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A B S T R A C T

Field decomposition is an effective strategy for reducing numerical dissipation and dispersion. This strategy
was employed by Li et al. (2021) to generate incident waves in two-phase flow simulations. This study
attempts to improve previous methods in two ways. First, the density gradient in the additional source term,
i.e. a delta function at the interface, is explicitly discretised. Although the explicit calculation simplifies the
implementation, an additional pressure translation correction method is proposed to ensure numerical stability
and accuracy. Second, the coupled level-set and volume-of-fluid method is used for interface capture. The
calculation of the additional source term is more precise using the level-set function. The two proposed
improvements result in a second-order spatial accuracy for the wave amplitude. A test on wave propagation
over a flat bottom shows that the proposed method provides more accurate predictions of the wave amplitude
compared with the previous method. In other test cases, including wave propagation over two-dimensional
breakwater and three-dimensional shoal, the simulation results show good agreement with the experimental
data.
1. Introduction

In computational fluid dynamics (CFD) studies of wave–structure
interactions, generating accurate incident waves is a key technique.
Several wave generation approaches have been developed, includ-
ing internal wave generation, static-boundary wave generation, and
moving-boundary wave generation (Higuera et al., 2015). Despite the
success of the wave generation approaches, the numerical simulation
of water wave propagation is challenging, because numerical dissipa-
tion and dispersion result in non-physical wave attenuation and phase
shift (Paulsen et al., 2014; Tao, 2020). Regardless of the selected wave
generation method, the waves undergo non-physical attenuation and
phase shift owing to the numerical dissipation and dispersion associated
with the Navier–Stokes equation solver (Paulsen et al., 2014; Tao,
2020). Although such numerical errors can be reduced by refining
the mesh, reducing the time step, or adopting a higher-order accu-
racy scheme, these are accompanied by increased computational costs.
When the wave motion is described by a potential theory, it can be
solved either analytically or numerically through a high-order accuracy
scheme to avoid numerical dissipation and dispersion. The potential-
flow method can be also used to solve wave–structure interaction
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problems, and results show good agreement with experiments and
numerical simulations based on viscous-flow solvers (Islam et al., 2019;
Mohapatra et al., 2020, 2022).

The velocity decomposition strategy, which combines the advan-
tages of different flow solvers, has been used in many CFD applications,
such as phase change (Lu et al., 2023), turbulent wake (Edmund et al.,
2013; Mittal et al., 2017), interactions between vortex tubes and free
surface (Dommermuth, 1993), and the coupled motion of viscous fluid
and elastic material interface (Beale and Layton, 2009). When the ve-
locity decomposition strategy is used for wave generation, the velocity
field can be decomposed into an incident part and a complementary
part. The incident part can be obtained using a high-accuracy potential
flow solver (Choi et al., 2023). Thus, the incident wave propagation
is not influenced by the numerical errors corresponding to the Navier–
Stokes equation solver. The complementary part can be solved using the
Navier–Stokes equation solver by adding some derived source terms.
Using this velocity decomposition strategy, Ferrant et al. (2003) studied
the interaction between a regular wave and square body based on
a single-phase simulation. This method was subsequently called the
Spectral Wave Explicit Navier–Stokes Equation (SWENSE) by Luquet
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et al. (2003). Compared with the pure Navier–Stokes equation solver,
the SWENSE method reduced the computational time by approximately
50% while achieving the same accuracy in the prediction of wave
amplitude (Luquet et al., 2007).

Vukčević et al. (2016a,b) extended the SWENSE method to two-
phase flow simulations. They applied the decomposition strategy to the
velocity field; however, the pressure field remained undecomposed. In
their algorithm, a phase-field method coupled with the level-set (LS)
method was used for interface capture, with the density smeared in
two or three grid points. Later, Li et al. (2019, 2021) pointed out that
applying pressure-field decomposition was crucial to satisfying the two
basic requirements of the governing equations of the complementary
part. These are the (1) degeneration to an Euler equation when the
complementary flow is trivial and (2) degeneration to the Navier–
Stokes equation when there are no incident waves. They derived the
conservative form of the momentum equation of the complementary
velocity, in which two additional terms appeared. One was derived
from the non-linear term of the Navier–Stokes equation, while the other
was associated with the pressure of the incident flow. The volume-of-
fluid (VOF) method (Hirt and Nichols, 1981) was used by Li et al.
(2019, 2021) to capture the interface. To keep the interface sharp,
they treated the additional term with the pressure similar to the sur-
face tension using a ghost-fluid (GF) method (Liu et al., 2000). They
further compared the performance of the SWENSE method with that
of the internal wave generation and static-boundary wave generation
methods for generating incident waves. They found that the number
of grid points required by the SWENSE method was only 25% of that
required by the other two methods to achieve the same wave amplitude
accuracy.

Previous studies show that the performance of the SWENSE method
relies on the interface calculation method. The summary of different
interface calculation methods can be found in Mirjalili et al. (2017,
2019). Generally speaking, a sharp-interface treatment is usually prefer-
able to obtain more accurate results. The VOF method can be regarded
as a sharp-interface method. Specifically, the transition of density in the
VOF method occurs only in one layer of grid cells between two phases.
Li et al. (2019, 2021) adopted an algebraic VOF method by using
the compression velocity for keeping interface sharp, while advanced
and accurate geometric VOF method was developed by Roenby et al.
(2016), Nguyen and Park (2016), Pathak et al. (2023), which has been
successfully applied for simulating waves (Nguyen and Park, 2018). In
the LS method, the density is usually determined by a mollified Heavi-
side function of the signed distance of each grid point to the interface.
If the transition thickness of the mollified Heaviside function is smaller
than one grid width, the LE method is regarded as a sharp-interface
method.

In this study, we extended the SWENSE method to a coupled LS and
VOF (CLSVOF) interface-capturing framework (Sussman and Puckett,
2000). Using the LS function, the location of the interface can be iden-
tified more accurately for the more precise calculation of the incident
pressure at the interface. The LS method has been used to simulate
non-breaking and breaking waves with good results (Bihs et al., 2016;
Iafrati, 2009). The LS function is not a conserved quantity, and as such
a reinitialisation algorithm needs to be adopted to ensure the mass
conservation. In our method, the VOF method is coupled to reconstruct
the interface to avoid non-physical loss of fluid volume. The LS function
is updated through a direct calculation of the distance of a grid point
to the reconstructed interface. Thus, the reinitialisation algorithm is no
longer needed. To obtain a better performance of the SWENSE method,
we use a stricter definition of sharp interface, that is, the density is
either the value of air or water without any transitional values. The
density is determined using an original Heaviside function without any
mollification. In other words, the transition thickness of the density is
zero. In addition to the interface-capturing method, another difference
between the present study and Li et al. (2019, 2021) is in the treatment
2

of the additional term corresponding to the pressure of the incident
flow. Here, this term is discretised explicitly instead of applying the GF
method as in Li et al. (2019, 2021). Although the explicit calculation
simplifies the implementation, additional treatment of the incident
flow pressure is required to ensure numerical accuracy. The proposed
method is found to be accurate in predicting the wave amplitude in
different test cases, including wave propagation over a flat bottom, two-
dimensional submerged breakwater, three-dimensional circular shoal,
and with currents past a vertical cylinder. The remainder of this paper
is organised as follows. Section 2 describes the governing equations and
numerical methods. Section 3 discusses the test results of the four cases,
followed by the conclusions in Section 4.

2. Numerical method

2.1. Field decomposition and governing equations

In the SWENSE method (Ferrant et al., 2003), the velocity 𝒖 is
ecomposed as

= 𝒖𝐼 + 𝒖𝐶 , (1)

where the subscripts 𝐼 and 𝐶 denote the incident and complementary
fields, respectively. The pressure decomposition is expressed as (Li
et al., 2021)

𝑝 =
𝜌
𝜌𝐼
𝑝𝐼 + 𝑝𝐶 , (2)

where 𝜌 and 𝜌𝐼 are the densities corresponding to the total and incident
fields, respectively. The incident field can be regarded as a far field
without considering the presence of solid bodies in the flow field, while
the complementary field contains the irrotational flow induced by
solid bodies and the rotational flow associated with viscous and wave
breaking effects. Therefore, the air–water interfaces of the incident and
total fields are typically not coincident. Thus, 𝜌 and 𝜌𝐼 in Eq. (2) can
e different.

The incident field can be given by the potential theory as

𝐼 = ∇𝜑𝐼 . (3)

The potential function 𝜑𝐼 satisfies the Poisson equation, which can be
solved analytically or numerically using a high-order accuracy scheme.
Therefore, the wave amplitude of the incident field does not decay ow-
ing to the numerical dissipation in the Navier–Stokes equation solver.
The incident field satisfies the following Euler equations for incom-
pressible flow:

∇ ⋅ 𝒖𝐼 = 0, (4)

𝜕𝒖𝐼
𝜕𝑡

+ 𝒖𝐼 ⋅ ∇𝒖𝐼 = −
∇𝑝𝐼
𝜌𝐼

+ 𝒈, (5)

where 𝑡 represents the time, 𝒈 is the gravitational acceleration, and
∇ = [𝜕∕𝜕𝑥, 𝜕∕𝜕𝑦, 𝜕∕𝜕𝑧] denotes the gradient operator. The pressure of
the incident field 𝑝𝐼 can be determined by the Euler equation (5) or
equivalently, through the Bernoulli equation. The air–water interface
of the incident field is assigned as the zero-value iso-surface of 𝑝𝐼 .

Combining the following advection equation of density
𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖) = 𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖𝐶 ) + ∇ ⋅ (𝜌𝒖𝐼 ) = 0, (6)

he governing equation of 𝜌𝒖𝐼 can be derived as
𝜕(𝜌𝒖𝐼 )
𝜕𝑡

= −∇ ⋅ (𝜌𝒖𝐼𝒖𝐼 ) − 𝒖𝐼∇ ⋅ (𝜌𝒖𝐶 ) −
𝜌
𝜌𝐼

∇𝑝𝐼 + 𝜌𝒈. (7)

The difference between the governing equations of the total and inci-
dent fields yields the governing equations of the complementary field
as

∇ ⋅ 𝒖𝑪 = 0 , (8)

𝜕(𝜌𝒖𝐶 ) = −∇ ⋅ (𝜌𝒖𝒖𝐶 ) − ∇𝑝𝐶 + ∇ ⋅ (2𝜇𝑺) − 𝜌∇ ⋅ (𝒖𝐶𝒖𝐼 ) −
𝑝𝐼 ∇𝜌 , (9)
𝜕𝑡 𝜌𝐼
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where 𝜇 is the dynamic viscosity and 𝑺 = (∇𝒖+∇𝒖𝑇 )∕2 is the strain-rate
tensor. The summation of Eqs. (5) and (9) results in the conservative
form of the momentum equation of the total velocity 𝒖. Eqs. (8) and (9)
can be solved using the Navier–Stokes equation solver, with the last two
terms in Eq. (9) treated as additional source terms.

2.2. Basic solver

In the present study, Eqs. (8) and (9) are solved using the in-house
code developed in a previous study (Yang et al., 2021). The momentum
equation is obtained using a fully explicit second-order Runge–Kutta
(RK2) method. An adaptive time step is used. The time step determined
using the Courant–Friedrichs–Lewy (CFL) number as

𝛥𝑡 = 𝐶𝐹𝐿 ⋅ 𝑚𝑖𝑛

⎧

⎪

⎨

⎪

⎩

𝛥𝑥
𝒖
,
𝛥𝑦
𝒗
,
𝛥𝑧
𝒘
,
𝜌𝛥2

6𝜇
,

√

𝛥𝑦
𝑔

⎫

⎪

⎬

⎪

⎭

(10)

where 𝛥𝑥, 𝛥𝑦 and 𝛥𝑧 represent the grid sizes in the 𝑥-, 𝑦-, 𝑧-directions,
respectively, and 𝛥 = (𝛥𝑥𝛥𝑦𝛥𝑧)1∕3.

In each sub-step of the RK2 method, a fractional-step method (Kim
and Moin, 1985) is applied to satisfy the divergence-free condition. To
ensure the stability of the simulation, an approximation-synchronisation
method is used to obtain the density field. In the approximation step,
the density is estimated by solving the convection equation without
considering the interface geometry. After a full time-step, the density
is synchronised according to the interface location. The momentum
is then updated using the synchronised density. Thus, the interface
geometry is accurately captured.

The finite difference method is used to discretise the governing
equations on a staggered Cartesian grid. The first three terms on the
right-hand side of the momentum equation of 𝒖𝐶 are similar to those
in the governing equations of the total velocity 𝒖. These three terms
are discretised using the same scheme as that of the corresponding
terms of 𝒖. Therefore, the fundamental architecture of the basic solver
does not require any modification. In particular, the convection term is
estimated using a limited cubic upwind interpolation scheme (Patel and
Natarajan, 2015), while the pressure and viscosity terms are calculated
using a second-order central difference scheme.

The last two terms on the right-hand side of Eq. (9) are the addi-
tional terms of 𝒖𝐶 . To describe the spatial discretisation of these two
terms, the coordinates of the cell centres are denoted as 𝑥𝑖, 𝑦𝑗 , and 𝑧𝑘.
The subscripts 𝑖 = 1, 2,… , 𝑁𝑥, 𝑗 = 1, 2,… , 𝑁𝑦, 𝑘 = 1, 2,… , 𝑁𝑧 represent
the quantities defined at the cell centres in the 𝑥-, 𝑦-, 𝑧-directions,
respectively. The velocity components in the corresponding directions
are denoted by 𝑢, 𝑣, and 𝑤. Taking the equation in the 𝑥-direction
as an example, the fourth term on the right-hand side of Eq. (9) is
approximated as

− [𝜌∇ ⋅ (𝒖𝐶𝑢𝐼 )]𝑖−1∕2,𝑗,𝑘

= − 𝜌𝑖−1∕2,𝑗,𝑘

(

𝑢𝐶
)

𝑖,𝑗,𝑘

(

𝑢𝐼
)

𝑖,𝑗,𝑘 −
(

𝑢𝐶
)

𝑖−1,𝑗,𝑘

(

𝑢𝐼
)

𝑖−1,𝑗,𝑘

𝛥𝑥

− 𝜌𝑖−1∕2,𝑗,𝑘

(

𝑣𝐶
)

𝑖−1∕2,𝑗+1∕2,𝑘

(

𝑢𝐼
)

𝑖−1∕2,𝑗+1∕2,𝑘 −
(

𝑣𝐶
)

𝑖−1∕2,𝑗−1∕2,𝑘

(

𝑢𝐼
)

𝑖−1∕2,𝑗−1∕2,𝑘

𝛥𝑦

− 𝜌𝑖−1∕2,𝑗,𝑘

(

𝑤𝐶
)

𝑖−1∕2,𝑗,𝑘+1∕2

(

𝑢𝐼
)

𝑖−1∕2,𝑗,𝑘+1∕2 −
(

𝑤𝐶
)

𝑖−1∕2,𝑗,𝑘−1∕2

(

𝑢𝐼
)

𝑖−1∕2,𝑗,𝑘−1∕2

𝛥𝑧
.

(11)

On a staggered grid, the velocity components are defined at the cell
faces. The velocity components at the cell centres and edges in the
above equation are calculated using a second-order central interpo-
lation. The last term on the right-hand side of Eq. (9) is explicitly
discretised using the following expression:

−
[

𝑝𝐼 𝜕𝜌
]

= −

(

𝑝𝐼
)

𝑖−1∕2,𝑗,𝑘 𝜌𝑖,𝑗,𝑘 − 𝜌𝑖−1,𝑗,𝑘 . (12)
3

𝜌𝐼 𝜕𝑥 𝑖−1∕2,𝑗,𝑘 𝜌𝐼 𝛥𝑥 t
The CLSVOF method is used to capture the interface between the
two fluid phases by solving the following convection equations of the
LS function 𝜙 and VOF function 𝜓 :
𝜕𝜙
𝜕𝑡

+ ∇ ⋅ (𝜙𝒖) = 0 , (13)

𝜕𝜓
𝜕𝑡

+ ∇ ⋅ (𝜓𝒖) = 0 , (14)

In this paper, ‘water’ and ‘air’ are used to represent the two fluid
hases. The LS function 𝜙 is defined as the signed distance from each
ell centre to the air–water interface. Its sign is positive and negative in
he water and air phases, respectively. The VOF function 𝜓 is defined
s the fraction of the volume occupied by water in each cell. Its value
anges from zero to one. To couple the LS and VOF functions, the LS
unction is used to determine the normal direction of the interface
o reconstruct the interface in each grid cells in the VOF method.
he VOF method ensures that the reconstructed interface satisfies
he requirement of mass conservation. The reconstructed interface is
hen used to determine the LS function near the interface, which
nsures the mass conservation of the LS function without applying
ny reinitialisation algorithms. Although the coupling of LS function
ncreases the complexity of the interface-capturing algorithm, it does
ot influences the overall computational efficiency. This is because the
LSVOF method only costs 3%–4% computational time in the cases
ested in the present study. Most computational time is used to solve
he Poisson equation of the pressure, which occupies 70%–75% in the
ested cases, and this percentage tends to increase as the number of
rid points increases. In other words, the overall computational cost
ith the CLSVOF method is comparable to that with the VOF method.

Based on the LS function, the density 𝜌 and dynamic viscosity 𝜇 are
etermined as

= 𝜌𝑎 + (𝜌𝑤 − 𝜌𝑎)𝐻(𝜙), (15)

= 𝜇𝑎 + (𝜇𝑤 − 𝜇𝑎)𝐻(𝜙). (16)

he Heaviside function 𝐻(𝜙) is defined as

(𝜙) =

{

0 , 𝜙 < 0 ,

1 , 𝜙 ≥ 0 .
(17)

rom Eq. (17), it is understood that the density and viscosity change
harply across the interface without applying any diffusion. The ap-
lication of the sharp-interface treatment improves the accuracy of
he momentum flux calculation around the interface. However, when
oupled with the SWENSE method, the calculation of 𝑝𝐼 in Eq. (12)
ust be treated carefully, which is discussed in Section 2.3.

.3. Pressure translation correction

An intuitive approach to calculate
(

𝑝𝐼
)

𝑖−1∕2,𝑗,𝑘 in Eq. (12) is to
nterpolate it using 𝑝𝐼 at the two neighbouring cell centres. However,
his treatment causes numerical inaccuracy. Fig. 1 demonstrates this
oint. The figure shows a special condition 𝒖𝐶 = 0, under which the
nterfaces corresponding to 𝒖 (the edge of the grey area) and 𝒖𝐼 (the
ashed line) are expected to collapse. If the viscosity is negligible, then
he first four terms on the right-hand side of Eq. (9) are all zero. The
ifth term is also trivial at the cell faces away from the interface because
f the condition 𝜕𝜌∕𝜕𝑥 = 0. At a cell face next to the interface, taking
oint A in Fig. 1 as an example, 𝜕𝜌∕𝜕𝑥 is non-trivial. If 𝑝𝐼 is determined
y interpolation, then it is also non-trivial at point A. This is because
𝐼 = 0 is satisfied at the interface of the incident field, which is usually
ot collocated with the cell face centres. This means that the last term
s not zero, which acts as a non-physical momentum source causing
purious velocity.

To address this issue, we revisit Eq. (9) in a continuum framework.
he last term can be regarded as a surface force, which is only non-

rivial at the interface of the total field. In a discretised system, it must
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Fig. 1. The sketch of the operation of pressure translation correction.
be redistributed to the neighbouring cell faces. In the present study, we
calculated this term at point 𝐴′ and prescribed its value to point 𝐴. This
treatment is equivalent to translating 𝑝𝐼 at point 𝐴′ to correct its value
at point 𝐴. Therefore, it is called the pressure translation correction
(PTC) method. The calculation of 𝑝𝐼 at point 𝐴′ is given by a linear
interpolation as

𝑝𝐼 =
𝑝𝐼,𝑤𝛥𝑎 + 𝑝𝐼,𝑎𝛥𝑤

𝛥𝑤 + 𝛥𝑎
. (18)

where 𝑝𝐼,𝑤 and 𝑝𝐼,𝑎 are the pressures at two neighbouring cell centres in
the water and air phases, respectively; and 𝛥𝑤 and 𝛥𝑎 are the distances
between the corresponding cell centres and the interface. In the present
framework, based on the CLSVOF method, the interface is defined as
𝜙 = 0, the location of which can be determined by interpolating the
LS function 𝜙 at the cell centres. Specifically, it is assumed that the
curvature radius of the interface is significantly larger than the grid
size, such that the interfaces inside two adjacent cells are approximately
in the same plane. As shown in the right panel of Fig. 1, the ratio
between 𝛥𝑤 and 𝛥𝑎 can be estimated as

𝛥𝑤
𝛥𝑎

≈
|𝜙𝑤|
|𝜙𝑎|

(19)

Substituting Eq. (19) into Eq. (18) results in the following estimation
of 𝑝𝐼 at point 𝐴′.

𝑝𝐼 =
𝑝𝐼,𝑤 + 𝑝𝐼,𝑎

𝛥𝑤
𝛥𝑎

1 + 𝛥𝑎
𝛥𝑤

≈
𝑝𝐼,𝑤 + 𝑝𝐼,𝑎

|𝜙𝑤|
|𝜙𝑎|

1 + |𝜙𝑎|
|𝜙𝑤|

=
𝑝𝐼,𝑤|𝜙𝑎| + 𝑝𝐼,𝑎|𝜙𝑤|

|𝜙𝑤| + |𝜙𝑎|
. (20)

Based on the above treatment, the special condition 𝒖𝐶 = 0 can be
reconsidered as follows. Because 𝑝𝐼 = 0 is defined at point 𝐴′, 𝑝𝐼 = 0
is also satisfied at point 𝐴 with the PTC method. This is a desirable
feature because it ensures that the last term on the right-hand side of
Eq. (9) is trivial when it should be. If a disturbance exists in the flow
field, the air–water interface corresponding to the total field 𝒖 deviates
from that corresponding to the incident field 𝒖𝐼 . Under this condition,
𝑝𝐼 at point 𝐴′ becomes non-trivial (note that point 𝐴′ is located at the
air–water interface of the total field, but not the incident field). The
presence of the disturbance is received by the complementary field 𝒖𝐶 .

From the perspective of a discretised system, the PTC method is
a zeroth-order accuracy approximation of the last term in Eq. (9).
This is because no higher-order term of the grid size 𝛥 is explicitly
involved in the relationship between the values of 𝑝𝐼 at points 𝐴 and
𝐴′. We do not intend to seek a higher-order approximation for the
following reasons. First, the PTC method satisfies the most fundamental
4

requirement (i.e. 𝑝𝐼 is equal to zero when it should be) under the special
condition 𝒖𝐶 = 0. Second, a higher-order scheme requires the gradient
of 𝑝𝐼 , which is likely to introduce additional error sources into the
system. Finally, the last term is only non-trivial in the flow regions
where the interface of the real field does not collocate with the incident
field. In the SWENSE method, the grid resolution in these regions
must be refined to capture the disturbance effect of 𝒖𝐶 . Therefore, the
discretisation error associated with the PTC method is not dominant.
The test results in Section 3.1 show that the zeroth-order approximation
is sufficiently accurate to predict the interface geometry.

To finalise the discussion of the PTC method, we note that in
the previous study by Li et al. (2019), it is shown that the direct
interpolation of 𝑝𝐼 to cell faces without applying any correction yields
reasonable results of the interface geometry when the interface is
diffused within several cells. However, the density gradient has a larger
value in the present study owing to the sharp-interface treatment,
which increases the sensitivity of the simulation results to the error
in 𝑝𝐼 . The test results in Section 3 show that applying the PTC method
with the sharp interface is required in the present framework. Although
additional treatment is required in the calculation of 𝑝𝐼 , it does not es-
sentially increase the complexity of the code implementation, while the
accuracy of the interface geometry is improved with the sharp-interface
treatment.

2.4. Boundary conditions

A periodic boundary condition is prescribed in the wave propaga-
tion direction. Relaxation zones (Jacobsen et al., 2012) are applied to
both sides of the computational domain in the wave propagation di-
rection. In the relaxation zone, the complementary field is damped out
and only the incident field is sustained. At the top and side boundaries,
a free-slip condition is applied to the complementary field, same as the
previous study (Li et al., 2021). At the bottom, the boundary condition
of the total field can be either no-slip or free-slip.

Owing to the use of a Cartesian grid, the immersed boundary (IB)
method is used to capture the geometry of solid bodies inside the
computational domain. In this study, we adopt the sharp-interface IB
method described in Cui et al. (2018). Note that the no-slip boundary
condition must be satisfied by the total field, but not the comple-
mentary field. In fact, the incident field is given without considering
the presence of any solid bodies; thus, it does not satisfy the no-
slip boundary condition at the body surfaces. Therefore, the boundary
condition of the complementary field should be the opposite of incident

field rather than no-slip at the surfaces of immersed bodies.
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Fig. 2. Wave geometry at 𝑡 = 20𝑇 in the test case of wave propagation over a flat bottom. The number of grid points is (a) 256 × 64, (b) 500 × 128, (c) 1000 × 256, and (d)
2000 × 512.
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Table 1
Physical parameters of the incident waves for
the test case of wave propagation over a flat
bottom.

Parameter Value

Wave height (2𝑎∕𝜆) 0.0711
Water steepness (𝑘𝑎) 0.2235
Water depth (ℎ∕𝜆) 0.7425
Dispersion parameter (𝑘ℎ) 4.6645
Wave phase speed (𝑐∕

√

𝑔𝜆) 0.4090
Wave period (𝑇 ∕

√

𝜆∕𝑔) 2.4447

3. Test results

3.1. Wave propagation over a flat bottom

In the first test case, two-dimensional deep-water gravity waves are
analytically obtained using a stream function solution as the incident
field (Rienecker and Fenton, 1981). The bottom is flat and the flow
field has no structure. The flow is inviscid. Thus, the complementary
field should be zero, and the wave geometry of the total field should
be consistent with the incident field. This is the most fundamental case
for examining the accuracy and robustness of the SWENSE method.

Table 1 lists the physical parameters of the incident waves. The
wave amplitude is 𝑎 = 0.0711𝜆, where 𝜆 is the wavelength of the
ncident field, yielding a wave steepness of 𝑘𝑎 = 0.2235. The water
epth is ℎ = 0.7425𝜆, yielding a dispersion parameter of 𝑘ℎ = 4.665
hat satisfies the deep-water condition. The wave phase speed is 𝑐 =
.4090

√

𝑔𝜆, and the wave period is 𝑇 = 𝜆∕𝑐 = 2.4447
√

𝜆∕𝑔. The
above parameters of the incident waves are also used to initialise the
5

Table 2
Grid parameters for the test case of wave propagation over a flat
bottom.

Very coarse Coarse Medium Fine

𝑁𝑥 250 500 1000 2000
𝑁𝑦 64 128 256 512
𝛥𝑥 𝜆∕25 𝜆∕50 𝜆∕100 𝜆∕200
𝛥𝑦 𝐻∕5 𝐻∕10 𝐻∕20 𝐻∕40

simulation. All the physical parameters in this test case are consistent
with those in Li et al. (2021) to facilitate a direct comparison with their
results.

The computational domain size is 𝐿𝑥 × 𝐿𝑦 = 10𝜆 × 0.92𝜆. The tests
are conducted using different grid resolutions. Table 2 lists the number
of grid points and grid resolution for different tests. It can be seen that
the number of grid points is 𝑁𝑥×𝑁𝑦 = 250𝑛×64𝑛, where 𝑛 is 1, 2, 4, and
. On the coarsest grid with 𝑛 = 1 and finest grid with 𝑛 = 8, the grid
esolutions are 𝛥𝑥 × 𝛥𝑦 = 𝜆∕25 ×𝐻∕5 and 𝜆∕200 ×𝐻∕40, respectively,
here 𝐻 = 2𝑎 is the wave height.

First, we demonstrate the importance of applying the PTC method
escribed in Section 2.3. Fig. 2 compares the wave geometries at 𝑇 = 20

obtained from the simulations with and without the application of the
PTC method. The analytical solution is also shown in the figure. It can
be seen that when the PTC method is applied, the numerical results
agree with the analytical solution on the coarsest grid. In contrast, the
wave amplitude is significantly underestimated on the coarsest grid
when the PTC method is not applied. As the number of grid points
increases, the wave amplitudes obtained without applying the PTC
method approach the analytical value; however, the error in the wave
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Fig. 3. Complementary velocity fields (a) without and (b) with the use of the PTC method after the first time step.
Table 3
Relative errors of the numerical results with respect to the analytical solution in
the first-order wave amplitude for the test case of wave propagation over a flat
bottom at 𝑡 = 20𝑇 .
𝑁𝑦 Present with PTC Present without PTC Li et al. (2021)

64 +2.62% −93.77% ——
128 +0.53% −38.20% −2.45%
256 +0.15% −6.58% −0.81%
512 +0.06% −1.23% −1.03%

Table 4
Relative errors of the numerical results with respect to the analytical solution in
the second-order wave amplitude for the test case of wave propagation over a
flat bottom at 𝑡 = 20𝑇 .
𝑁𝑦 Present with PTC Present without PTC Li et al. (2021)

64 +5.17% −55.04% ——
128 +1.47% +35.21% −3.96%
256 +0.27% −4.81% −1.80%
512 +0.09% +7.56% −1.96%

phase cannot be eliminated. Thus, applying the PTC method is crucial
to obtaining accurate results of the wave geometry.

To further visualise the effects of the PTC method, Fig. 3 compares
the complementary velocity fields obtained from the simulations with-
out and with the use of the PTC method after the first time step. The
black lines demarcate the water surface. It is seen from Fig. 3(a) that
a large magnitude of spurious velocity that reaches a maximum of
3.69 × 10−3

√

𝑔𝜆 is generated near the interface without using the PTC
method. This spurious velocity is significantly reduced by more than
99% with the use of the PTC method, as shown in Fig. 3(b). This allows
the regular wave to propagate accurately. The results in Fig. 3 indicates
that the PTC method eliminates the spurious velocity. This is crucial for
the accurate prediction of the wave geometry in the present SWENSE
method coupled to the CLSVOF method.

Fig. 4 compares the results of the first- and second-order wave
amplitudes 𝜂(1) and 𝜂(2) with Li et al. (2021). The wave amplitudes are
defined as

𝜂(1) =
𝑛
∑

𝑗=1
𝜂(𝑗)𝑒−𝑖

2𝜋𝑗
𝑛 , 𝜂(2) =

𝑛
∑

𝑗=1
𝜂(𝑗)𝑒−𝑖

4𝜋𝑗
𝑛 . (21)

The results are normalised using the corresponding analytical values
𝜂(1)0 and 𝜂(2)0 . To facilitate a quantitative comparison, Tables 3 and 4 list
the relative errors in the first- and second-order amplitudes at 𝑡 = 20𝑇 ,
respectively. It is evident from Fig. 4 and Tables 3 and 4 that the present
results are closer to the analytical solution than those of Li et al. (2021).
This is mainly attributed to the accurate identification of the interface
location in the present study based on the LS function. Specifically, the
value of 𝑃𝐼 at the interface needs to be calculated, which requires to
allocate the interface first. In the study by Li et al. (2021), the interface
was captured using the VOF method, and the location of the interface
could only be approximated by 𝜓 = 0.5. Additionally, 𝑃 was computed
6

𝐼

on the cell face closest to the isosurface of 𝜓 = 0.5, rather than on the
isosurface as in the present study, resulting in a first-order discretisation
error with respect to the grid size. In the present method, the interface
location is determined using the LS function as illustrated in Fig. 1. This
provides a more accurate estimation of 𝑃𝐼 at the interface. Therefore,
the coupling of the LS function can be regarded as the key for improving
the accuracy of the SWENSE method in the present study over the
previous method of Li et al. (2021).

Fig. 4 shows another desirable feature of the present results: the
error decreases as the grid is refined. To further examine the numerical
accuracy, Fig. 5 shows the error in the wave amplitude at 𝑡 = 20𝑇 based
on different numbers of grid points. The error is defined as

𝐸(𝜂) =
𝜂𝑛𝑠 − 𝜂

𝑡
𝑎

𝜂𝑛𝑎
, (22)

where the subscripts 𝑠 and 𝑎 denote the simulation and analytical re-
sults, respectively. Because the grid resolution is proportionally refined
in two directions in the present tests, the number of grid points in the
vertical direction 𝑁𝑦 is used as a representative of the grid resolution in
Fig. 5. The slope is fitted using the least-squares method. It can be seen
that for both 𝜂(1) and 𝜂(2), the accuracy is slightly lower but close to the
second order. These results indicate that although the PTC method is
only a zeroth-order approximation, it can accurately predict the wave
geometry. Thus, a high-order scheme is unnecessary.

The above tests are conducted on a uniform grid. In many ap-
plications, it is common to refine the mesh near the water surface
and structures, and stretch the grid to the boundaries to reduce the
computational cost. As a result, we also test the proposed SWENSE
method in a non-uniform grid. In this test, we remain the computational
domain size the same as the previous test. The grid resolution at the
central region also remains unchanged. Specifically, in a sub-domain
[3𝜆, 7𝜆] × [ℎ− 0.8𝐻,ℎ+ 0.8𝐻], the grid resolution is 𝛥𝑥 × 𝛥𝑦 = 𝜆∕(25𝑛) ×
𝐻∕(5𝑛), where 𝑛 is 2, 4, and 8. The grid size is stretched to the four
boundaries of the computational domain. This treatment reduces the
number of grid points from 𝑁𝑥 × 𝑁𝑦 = 250𝑛 × 64𝑛 for the previous
uniform grid to 𝑁𝑥 ×𝑁𝑦 = 200𝑛×28𝑛 for the present non-uniform grid.

Fig. 6 compares the first- and second-order wave amplitudes 𝜂(1)
and 𝜂(2) normalised by the corresponding analytical values obtained
from uniform and non-uniform grids. It is seen that when a low grid
resolution of 𝛥𝑦 = 𝐻∕10 is used, the non-uniform grid over-predicts
the second-order wave amplitude. As the grid resolution is refined to
𝛥𝑦 = 𝐻∕20 and 𝛥𝑦 = 𝐻∕40, the difference between non-uniform and
uniform grids becomes insignificant. The test results shown in Fig. 6
indicate that using the non-uniform grid provides the same accuracy in
the wave amplitude as the uniform grid by using only 34% grid points.

3.2. Wave propagation over a two-dimensional submerged breakwater

The above test of the wave propagation over a flat bottom shows the
accuracy of the proposed method without the presence of a complemen-
tary field. In the following tests, we further examine the performance
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Fig. 4. Time evolution of the normalised (a) first-order and (b) second-order wave amplitude obtained from the present simulation. Previous results of Li et al. (2021) are shown
for comparison.
Fig. 5. Relative error in the first- and second-order wave amplitude at 𝑡 = 20𝑇 for the
test case of wave propagation over a flat bottom.

of this method in capturing the effects of various solid body struc-
tures on the wave propagation. We begin with the case of wave
7

propagation over a two-dimensional submerged breakwater. This case
was experimentally investigated by Luth et al. (1994), and was used
as a benchmark to examine the performance of numerical simula-
tions (Gobbi and Kirby, 1999; Engsig-Karup et al., 2006; Zhao et al.,
2015b; Chen and Hsiao, 2016).

Fig. 7 shows a schematic of the test case. The computational domain
size is 𝐿𝑥 × 𝐿𝑦 = 44.88 m × 0.6 m, where 𝑥 and 𝑦 represent the wave
propagation and vertical directions, respectively. The water depth is
0.4 m. The breakwater is located from 𝑥 = 6 m to 17 m. The breakwater
height is 0.3 m; hence, the water depth is reduced to 0.1 m over the
top of the breakwater. The slopes of the front and back faces are 1 ∶ 20
and 1 ∶ 10, respectively. The wavelength, height, and phase speed of the
incident waves are 𝜆 = 3.74 m, 0.02 m, and 1.85 m∕s, respectively. These
parameters are also used to generate the initial waves of the simulation.
The relaxation zones are located at the left and right boundaries. The
width of each relaxation zone is twice the wavelength (i.e. 7.48 m).
The number of grid points is 𝑁𝑥 × 𝑁𝑦 = 1536 × 256, providing a grid
resolution of 𝛥𝑥 × 𝛥𝑦 = 0.0292 m × 0.00235 m.

We recorded the time histories of the water surface elevations at dif-
ferent points (Fig. 7) for comparison with the experimental data (Luth
et al., 1994). The results are shown in Fig. 8. The relative errors
of the numerical simulation with respect to the experimental data
in the maximum of water elevation at different locations are given
quantitatively in Table 5. As shown in Fig. 8, when the waves approach
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Fig. 6. Time evolution of the normalised (a) first-order and (b) second-order wave amplitude obtained from a non-uniform grid. The results obtained from a uniform grid are
shown for comparison.
Fig. 7. Sketch of key simulation parameters for the test case of wave propagation over a two-dimensional submerged breakwater. The unit of all length scales is metre.
Table 5
Relative errors of the numerical simulation with respect to the
experimental data in the maximum of water elevation at dif-
ferent locations for the test case of wave propagation over a
two-dimensional submerged breakwater.

Location Present with PTC Present without PTC

𝑥 = 12.5 m +0.90% −27.00%
𝑥 = 13.5 m −2.19% −29.47%
𝑥 = 14.5 m −1.98% −27.45%
𝑥 = 15.7 m −4.44% −20.07%
𝑥 = 17.3 m +4.84% −17.83%
𝑥 = 19.0 m +4.74% −28.42%
8

the bar, the water depth decreases. The nonlinearity of the wave is
enhanced (Jacobsen, 2011), and the wave amplitude reaches a max-
imum at the top of the bar. When the waves propagate over the bar,
the water depth increases and the wave amplitude decreases. It is seen
from both Fig. 8 and Table 5 that when the PTC method is adopted, the
numerical results agree with the experimental results at all monitoring
points. In contrast, without the PTC method, the wave amplitude is
underestimated.

3.3. Wave propagation over a submerged circular shoal

In this test, we examine the capability of the proposed method to
simulate three-dimensional cases. The test is conducted in the context
of wave propagation over a submerged circular shoal. This case was
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Fig. 8. Time evolution of the water elevation or the test case of wave propagation over a two-dimensional breakwater at different locations: (a) 𝑥 = 12.5 m, (b) 𝑥 = 13.5 m, (c)
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tudied experimentally by Chawla and Kirby (1996), and was consid-
red by Chen et al. (2000) and Zhao et al. (2015a) to validate their
imulations based on the potential theory. Similar experiments were
onducted by Lee et al. (2013).

Fig. 9 shows the top view of the computational domain for this
est case. The coordinates 𝑥, 𝑦 and 𝑧 denote the wave propagation,
ateral, and vertical directions, respectively. The computational domain
s 𝐿𝑥×𝐿𝑦×𝐿𝑧 = 30 m×18.2 m×0.75 m. The water depth is ℎ0 = 0.45 m.
he shoal geometry is a spherical crown. Its centre is located at 𝑥 = 5 m
nd 𝑦 = 8.98 m. The radius of the crown is 9.1 m. At the bottom, the
uter border of the crown is expressed as

𝑥 − 5)2 + (𝑦 − 8.98)2 = (2.57)2. (23)

he water depth over the circular shoal is given as

= ℎ0 + 8.73 −
√

82.81 − (𝑥 − 5)2 − (𝑦 − 8.98)2, (24)

hich results in a minimum water depth of 0.08 m over the top of the
rown. The wavelength, wave height, and phase speed of the incident
ave are 𝜆 = 1.5 m, 𝐻 = 1.18 cm, and 𝑐 = 1.5 m∕s, respectively.
9

0

he initial wave geometry remains the same as the incident wave.
he relaxation zones are located at the two sides of the computational
omain in the 𝑥-direction. The width of the relaxation zone is 3 m,
hich is twice the wavelength. The number of grid points is 𝑁𝑥 ×
𝑦 × 𝑁𝑧 = 600 × 360 × 200. The grid resolution is 0.05 m in the 𝑥-

nd 𝑦-directions, respectively. In the vertical (𝑧) direction, The grid is
refined near the water surface from 𝑧 = 0.37 m to 0.52 m, where the
grid resolution is 𝛥𝑧 = 0.0012 m. The grid is stretch to the top and
bottom boundaries of the computational domain. The grid is displayed
in Fig. 10. The simulation parameters are consistent with those in the
experiment of Chawla and Kirby (1996).

Fig. 11 shows the instantaneous water surface at 𝑡 = 10𝑇 , where
𝑇 = 𝜆∕𝑐 = 1s denotes the wave period. It is observed that the
waves refract over the shoal owing to the change in wave depth. The
wave amplitude is attenuated as it propagates over the shoal. The
wave geometry shown in Fig. 11 is qualitatively consistent with the
observations from previous studies (Lee et al., 2013; Zhao et al., 2010).

To further validate the simulation results quantitatively, the wave
amplitudes along different longitudinal and lateral lines are collected.
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Fig. 9. Top-view sketch of key simulation parameters for the test case of wave propagation over a circular submerged shoal. The unit of all lengths scales is metre. The solid
circles represent the isopleths of the shoal with the altitude marked by the numbers. The mean water elevation is defined as 𝑧 = 0. The coordinates 𝑥, 𝑦 and 𝑧 denote the wave
propagation, lateral, and vertical directions, respectively.
Fig. 10. Front-view of grid diagram around the shoal. To facilitate a clear illustration, only 1/2 grid lines and 1/8 grid lines are displayed in the 𝑥- and 𝑧-directions, respectively.
The red curves illustrate the free surface position at 𝑡 = 10𝑇 .
Fig. 11. Wave geometry at 𝑡 = 10𝑇 in the test case of a regular wave over a 3D submerged shoal. The contour shows the water elevation.
The locations of these lines are shown in Fig. 9. The simulation results
are compared with the experimental data in Fig. 12. It is seen that
the simulation results generally agree with the experimental results
when the PTC method is adopted. If the PTC method is not adopted,
the wave amplitude is underestimated by the numerical simulation.
In particular, as shown in Fig. 12(a), the maximum wave amplitude
predicted by the numerical simulation with the PTC method is 𝐻 =
2.7𝐻0, which occurs at 𝑥 = 8.0 m. The relative error of this maximum
wave amplitude is 2.92% with respect to the measurement. However,
if the PTC method is not applied, the maximum wave amplitude is
underestimated as 𝐻 = 2.2𝐻0, of which the relative error increases to
10
−11.97%. This indicates that the PTC method improves the accuracy of
the wave amplitude, particularly when the wave nonlinearity is strong.
Furthermore, the simulation results are oscillatory without the PTC
method. This is evident in the insets in Fig. 12(f,g). This observation
indicates that without the PTC method, spurious velocity is induced.

3.4. Wave propagation with currents past a vertical circular cylinder

In the above test cases, the complementary field is essentially a
potential flow corresponding to the submerged solid bodies. Therefore,
the wave geometries in these cases can be accurately predicted by a
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Fig. 12. Wave amplitude along different longitudinal and lateral lines for the test case of wave propagation over a circular shoal. The locations of the lines correspond to (a)
A–A, (b) B–B, (c) C–C, (d) D–D, (e) E–E, (f) F–F, and (g) G–G, as shown in Fig. 9.
potential flow solver (Gobbi and Kirby, 1999; Zhao et al., 2015b; Chen
et al., 2000; Zhao et al., 2019). As a potential–viscous coupling method,
the SWENSE method have shown its low numerical dissipation and
dispersion performance in the previous potential problem test cases.
Meanwhile, owing to the coupling of potential-flow solution to the
viscous-flow solver, the SWENSE method has another advantage, that
is, its ability in simulating viscous flow phenomena, such as vortex
shedding in flow past a bluff body. To demonstrate this, we conducted
a test case of wave propagation with currents past a vertical circular
cylinder. It should be noted that there are no benchmark experiments
for this test case in the literature. Therefore, we are unable to quanti-
tatively validate our simulation results. The purpose of conducting this
test case is to demonstrate the capability of the proposed method in
resolving the rotational flow in a qualitative manner.

Fig. 13 shows the side and top views of the computational domain.
The computational domain size is 𝐿𝑥 ×𝐿𝑦 ×𝐿𝑧 = 17𝜆×8𝜆×1.4𝜆, where
𝜆 represents the wavelength of the incident wave. The water depth is
ℎ0 = 𝜆. The steepness of the incident wave is 𝑘𝑎 = 0.20, where 𝑘 = 2𝜋∕𝜆
and 𝑎 is the wavenumber and wave amplitude, respectively. The current
velocity is 𝑈𝑐 = 0.273𝑐, where 𝑐 is the wave phase speed. The cylinder
diameter 𝐷 = 𝜆∕2 is one-half the wavelength. Its centre is located 4𝜆
from the left boundary. The Reynolds number is 𝑅𝑒 = 𝑈𝑐𝜆∕𝜈 = 3900.
The number of grid points is 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 = 200 × 160 × 140.

Fig. 14 shows the instantaneous surface geometry and vortex struc-
tures visualised using the iso-surface of 𝜙 = 0 and 𝑄 = 0.2𝑈2

𝑐 ∕𝜆
2,

respectively, where 𝑄 is the vortex identification criterion (Hunt et al.,
1988). As shown in Fig. 14, the interface geometry is disturbed down-
stream of the cylinder. Owing to the no-slip boundary condition applied
at the bottom boundary, a horseshoe vortex appears at the junction
11
between the front of the cylinder and the bottom. This observation is
consistent with the results of Shin et al. (2017). Behind the cylinder,
irregular vortex shedding is observed, indicating the presence of viscous
effect. This observation indicates that the proposed method can solve
rotational flows.

4. Conclusion

In this study, we describe a wave generation algorithm based on a
velocity decomposition strategy for interface-resolved two-phase flow
simulations. Unlike previous methods based on velocity decomposition,
the additional source term associated with the pressure of the incident
field is explicitly discretised. Although the explicit calculation of the
source term simplifies the implementation, the simulation results are
sensitive to the calculation method of the incident pressure. If the
pressure at the cell faces is directly used to calculate the additional
source term, a spurious velocity is induced. To improve the numerical
accuracy, we propose a pressure translation correlation method, in
which the pressure of the incident field is calculated at the wave sur-
face and prescribed to the adjacent cell faces. This method eliminates
the spurious velocity and improves the numerical accuracy. Another
difference between the proposed method and the previous study is
the interface-capturing method. The proposed method is developed
within the framework of the CLSVOF method. The interface location
is accurately identified with the aid of the LS function. Consequently,
the calculation of the source term is also more accurate.

The proposed method is quantitatively validated in three test cases.
In the first test case of wave propagation over a flat bottom, the incident

field is theoretically zero, and the simulation results are compared
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Fig. 13. Sketch of the computational domain for the test case of wave propagation with currents flow past a vertical circular cylinder.
Fig. 14. Instantaneous surface geometry and vortex structures visualised using the iso-
surfaces of 𝜙 = 0 and 𝑄 = 0.2𝑈 2

𝑐 ∕𝜆
2, respectively, for the test case of wave propagation

with currents past a vertical circular cylinder.

with the analytical solution. This test case shows that owing to the
coupling of the LS function for interface capture, the present results
are more accurate than those in the literature that identify the interface
using the VOF function. The numerical results of the wave amplitude
show second-order spatial accuracy in a resolution-convergence test,
a desirable feature that was not achieved in a previous wave gener-
ation methods based on the velocity decomposition strategy. In the
second test case of wave propagation over two- and three-dimensional
submerged objects, the simulation results show good agreement with
experimental results reported in the literature. The last test case in-
volves a wave propagation with currents past a circular cylinder. This
case demonstrates the ability of the proposed method in simulating
viscous effect, which cannot be achieved by a potential flow solver.

In present method, it is assumed that the interface in two adja-
cent grids remain in the same plane. This assumption is correct if
the curvature radius of the interface is smaller than the grid size. If
large deformation occurs in the interface, this assumption is incorrect.
Therefore, the proposed method cannot be used to simulate problems
with breaking waves. This issue can be addressed by locally refining
the mesh. Therefore, adaptive mesh refinement technique (Sussman
et al., 1999; Popinet, 2009; Zeng et al., 2022a,b, 2023) is expected
to be a potential solution. At the same time, the use of adaptive
mesh also helps to highlight the advantage of the SWENSE method in
using a coarse mesh in the far field, such that accurate simulations
12
of wave–structure interaction problems can be achieved using less
computational resources.

CRediT authorship contribution statement

Tietao Lao: Investigation, Validation, Formal analysis, Writing –
original draft. Zhaobin Li: Methodology, Conceptualization, Formal
Analysis. Zhiying Wang: Supervision, Validation, Supervision. Zhan
Wang: Project Administration, Writing – review & editing. Zixuan
Yang: Conceptualization, Writing – review & editing, Supervision,
Project administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request

Acknowledgements

This research is supported by the National Natural Science Foun-
dation of China (NSFC) Basic Science Center Program for Multiscale
Problems in Nonlinear Mechanics’ (No. 11988102) and NSFC, China
project (No. 11972038, 11902323, 12202453).

References

Beale, J.T., Layton, A.T., 2009. A velocity decomposition approach for moving interfaces
in viscous fluids. J. Comput. Phys. 228, 3358–3367.

Bihs, H., Kamath, A., Alagan Chella, M., Aggarwal, A., Arntsen, Ø.A., 2016. A new
level set numerical wave tank with improved density interpolation for complex
wave hydrodynamics. Comput. & Fluids 140, 191–208.

Chawla, A., Kirby, J.T., 1996. Wave Transformation over a Submerged Shoal. CACR
Rep. No. 96-03, Ocean Engineering Laboratory University of Delaware, Newark,
Delaware.

Chen, Y.L., Hsiao, S.C., 2016. Generation of 3d water waves using mass source
wavemaker applied to Navier–Stokes model. Coast. Eng. 109, 76–95.

Chen, Q., Kirby, J.T., Dalrymple, R.A., Kennedy, A.B., Chawla, A., 2000. Boussinesq
modeling of wave transformation, breaking, and runup. ii: 2d. J. Waterw. Port
Coast. Ocean Eng. 126, 48–56.

http://refhub.elsevier.com/S0029-8018(23)01640-2/sb1
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb1
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb1
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb2
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb2
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb2
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb2
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb2
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb3
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb3
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb3
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb3
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb3
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb4
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb4
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb4
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb5
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb5
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb5
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb5
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb5


Ocean Engineering 285 (2023) 115256T. Lao et al.

K

L

L

L

L

L

L

L

L

M

M

M

M

Choi, Y.M., Bouscasse, B., Ducrozet, G., Seng, S., Ferrant, P., Kim, E.S., Kim, Y.J.,
2023. An efficient methodology for the simulation of nonlinear irregular waves in
computational fluid dynamics solvers based on the high order spectral method with
an application with openfoam. Int. J. Nav. Archit. Ocean Eng. 15, 100510.

Cui, Z., Yang, Z., Jiang, H.Z., Huang, W.X., Shen, L., 2018. A sharp-interface immersed
boundary method for simulating incompressible flows with arbitrarily deforming
smooth boundaries. Int. J. Comput. Methods 15, 1750080.

Dommermuth, D.G., 1993. The laminar interactions of a pair of vortex tubes with a
free surface. J. Fluid Mech. 246, 91–115.

Edmund, D.O., Maki, K.J., Beck, R.F., 2013. A velocity-decomposition formulation for
the incompressible Navier–Stokes equations. Comput. Mech. 52, 669–680.

Engsig-Karup, A.P., Hesthaven, J.S., Bingham, H.B., Madsen, P.A., 2006. Nodal dg-fem
solution of high-order boussinesq-type equations. J. Eng. Math. 56, 351–370.

Ferrant, P., Gentaz, L., Alessandrini, B., Le Touzé, D., de Nantes, Ecole Centrale, 2003.
A potential/ranse approach for regular water wave diffraction about 2-d structures.
Ship Technol. Res. 50, 165–171.

Gobbi, M.F., Kirby, J.T., 1999. Wave evolution over submerged sills: Tests of a
high-order boussinesq model. Coast. Eng. 37, 57–96.

Higuera, P., Losada, I.J., Lara, J.L., 2015. Three-dimensional numerical wave generation
with moving boundaries. Coast. Eng. 101, 35–47.

Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (vof) method for the dynamics of free
boundaries. J. Comput. Phys. 39, 201–225.

Hunt, J., Wray, A., Moin, P., 1988. Eddies, streams, and convergence zones in
turbulent flows. In: Studying Turbulence using Numerical Simulation Databases-1.
pp. 193–208.

Iafrati, A., 2009. Numerical study of the effects of the breaking intensity on wave
breaking flows. J. Fluid Mech. 622, 371–411.

Islam, H., Mohapatra, S.C., Gadelho, J., Guedes Soares, C., 2019. Openfoam analysis
of the wave radiation by a box-type floating structure. Ocean Eng. 193, 106532.

Jacobsen, N., 2011. A Full Hydro- and Morphodynamic Description of Breaker Bar
Development (Ph.D. thesis).

Jacobsen, N.G., Fuhrman, D.R., Fredsøe, J., 2012. A wave generation toolbox for the
open-source cfd library: Openfoam®: Wave generation toolbox. Internat. J. Numer.
Methods Fluids 70, 1073–1088.

im, J., Moin, P., 1985. Application of a fractional-step method to incompressible
Navier-Stokes equations. J. Comput. Phys. 59, 308–323.

ee, J.I., Kim, Y.T., Cho, Y.S., 2013. Hydraulic experiments for wave transformation
over a submerged elliptic shoal. J. Coast. Res. 291, 196–204.

i, Z., Bouscasse, B., Ducrozet, G., Gentaz, L., Le Touzé, D., Ferrant, P., 2021.
Spectral wave explicit navier-stokes equations for wave-structure interactions using
two-phase computational fluid dynamics solvers. Ocean Eng. 221, 108513.

i, Z., Deng, G., Queutey, P., Bouscasse, B., Ducrozet, G., Gentaz, L., Le Touzé, D.,
Ferrant, P., 2019. Comparison of wave modeling methods in cfd solvers for ocean
engineering applications. Ocean Eng. 188, 106237.

iu, X.D., Fedkiw, R.P., Kang, M., 2000. A boundary condition capturing method for
Poisson’s equation on irregular domains. J. Comput. Phys. 160, 151–178.

u, M., Yang, Z., He, G., 2023. An interface-resolved phase-change model based on
velocity decomposition. J. Comput. Phys. 475, 111827.

uquet, R., Alessandrini, B., Ferrant, P., Gentaz, L., 2003. Ranse analysis of 2D flow
about a submerged body using explicit incident wave models. In: Numerical Towing
Tank Symposium.

uquet, R., Ducrozet, G., Gentaz, L., Ferrant, P., Alessandrini, B., 2007. Application of
the swense method to seakeeping simulations in irregular waves. In: Proceedings
of the 9th International Conference on Numerical Ship Hydrodynamics.

uth, H.R., Klopman, G., Kitou, N., 1994. Kinematics of Waves Breaking Partially on
an Offshore Bar; Ldv Measurements of Waves with and Without a Net Onshore
Current. Report H-1573, Delft Hydraulics, p. 40.

irjalili, S., Jain, S., Dodd, M., 2017. Interface-capturing methods for two-phase flows:
An overview and recent developments. Cent. Turbul. Res. Annu. Res. Brief 11,
7–135.

irjalili, S., Mani, A., Lele, S.K., Moin, P., 2019. A Novel Diffuse Interface
Method for Two-Phase Flows and Application in Simulation of Micro-Bubble
Entrainment (Ph.D. thesis). Stanford University, Stanford, California.

ittal, A., Briley, W.R., Sreenivas, K., Taylor, L.K., 2017. A parabolic velocity-
decomposition method for wind turbines. J. Comput. Phys. 330, 650–667.

ohapatra, S.C., Islam, H., Guedes Soares, C., 2020. Boussinesq model and cfd
simulations of non-linear wave diffraction by a floating vertical cylinder. J. Mar.
Sci. Eng. 8 (575).
13
Mohapatra, S.C., Islam, H., Hallak, T.S., Soares, C.G., 2022. Solitary wave interaction
with a floating pontoon based on boussinesq model and cfd-based simulations. J.
Mar. Sci. Eng. 10, 1251.

Nguyen, V.T., Park, W.G., 2016. A free surface flow solver for complex three-
dimensional water impact problems based on the VOF method. Internat. J. Numer.
Methods Fluids 82, 3–34.

Nguyen, V.T., Park, W.G., 2018. Enhancement of Navier–Stokes solver based on an
improved volume-of-fluid method for complex interfacial-flow simulations. Appl.
Ocean Res. 72, 92–109.

Patel, J.K., Natarajan, G., 2015. A generic framework for design of interface capturing
schemes for multi-fluid flows. Comput. & Fluids 106, 108–118.

Pathak, A., Jin, W., Raessi, M., 2023. A three-dimensional numerical scheme for
modeling discontinuous pinning at sharp edges using the volume-of-fluid method.
J. Comput. Phys. 479, 111986.

Paulsen, B.T., Bredmose, H., Bingham, H.B., Jacobsen, N.G., 2014. Forcing of a bottom-
mounted circular cylinder by steep regular water waves at finite depth. J. Fluid
Mech. 755, 1–34.

Popinet, S., 2009. An accurate adaptive solver for surface-tension-driven interfacial
flows. J. Comput. Phys. 228, 5838–5866.

Rienecker, M.M., Fenton, J.D., 1981. A fourier approximation method for steady water
waves. J. Fluid Mech. 104, 119–137.

Roenby, J., Bredmose, H., Jasak, H., 2016. A computational method for sharp interface
advection. Royal Soc. Open Sci. 3, 160405.

Shin, Y., Sivasithamparam, N., Jung, T., Wang, H., Song, S., Park, S., Sim, J., 2017.
Scour effet around suction bucket foundations and monopile in clay. In: Proceddings
of the 8th International Conference. OSIG, Lodon, UK, pp. 276–283.

Sussman, M., Almgren, A.S., Bell, J.B., Colella, P., Howell, L.H., Welcome, M.L., 1999.
An adaptive level set approach for incompressible two-phase flows. J. Comput.
Phys. 148, 81–124.

Sussman, M., Puckett, E.G., 2000. A coupled level set and volume-of-fluid method for
computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys.
162, 301–337.

Tao, J., 2020. Numerical simulation of water waves. In: Springer Tracts in Civil
Engineering. Springer, Singapore.

Vukčević, V., Jasak, H., Malenica, Š., 2016a. Decomposition model for naval
hydrodynamic applications, part i: Computational method. Ocean Eng. 121, 37–46.

Vukčević, V., Jasak, H., Malenica, Š., 2016b. Decomposition model for naval hy-
drodynamic applications, part ii: Verification and validation. Ocean Eng. 121,
76–88.

Yang, Z., Lu, M., Wang, S., 2021. A robust solver for incompressible high-reynolds-
number two-fluid flows with high density contrast. J. Comput. Phys. 441,
110474.

Zeng, Y., Bhalla, A.P.S., Shen, L., 2022a. A subcycling/non-subcycling time advance-
ment scheme-based dlm immersed boundary method framework for solving single
and multiphase fluid–structure interaction problems on dynamically adaptive grids.
Comput. & Fluids 238, 105358.

Zeng, Y., Liu, H., Gao, Q., Almgren, A., Bhalla, A.P.S., Shen, L., 2023. A consistent
adaptive level set framework for incompressible two-phase flows with high density
ratios and high reynolds numbers. J. Comput. Phys. 478, 111971.

Zeng, Y., Xuan, A., Blaschke, J., Shen, L., 2022b. A parallel cell-centered adaptive
level set framework for efficient simulation of two-phase flows with subcycling
and non-subcycling. J. Comput. Phys. 448, 110740.

Zhao, B.B., Duan, W.Y., Ertekin, R.C., Hayatdavoodi, M., 2015a. High-level
Green–Naghdi wave models for nonlinear wave transformation in three dimensions.
J. Ocean Eng. Mar. Energy 1, 121–132.

Zhao, B., Duan, W., Webster, W., 2010. A note on three-dimensional green-naghdi
theory. In: The 25th International Workshop on Water Waves and Floating Bodies.
25th IWWWFB.

Zhao, B.B., Ertekin, R.C., Duan, W.Y., 2015b. A comparative study of diffraction of
shallow-water waves by high-level ign and gn equations. J. Comput. Phys. 283,
129–147.

Zhao, B., Zhang, T., Duan, W., Ertekin, R.C., Hayatdavoodi, M., 2019. Application of
three-dimensional ign-2 equations to wave diffraction problems. J. Ocean Eng. Mar.
Energy 5, 351–363.

http://refhub.elsevier.com/S0029-8018(23)01640-2/sb6
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb6
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb6
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb6
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb6
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb6
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb6
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb7
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb7
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb7
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb7
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb7
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb8
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb8
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb8
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb9
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb9
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb9
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb10
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb10
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb10
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb11
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb11
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb11
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb11
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb11
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb12
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb12
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb12
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb13
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb13
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb13
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb14
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb14
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb14
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb15
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb15
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb15
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb15
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb15
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb16
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb16
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb16
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb17
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb17
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb17
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb18
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb18
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb18
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb19
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb19
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb19
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb19
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb19
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb20
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb20
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb20
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb21
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb21
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb21
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb22
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb22
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb22
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb22
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb22
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb23
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb23
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb23
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb23
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb23
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb24
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb24
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb24
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb25
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb25
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb25
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb26
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb26
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb26
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb26
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb26
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb27
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb27
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb27
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb27
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb27
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb28
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb28
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb28
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb28
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb28
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb29
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb29
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb29
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb29
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb29
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb30
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb30
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb30
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb30
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb30
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb31
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb31
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb31
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb32
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb32
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb32
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb32
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb32
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb33
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb33
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb33
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb33
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb33
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb34
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb34
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb34
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb34
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb34
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb35
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb35
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb35
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb35
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb35
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb36
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb36
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb36
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb37
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb37
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb37
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb37
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb37
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb38
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb38
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb38
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb38
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb38
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb39
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb39
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb39
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb40
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb40
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb40
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb41
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb41
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb41
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb42
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb42
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb42
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb42
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb42
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb43
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb43
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb43
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb43
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb43
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb44
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb44
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb44
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb44
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb44
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb45
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb45
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb45
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb46
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb46
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb46
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb47
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb47
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb47
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb47
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb47
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb48
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb48
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb48
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb48
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb48
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb49
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb49
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb49
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb49
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb49
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb49
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb49
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb50
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb50
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb50
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb50
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb50
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb51
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb51
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb51
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb51
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb51
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb52
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb52
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb52
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb52
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb52
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb53
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb53
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb53
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb53
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb53
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb54
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb54
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb54
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb54
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb54
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb55
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb55
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb55
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb55
http://refhub.elsevier.com/S0029-8018(23)01640-2/sb55

	Generation of incident wave in two-phase flow simulation based on field decomposition
	Introduction
	Numerical method
	Field decomposition and governing equations
	Basic solver
	Pressure translation correction
	Boundary conditions

	Test results
	Wave propagation over a flat bottom
	Wave propagation over a two-dimensional submerged breakwater
	Wave propagation over a submerged circular shoal
	Wave propagation with currents past a vertical circular cylinder

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


