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A B S T R A C T

In a synthetic Schlieren method of measuring the height of a dynamic free liquid surface, the smallest
wavelength of the measured surface topography is determined by the spatial resolution of the displacement
field of markers. Currently, a displacement vector is obtained for each interrogation window, including a
few markers, with a cross-correlation algorithm. In this study, the measurement resolution is extended by
obtaining the displacement of individual markers. This simple and rational change, however, brings technical
difficulties in numerically solving the governing equation over spatially randomly distributed markers. For this,
the governing equation, which associates the surface height to be measured with the virtual displacements of
the markers, is solved by the finite-volume scheme for the unstructured meshes, where a marker locates at
the center of each triangular mesh face. The present method is examined with the synthetic generated data,
in laboratory experiments of a transparent solid carved with a sinusoidal surface, and in experiments of water
ripples. The measurement uncertainty is discussed.
1. Introduction

Liquid free surface widely exists in nature (e.g. ocean, rivers and
lakes) and in engineering applications. For example, in coastal engi-
neering, the free ocean surface waves generated by winds give non-
trivial impacts on offshore platforms [1]. In aerospace devices, the
liquid sloshing with substantial free surface motions is essential to the
vibrations of propellant tank [2]. To get physical insights of such flows,
the dynamics of the free surface are investigated in laboratory experi-
ments, where the flow conditions are better controlled [e.g.3,4]. In the
laboratory experiments, imaging techniques have advantages to give
quantitative measurements of the free surface height and the surface
topography, due to their high precision and non-intrusive nature (see a
recent review of Gomit et al. [5] and references therein). These imaging
techniques are usually based on the principle of light reflection [6,7]
and refraction in particular [8–23].

In a pioneer study of Kurata et al. [8], a striped grating was
placed below a shallow water channel, and a camera was positioned
above the free (water) surface to capture the images of the grating.
A reference image was captured when the free surface was still, and
a refracted image was recorded when the surface ripples emerged.
Comparing the reference and refracted images shows that the imaged
grating was virtually displaced due to the light refraction at the free
surface. They derived a relation of the surface topography with the
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virtual displacements of the grating, based on the Snell’s law. In their
method, a point where the surface height is nearly unchanged in time
is needed as the reference height to reconstruct the two-dimensional
surface height.

Following the same physical working principle of Kurata et al. [8],
Tanaka et al. [10] and Moisy et al. [15] further developed this imaging
method with replacing the grating with a pattern of spatially random
markers. The latter, termed as free-surface synthetic Schlieren (FS-SS),
had great care on technical details and on quantifying and analysis of
the measurement errors. Their method presents an accurate and low-
cost measurement of the topographic structures of the free surface,
established with a single camera. In their method, random dots are
printed on a transparent sheet, and the virtual displacements of these
dots are quantified by the well-developed cross-correlation algorithm
of particle image velocimetry (PIV). The displacement field is used
to calculate the surface spatial gradients. Then the surface height is
reconstructed using a least-square integration of the surface gradient
with the spatially averaged surface height as the reference. Kolaas et al.
[21] further developed the FS-SS method through illuminating the dot
pattern with two light sources with different wavelengths (i.e. one
visible blue and the other one near infrared), and the difference in
refraction between the two-color patterns allows the evaluation of the
surface gradient. Recently, Li et al. [24] extended the FS-SS method that
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Fig. 1. (a) Schematic of the markers and the unstructured mesh. The red filled circles indicate the small diameter markers and the blue hollow circles denote the larger diameter
markers. (b) A sketch illustration of finite-volume scheme for solving the governing equation. A black dot marks the geometric center of the element, and 𝑛 indicates the normal
direction of the edge.
no reference surface height is required to reconstruct the surface height,
also using a single camera. This is advantaged that their measured
wavelength of the surface topography can be as large as infinity in
principle (flat free surface with height change). Their method uses the
PIV cross-correlation algorithm to obtain the displacement field over
evenly distributed grids, the same as Moisy et al. [15] and many others.

For obtaining the displacement field in the synthetic Schlieren
method of e.g. [15,24], a refracted image is divided into small areas
(interrogation windows) that several dot markers (8 to 10 dots in an
optimized PIV configuration) are included in each window. The cross-
correlation algorithm is used to obtain a displacement vector for each
interrogation window that the vector represents the most probable
motion of the dots in this window [25]. The size of the interrogation
window determines the smallest wavelength of the measured surface
wave. This featured wavelength is essential to retrieve the characteris-
tics of turbulence below the surface or the characteristics of wind above
the surface, which leaves the footprint (i.e. topographic structures) on
the free surface [26,27].

In a recent experimental study, Mandel et al. [28] measured the
free surface turbulence above a model of a vegetative canopy, which is
composed of vertically mounted rigid cylinders. The authors took the
rigid cylinders as the reference pattern (see their Fig. 3) and applied the
method of Moisy et al. [15] to estimate the surface gradient. In this type
of experiment and analogies, the reference pattern is difficult to become
as spatially dense as the manufactured random dot pattern. As a result,
the measurement resolution of the synthetic Schlieren method is limited
under such conditions. One option for lowering the requirements on
the number of reference markers in this situation is to track virtual
displacement for individual markers rather than a bundle of them,
following the concept of particle tracking velocimetry (PTV). The dot
tracking algorithm itself has attracted much attention [29–33]. While
in the synthetic Schlieren method, shapes, sizes and density of markers
can be controlled in preparation of the marker sheet to help improving
tracking individual markers, and importantly the virtual motions of
these markers are within the plane (instead of miss-matching particles
due to out-of-plane motion in two-dimensional PIV). Consequently, the
displacements of the markers can be mostly captured. Recently, Rajen-
dran et al. [34] proposed a dot tracking methodology for processing
background-oriented Schlieren (BOS) images. Charruault et al. [35] de-
veloped a dot tracking methodology that allows tracking much stronger
image deformations. Both dot tracking algorithms and others can be
implemented to measure shorter surface wavelengths with the FS-
SS method in principle. In practice, the displacement field of the
randomly distributed markers requires proper interpolation to obtain
the displacement field over evenly spaced grids (structured mesh),
for using the finite-difference scheme in FS-SS [15] or in [24]. It is
however challenging to justify the choice of the interpolation methods.
An alternative route, avoiding the interpolation, is to implement the
finite-volume scheme for the FS-SS method or similar.

In this study, the finite-volume-scheme form of the method of Li
et al. [24] is introduced, while a hybrid PIV-PTV algorithm is used to
2

obtain the displacements of individual dot markers. This simple change
is found to help extending the resolution of the surface measurements.
In an idealized condition of the marker configuration (in terms of
their size and spatial distance and etc.), the present method assists to
reveal possible smaller scale topographic structures. When the number
of the markers is sometimes limited, as exampled above in [28], the
present method looses the requirement on the amount of markers
for reasonably capturing the surface topography, comparing with the
methods [e.g.15,24] that the PIV cross-correlation is required with the
finite-difference scheme.

The rest of the manuscript is structured as below. In Section 2, the
detailed method is introduced. The examination of the method for the
synthetic data is given in Section 3, while the experimental examination
is presented in Section 4. A detailed discussion and conclusions are
given in Sections 5 and 6, respectively.

2. Methodology

The present method shares the same governing equation with that
of Li et al. [24], which is briefly presented below for completeness of
the manuscript. According to the Snell’s law, the equation governing
the displacement 𝒖 of markers and the surface height ℎ(𝑥, 𝑦) is

𝒖 = ℎ
[

tan
(

tan−1(∇ℎ) + sin−1[𝑟𝑛 ⋅ sin(𝜶 − tan−1(∇ℎ))]
)

− tan(𝜶)
]

,

where ℎ is the surface height to be measured, 𝑟𝑛 = 𝑛𝑎∕𝑛𝑙 the refractive
index ratio between air and transparent material (e.g., water), and ∇
is the spatial gradient operator. 𝜶 = 𝛼𝑥(𝑥, 𝑦)𝑥̂ + 𝛼𝑦(𝑥, 𝑦)𝑦̂ quantifies the
angle of the camera viewing the marker, where 𝑥̂ and 𝑦̂ are unit vectors
along the 𝑥 and 𝑦 direction, respectively. 𝜶 can be obtained from a
calibration procedure. This equation can be simplified by assuming that
𝜶 and ∇ℎ are small (i.e., tan(𝜶) ≈ 𝜶 and tan(∇ℎ) ≈ ∇ℎ) as

𝒖 = ℎ ⋅ (1 − 𝑟𝑛) (∇ℎ − 𝜶) . (1)

Here ℎ(𝑥, 𝑦) is the unknown to be determined.
The displacement 𝒖(𝑥, 𝑦) can be obtained by the hybrid PIV-PTV

algorithm to obtain the displacement of each individual marker. The
sketch of the marker pattern is shown in Fig. 1(a). Two sizes of markers
are used, and the diameter of one is about twice of that of another
one, as demonstrated with the red filled and blue hollow circles,
respectively. The two sizes of the markers help self-examining if the dis-
placement of the marker is obtained correctly. For the spatially densely
distributed markers, after the transformation of the refraction image
based on the PIV displacement fields, a comparison of the transformed
refracted image and the reference image shows that locally a marker in
the refracted image is partially overlapped with multiple markers in the
referred image. Comparing the size of the marker with the candidate
markers helps better pairing the markers, so as the displacement, when
necessary for a post-processing.
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The triangulated meshes are generated to construct an unstruc-
tured mesh field, and Eq. (1) is solved by the finite volume method.
The Eq. (1) is integrated over each mesh element,

1
𝑠𝑒 ∫𝑠

𝒖 d𝑠 = 1
𝑠𝑒
(
1 − 𝑟𝑛
2

)∫𝑠
∇ℎ2 d𝑠 − 1

𝑠𝑒
(1 − 𝑟𝑛)∫𝑠

𝜶ℎ d𝑠, (2)

where ∫𝑠 indicates the spatial integration operation over the element,
and 𝑠𝑒 is the area of the element. According to the Gauss’s theorem, the
first term on the right-hand side of the equation can be replaced by the
line integration, ∫𝑠 ∇ℎ

2d𝑠 = ∫𝑙 ℎ
2𝐧𝑙d𝑙. For illustration, a sketch is shown

in Fig. 1(b). For a target element 𝑖, the height is ℎ𝑖, and ∫𝑠 ∇ℎ
2
𝑖 d𝑠 ≈

∇ℎ2𝑖 𝑠𝑒 ≈
∑3

𝑖=1 ℎ
2
𝑒 (𝑖) ⋅ 𝑙𝑒(𝑖) ⋅ 𝐧𝑖 in a discrete form, where ℎ𝑒, 𝑙𝑒 and 𝐧𝑖

are the height at the edge of a triangular element, the length of the
corresponding edge and the normal vector of the corresponding edge,
respectively (see Fig. 1b). The unknown ℎ2𝑒 needs to be reconstructed
by ℎ(𝑥, 𝑦) at the center of neighboring elements. See numerical details
on finite volume method in [36,37].

In Eqs. (1) and (2), 𝜶 needs to be obtained in a calibration proce-
dure. The reference dot pattern is placed on the bottom of the setup,
usually a transparent tank. A reference image is recorded when there
is no liquid in the setup. Then the setup is filled with the transparent
liquid and a refraction image is recorded when the liquid remains still.
The height of the still surface is measured, so that ∇ℎ is known. In the
experiments presented in this study, the bottom of the setup is leveled
and ∇ℎ = 0, so that 𝜶 = −𝒖𝑐∕ℎ𝑐∕(1−𝑟𝑛), where ℎ𝑐 is the height measured
by a caliper and the displacement 𝒖𝑐 is obtained through the hybrid
PIV-PTV method for the paired reference and refraction images.

The displacements 𝒖 = (𝑢𝑥, 𝑢𝑦) are obtained on 𝑁 mesh grid points,
and at each point there is one ℎ. For each direction, 𝑁 equations are
constructed with the corresponding component of the displacements,
according to the discrete equation (1). Consequently, a linear system is
constructed to contain 2𝑁 equations, which have 𝑁 unknowns (i.e. ℎ).
This leads to an over-determined linear system. At the border of the
computation domain, the reconstruction of the height at the border
edge requires the element outside of the domain, so that the Neumann
condition is used (by assuming that the spatial gradient of the height
at the border is zero). In this study, the linear equation system was
solved using the Matlab intrinsic function fsolve with the Levenberg–
Marquardt algorithm. This is easy to implement for demonstrating the
method. It is eventually an optimization process started with an initial
guess. After ℎ(𝑥, 𝑦) is solved, the coordinates of ℎ(𝑥, 𝑦) need to be
remapped, (𝑥, 𝑦)∗ = (𝑥, 𝑦) − ℎ(𝑥, 𝑦) tan[𝜶(𝑥, 𝑦)], as mentioned in [15].

The routine of solving the governing equation is summarized in
the following. The calibration procedure is firstly carried out to obtain
𝜶. Then the initial guess is prepared for nonlinear optimization in
fsolve. Given that the hybrid PIV-PTV method is used to obtain the
displacement field, the intermediate displacement field of the PIV step
is applied to get a solution using the method of Li et al. [24]. Then
this solution at the unstructured mesh grids is obtained by the linear
interpolation, and is taken as the initial guess for the present method.
Finally, the nonlinear optimization process via 𝑓𝑠𝑜𝑙𝑣𝑒 is carried out to
reach a converged solution. This routine gives converged solution in
a few steps with the Matlab solver. The constant heights taken as the
initial guess are also examined, and they can give a converged solution.
However, these initial guesses cannot deviate from the solution too
much, otherwise a wrong solution is reached because the nonlinear
optimization gives local optimization.

3. Simulation examination

To quantify the performance of the present method, it is firstly
examined using simulation data with an analytical solution. The sim-
ulated data were generated taking the form of surface height ℎ(𝑥, 𝑦) =
sin[𝑥∕20 + (𝑦 + 50)∕40] + 10, as shown in Fig. 2(a).

For the simulation examination, the angle 𝜶 is obtained through that
a camera is assumed to be placed a certain distance from the marker
3

Fig. 2. (a) The contour map of the ground truth of the surface height of the simulated
data. Each dot corresponds to a marker position. (b) The contour map of the angle 𝜶.

pattern. Then the straight line connecting a marker and the camera
and the camera optical axis establish an angle 𝜶 for each individual
marker. The resulted 𝜶 is shown in Fig. 2(b) where a concentric circular
distribution is seen. In addition, we need to obtain the displacements
of markers for this analytical surface height. For this, the analytical
surface height ℎ and its analytical spatial gradient ∇ℎ are obtained at
the maker positions, and they are inserted into Eq. (1) together with
𝜶 to obtain the marker displacements 𝒖. Finally, 𝒖 is used to solve for
ℎ(𝑥, 𝑦) by the method introduced in Section 2.

The present method was carried out with initial guesses of constant
values. The solution is shown in Fig. 3(a), which visually agrees with
the ground truth of the simulated data in Fig. 2(a). The effect of the
initial guesses on the solution is examined, and the corresponding
measurement absolute errors are shown in Fig. 3. The noticeable large
absolute errors are seen over the area, presenting local fluctuations over
the locally densely distributed markers. This might be caused by the
elementary reconstruction scheme in the finite volume method used in
this study. During the optimization process of solving the governing
equation, the local numerical oscillation is not suppressed. This issue
is expected to be possibly taken care of through advanced numerical
scheme of finite volume method and/or the numerical method solving
the over-determined linear system of the governing equations. For the
same simulated surface height, the effect of the mesh grid number
(number of markers) on the solution is examined. When the mesh
grid number is increased from 648 to 2592, 10 368 and 41 472, the
spatially averaged measurement absolute error of the surface height
decreases from 0.06 to 0.04, 0.03 and 0.02, respectively, see Fig. 4.
Correspondingly, the time for the computation substantially increases
with the increase of the number of grids using fsolve. The time for
the present method is expected to be largely reduced with an in-house
solver, according to Li et al. [24]. For the practical experiments, the
number of the markers is controlled when the marker template is
prepared, and it needs to be adjusted according to the dimensions of
the measurement area, the resolution of the camera sensor (a marker
in the image takes 3 pixels at least in diameter), the scale range of the
surface and other factors.

4. Experiments

Two experiments were carried out to demonstrate and examine the
present method. One is a transparent solid that a sinusoidal wave is on



Experimental Thermal and Fluid Science 149 (2023) 110998H. Li and D. Xu
Fig. 3. (a) The contour map of the solved surface height with the simulated data (where the initial guess is 10). (b) The mean of the solved ℎ and the absolute error of the
solved height against iterations. (c–e) The contour map of the absolute error of the height with the initial guess of 11, 10 and 9, respectively.
Fig. 4. The relative error of the surface height against the number of the mesh grid
points from the simulation examination, where the dot line indicates a power fit of
data with an exponent of about −1∕4.

one side while a flat surface is on the other side. The other experiment
is to measure a ripple surface, which is obtained by releasing a droplet
falling onto a still water layer. The two experiments were carried out
with the same pattern and camera configuration.

4.1. Setup and measurement arrangement

A tank was manufactured with transparent acrylic plates, and it has
dimensions of 200×200×200 mm3 (length × width × height). The image
of a random dot pattern was printed on an A4 transparent sheet and cut
to be 100×50 mm2, and it was attached upon the inner flat bottom of the
tank, as sketched in Fig. 5. A white LED light (made of an array of small
LED elements) was used to provide approximately uniform illumination
for the marker pattern about 50 mm below the tank. A compact Basler
4

Fig. 5. The sketch of the experimental setup of the ripple surface caused by droplets.

camera (equipped with a lens of focal length 75 mm) was used. The
brightness of the LED was adjusted so that the edge of the black dot
markers can be clearly seen in the recorded images.

When the bottom of the empty tank was adjusted to be leveled,
an image of the dot pattern was captured as the reference image (see
Fig. 6a). When the water surface was still after being slowly filled
into the tank, an image of the dot pattern was recorded, while the
height of the surface is 10 ± 0.1 mm measured multiple times by a
caliper. These two images were used to obtain the calibrated angle 𝜶
for each point (geometric center of the marker), as shown in Fig. 6(b),
where the displacements of individual dots are color-rendered with the
magnitudes of the displacements.

A sinusoidal surface wave with a wavelength of 18 mm and ampli-
tude of 1 mm on the top surface of a 10 mm thick solid plate (material:
Somos® WaterShed XC 11122, refractive index 1.514) was established
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Fig. 6. (a) The raw image of the printed dot pattern. (b) The displacements of individual dots 𝜶 in the calibration. (c) The displacements of the individual dots for a temporal
sample of the ripples caused by a droplet. (d) The close-up of the displacements of the individual dots enclosed by a rectangular in (c). In (b–d), the displacements are color-coded
with the magnitude of the displacements, and they share the same color legend.
by the three-dimensional (3D) printing technique. The size of the plate
is 50×100 mm2. The 3D printed plate was positioned on the top of a dot
pattern. The camera was located about 700 mm above the dot pattern.

For the experiment of surface ripples, at beginning, a droplet (in
diameter of about 4 mm) from a pipette (with inner diameter of 2 mm)
locating close to one side of the tank (see Fig. 5) was released about
150 mm above the still water surface to generate the surface ripples.
Following that, a droplet in similar size was released to fall onto the
water layer (see Fig. 5) to generate a second group of ripples moving
in the opposite direction. The sampling frequency is about 20 Hz. Other
configurations of the experimental setup are the same as those used in
the experiments of the solid with the sinusoidal surface. The images
of the dot pattern were recorded and a temporal sample of the dot
displacements (in reference of the image without water) is shown in
Fig. 6(c–d). For the present configuration, the sizes of the dots in images
are from about 7 pixels to 14 pixels. In the solid sinusoidal plane
surface experiment, the maximum displacement of the dot pattern is
about 16 pixels, while in the ripple surface experiment, it approximates
3.5 pixels. The hybrid PIV-PTV algorithm in Lavision Davis is used to
compute the PIV-PTV displacement field with a multi-step algorithm
(the interrogation window 96 × 96 pixel2 for the first step and 48 × 48
pixel2 for the last step). Subsequently, the displacement of each in-
dividual dot is determined using the PTV algorithm. The position of
each dot is identified based on its highest intensity peak, and the exact
shift of each dot is obtained by performing individual dot correlations
between the reference and refracted images [38]. To examine the
accuracy of the displacement vectors obtained using this hybrid PIV-
PTV method, the dots in the refracted image are transformed back using
these displacement vectors and compared with the dots in the reference
image. (The comparison of the dots in the two images may serve as an
indicator of the measurement accuracy of the displacement vectors.)

4.2. Results

The 3D modeling and real picture of the acrylic-like plate are shown
in Fig. 7(a) and (b). The reconstructed topography (c) by the present
method and corresponding topography (d) by the method with the
finite-difference scheme of Li et al. [24] are compared with the ground
truth. The reconstructed topography from (c) is projected onto the same
mesh grids as those used in Fig. 7(d). The profiles of both results are
then averaged along the 𝑦 direction, respectively, where the standard
deviation of the profiles along the 𝑦 direction is taken as the error bar.
The two profiles, together with the ground truth, are shown in Fig. 7(e).
The height of the 3D printed object was measured by a caliper for 5
5

times at crests and troughs of the wave, and the respective standard
deviations (±0.05 mm) are used as the error bars shown in Fig. 7(e).
The wavelength measured from the present reconstructed profile is
18±0.3 mm, which slightly over-estimates the ground truth about 1.7%.
For the reconstructed heights, the topography of the present method
agrees well with that from the raw model. The spatial average deviation
between the result of the present method and the ground truth (with the
uncertainty) is 0.03 mm, approximately 0.3% in relative error with the
corresponding height in the ground truth, while the maximum relative
error of the measured height is about 2%.

Three snapshots of the surface ripples measured by the present
method are shown in Fig. 8(a, c, e). In Fig. 8(a), the topography of
the ripples is temporally close to the initial formation of the ripples,
where the larger oscillation of the surface height can be seen, and as
farther away from this point the oscillation amplitude of the surface
height gradually decreases. About 4 seconds after Fig. 8(a), a similar
sized droplet fell on the water surface, and the surface topography in
Fig. 8(c) shows approximate symmetry to that from Fig. 8(a). After
some seconds, the distinct ripples produced by both droplets moved
out of the field-of-view, and the surface topography turns to Fig. 8(e).
The FS-SS method of Moisy et al. [15] is well applicable for the ripple
experiments, and it was used for the same images for comparison. The
respective results at the same times are shown in Fig. 8(b, d, f). These
results are visually in good agreement with those in Fig. 8(a, c, e). The
spatial average difference of the results between the present method
and the FS-SS method is about 0.02 mm, after projecting the results
in Fig. 8(b, d, f) onto the coordinates of the dots in Fig. 8(a, c, e).
The very small difference (about 0.2%) demonstrates that the present
method is applicable for this case. This is established given that the
density of the dot pattern supports resolving the wavelength of the
ripples. When this condition is not satisfied, the measurement errors
increase, see discussion in [15,24] on the finite-difference scheme, as
well as the discussion on the comparison between the finite-difference
and the finite-volume scheme in Section 5 of this study.

5. Discussion

The present method shares the same working principle as Li et al.
[24] and takes a close analogy to Moisy et al. [15], hence the measure-
ment uncertainty and the breakdown condition of the working principle
are the same as these two methods.

The main difference between the present method to that of Li et al.
[24] is on the boundary condition that the latter does not necessarily
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Fig. 7. (a) The rendering image of 3D model of the transparent solid with a sinusoidal surface. (b) The real picture of the 3D printed object. The result of the surface topography
measured by the present method (c) and the method of Li et al. [24] (d), as well as the profiles averaged along the 𝑦 direction respectively (e). The error bars indicate the standard
deviation of the height along the 𝑦 direction.

Fig. 8. The snapshots of the topography structures of the water ripples from the present method (a, c, e) and the FS-SS method (b, d, f).
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Fig. 9. The measurement results of the 3D printed plate from the present method (a, c, e) and the finite-difference scheme over the structured mesh grids (b, d, f). One vector is
skipped over the structured mesh grids along each direction to get the result in (b), and two vectors skipped for (d). The results in (b) and (d) are taken as the initial guess for
(a) and (c), respectively.
need the implementation of the boundary condition. Due to the re-
construction in the finite volume method, the boundary condition is
necessary for the present method, and the Neumann condition is used
here. With the Neumann condition, when the initial guess (either a
constant value or a solution from [24]) is not far from the solution,
the Matlab solver can give a converged and correct solution.

The method here is sensitive to camera vibration, provided that the
vibration gives direct influence to the displacement field in both the
experimental measurement and the calibration (according to Eq. (1)).
To limit the camera vibration encountered in the cooling fan of the
high-speed camera, a compact low-sampling rate camera (free of a
cooling fan) was used. The vibration of the camera, optical table and
aluminum profile framework for the setup produced approximately
0.05 pixel displacements in images of a still target. When a high-
speed camera with a cooling fan is used, particular care is required
in mounting the camera to improve its stability. The influence of the
camera vibration on the measured surface is examined and can be
referred in [15,24] and not repeated here.

According to Eq. (2), the measurement uncertainties of the surface
height are found to be from three sources, the virtual displacement 𝒖,
𝜶 and the refractive indices 𝑛𝑎 and 𝑛𝑙. The main source of uncertainty
is from that of measured displacement. In this study, the displacement
from the PIV cross-correlation is essential to the displacement for in-
dividual markers, given that the local matching of the marker position
relies on the initial transformation of the reference image which is ob-
tained from the PIV cross-correlation operation. The displacement field
of dots was obtained in Lavision Davis, and the uncertainty is expected
to be around 0.1 pixel, estimated from subtracting the transformed
image according to the displacement from the reference image. Given
the nonlinearity of Eq. (1), the uncertainty propagation in the linear
system is infeasible here. For a similar problem in background-oriented
Schlieren technique, Rajendran et al. [39] used sparse linear operators
in a Poisson solver for estimating the measurements uncertainty. We
7

found the present nonlinear equation (2) is difficult to be adapted in the
such way. Thus, a Monte-Carlo-simulation style method for uncertainty
estimation is applied [40,41], and random noise was added to two com-
ponents of displacement fields. The noise is Gaussian distribution with
a mean of 0.1 pixel and a standard deviation of 0.05 pixel. The signs of
the values were randomly chosen. Then the contaminated displacement
field was used to calculate the surface height again. This procedure
was repeated 100 times and for each time the noise was randomly
generated. The uncertainty of the calibration angle can be obtained
from uncertainty propagation, and the uncertainty of displacement
0.1 pixel, the uncertainty of the surface height in the calibration 0.1 mm
and the uncertainty of the refractive index 5×10−5 are considered here.
The analysis was implemented on the data synthetically generated (as
shown in Fig. 3a). The relative uncertainty of the measured height is
approximately 0.2% in average and a standard deviation of 1.2%.

The spatial resolution of the displacement 𝒖 is essential to the
measurements of the surface topography (i.e. the smallest wavelength).
We consider the case shown in Fig. 7 for the test. The dots in the
pattern are dense for the surface wave that both the present method
and that with the finite-difference scheme give nearly the same results,
see Fig. 7. Then the vectors at the structured mesh grids (from the
PIV correlation) are sub-sampled with one, two and three neighboring
vectors skipped from each direction. With more vectors skipped, the
resolution of the vectors for the finite-difference scheme gets farther
away for resolving the surface wave (dissatisfying the Nyquist con-
dition), and the respective results of the finite-difference scheme get
worse (see Fig. 9b, d, f). Eventually, finer spatial resolution among the
markers is not taken advantaged in this type of methods. However,
when these results are used as the initial guess for the present method
(after the interpolation), the embedded finer spatial resolution among
the markers is employed to get better results, see Fig. 9(a, c, e). The
number of dots used above is 2592, sufficient for resolving the target
surface. Another test was conducted using the pattern of 162 dots
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Fig. 10. The surface topography was measured using patterns with lower dot density. (a) The result obtained using the present method after being projected onto structured mesh
grids. (b) The result obtained using the method of Li et al. [24]. (c) The profiles averaged along the 𝑦 direction respectively for both methods, where the error bars indicate the
standard deviation of the height along the 𝑦 direction.
(approximately 4–5 dots per wavelength) to assess the performance
of the proposed method with lower dot density. Fig. 10(a) presents
the results obtained using the proposed method based on the PIV-PTV
displacement field (after projecting the result over evenly spaced grids
for making contours). Linear interpolation was carried out over the
scattered markers to obtain the displacements on the evenly spaced
grids, which is 18 (in the 𝑥 direction) × 9 (in the 𝑦 direction) = 162
(the same number of scatter markers in the pattern). Then the method
of Li et al. [24] was employed, and the result is shown in Fig. 10(b).
In Fig. 10(c), the mean profiles averaged along 𝑦 direction respectively
from both methods are compared with the ground truth. The average
relative error is approximately 0.8% for the present method based on
the finite-volume scheme and 6.9% for the method of Li et al. [24]
based on the finite-difference scheme. The results demonstrate that
the proposed method, utilizing finite-volume scheme, may give better
measurement results for the condition that the Nyquist condition is
marginally satisfied. These results suggests that the present method is
expected to help the application of the synthetic Schlieren method in
the experimental condition similar to environments of Mandel et al.
[28].

6. Conclusion

In this paper, we introduce a method to extend the resolution of
the synthetic Schlieren method for measuring the height of a dynamic
free surface. In this method, the free surface height is associated with
the displacement of each individual marker, and the displacement is
obtained by the hybrid PIV-PTV algorithm. Differing to the previous
methods with the finite-difference scheme over the structured mesh
grids, in this study, the finite-volume scheme is applied to solve the
integrated form of the governing equation over the randomly dis-
tributed grids. The reconstruction of the surface height at the geometric
center of a triangular element requiring the height of the triangular
edges needs imposing the Neumann boundary condition at the domain
border. The conception of extending the resolution is implemented and
demonstrated based on the method of Li et al. [24], and it is expected
to also work for the method of Moisy et al. [15] or others.

This method is examined through the synthetic data with the ground
truth available. The present method shows that it can measure the
two-dimensional surface wave well, that the relative error is about
one percent. Finer the mesh resolution, smaller the relative error.
The method is also examined and demonstrated in two laboratory
experiments. One is the 3D printed transparent solid with a sinusoidal
surface. The measurement results of the present method agree with the
manufactured surface. Another experiment is to measure the surface
8

ripples generated by droplets. The results of the present method and
those of Moisy et al. [15] agree well.

In sharing the same (and analogical) working principle as Moisy
et al. [15] and Li et al. [24], the main contribution of the uncertainty is
from that of the displacement of the markers. For the presented method,
the measurement results are sensitive to vibrations, although a fan-free
compact camera is used to avoid the camera vibration resulting from
the cooling fan. This is because that the vibrations bring in the direct
error change of marker displacement, which results in the measurement
errors on the surface height according to the governing equation.

The present method helps revealing possible smaller scale topo-
graphic structures, when markers are densely distributed. If the number
of the markers is limited, our method might still capture the charac-
teristic surface topography, given that the present method may take
the use of the marker-marker denser spatial resolution, which is em-
bedded but overlooked in the methods using the PIV cross-correlation
algorithm to obtain the displacement field over the structured mesh
grids where the finite-difference scheme is applicable.
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