 = 2𝜋 (6a)

for the conservation of angles,
𝑀
∑

𝑛=1
𝜆𝑛 cot

( 𝜈𝑛 − 𝜇𝑘
2

)

= 0, 𝑘 = 1, 2,… ,𝑀 (6b)

or the constraints at the joint ends, and

4𝑅
𝑀
∏

𝑛=1

|

|

|

|

sin
(𝜇𝑘 − 𝜈𝑛

2

)

|

|

|

|

𝜆𝑛
= 𝑙𝑘, 𝑘 = 1, 2,… ,𝑀 (6c)

or the length of the 𝑀 branches.
For the special case where this branched crack is of central symmetry, which means the length of each branch is equal and the

ngle between each branch is equal, i.e. 𝑙𝑘 = 𝑙 and 𝜃𝑘 =
2𝜋
𝑀 , 𝑘 = 1, 2,… ,𝑀 . The mapping function is in the form of

𝜔(𝜁 ) = 𝑙
𝑀
√

4

(𝜁𝑀 + 1)
2
𝑀

𝜁
(7)

For the case of 𝑀 = 2, the mapping function becomes a Zhukovsky function (Brown and Churchill, 2009). We further discussed the
situation where 𝑀 = 3 and 𝑀 = 4 as examples for 𝑀 being an odd and even number in Section 3 and Section 4, respectively.

However, due to the multi-value nature of the mapping function and the possible discontinuity in the term 𝜔(𝜉)
𝜔′(𝜉)

in Eq. (4), it
s rather difficult to employ the mapping function to solve the BVP directly, as detailed Appendix A. Alternatively, we adopt a
olynomial approximation to tackle such a problem. Following this track, the mapping function in Eq. (5) can be written in Laurent
eries

𝜔(𝜁 ) = 𝑅

(

𝜁 +
∞
∑

𝑛=1
𝑎𝑛𝜁

1−𝑛

)

(8)

where 𝑎𝑛 is the complex coefficient for the 𝑛th term in the sum. The derivative of 𝜔(𝜁 ), as detailed in the Appendix B, is given as

𝜔′(𝜁 ) = 𝜔(𝜁 )
∏𝑀

𝑛=1(𝜁 − 𝜁𝑛)

𝜁
∏𝑀

𝑛=1(𝜁 − 𝜂𝑛)
(9)

which may be further reformulated as

𝜔′(𝜁 )𝜁
𝑀
∏

𝑛=1
(𝜁 − 𝜂𝑛) = 𝜔(𝜁 )

𝑀
∏

𝑛=1
(𝜁 − 𝜁𝑛) (10)

We now expand the product term at the left-hand-side in the above equation,
𝑀
∏

𝑛=1
(𝜁 − 𝜂𝑛) = 𝜁𝑀 +

𝑀
∑

𝑛=1
𝛼𝑛𝜁

𝑀−𝑛 (11a)

and that at the right-hand-side is in the form of
𝑀
∏

𝑛=1
(𝜁 − 𝜁𝑛) = 𝜁𝑀 +

𝑀
∑

𝑛=1
𝛽𝑛𝜁

𝑀−𝑛 (11b)

where coefficients 𝛼𝑛 and 𝛽𝑛, according to Vieta theorem, are given as

𝛼𝑛 = (−1)𝑛
∑

𝜂𝑘1𝜂𝑘2 ⋯ 𝜂𝑘𝑛 , 𝑛 = 1, 2,… ,𝑀 (12a)
4

1≤𝑘1<𝑘2<⋯<𝑘𝑛≤𝑀
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and

𝛽𝑛 = (−1)𝑛
∑

1≤𝑘1<𝑘2<⋯<𝑘𝑛≤𝑀
𝜁𝑘1𝜁𝑘2 ⋯ 𝜁𝑘𝑛 , 𝑛 = 1, 2,… ,𝑀 (12b)

Then substituting Eq. (8), (11) and (12) into Eq. (10), we can obtain the recursive expression for the complex parameter 𝑎𝑛 in
he mapping function (Eq. (8)),

𝑎𝑛 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0; 𝑛 < 0

1; 𝑛 = 0

1
𝑛

𝑀
∑

𝑘=1
[(𝑘 + 1 − 𝑛)𝛼𝑘 − 𝛽𝑘]𝑎𝑛−𝑘; 𝑛 > 0

(13)

However, the Laurent expansion given in Eq. (8) with a finite number of terms cannot fit the first and second order derivatives
of 𝜔(𝜁 ). These derivatives are quite important in solving the BVPs. Note 𝜔(𝜁𝑘) − 𝜔(𝜁 ) must be the same order of (𝜁 − 𝜁𝑘)2 since
the image of the unit circle have a sharp tip at 𝜔(𝜁𝑘). Consider the Taylor expansion of 𝜔(𝜁 ) near 𝜁𝑘, we have 𝜔(𝜁𝑘) − 𝜔(𝜁 ) =
𝜔′(𝜁𝑘)(𝜁 − 𝜁𝑘) +𝜔′′(𝜁𝑘)(𝜁 − 𝜁𝑘)2∕2, and 𝜔(𝜁 ) must respect the condition 𝜔′(𝜁𝑘) = 0. After enforcing the approximate expansion of 𝜔(𝜁 )
to respect the exact value of 𝜔′′(𝜁 ) at 𝜁𝑘, we may then use this relationship for the derivation of the SIFs. To ensure the accuracy
of the first and second order derivative of the expansion with a finite number of terms, the Laurent series of the mapping function
need to be truncated (Bowie, 1964). We assume a truncated mapping function with 𝑁 + 2 terms

𝜔𝑇 (𝜁 ) = 𝑅

[

𝜁 +
𝑁+2
∑

𝑛=1
𝑤𝑛𝜁

1−𝑛

]

= 𝑅

[

𝜁 +
𝑁
∑

𝑛=1
𝑎𝑛𝜁

1−𝑛 + 𝑇1𝜁−𝑁 + 𝑇2𝜁−𝑁−1

]
(14)

where 𝑇1 and 𝑇2 are two additional coefficients to ensure the expansion satisfying the first and second order derivative of (𝑁+2)-order
Laurent series 𝜔𝑇 (𝜁 ) equal to the corresponding derivative of the exact mapping function 𝜔(𝜁 ), that is

𝜔′
𝑇 (𝜁 ) = 𝑅

[

1 +
𝑁
∑

𝑛=1
(1 − 𝑛)𝑎𝑛𝜁−𝑛 −𝑁𝑇1𝜁−𝑁−1 − (𝑁 + 1)𝑇2𝜁−𝑁−2

]

= 𝜔′(𝜁 ) (15a)

and

𝜔′′
𝑇 (𝜁 ) = 𝑅

[ 𝑁
∑

𝑛=1
𝑛(𝑛 − 1)𝑎𝑛𝜁−𝑛−1 +𝑁(𝑁 + 1)𝑇1𝜁−𝑁−2 + (𝑁 + 1)(𝑁 + 2)𝑇2𝜁−𝑁−3

]

= 𝜔′′(𝜁 ) (15b)

Specially, for 𝜔′(𝜁 ) and 𝜔′′(𝜁 ) at the mapping points 𝜁𝑘 (the tips of the branched crack), we have

𝜔′(𝜁𝑘) = 0; 𝑘 = 1, 2,… ,𝑀 (16a)

and

𝜔′′(𝜁𝑘) = 𝜔(𝜁𝑘)

∏𝑁
𝑛=1,𝑛≠𝑘(𝜁𝑘 − 𝜁𝑛)

𝜁𝑘
∏𝑁

𝑛=1(𝜁𝑘 − 𝜂𝑛)
; 𝑘 = 1, 2,… ,𝑀 (16b)

ote both 𝑇1 and 𝑇2 are tip-specific. We solve these two numbers for each free end of a crack branch by using the two conditions
n Eq. (15). The truncated expansion of the mapping function 𝜔𝑇 (𝜁 ) we solve here does not describe the exact asymptotic behavior
f 𝜔(𝜁 ) near the points 𝜂𝑘. Since we are interested in the SIFs of the crack tips, which are connected to the asymptotic behavior
ear the points 𝜁𝑘, this treatment will not influence the accuracy of the results. With known 𝜔𝑇 (𝜁 ), we proceed in the next section

to elaborate the procedures for solving particular BVPs.

2.2. Boundary value problem

For linear elastic and plane-deformation problems, the single valued displacement allows us to write the complex functions 𝜑(𝜁 )
and 𝜓(𝜁 ) (Muskhelishvili, 1953) in the form of

𝜑(𝜁 ) = −
𝐹𝑥 + 𝑖𝐹𝑦
2𝜋(1 + 𝜅)

ln 𝜁 + 𝛤1𝑅𝜁 +
∞
∑

𝑛=1
𝑝𝑛𝜁

1−𝑛 (17a)

and

𝜓(𝜁 ) =
𝜅(𝐹𝑥 − 𝑖𝐹𝑦)
2𝜋(1 + 𝜅)

ln 𝜁 + 𝛤2𝑅𝜁 +
∞
∑

𝑛=1
𝑞𝑛𝜁

1−𝑛 (17b)

here 𝐹𝑥 and 𝐹𝑦 are the surface tractions along the 𝑥− and 𝑦−axes. 𝛤1 = 1
4 (𝜎1 + 𝜎2) and 𝛤2 = − 1

2 (𝜎1 − 𝜎2)e−2𝑖𝛽 are two complex
oefficients that describe the loading, and 𝜎1 and 𝜎2 are the principal stresses and 𝛽 is the angle between 𝜎1 and the 𝑥2-axis. The
aterial constant 𝜅 is related to the Poisson’s ratio 𝜈, 𝜅 = 3−4𝜈 for plane-strain deformation and 𝜅 = 3−𝜈 for plane-stress deformation.
5
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For the crack surface being traction-free, 𝐹𝑥 = 𝐹𝑦 = 0, hence 𝑓 (𝜉) = 0. Eq. (4) can then be simplified as

𝜑(𝜉)𝜔′(𝜉) + 𝜔(𝜉)𝜑′(𝜉) + 𝜓(𝜉)𝜔′(𝜉) = 0 (18)

Substituting Eq. (14) and (17) into Eq. (18), and recognizing 𝜉𝜉 = 1 and 𝑓 (𝜉) = 𝑓 (1∕𝜉) for any point 𝜉 on the unit circle, we have
a transformed Eq. (4) in series form

2𝛤1𝑅𝜉 + 𝛤1𝑅
𝑁+2
∑

𝑛=1
(1 − 𝑛)𝑤𝑛𝜉𝑛+1 +

𝑁+2
∑

𝑛=1
𝑝𝑛𝜉

1−𝑛 +

(𝑁+2
∑

𝑛=1
𝑝𝑛𝜉

1−𝑛

)(𝑁+2
∑

𝑛=1
(1 − 𝑛)𝑤𝑛𝜉𝑛

)

+𝛤1𝑅
𝑁+2
∑

𝑛=1
𝑤𝑛𝜉

1−𝑛 +
𝑁+2
∑

𝑛=1
(1 − 𝑛)𝑝𝑛𝜉𝑛+1 +

(𝑁+2
∑

𝑛=1
𝑤𝑛𝜉

1−𝑛

)(𝑁+2
∑

𝑛=1
(1 − 𝑛)𝑝𝑛𝜉𝑛

)

+𝛤2𝑅𝜉−1 + 𝛤2𝑅
𝑁+2
∑

𝑛=1
(1 − 𝑛)𝑤𝑛𝜉𝑛+1 +

𝑁+2
∑

𝑛=1
𝑞𝑛𝜉

1−𝑛 +

(𝑁+2
∑

𝑛=1
(1 − 𝑛)𝑤𝑛𝜉𝑛

)(𝑁+2
∑

𝑛=1
𝑞𝑛𝜉

1−𝑛

)

=0

(19)

y expanding Eq. (18) and calculating its Cauchy integral on the unit circle, we yield
𝑁+1
∑

𝑛=1
𝑝1+𝑛𝜁

−𝑛 +
𝑁
∑

𝑛=1

𝑁+1−𝑛
∑

𝑘=1
(1 − 𝑘)𝑝𝑛+𝑘+1𝑤𝑘𝜁−𝑛 + 𝛤1𝑅

𝑁+1
∑

𝑛=1
𝑤𝑛+1𝜁

−𝑛

+
𝑁
∑

𝑛=1

𝑁+1−𝑛
∑

𝑘=1
(1 − 𝑘)𝑤𝑛+𝑘+1𝑝𝑘𝜁−𝑛 + 𝛤2𝑅𝜁−1 = 0

(20)

The above equation holds for any point 𝜁 outside of the unit circle. Hence the coefficients of each term should vanish, from which
we obtain

𝑝𝑛 +
𝑁+2−𝑛
∑

𝑘=1
(1 − 𝑘)𝑤𝑘𝑝𝑛+𝑘 +

𝑁+2−𝑛
∑

𝑘=1
(1 − 𝑘)𝑤𝑛+𝑘𝑝𝑘 + 𝛤1𝑅𝑤𝑛 =

{

𝛤2𝑅; 𝑛 = 2

0; 𝑛 ≠ 2
(21)

he unknown parameters 𝜑(𝜁 ) can then be obtained by solving Eq. (21). The SIFs at the tip of the 𝑘th branch are given as (Andersson,
969)

𝐾 = 𝐾I − 𝑖𝐾II =
2
√

𝜋𝜑′(𝜁𝑘)
√

𝜔′′(𝜁𝑘)e𝑖𝛿𝑘
(22)

where 𝛿𝑘 =
∑𝑘−1
𝑗=1 𝜃𝑗 .

Specially, for a symmetrical two-branch crack, we have 𝑀 = 2, and it represents a straight crack of length 2𝑙. Eq. (5) can then
be written in a straightforward form

𝜔(𝜁 ) = 𝑙
2

(

𝜁 + 1
𝜁

)

(23)

which itself is in Laurent series. The theoretical solution of Eq. (4) is

𝜑(𝜁 ) = 𝑙
2
𝛤1𝜁 −

𝑙
2𝜁

(𝛤1 + 𝛤2) (24)

The SIFs are in the form of

𝐾 =
√

𝜋𝑙(2𝛤1 + 𝛤2), (25)

which are the same as the series solutions given by Williams (1957).
The detailed procedure for calculating the SIFs of an arbitrary branched crack is given in Appendix C.

3. The stress intensity factors of a three-branched crack

When a crack is subjected to dynamic loading or running into non-uniform fields, it may split in two branches. Such crack forking
or crack-branching has been broadly observed (Sundaram and Tippur, 2016; Fayyad and Lees, 2017; Dönmez and Bažant, 2020; Li
et al., 2022), as shown in Fig. 2a. Here we analyze three-branched cracks as examples (when the number of crack branches 𝑀 is
odd) to examine the theoretical framework introduced in Section 2.

We consider a three-branched crack shown in Fig. 2b, whose free ends are labeled as 𝑧1, 𝑧2 and 𝑧3, and their joint ends are
denoted as ℎ1, ℎ2 and ℎ3, respectively. The corresponding counterparts on the unit circle are 𝜁1, 𝜁2, 𝜁3, 𝜂1, 𝜂2, 𝜂3, in turn (see
ig. 2c). The lengths of the three branches are 𝑙1, 𝑙2 and 𝑙3, respectively. The angles between the two branches and the negative
irection of 𝑥-axis are 𝜃1 and 𝜃2, respectively. With Eq. (5), we have the mapping function of the forked crack

𝜔(𝜁 ) = 𝑅 (𝜁 − 𝜂1)𝜆1 (𝜁 − 𝜂2)𝜆2 (𝜁 − 𝜂3)𝜆3 (26)
6
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Fig. 2. Mapping of a forked crack. (a) Crack branching observed in a dynamic experiment (Sundaram and Tippur, 2018). (b) The original crack segment is
horizontal and lays along the 𝑥1-axis. The free ends of the crack are denoted as 𝑧1, 𝑧2 and 𝑧3, and their respective joint points are ℎ1, ℎ2 and ℎ3. (c) The
conformal mapping of a three-branched (forked) crack. The corresponding points on the unit circle are 𝜁1, 𝜁2, 𝜁3, 𝜂1, 𝜂2, 𝜂3, in turn.

Fig. 3. A comparison of the normalized SIFs at the three tips of a forked crack between this work (lines) and FE simulations (symbols). (a)–(b), 𝐾∗
I , 𝐾∗

II as a
function of 𝑙3∕𝑙1, respectively. Note the inset in (a) shows the boundary condition imposed to the forked crack.

where 𝜆1 =
𝜋−𝜃1
𝜋 , 𝜆1 =

𝜃1+𝜃2
𝜋 , 𝜆1 =

𝜋−𝜃2
𝜋 . The coefficients in the Laurent expansion of the mapping function in Eq. (12) are given as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝛼1 = −(𝜂1 + 𝜂2 + 𝜂3)

𝛼2 = 𝜂1𝜂2 + 𝜂1𝜂3 + 𝜂2𝜂3
𝛼3 = −𝜂1𝜂2𝜂3
𝛽1 = −(𝜁1 + 𝜁2 + 𝜁3)

𝛽2 = 𝜁1𝜁2 + 𝜁1𝜁3 + 𝜁2𝜁3
𝛽3 = −𝜁1𝜁2𝜁3

(27)

For the special case when 𝑙1 = 𝑙2 = 𝑙3 = 𝑙 and 𝜃1 = 𝜃2 = 𝜃, Eq. (26) is simplified as

𝜔(𝜁 ) = 𝑙
3
√

4

(𝜁3 + 1)
2
3

𝜁
= 𝑙

3
√

4

(

𝜁
3
2 + 1

𝜁
3
2

)
2
3

(28)

3.1. Finite-element verification

we adopt FEM to verify this theoretical framework for the forked crack shown in Fig. 2b. We consider a sufficiently large sample
by setting both side of the sample to be 20𝑙. The length of each part of the crack is 𝑙1 = 𝑙, 𝑙2 = 𝑙, and 𝑙3 is variable. The angles
of the two branches with respect to the 𝑥-axis are 2𝜋∕3 and 5𝜋∕6, respectively. Stress singularity at the crack tip is captured by
using collapsed elements with duplicate nodes in the shape of sweeping quadrilateral. Normalized SIFs 𝐾∗

I = 𝐾I∕
√

𝜋𝜎(𝑙1 + 𝑙2)∕2 and
𝐾∗

II = 𝐾II∕
√

𝜋𝜎(𝑙1 + 𝑙2)∕2 as functions of the normalized length of the third branch 𝑙3∕𝑙1, is shown in Fig. 3a–b. The lines are based
on theoretical predictions and the symbols correspond data from FE simulations. The theoretical predictions match well with those
from FE simulation.
7
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w

Fig. 4. A comparison of the normalized SIFs at Tip 2 between this work and the work by Adda-Bedia (2005). Here we consider a large sample with a
symmetrically branched crack subject to uniaxial loading perpendicular to the primary part of the crack.

3.2. Symmetrical three-branched cracks

We start with a three-branched crack with symmetrical branches, which means two branches of the crack are equal, i.e. 𝑙2 = 𝑙3,
and 𝜃1 = 𝜃2 = 𝜃. By using Eq. (22) we obtain the SIFs of the three-branched crack. In order to analyze possible crack propagation
of the branched cracks, we calculate the energy release rate at all tips of all the three branches, by adopting the following equation
between 𝐺 and 𝐾 (Hussain et al., 1973; Zeng and Wei, 2017)

𝐺 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐾2
I +𝐾2

II
𝐸∗ ; 𝐾I ≤ 0

𝐾2
II

𝐸∗ ; 𝐾I < 0

(29)

here 𝐸∗ is the modified Young’s modulus of the material, 𝐸∗ = 𝐸 for plane-stress deformation and 𝐸∗ = 𝐸
1−𝜈2 for plane-strain

deformation. When 𝐾I < 0, it implies the scenario of relative penetration between the upper and the lower surfaces of the
crack, and the mode-I fracture does not contribute to the energy leading to the propagation of crack. Therefore, we set 𝐾I = 0
in this circumstance to ensure the accuracy of 𝐺. In linear elastic fracture, the energy release rate 𝐺 is equivalent to the J-
integral (Rice, 1968), and those tips with greater J-integral will precede to other tips to propagate. We normalize 𝐾I, 𝐾II and
𝐺 as 𝐾∗

I = 𝐾I∕
√

𝜋𝜎(𝑙1 + 𝑙2)∕2, 𝐾∗
II = 𝐾II∕

√

𝜋𝜎(𝑙1 + 𝑙2)∕2 and 𝐺∗ = 𝐺𝐸∗∕[𝜎2𝜋(𝑙1 + 𝑙2)∕2], respectively, to demonstrate the relations
among SIFs, energy release rate and geometrical parameters.

Adda-Bedia (2005) employed the conformal mapping to solve the SIFs of a three-branched crack with symmetrical branches. Here
we supply a comparison between this work and Adda-Bedia (2005) shown in Fig. 4. A three-branched crack with two symmetrical
branches is subjected to a uniaxial loading (see the inset), and 𝐾∗

I , 𝐾∗
II are functions of 𝜃. As Adda-Bedia made the approximation

that 𝑙2∕𝑙1 ≪ 1 to simplify the mapping function, his results match well with ours when 𝑙2∕𝑙1 is considerably small (𝑙2∕𝑙1 < 0.01, as
shown in Fig. 4). Nevertheless, significant differentials exist when 𝑙2∕𝑙1 becomes large.

In Fig. 5a, we show a symmetrical three-branched crack, of which 𝜃1 = 𝜃2 = 𝜋∕3 and 𝑙1 = 𝑙2 = 𝑙3 = 𝑙 (see the inset). This crack
is subjected to biaxial loading, with 𝜎1 in the longitudinal direction and 𝜎2 in the transversal direction. Let the sum of 𝜎1 and 𝜎2
be fixed, i.e. 𝜎1 + 𝜎2 = 𝜎. Due to the symmetry of this BVP, 𝐾I and 𝐺 of tip 2 and tip 3 are equal, and 𝐾II of tip 2 and tip 3 are of
opposite sign. We show in Fig. 5 the log-plot of 𝐾∗

I , 𝐾∗
II and 𝐺∗ versus 𝜎2∕𝜎1. From Fig. 5c, when 𝜎1 > 𝜎2, tip 1 will propagate first;

if 𝜎1 < 𝜎2, tip 2 and tip 3 will be the first to propagate.
We further explore the influence of geometrical parameters to the SIFs of symmetrical three-branched cracks subjected to uniaxial

loading. The two parameters determining the shape of a symmetrical three-branched crack are 𝜃 and 𝑙2∕𝑙1. In Fig. 6, we show the
relations between 𝐾∗

I , 𝐾∗
II, 𝐺

∗ and the two variables 𝜃 and 𝑙2∕𝑙1. The main crack (tip 1) is Mode I dominant as 𝜃 and 𝑙2∕𝑙1 change.
From Fig. 6c and f, it is evident that the main crack is likely to propagate first when such a symmetrical three-branched crack is
subjected to longitudinal loading.

3.3. T-shaped cracks

Another type of three-branched cracks of particular engineering significance is the T-shaped cracks. We consider the special case
in which the branched crack is perpendicular to the main crack, i.e. 𝜃1 = 𝜃2 = 𝜋∕2. For the convenience of discussion, we normalize
𝐾 , 𝐾 and 𝐺 by letting 𝐾∗ = 𝐾 ∕

√

𝜋𝜎𝑙 ∕2, 𝐾∗ = 𝐾 ∕
√

𝜋𝜎𝑙 ∕2 and 𝐺∗ = 𝐺𝐸∗∕(𝜎2𝜋𝑙 ∕2), respectively.
8
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Fig. 5. A three-branched crack with symmetrical branches subjected to biaxial loading. (a)–(c) 𝐾∗
I , 𝐾∗

II, 𝐺
∗ as a function of 𝜎2∕𝜎1, respectively. Note the inset

in (a) shows the boundary condition imposed to the forked crack.

Fig. 6. Three-dimensional diagrams to show the normalized SIFs 𝐾∗
I and 𝐾∗

II and energy release rate 𝐺∗ as a function of both 𝜃 and 𝑙2∕𝑙1. (a)–(c)𝐾∗
I , 𝐾∗

II and
𝐺∗ at tip 1 and (d)–(f) the three parameters at tip 2.

Fig. 7. A symmetrical T-shaped (three-branched) crack subjected to uniaxial loading, where 𝑙2 = 𝑙3. (a)–(c) are normalized SIFs 𝐾∗
I and 𝐾∗

II and energy release
rate 𝐺∗ as a function of 𝑙2∕𝑙1, respectively. Note the inset in (a) shows the boundary condition imposed to the T-shaped crack.
9
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Fig. 8. A T-shaped three-branched crack subjected to uniaxial loading. (a)–(c) normalized SIFs 𝐾∗
I and 𝐾∗

II and energy release rate 𝐺∗ as a function of the ratio
f two branches 𝑙3∕𝑙2, respectively. Note the inset in (a) shows the boundary condition imposed to the T-shaped crack.

Considering the simple case that we have two equal vertical branches, i.e. 𝑙2 = 𝑙3, we show in Fig. 7 𝐾∗
I , 𝐾∗

II and 𝐺∗ as a function
of 𝑙2∕𝑙1. The symmetry of the BVP gives rise to identical 𝐾I and 𝐺 at tip 2 and tip 3, while 𝐾II of the two tips are of opposite sign.

hen 𝑙2∕𝑙1 approaches to 0, we see from Fig. 7a and b that 𝐾∗
I and 𝐾∗

II of the main crack (tip 1) approach to 1 and 0, respectively.
he results are in consonance with the theoretical solution of a straight crack. 𝐾∗

I of the main crack increases as 𝑙2∕𝑙1 increases,
nd it eventually converges to ∼ 1.6. In contrast, 𝐾∗

I and 𝐾∗
II approach to 0 as 𝑙2∕𝑙1 increases. The result in Fig. 7c implies that the

ain crack is always the first to propagate in this BVP.
We now examine the influence of the ratio of the two vertical branches 𝑙3∕𝑙2. We consider a T-shaped crack shown in Fig. 8a

nd the crack is subjected to uniaxial loading. For the convenience of discussion, we let 𝑙2 + 𝑙3 = 𝑙 = 2𝑙1. In Fig. 8, we plot 𝐾∗
I ,

∗
II and 𝐺∗ as the functions of 𝑙3∕𝑙2. When 𝑙3∕𝑙2 ≠ 1, mode II fracture at the tip of the main crack, due to the asymmetry of the
ranched crack, will dominate late on crack propagation, as seen from Fig. 8b. Such a conclusion is further confirmed by looking
t the energy release rate shown in Fig. 8c, where crack propagation in the main crack is preferred over the vertical ones for the
pecific boundary condition (see the insert in Fig. 8a).

. The stress intensity factors of a four-branch crack

We now apply the solution established in Section 2 to cracks of four branches. Such type of cracks are also rather common in
ngineering practice, and have been broadly observed in experiments (Xu et al., 2003; Burghard et al., 2004), as demonstrated in
ig. 9a-b. The four-branched cracks serve as examples when the number of crack branches 𝑀 is even.

We consider an arbitrarily sized four-branched crack shown in Fig. 9c. The ends of this branched crack are labeled as 𝑧1, 𝑧2,
3 and 𝑧4, and the joint points in turn are ℎ1, ℎ2, ℎ3 and ℎ4. The length of the branches are 𝑙1, 𝑙2, 𝑙3 and 𝑙4, respectively. The
orresponding counterparts on the mapped unit circle are 𝜁1, 𝜁2, 𝜁3, 𝜁4, 𝜂1, 𝜂2, 𝜂3 and 𝜂4, in sequence, as shown in Fig. 9d. With
q. (5), we obtain the mapping function as

𝜔(𝜁 ) = 𝑅
𝜁
(𝜁 − 𝜂1)𝜆1 (𝜁 − 𝜂2)𝜆2 (𝜁 − 𝜂3)𝜆3 (𝜁 − 𝜂4)𝜆4 (30)

where 𝜆𝑛 =
𝜃𝑛
𝜋 . When expanding the mapping function in Eq. (30) in Laurent series, we obtain equations for those the coefficients

n terms of points on the unit circle in the 𝜁 -plane (seen in Eq. (12))

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝛼1 = −(𝜂1 + 𝜂2 + 𝜂3 + 𝜂4)

𝛼2 = 𝜂1𝜂2 + 𝜂1𝜂3 + 𝜂1𝜂4 + 𝜂2𝜂3 + 𝜂2𝜂4 + 𝜂3𝜂4
𝛼3 = −(𝜂1𝜂2𝜂3 + 𝜂2𝜂3𝜂4 + 𝜂1𝜂3𝜂4 + 𝜂1𝜂2𝜂4)

𝛼4 = 𝜂1𝜂2𝜂3𝜂4
𝛽1 = −(𝜁1 + 𝜁2 + 𝜁3 + 𝜁4)

𝛽2 = 𝜁1𝜁2 + 𝜁1𝜁3 + 𝜁1𝜁4 + 𝜁2𝜁3 + 𝜁2𝜁4 + 𝜁3𝜁4
𝛽3 = −(𝜁1𝜁2𝜁3 + 𝜁2𝜁3𝜁4 + 𝜁1𝜁3𝜁4 + 𝜁1𝜁2𝜁4)

𝛽4 = 𝜁1𝜁2𝜁3𝜁4

(31)

The above equations enable us to determine the coefficients of the Laurent series of the mapping function, and from which we can
derive the SIFs at all tips of the four-branched crack.
10
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Fig. 9. Four-branched cracks observed in experiments and their conformal mapping to unit circles. (a) The four-branched crack after indentation (Burghard
et al., 2004). (b) One straight crack intersecting an interface in a dynamic experiment (Xu et al., 2003). (c) The crack on the 𝑧-plane: the original part is
horizontal to the 𝑥1-axis. The ends of the crack are 𝑧1, 𝑧2, 𝑧3 and 𝑧4, and the joint points are ℎ1, ℎ2, ℎ3 and ℎ4. (d) The corresponding points on the mapped
unit circle are 𝜁1, 𝜁2, 𝜁3, 𝜁4, 𝜂1, 𝜂2, 𝜂3, 𝜂4, in turn.

Fig. 10. A comparison of normalized SIFs at the four tips of a cruciform crack, where 𝑙3∕𝑙1 = 4 and 𝑙4∕𝑙1 = 0.5, this work (lines) vs. FE simulations (symbols).
(a) and (b) 𝐾∗

I , 𝐾∗
II as a function of 𝑙2∕𝑙1, respectively. Note the inset in (a) shows the boundary condition imposed to the cruciform crack.

4.1. Finite-element verification

We adopted the FE model shown in Fig. 10a to verify the theoretical framework. We consider a sufficient large sample by setting
both side of the sample to be 20𝑙. For simplicity, we consider a crack with the following branch length, 𝑙1 = 𝑙, 𝑙3 = 4𝑙, 𝑙4 = 0.5𝑙
and 𝑙2 being a variable. The angles between each branch are 𝜃1 = 𝜃2 = 𝜃3 = 𝜋∕2. The cracked body is subjected to a biaxial loading
with 𝜎1 = 𝜎2 = 𝜎. Stress singularity at the crack tips is captured by using collapsed elements with duplicate nodes in the shape of
sweeping quadrilateral. Normalized SIFs 𝐾∗

I = 𝐾I∕
√

𝜋𝜎(𝑙1 + 𝑙3)∕2 and 𝐾∗
II = 𝐾II∕

√

𝜋𝜎(𝑙1 + 𝑙3)∕2 as a function of 𝑙2∕𝑙1 are shown in
Fig. 10. Here the lines represent predictions by using this theory and the symbols are data from FE simulations. The results from
our theory agree well with those from FE simulations.
11
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Fig. 11. A symmetrical cruciform crack, where 𝑙1 = 𝑙2 = 𝑙3 = 𝑙4 = 𝑙, subjected to biaxial loading. (a)–(c) 𝐾∗
I , 𝐾∗

II, 𝐺
∗ as a function of 𝜎2∕𝜎1, respectively. Note

the inset in (a) shows the boundary condition imposed to the cruciform crack.

4.2. Cruciform cracks

Now we apply the theory to cruciform cracks, which are commonly seen in indentation experiment (Burghard et al., 2004).
Specifically, when 𝑙1 = 𝑙2 = 𝑙3 = 𝑙4 = 𝑙 and 𝜃1 = 𝜃2 = 𝜃3 = 𝜋∕2, it describes the simplest cruciform crack. The mapping function of
this particular crack is in the form of

𝜔(𝜁 ) = 𝑙
√

2

(𝜁4 + 1)
1
2

𝜁
= 𝑙

√

2

(

𝜁2 + 1
𝜁2

)
1
2

(32)

A typical cruciform crack has two straight cracks intersecting at the right angle, i.e. 𝜃1 = 𝜃2 = 𝜃3 = 𝜋∕2. We consider the transversal
crack as the main crack and the longitudinal one as two vertical branches. For convenience, we present the normalized 𝐾I, 𝐾I and
𝐺 by defining 𝐾∗

I = 𝐾I∕
√

𝜋𝜎(𝑙1 + 𝑙3)∕2, 𝐾∗
II = 𝐾II∕

√

𝜋𝜎(𝑙1 + 𝑙3)∕2 and 𝐺∗ = 𝐺𝐸∗∕[𝜎2𝜋(𝑙1 + 𝑙3)∕2], respectively.
We consider the influence of loading condition on crack propagation in an infinite body with a symmetrical cruciform crack. The

ength of its branches is equal, i.e. 𝑙1 = 𝑙2 = 𝑙3 = 𝑙4. Due to the symmetry of the BVP, 𝐾I of tip 1 and tip 3 are the same, and 𝐾I of
ip 2 is the same with tip 4. 𝐾II of the pairing tips are of opposite signs. The crack is subjected to biaxial loading with longitudinal
tress 𝜎1 and transversal stress 𝜎2, respectively. For discussion, we assume 𝜎1 + 𝜎2 = 𝜎 and 𝜎 is fixed.

In Fig. 11, we show 𝐾∗
I , 𝐾∗

II and 𝐺∗ are functions of 𝜎2∕𝜎1. From Fig. 11c, when 𝜎1 > 𝜎2, the main crack (tip 1 and tip 3) is the
irst to propagate, and when 𝜎1 < 𝜎2, the vertical branches (tip 2 and tip 4) start to propagate first.

Now we turn to the influence of the length of the vertical branches, and assume the length of the two vertical branches are
qual, i.e. 𝑙2 = 𝑙4. The sample is subjected to a uniaxial loading, as illustrated in the inset of Fig. 12a. Figs. 12a to c show in turn
∗
I , 𝐾∗

II and 𝐺∗ as a functions 𝑙2∕𝑙1. We see from Fig. 12a that 𝐾∗
I of the main crack (tip 1 and tip 3) converges to 1 when 𝑙2∕𝑙1

pproaches 0 if 𝜎2 = 0, and it converges to 0 when 𝜎1 = 0. These results are in consistent with the theoretical solutions of a straight
rack in corresponding loading conditions. Under longitudinal loading, 𝐾∗

I converges to about 1.12 when 𝑙2∕𝑙1 is about 4 or greater.
hen the cruciform crack is subjected to uniaxial loading, the branches perpendicular to the loading direction have the potential

o propagate. The branches parallel to the loading direction tend to close, on the contrary.
We also explore the influence of the ratio of two vertical branches on the propagation of the main crack (tip 1 and tip 3) when

he sample is subjected to a uniaxial loading. For convenience, we keep 𝑙2 + 𝑙3 = 𝑙 = 2𝑙1. We show in Fig. 13 𝐾∗
I , 𝐾∗

II and 𝐺∗ as
unctions of 𝑙3∕𝑙2. When the lengths of the two vertical parts are not equal, i.e. 𝑙2 ≠ 𝑙3, the asymmetry nature of the branched crack
eads to Mode II fracture at the tip of the main crack, as shown in Fig. 13b. We see from Fig. 13c that the main crack is always the
irst to propagate.

.3. Two intersecting straight crack

If we take a step back from the cruciform cracks and consider a branched crack formed by the intersection of two straight cracks
or interfaces), we have a four-branched crack commonly seen in engineering practice, like similar crack patterns formed during
ydraulic fracking. An example of such cracks for experimental exploration (Xu et al., 2003) is shown in Fig. 9b. For this kind of
our-branched crack, we have 𝜃1 = 𝜃3 = 𝜃 and 𝜃2 = 𝜋 − 𝜃. For demonstration, we explore the scenario when the four branches of
he crack are equal, i.e. 𝑙1 = 𝑙2 = 𝑙3 = 𝑙4 = 𝑙. For this instance and when 𝜃 approaches 0, both 𝐾∗

I and 𝐺∗ of tip 1 and tip 2 are the
ame, and 𝐾∗

II of those two tips are of opposite sign, as given in Fig. 14. From Fig. 14c, we find that the crack prefers to propagate
12

rom tip 1 and tip 3 over the other two branch tips given the much greater energy release rate at tip 1 and tip 3.
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Fig. 12. A cruciform crack subjected to biaxial loading, respectively. (a)–(c) 𝐾∗
I , 𝐾∗

II, 𝐺
∗ as a function of 𝑙2∕𝑙1, respectively. Note the inset in (a) shows the

boundary condition imposed to the cruciform crack.

Fig. 13. A cruciform crack subjected to uniaxial loading. (a)–(c) 𝐾∗
I , 𝐾∗

II, 𝐺
∗ as a function of 𝑙3∕𝑙2, respectively. Note the inset in (a) shows the boundary

condition imposed to the cruciform crack.

Fig. 14. A four-branched crack subjected to uniaxial loading. (a)–(c) 𝐾∗
I , 𝐾∗

II, 𝐺
∗ as a function of 𝜃, respectively. Note the inset in (a) shows the boundary

condition imposed to the four-branched crack.

5. Conclusions

Crack branching is of great significance in engineering practice and is a highly complex process. One of the core issue associated
with the widely used energy based criterion is to find the SIFs of the crack. In this work we establish a theoretical framework
to calculate the SIFs of an arbitrary branched crack in a infinite space. By using Schwarz–Christoffel mapping, we transform the
branched crack on the 𝑧-plane into a unit circle on the 𝜁 -plane to simplify the BVP. We solve the BVP and obtain the complex
analytical functions, from which we further deduced the SIFs at all crack branches. This theoretical framework were applied to
analyze SIFs of three-branched and four-branched cracks, which are commonly seen in engineering practice. The accuracy of the
theoretical results were also validated through FE simulations. It should be emphasized we choose the geometries of those three and
four-branched cracks in a random manner. It by no means suggests that the theory is only applicable to those examples. It should
work for most branched cracks. We expect the theoretical method we established here can serve as a theoretical tool to calculate the
SIFs of any arbitrary branched crack. An apparent direction worth further exploration is to extend the theory for crack branching in
13
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a half space or even in finite domains, which could then be more practical from engineering perspective. The theoretical approach to
calculate SIFs of branched crack can help to understand crack branching and crack deflecting. With known SIFs of branched cracks
and adopting the crack-path selection criterion, we may foresee the path of crack extension and therefore the formation of crack
patterns. It has also been suggested that even SIFs of branched cracks in quasi-static condition could be meaningful to understand
crack branching during dynamic fracture (Adda-Bedia, 2005). Success in those problems may eventually help to predict where a
branched crack propagates and how to form a complex crack network, which may be desired either for safety analysis or for crack
engineering.
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ppendix A. Discontinuities on the path of the singular integral equation

In Section 2 we mention that the multi-value nature of mapping function and the possible discontinuities make it rather difficult
o employ Schwarz–Christoffel mapping to solve the BVPs directly. Here we will discuss the influence of these discontinuities on
olving the BVPs.

The BVPs of a branched crack can be reduced to singular integral equation by employing the Cauchy integral form of Eq. (4) on
he path of the unit circle 𝐶 as

∫𝐶
𝜑(𝜉)
𝜉 − 𝜁

𝑑𝜉 + ∫𝐶
𝜔(𝜉)

𝜔′(𝜉)

𝜑(𝜉)
𝜉 − 𝜁

𝑑𝜉 + ∫𝐶
𝜓(𝜉)
𝜉 − 𝜁

𝑑𝜉 = ∫𝐶
𝑓 (𝜉)
𝜉 − 𝜁

𝑑𝜉 (A.1)

For 𝜔(𝜉)
𝜔′(𝜉)

in the second term of Eq. (A.1), there is

𝜔(𝜉)

𝜔′(𝜉)
=
𝜔(𝜉)

𝜔(𝜉)

𝜔(𝜉)

𝜔′(𝜉)
=
𝜔(𝜉)

𝜔(𝜉)

∏𝑀
𝑛=1(1 − 𝜂𝑛𝜉)

𝜉
∏𝑀

𝑛=1(1 − 𝜁𝑛𝜉)
(A.2)

where

𝜔(𝜉)

𝜔′(𝜉)
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1; 𝜉 ∈ 𝜂𝑀𝜂1
e2𝑖𝜃1 ; 𝜉 ∈ 𝜂1𝜂2
⋮

e2𝑖
∑𝑀−1
𝑛=1 𝜃𝑛 ; 𝜉 ∈ ¸�𝜂𝑀−1𝜂𝑀

(A.3)

Therefore, 𝜁1, 𝜁2,… , 𝜁𝑀 are 𝑀 poles for Eq. (A.1), and 𝜂1, 𝜂2,… , 𝜂𝑀 are 𝑀 jump discontinuities for Eq. (A.1), respectively.
To avoid the influence of these discontinuities, we make some transformation and approximation to the BVPs. First, Eq. (4) is

reformulated into Eq. (18) and the 𝑀 poles on the unit circle 𝐶 are eliminated. We also adopt polynomial approximation to smooth
the image of mapping function near 𝜔(𝜂𝑘) to avoid the jump discontinuities. As shown in Fig. A.1, the image of the approximate
mapping function approaches to the original crack as the terms of Laurent series 𝑁 increasing.

Liu and Wei (2021) gave an analytical solution of both the SIFs and the stress fields of kinked cracks. However, the results of
SIFs deviate from the FE simulation when the kink length 𝑙 is much smaller than the main crack 𝑎 (𝑙∕𝑎 < 0.2). The reason is the
authors neglect the discontinuities on the path of the singular integral equation (Eq. (A.1)) when solving the BVPs. In the kinking
problem, the corresponding points of the crack tips and the joint point of the crack in the 𝜁 -plane are 𝜁1, 𝜁2, 𝜂1 and 𝜂2, respectively,
and they are also the discontinuities on the path of the Eq. (A.1). When kink length approaches to 0, 𝜂1 and 𝜂2 will approach to 𝜁1,
and these two jump discontinuities will influence the accuracy of the solutions of Eq. (A.1) near the crack tip.

In this work we have overcome this drawback by making the approximation of the mapping functions as present in Section 2.
Here we compare the SIFs of a kinked crack by using different theoretical methods including Cotterell and Rice (1980), He et al.
(1991), Liu and Wei (2021) and this work. The kinked crack is subjected to uniaxial loading (see the inset), and the normalized SIFs
are given as functions of 𝑙∕𝑎, as shown in Fig. A.1(d)–(e). The SIFs given by this work match well with the FE results for arbitrary
14

𝑙∕𝑎. The analytical solution given by Liu and Wei (2021) is still applicable in practice when 𝑙∕𝑎 > 0.2.
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Fig. A.1. Image of the mapping function in different terms of Laurent series. (a) kinked crack, (b) three-branched crack and (c) four-branched crack. (d)–(f) is
he comparison of the SIFs of a kinked crack among this work, Liu and Wei (2021),Cotterell and Rice (1980), He et al. (1991) and the FE results.

ppendix B. First order derivative of the mapping function 𝝎(𝜻)

Here we give a method to deduce the first order derivative of the mapping function 𝜔(𝜁 ) in Eq. (9). The definition of the SIFs at
the 𝑘th tip of a 𝑀-branched crack is in the form of

𝐾 = 2
√

2𝜋 lim
𝑧→𝑧𝑘

√

𝑧 − 𝑧𝑘𝜑′(𝑧) = 2
√

2𝜋 lim
𝜁→𝜁𝑘

√

𝜔(𝜁 ) − 𝜔(𝜁𝑘)
𝜑′(𝜁 )
𝜔′(𝜁 )

(B.1)

where 𝑧𝑘 is the coordinate of the 𝑘th tip in the 𝑧-plane and 𝜁𝑘 is its counterpart in the 𝜁 -plane. This limitation exists when
lim𝜁→𝜁𝑘 𝜔

′(𝜁 ) = 0. Therefore, 𝜁1,… , 𝜁𝑀 are the 𝑀 zeros of 𝜔′(𝜁 ).

The first order derivative of 𝜔(𝜁 ) in Eq. (5) is

𝜔′(𝜁 ) = − 𝑅
𝜁2

𝑀
∏

𝑛=1
(𝜁 − 𝜂𝑛)𝜆𝑛 +

𝑅
𝜁

𝑀
∑

𝑛=1

𝜆𝑛
∏𝑀

𝑘=1(𝜁 − 𝜂𝑘)
𝜆𝑘

𝜁 − 𝜂𝑛

= 𝑅
𝜁

𝑀
∏

𝑛=1
(𝜁 − 𝜂𝑛)𝜆𝑛

(

−1
𝜁
+

𝑀
∑

𝑛=1

𝜆𝑛
𝜁 − 𝜂𝑛

)

= 𝜔(𝜁 )
∑𝑀
𝑛=0 𝐴𝑛𝜁

𝑀−𝑛

𝜁
∏𝑀

𝑛=1(𝜁 − 𝜂𝑛)

= 𝜔(𝜁 )
𝐻(𝜁 )

𝜁
∏𝑀

𝑛=1(𝜁 − 𝜂𝑛)

(B.2)

where 𝐻(𝜁 ) is a 𝑀-order polynomial of 𝜁 and 𝐴𝑛 is coefficient of the 𝑛th term. Since 𝜁1,… , 𝜁𝑀 are the 𝑀 zeros of 𝜔′(𝜁 ), they are
also the 𝑀 zeros of 𝐻(𝜁 ). Therefore, 𝐻(𝜁 ) can be written in the form of

𝐻(𝜁 ) = 𝐴0

𝑀
∏

(𝜁 − 𝜁𝑛) (B.3)
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Fig. C.1. The flow chart to show detailed procedures in calculating the SIFs at the tips of a 𝑀-branched crack.

where 𝐴0 is the coefficient of 𝜁𝑀 in 𝐻(𝜁 ). From Eq. (B.2), coefficient 𝐴0 is in the form of

𝐴0 = −1 +
𝑀
∑

𝑛=1
𝜆𝑛 = −1 + 1

𝜋

𝑀
∑

𝑛=1
𝜃𝑛 = 1 (B.4)

By substituting Eqs. (B.3) and (B.4) into Eq. (B.2), we have

𝜔′(𝜁 ) = 𝜔(𝜁 )
∏𝑀

𝑛=1(𝜁 − 𝜁𝑛)

𝜁
∏𝑀

𝑛=1(𝜁 − 𝜂𝑛)
(B.5)

which is the result shown in Eq. (9).

Appendix C. Procedure for calculating stress intensity factors

We calculate SIFs 𝐾I and 𝐾II with following procedures. The detailed procedure flow chart is shown in Fig. C.1.
First we need to obtain the conformal mapping function of the 𝑀-branched crack into a unit circle. As mentioned in Section 2,

the mapping function given by Eq. (5) contains 2𝑀+1 real parameters 𝜇1,… , 𝜇𝑀 , 𝜈1,… , 𝜈𝑀 and 𝑅. These parameters are determined
by solving the 2𝑀 + 1 equations in Eq. (6). These nonlinear equations can be solved numerically by employing Newton–Raphson
method.

Next we need to expand the mapping function 𝜔(𝜁 ) in the 𝑁-order Laurent series as

𝜔(𝜁 ) ≈ 𝑅

(

𝜁 +
𝑁
∑

𝑛=1
𝑎𝑛𝜁

1−𝑛

)

(C.1)

where the coefficients 𝑎1, 𝑎2,… , 𝑎𝑁 are given in Eq. (13). The order 𝑁 is decided by an examination that the 𝑁-order Laurent
expansion of the mapping function 𝜔𝑁 (𝜁 ) satisfies 𝜔′

𝑁 (𝜁 ) ≈ 𝜔′(𝜁 ) and 𝜔′′
𝑁 (𝜁 ) ≈ 𝜔′′(𝜁 ), simultaneously (Bowie, 1964). In this work,

our exploration shows 𝑁 = 770 a reasonable number for most cases of branched cracks.
The following steps are based on a specific crack. Take the 𝑘th tip as an example for illustration. In order to obtain the truncated

mapping function at tip 𝑘, we need to calculate the accurate first and second order derivative 𝜔′(𝜁𝑘) and 𝜔′′(𝜁𝑘), where 𝜁𝑘 = e𝑖𝜇𝑘 is
the corresponding point of the 𝑘th tip on the unit circle. The additional coefficients 𝑇1 and 𝑇2 in the truncated mapping function
𝜔𝑇 (𝜁𝑘) are obtained by solving the two linear equations

⎧

⎪

⎪

⎨

⎪

⎪

𝑁𝜁−𝑁−1
𝑘 𝑇1 + (𝑁 + 1)𝜁−𝑁−2

𝑘 𝑇2 = 1 +
𝑁
∑

𝑛=1
(1 − 𝑛)𝑎𝑛𝜁−𝑛𝑘

𝑁(𝑁 + 1)𝜁−𝑁−2
𝑘 𝑇1 + (𝑁 + 1)(𝑁 + 2)𝜁−𝑁−3

𝑘 𝑇2 =
𝜔′′(𝜁𝑘) −

𝑁
∑

𝑛(𝑛 − 1)𝑎𝑛𝜁−𝑛−1𝑘

(C.2)
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The truncated mapping function is in the form of

𝜔𝑇 (𝜁𝑘) = 𝑅

(

𝜁𝑘 +
𝑁
∑

𝑛=1
𝑎𝑛𝜁

1−𝑛
𝑘 + 𝑇1𝜁−𝑛𝑘 + 𝑇2𝜁−𝑛−1𝑘

)

= 𝑅

(

𝜁 +
𝑁+2
∑

𝑛=1
𝑤𝑛𝜁

1−𝑛
𝑘

)
(C.3)

The complex function 𝜑(𝜁 ) at the 𝑘th tip of the 𝑀-branched crack with free surface is given as:

𝜑(𝜁𝑘) = 𝛤1𝑅𝜁𝑘 +
∞
∑

𝑛=1
𝑝𝑛𝜁

1−𝑛
𝑘 (C.4)

and the first 𝑁 + 2 coefficients 𝑝𝑛 are obtained by solving

𝑝𝑛 +
𝑁+2−𝑛
∑

𝑘=1
(1 − 𝑘)𝑤𝑘𝑝𝑛+𝑘 +

𝑁+2−𝑛
∑

𝑘=1
(1 − 𝑘)𝑤𝑛+𝑘𝑝𝑘 + 𝛤1𝑅𝑤𝑛 =

{

𝛤2𝑅; 𝑛 = 2

0; 𝑛 ≠ 2
(C.5)

et 𝑝𝑛 = 𝑝𝑅𝑛 + 𝑖𝑝𝐼𝑛 and 𝑤𝑛 = 𝑤𝑅𝑛 + 𝑖𝑤𝐼𝑛 , Eq. (C.5) become a (2𝑁 + 4)-order linear equations. In its compact form, we have

𝐖𝒑 = 𝒃 (C.6)

here (2𝑁 + 4)-order vector 𝒑 and 𝒃 are in the form of 𝒑 = [𝑝𝑅1 ,… , 𝑝𝑅𝑁+2, 𝑝
𝐼
1 ,… , 𝑝𝐼𝑁+2]

T and 𝒃 = −[𝛤1𝑅𝑤𝑅1 ,… , 𝛤1𝑅𝑤𝑅𝑁+2, 𝛤1𝑅𝑤
𝐼
1 ,… ,

𝛤1𝑅𝑤𝐼𝑁+2]
T + [0,ℜ(𝛤2)𝑅,… , 0, 0,ℑ(𝛤2)𝑅,… , 0]T, respectively. ℜ(⋅) and ℑ(⋅) denote the real and imaginary part of (⋅), respectively.

is a (2𝑁 + 4)-order matrix in the form of

𝐖 =
[

𝐈 𝟎
𝟎 𝐈

]

+
[

ℜ(𝐖1) ℑ(𝐖1)
−ℑ(𝐖1) ℜ(𝐖1)

]

+
[

ℜ(𝐖2) ℑ(𝐖2)
ℑ(𝐖2) −ℜ(𝐖2)

]

(C.7)

where 𝐈, 𝟎, 𝐖1 and 𝐖2 are (𝑁 + 2)-order matrices. 𝐈 is an identity matrix and 𝟎 is a zero matrix. 𝐖1 and 𝐖2 are in the form of

W1(𝑛, 𝑘) =

{

(1 − 𝑘 + 𝑛)𝑤𝑘−𝑛, 𝑘 − 𝑛 > 0

0, 𝑘 − 𝑛 ≤ 0
(C.8a)

and

W2(𝑛, 𝑘) =

{

(1 − 𝑘 − 𝑛)𝑤𝑘+𝑛, 𝑘 + 𝑛 ≤ 𝑁 + 2

0, 𝑘 + 𝑛 > 𝑁 + 2
(C.8b)

where 𝑛, 𝑘 = 1, 2,… , 𝑁 + 2, and W𝑗 (𝑛, 𝑘) means the element at the 𝑛th line and 𝑘th column in 𝐖𝑗 , 𝑗 = 1, 2.
With all the coefficients in Eq. (C.5) known, we may calculate the SIFs at the 𝑘th tip in the form of

𝐾 = 𝐾I − 𝑖𝐾II =
2
√

𝜋𝜑′(𝜁𝑘)
√

𝜔′′(𝜁𝑘)e𝑖𝛿𝑘
(C.9)

where 𝛿𝑘 =
∑𝑘−1
𝑗=1 𝜃𝑗 . By repeating the above steps, we obtain the SIFs and hence the strain energy release rate at all tips of a branched

rack.
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