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ABSTRACT

In this paper, a physics-informed neural network (PINN) is used to determine pressure fields from the experimentally measured velocity
data. As a novel method of data assimilation, PINN can simultaneously optimize velocity and solve pressure by embedding the Navier–
Stokes equations into the loss function. The PINN method is compared with two traditional pressure reconstruction algorithms, i.e., spectral
decomposition-based fast pressure integration and irrotation correction on pressure gradient and orthogonal-path integration, and its perfor-
mance is numerically assessed using two kinds of flow motions, namely, Taylor’s decaying vortices and forced isotropic turbulence. In the
case of two-dimensional decaying vortices, critical parameters of PINN have been investigated with and without considering measurement
errors. Regarding the forced isotropic turbulence, the influence of spatial resolution and out-of-plane motion on pressure reconstruction is
assessed. Finally, in an experimental case of a synthetic jet impinging on a solid wall, the PINN is used to determine the pressure from the
velocity fields obtained by the planar particle image velocimetry. All results show that the PINN-based pressure reconstruction is superior to
other methods even if the velocity fields are significantly contaminated by the measurement errors.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0157753

I. INTRODUCTION

The flow pressure is an important physical quantity for estimat-
ing lift force, drag force (Kurose and Komori, 1999; Saffman, 1965;
and Rubinow and Keller, 1961), and acoustics (Bach and Bruus, 2018),
which are important for engineering applications (Gunaydinoglu and
Kurtulus, 2020). Moreover, unsteady pressure fields play a key role in
the evolution and interaction of flow structures (Lee, Ahn, and Sung,
2004 and Voskoboinick, Kornev, and Turnow 2013). Among pressure
measurement methods, multiple-hole pitot (Elliott, 1972 and Tsuji
et al., 2007) provides only sparse pressure estimation when it is not
coupled with the velocity field, and pressure-sensitive paint
(McLachlan et al., 1993; Klein et al., 2005; and Kimura et al., 2010)
can only obtain surface pressure. These methods cannot meet the
requirement of obtaining a three-dimensional high-precision pressure
field. Thus, obtaining a pressure field from flow fields, measured with
particle image velocimetry (PIV) or particle tracking velocimetry
(PTV), has received extensive attention in the field of experimental
fluid mechanics (Liu and Katz, 2006 and Cai et al., 2020).

In general, there are two ways to reconstruct pressure fields from
velocity fields, i.e., integrating the pressure gradient or solving the pres-
sure Poisson equation (PPE). Regarding the former, the pressure gra-
dient is derived from the Navier–Stokes (N–S) equations, as follows:

rp ¼ �q
DU
Dt

þ lr2U: (1)

Here, p is the pressure, U is the instantaneous velocity field, DU/Dt is
material acceleration, and q and l are the density and dynamic viscos-
ity, respectively. Material acceleration can be calculated using the
Eulerian or Lagrangian method, as presented by Liu and Katz (2006).
Then, the pressure is computed by integrating the pressure gradient
along a specified path. Pressure reconstruction is sensitive to many fac-
tors, including the velocity noise (McClure and Yarusevych, 2017; de
Kat and van Oudheusden, 2012; Pan et al., 2016; and Liu and Moreto,
2020), boundary condition setup (Faiella et al., 2021), numerical
method (Nie et al., 2022), spatial and temporal resolutions (Nie et al.,
2022; Charonko et al., 2010; and van Oudheusden, 2013), and error
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profile (Faiella et al., 2021). To further improve the quality of pressure
reconstruction, Liu and Katz (2006) developed an omni-directional
integral algorithm with a virtual boundary (VB-ODI) to average the
pressure from all paths. Although this strategy can reduce the depen-
dence on the integral path and the effect of measurement noise, it also
leads to low efficiency and high complexity. Moreto et al. (2022)
adopted a parallel-ray omni-directional integration algorithm to con-
struct a three-dimensional time-averaged pressure field over stream-
beds. The mean error of pressure was three orders of magnitude
smaller than that of the reconstructed pressure value. To further
reduce the number of integral paths and improve calculation effi-
ciency, Dabiri et al. (2014) developed an eight-path integration
method (EPI) using eight families of integration paths, with each fam-
ily originating at the domain boundary and propagating toward each
grid point from the left, upper left, top, upper right, right, lower right,
bottom, and lower left. EPI is faster than VB-ODI because it only inte-
grates pressure along eight fixed paths, a much smaller number of
paths than that used in VB-ODI. Nevertheless, it is difficult to achieve
satisfactory accuracy, particularly when applied to a three-dimensional
flow case. Wang et al. (2016) developed an irrotation correction on
pressure gradient and orthogonal-path integration method (IC-OPI)
to reconstruct the pressure field. After the irrotation correction of the
pressure gradient, the dependence of the pressure calculation on inte-
gral paths could be removed. Then, the pressure was reconstructed
from integration along two orthogonal paths, which significantly
reduced the computation time without sacrificing the accuracy.

Another means of obtaining the pressure field is to solve the PPE.
Applying divergence to both sides of Eq. (1) and assuming that the
velocity is incompressible, the PPE is expressed as

r2p ¼ r � �q
DU
Dt

þ lr2U

� �
: (2)

Fujisawa et al. (2006) evaluated pressure fields in a microchannel flow
from the measured velocity by solving the PPE. The calculated pres-
sure was in good agreement with the numerical simulation. However,
velocity noise had a negative effect on the pressure reconstruction; for
example, the pressure error was approximately 2.5% when the velocity
noise was 4.3% in their experiment. To improve the accuracy and effi-
ciency of solving PPE, Wang et al. (2017) proposed a spectral
decomposition-based fast pressure integration (SDFPI) algorithm.
Because it seeks the least square solution for the discrete momentum
conservation equation by matrix decompositions, SDFPI overcomes
the issue of periodical boundaries that occur in the FFT method and
could accurately reconstruct the pressure from a pressure gradient. In
this paper, SDFPI is adopted as an improved PPE method for compar-
ison with physics-informed neural network (PINN)-based pressure
reconstruction. Cai et al. (2020) proposed a variational method with a
smoothness constraint to extract pressure from two-dimensional
velocity field. This method is more robust against velocity errors, and
the reconstructed pressure fields can reveal correlation between the
low-pressure regions and the vortical structures in a simulated two-
dimensional oblique Hiemenz flow. In another study, Zhang,
Bhattacharya, and Vlachos (2022) estimated the error and uncertainty
of pressure field reconstructed by PPE for a two-dimensional pulsatile
channel flow. By adding various levels of artificial noise, a pressure
field was reconstructed by solving an overdetermined system involving

pressure gradient error, and this method can improve the accuracy of
pressure reconstruction using uncertainty information.

Recently, a physics-informed neural network (PINN) has been
used to solve forward and inverse problems involving nonlinear partial
differential equations (Raissi, Perdikaris, and Karniadakis, 2017a;
Raissi, Perdikaris, and Karniadakis, 2017b; and Raissi, Perdikaris, and
Karniadakis, 2019). By combining physical and mathematical under-
standing with a pure data-driven neural network (Karniadakis et al.,
2021), PINN can improve both the interpretability and prediction
accuracy of traditional neural networks. PINN does not possess an
advantage in directly solving partial differential equations comparing
with conventional numerical methods in terms of efficiency and preci-
sion, but they have performed well in data assimilation by combining
laws of physics (such as the N–S equations) with observed data. Thus,
PINN has received widespread attention. For example, incorporating
point kinetics equations, a single-layer PINN has been trained to
achieve a high computational performance in nuclear reactor dynam-
ics (Schiassi et al., 2022). Wu et al. (2022) combined the standard non-
linear Schr€odinger equation in PINN to predict the dispersion and
nonlinearity coefficients of optical soliton solutions. By combining the
heat transfer law in PINN for direct energy deposition processes, a
three-dimensional temperature field was predicted with a 4.83% mean
temperature relative error (Xie et al., 2022).

For fluid mechanics, Raissi, Yazdani, and Karniadakis (2020)
developed a physics-informed deep-learning framework by encoding
the N–S equations into neural networks to infer velocity and pressure
fields from flow visualizations. Mao, Jagtap, and Karniadakis (2020)
adopted PINN to approximate the Euler equations in the compressible
flow and solve inverse problems that cannot even be solved using stan-
dard techniques. PINN can be also used in one-dimensional advection
flow (Vadyala, Betgeri, and Betgeri, 2022), which has the ability to
avoid the inaccuracy and computational uncertainty associated with
the pseudo-diffusive effect of the conventional method. Arzani, Wang,
and D’Souza (2021) showed that PINN could use sparse two- or three-
dimensional velocity measurements away from the wall to quantify
wall shear stress, leading to very high accuracy, even without full
knowledge of the boundary conditions in near-wall flow. The Cahn–
Hillard equation and N–S equations are encoded into the loss of
PINN to simulate two-dimensional incompressible two-phase flow
(Qiu et al., 2022). The results indicate that PINN is adequate to
describe bubble dynamics and to deal with a two-phase flow at the
large density ratio. The dense velocity fields reconstructed using PINN
from the data of PIV or PTV show that PINN is a useful tool for opti-
mizing measured data and predicting unknown quantities (Wang, Liu,
and Wang, 2022). Calicchia et al. (2023) used a PINN to accurately
predict the pressure field near and on the fish’s body, and they found
that PINN is insensitive to the spatiotemporal resolution of the PIV
measurements. Du et al. (2023) imposed nondimensional N–S equa-
tions in the loss function of PINN to estimate intra-vascular pressure,
which showed the potential of PINN in the cardiovascular disease
diagnosis. From their results, PINN can be used to infer the pressure
fields without solving the PPE or integrating the pressure gradient.
Therefore, the development of the neural network provides an alterna-
tive approach to solve pressure fields.

The objective of the present work is to reconstruct the pressure
field using PINN from the velocity measured by PIV and quantify the
performance of PINN-based pressure reconstruction by comparing
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with the other two algorithms, i.e., SDFPI (Wang et al., 2017) and IC-
OPI (Wang et al., 2016). Two numerical cases and one experimental
case are used to evaluate the performance of PINN. Specifically, the
two numerical cases are two-dimensional Taylor’s decaying vortices
and forced isotropic turbulence, and the experimental case is a syn-
thetic jet impinging on the solid wall. The remainder of this paper is
organized as follows. In Sec. II, the principles of PINN-based pressure
reconstruction are introduced. Section III presents our results and dis-
cussion. In Sec. IIIA, the performance of PINN-based pressure recon-
struction for different neural network parameters is tested with and
without velocity measurement noise. In Sec. III B, we use direct
numerical simulation (DNS) data on forced isotropic turbulence to
assess the impact of flow three-dimensionality and velocity resolution
on the present method. In Sec. IIIC, we apply the proposed method to
a planar PIV for an impinging synthetic jet. Section IV provides our
conclusion and thoughts on the potential of PINN in pressure
reconstruction.

II. PINN-BASED PRESSURE RECONSTRUCTION

In this section, the basic idea and theory of reconstructing the
pressure field using PINN are introduced. Although Wang, Liu, and
Wang (2022) had presented examples to obtain the flow pressure from
PINN, their study focused on the use of PINN to reduce velocity noise
and did not involve an in-depth analysis on the pressure reconstruc-
tion. Figure 1 shows the adopted PINN architecture to reconstruct the
pressure fields in the current study. A residual neural network is built
to fit the relationship between inputs and outputs, which can be
expressed as

U; pð Þ ¼ RNN X; t;Hð Þ: (3)

Here, RNN represents the neural network, whose inputs are the spatial
coordinates X¼ (x, y, z) and time t, and the parameter H represents
the trainable variables. The outputs of the neural network are velocity
vector U¼ (u, v, w) and pressure p.

After creating the neural network, the partial derivatives includ-
ing @U=@X, @U=@t, @p=@X, @2U=@X2 used in N–S equations are
constructed from the chain rule by using the automatic differentiation.
The residuals of the three-dimensional N–S equations can be
expressed in the network as follows:

e1;2;3 ¼ @U
@t

þ U � rð ÞUþrp� 1
Re

r2Uð Þ;
e4 ¼ r � U;

(4)

where Re represents the Reynolds number; e1, e2, and e3 are residuals
of momentum equation in the x, y, and z directions, respectively; and
e4 is the residual of continuity equation. Within the PINN, the N–S
equations are solved by minimizing the equation residuals. Only two-
dimensional N–S equations are needed for the two-dimensional cases.
To optimize this network, the total loss is defined as E¼Edata
þ aEeqns, where a is the weighting coefficient for combining the data
loss Edata and N–S equations loss Eeqns

Edata ¼
XNdata

j¼1

����Uinput Xj; tj
� �

� Upred Xj; tj
� �����

2

; (5)

Eeqns ¼
X4
i¼1

XNeqns

j¼1

����ei Xj; tj
� �����

2

: (6)

Here, Edata represents the data loss between the input velocity data
Uinput and the velocity predicted by the network Upred. Eeqns represents
the residual of the N–S equations, including e1, e2, e3, and e4. The
parameters Ndata and Neqns are the numbers of data points and equa-
tion points. The points are randomly selected and uniformly distrib-
uted across the computational domain. According to the results of
Wang, Liu, and Wang (2022), increasing weighting coefficient a could
enhance the constraint of N–S equations, but it cannot improve the
accuracy of the PINN. Thus, following Wang, Liu, and Wang (2022),
a is chosen as 1 in the current study to achieve the best performance
for the pressure reconstruction.

FIG. 1. Schematic of PINN for incompressible N–S equations in the present study.
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For neural network, Nlayer and Ncell are used to denote the num-
ber of hidden layers and the number of neurons in each hidden layer,
respectively. The learning rate is set to exponentially decay in a stair-
case manner, and the network is trained for 10 000 epochs with 10
steps per epoch unless otherwise specified. The PINN program is
coded on the open-source machine learning platform TensorFlow
v2.1.0 within Python. The training and test process are conducted on a
workstation equipped with a single NVIDA Quadro RTX 5000 GPU
with memory of 16 GB. Additionally, the codes of SDFPI and IC-OPI
in this study can be found in Wang et al. (2017) and Wang et al.
(2016), respectively.

III. RESULTS AND DISCUSSION

To comprehensively examine the performance of PINN in the
reconstruction of pressure, two numerical cases and one experimental
case are tested in this work. First, a two-dimensional flow with a theo-
retical solution is selected to generate accurate velocity fields. By
adding artificial noise of different levels to the velocity fields, the
PINN-based pressure reconstruction is compared to the other meth-
ods in terms of robustness and accuracy. Second, the forced isotropic
turbulence is used to figure out whether PINN can infer three-
dimensional pressure from a two-dimensional measurement. In addi-
tion to the comparison of reconstructed pressure among different
methods, the influence of velocity spatial resolution on the pressure
reconstruction is also discussed in this case. Finally, an experimental
case of impinging synthetic jets is tested to demonstrate the perfor-
mance of PINN for real experimental data.

Actually, all the methods, including PINN, IC-OPI, and SDFPI,
need to specify a reference pressure to completely determine the values
of whole pressure field. Therefore, in the current study, all constructed
pressure fields shown in Sec. III are subtracted from their average
value at each time instant to minimize the uncertainty caused by the
choice of the reference pressure or background pressure. In addition,
for the IC-OPI method, the starting point of the pressure gradient
integration is selected at the left-bottom corner of the flow field (Wang
et al., 2016). While for the SDFPI method, following Wang et al.
(2017), the pressure Poisson equation is solved with the Neumann
boundary condition, which is derived by applying Navier–Stokes (N–
S) equations to the boundary of the solution domain.

A. Two-dimensional Taylor’s decaying vortices

In this numerical flow case, two-dimensional Taylor’s decaying
vortices with a theoretical solution are employed to validate the perfor-
mance of pressure reconstruction among different methods. The two-
dimensional solution to the incompressible N–S equations at Re¼ 1 is
expressed as follows (Kim and Moin, 1985 and Ethier and Steinman,
1994):

u x; y; tð Þ ¼ �cos xð Þsin yð Þe�2t ;

v x; y; tð Þ ¼ sin xð Þcos yð Þe�2t ;

p x; y; tð Þ ¼ � 1
4

cos 2xð Þð Þ þ cos 2yð ÞÞe�4t :

8>>><
>>>:

(7)

Here, t is time, p is pressure, u is the velocity component in the x direc-
tion, and v is the velocity component in the y direction. The size of the
computation domain is set as (Lx, Ly, Lt)¼ (2p, 2p, 1), and the number

of grid points is (Nx, Ny, Nt)¼ (100, 100, 100), which are uniformly
distributed along their directions.

In real experiments, velocity data are always contaminated by the
measurement noise. Thus, it is important to evaluate the influence of
velocity noise on the performance of the pressure reconstruction
method. In this study, Gaussian white noise is added to the theoretical
velocity fields to simulate the measurement noise in experimental
measurements. The noise level r varies from 0% to 25% and is defined
as the ratio of the standard deviation of the random noise to the veloc-
ity fluctuation. When r reaches 10%, the signal-to-noise ratio (SNR)
decreases to 19.8 dB, where SNR¼ 10 log10 (Ps/Pn) dB, Ps represents
the overall sum of the theoretical velocity values squared across the
entire field, and Pn denotes the sum of squared velocity noise values
across the same field.

Figures 2(a)–2(c) show pressure fields reconstructed using the
SDFPI, IC-OPI, and PINN methods, respectively. In addition, the
pressure fields calculated using PINN-SDFPI and PINN-IC-OPI are
also presented for comparison, as shown in Figs. 2(d) and 2(e). PINN-
SDFPI and PINN-IC-OPI mean that the pressure is calculated using
SDFPI and IC-OPI from velocity fields optimized by PINN. When the
velocity field is not contaminated, i.e., where the noise level r¼ 0,
the pressure fields reconstructed by all methods are consistent with the
theoretical solution expressed in Eq. (7). As the noise level increases,
reaching 5% and 10%, the SDFPI and IC-OPI method are almost inca-
pable of reconstructing the pressure, the results are significantly con-
taminated by the noise. For the PINN, the level of noise has a little
effect on the reconstructed pressure (Fig. 2). It is clear that both SDFPI
and IC-OPI are quite sensitive to velocity noise, which can be attrib-
uted to the error amplification when computing the material deriva-
tive. Nevertheless, the pressure reconstruction performances of SDFPI
and IC-OPI were significantly improved in dealing with the optimized
velocity by PINN. Therefore, it can be concluded that PINN-based
pressure reconstruction is superior to other methods due to the fact
that PINN has the capability to optimize the velocity.

For a more quantitative analysis of the accuracy of the recon-
structed pressure field, the relative L2 norm error of p is expressed as
follows:

dp ¼ kpp � pek2
kpref k2

: (8)

Here, the subscripts �ð Þe, �ð Þp; and �ð Þref represent the exact, predicted,
and reference values, respectively. Notably, the reference value is selected
to be equivalent to the exact value. Figure 3 quantitatively presents
the influence of velocity measurement noise on the predicted pressure
field. The noise level r of the velocity field varies from 0% to 25%, and
five methods are compared, namely, PINN, SDFPI, IC-OPI, PINN-
SDFPI, and PINN-IC-OPI. The IC-OPI method has the largest rela-
tive L2 norm pressure error, with SDFPI following as the second larg-
est. With increasing velocity noise level, dp increases linearly across
the two methods. dp rapidly increases to about 3621% as velocity
noise level increases from 0% to 25% for the IC-OPI method, and dp
increases to about 3146% for the SDFPI method. These two methods
are sensitive to velocity noise, and relative L2 norm pressure error is
much larger than relative L2 norm velocity error. When the PIV mea-
surement has large noise, the pressure field cannot be satisfactorily
reconstructed by these two methods. Figure 3(b) also displays the dp
of the other three methods. After dealt with PINN, the dp increases to
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�30% when the noise level increases to 25%, which exhibits a signifi-
cant reduction compared to the SDFPI and IC-OPI methods.
Elevations in velocity noise level result in gradual increments of dp,
and the relative pressure errors of all the PINN-related methods
(PINN, PINN-SDFPI, and PINN-IC-OPI) present good consistence
in the test range. For traditional methods, if the pressure field is
reconstructed using the velocity field optimized by PINN, the relative
L2 norm error of pressure is much lower than that calculated directly.
Therefore, when measured PIV data are of poor quality and contami-
nated by noise, PINN can greatly help to improve the quality of veloc-
ity and pressure.

In the previous analyses, the performance of PINN is superior to
that of SDFPI and IC-OPI due to the physical constraints imposed by
the network. To take full advantage of PINN, it is necessary to further
evaluate the effects of the number of data points and equation points
on the performance of PINN. Figure 4 displays the relative L2 norm
error of pressure as a function of Neqns and Ndata. The noise level is 0%,
5%, and 10%, the number of data points and equation points vary from
100 to 100 000 and 10 to 10 000, respectively. Ndata cannot be set to 0
because training the neural network without data points is not feasible.
The neural network has seven layers with 64 neurons in each layer, and
the learning rate is step decreased at an initial learning rate of 0.01.

FIG. 3. Charts of the relative L2 norm
error of pressure estimated using (a)
SDFPI, IC-OPI, PINN, PINN-SDFPI, and
PINN-IC-OPI, and (b) amplification of
pressure estimated using the last three
methods. The figure is presented using
logarithmic scale for the y axis. The
Gaussian random noise of the velocity
fluctuation ranges from 0% to 25% at an
interval of 5%. For PINN, Ncell is 64, Nlayer
is 7, Neqns and Ndata are fixed to 10 000
and 100 000, respectively, and training is
conducted for 10 000 epochs.

FIG. 2. Contours of pressure predicted by (a) SDFPI, (b) IC-OPI, (c) PINN, (d) PINN-SDFPI, and (e) PINN-IC-OPI. Input velocity has (a1)–(e1) 0% noise, (a2)–(e2) 5% noise,
and (a3)–(e3) 10% noise. In PINN, Ncell and Nlayer are 64 and 7, Neqns and Ndata are 10 000 and 100 000 for all cases, and the time instant is t¼ 0.1.
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In general, with an increase in Ndata and Neqns, especially for Ndata, the
performance of neural network will be better and dp decreases. For dif-
ferent noise levels, increasing the number of equation points has limited
influence on the accuracy of pressure field. At a specific Neqns, the rela-
tive L2 norm pressure error presents an evident decreasing trend with
an increase in Ndata. Even the noise level r is set to 10%, dp can finally
converge to approximately 20%. Increasing Ndata can reduce the rela-
tive L2 norm pressure error of the predicted pressure field; therefore,
training PINN with more data points is a wise choice.

The influence of the number of data points and the number of
neurons in each layer on the performance of the PINN is also evalu-
ated at a velocity noise level of 0%, 5%, and 10%. Figure 5 shows rela-
tive L2 norm error of pressure as a function of Ndata and Ncell. The
parameter Ncell increases from 16 to 64, which means that the scale of
neural increases from small to large. Generally, dp decreases with an
increase in Ndata and Ncell, even if training velocity data have different
noise levels. When the input velocity is an exact N–S equations solu-
tion without measurement noise, as shown in Fig. 5(a), dp converges
to approximately 12%, 8%, and 4% at Ncell¼ 16, 32, and 64, respec-
tively. For pressure, when input velocity noise increases to 10%, dp
converges to approximately 50%, 26%, and 24% at Ncell¼ 16, 32, and
64 when Ndata is larger than 50 000.

Based on the tests of the two-dimensional Taylor’s decaying vor-
tices, there are some remarks those can be provided. In general, rela-
tive L2 norm pressure error decreases with an increase in Ndata.
Increasing the scale of the network (represented by Ncell) can also
reduce the relative L2 norm pressure error of the predicted pressure
field, but this works only when the PINN is fed sufficient data. The rel-
ative L2 norm error of pressure increases with increasing noise level,
which implies that the measurement noise of the PIV indeed deterio-
rates the performance of the PINN; however, the PINN can reduce the
influence of velocity noise on pressure estimation. The choice of
parameters in later sections is based on the conclusions in this section.

B. Forced isotropic turbulence

Two-dimensional forced homogeneous isotropic turbulence is
chosen as the second case to assess the impact of the third component
on the pressure reconstruction. This implies that two training data sets
are generated to mimic the 2D2C PIV fields and 2D3C PIV fields. The
original DNS data set of forced isotropic turbulence on a 10243 periodic
grid in a cubic domain with a length of 2p is downloaded from the
Johns Hopkins Turbulence Databases (Li et al., 2008). The data set
includes all the three components of the velocity vector and the pressure.

FIG. 4. Contour maps of the relative L2 norm error of pressure as a function of Neqns and Ndata. The figure is presented using logarithmic axes. Gaussian random noise with
(a) 0%, (b) 5%, and (c) 10% of the velocity fluctuation is added to the velocity. The number of data points varies from 102 to 105, and the equation points number varies from
10 to 104. There are 64 neurons in each layer, and the number of layers is set to 7. The training is conducted for at least 10 000 epochs to make sure that the total loss con-
verges in all cases.

FIG. 5. Relative L2 norm error of pressure vs Ndata, Ncell, and velocity noise. The figure is presented using logarithmic axes. Gaussian random noise of (a) 0%, (b) 5%, and (c)
10% of the velocity fluctuation is added to the velocity. Ncell is chosen as 16, 32, and 64. Nlayer is fixed to 7, Neqns is fixed to 10 000, and training is conducted for 10 000 epochs
in all cases.
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The simulation time step Dt is 0.0002. The data are stored at every 10
DNS time steps so the samples are stored at time step dt¼ 0.002. The
total kinetic energy and dissipation rate are computed by averaging the
time between t¼ 0 and t¼ 10. The parameters of the data set are given
in Table I.

To simulate the 2D2C PIV velocity fields, 500 two-dimensional
x–y slices of two-component velocity data are used to generate particle
image pairs, and an FFT-based cross correlation method is used to cal-
culate the velocity from the particle image pairs. The particle image
resolution is set to 1024� 1024 pixels with a digital imaging resolution
of 0.2 g/pixel. The particles per pixel (ppp) is set to 0.1, and the particle
diameter dp is set to 1.5 pixels. During particle image pairs generation
process, mesh and velocity are first non-dimensionalized using
Kolmogorov length scale g and timescale sg. Then, velocity is com-
puted using mainstream FFT-based cross correlation PIV method
based on the generated particle image pairs. The interrogation window
is 16� 16 pixels with 50% overlap. The vector fields are smoothed
using a standard 3� 3 local median filter. The resolution of the result-
ing vector fields, as given by the interrogation window size, is about
3 g � 3 g (Cai et al., 2020; Buxton, Laizet, and Ganapathisubramani,
2011; and van Gent et al., 2017), adjacent vectors are separated by
1.5g, and the total vector size is 137� 137. For PINN, the network
with Nlayer¼ 15 and Ncell¼ 128 is trained by using 105 data points and
104 equations points. The training process stops after 20 000 epochs,
for a total of about 28 h, with a learning rate that exponentially decays
from 0.01 in a staircase manner. The loss as a function of the number
of epochs converges from about 20 to about 0.1.

Figure 6 shows the original DNS data and the pressure field
calculated by SDFPI, IC-OPI, and 2D PINN at the 100th snapshot.

From the visual comparison, all the reconstructed pressures present a
large deviation from the DNS data. This is because the strong three-
dimensionality of forced isotropic turbulence, i.e., the influence of
velocity and velocity derivation in the third direction, which have the
same order of magnitude as the x and y directions, cannot be ignored.
Therefore, it is impossible to obtain a correct pressure field from pla-
nar PIV for three-dimensional flow, such as forced isotropic turbu-
lence. In particular, because of the strong three-dimensionality of the
flow, the pressure gradient possesses great errors in calculating the
pressure, which causes that the results from SDFPI and IC-OPI appear
similar under the current color scale. To fully assess the performance
of pressure reconstruction, we construct 2D3C PIV velocity data from
the same data set to evaluate the effect of three-dimensionality on
PINN-based pressure reconstruction.

For the 2D3C velocity data, the DNS velocity fields are first
smoothed using a moving average filtering with different integration
window sizes. In the present work, interrogation windows with size of
15 g � 15 g � 15 g, 30 g � 30 g � 30 g, and 45 g � 45 g � 45 g are
adopted to high, medium, and low resolution of the 2D3C data,
respectively. Note that the velocity in the out-of-plane direction is also
filtered. Then, the filtered data in the region of 100g � x � 304g and
100g � y � 304g is interpolated to the PIV mesh with a square spac-
ing of half of the interrogation window, to simulate the 50% overlap.
500 x-y slices with three-component velocity data are generated for
each case.

Note that a 3D PINN was adopted to tackle the 2D3C PIV data.
The computational domain in the x and y direction is the same as the
PIV data, while, that in the z direction is four times the spacing of PIV
and the data plane is placed at the middle of the z direction. Figure 7
shows the velocity and pressure reconstructed by PINN using high-
resolution 2D3C PIV data. The flow fields reconstructed by PINN
show good agreement with the reference DNS data. To validate the
quality of reconstruction, the corresponding relative error is also
shown in Fig. 8 for high, medium, and low resolution, respectively.
The relative error is defined as XP � Xdnsð Þ=Xref , where the parameter
X can be velocity components or pressure and Xref is chose as the cor-
responding maximum absolute value of the DNS data (Wang et al.,
2016). It is obvious that larger interrogation window (i.e., low resolu-
tion of PIV data) results in larger relative velocity and pressure error.
From visual inspection of the results, we can conclude that PINN can
correctly reconstruct the velocity and pressure from the high-
resolution 2D3C PIV data.

TABLE I. Parameters of the forced isotropic turbulence.

Resolution, N 1024
Time step of DNS, Dt 0.0002

Time interval between stored data sets, dt 0.002

Total kinetic energy, Etot ¼ 1
2
uiui

0.695

Dissipation, e ¼ 2�SijSij 0.0928

Kolmogorov timescale, sg ¼
ffiffiffi
�

e

r
0.0424

Kolmogorov length scale, g ¼ �3=4e�1=4 0.0028

FIG. 6. Contours of pressure field (a) original DNS pressure field, (b) predicted by the SDFPI method, (c) predicted by IC-OPI, (d) predicted by PINN based on 2D2C PIV data.
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Table II quantitatively lists the relative L2 norm error of stream-
wise velocity u, spanwise velocity v, and pressure p. When calculating
relative L2 norm error according to Eq. (8), the reference value is the
corresponding DNS data. For the fields reconstructed by PINN using
high resolution data, the relative L2 norm error of velocity u is 1.33%
and that of the pressure is 14.22%, and for the low resolution data, the
relative L2 norm error of velocity u is 2.56% and that of the pressure is
16.95%. The correlation coefficient R between the reconstructed field
and the DNS field is also given in Table II. The correlation coefficient
of velocity is approximately 0.99, and the correlation coefficient of
pressure is smaller than 0.90.

From the above analysis, we present that the 2D2C PIV data can-
not be used to correctly estimate the pressure for strong three-
dimensional flow. The strategy of PINN with 2D3C data is feasible for
pressure reconstruction. Meanwhile, the performance of PINN can
benefit from improving the resolution of PIV data. The PTV data may
be more suitable for PINN-based pressure reconstruction.

C. Synthetic jet impinging on a solid wall

In this section, the experimental PIV data of an impinging syn-
thetic jet was used to evaluate the performance of different pressure
reconstruction methods. The experiment was conducted in a large
water tank. The synthetic jet was created from a piston-cylinder actua-
tor with the exit diameter D¼ 10mm. The jet Reynolds number was
chosen as Resj¼ 332 at a driving frequency equaling f0¼ 0.6Hz. A
time-resolved planar PIV system was employed to measure the fluid
velocity in the symmetric plane of the synthetic jet. The camera resolu-
tion was set to 1536� 836 pixels, yielding a field of view of about
90� 50mm (9D� 5D). The PIV interrogation window was set as
32� 32 pixels with 75% overlap that results in a vector spacing of
0.47mm approximately. Both the synthetic jet and PIV parameters are

summarized in Table III, and details of the experimental setup can be
found in Xu et al. (2017). Note that considering the periodic nature of
synthetic jets, the input velocity for the pressure reconstruction was
the phase-averaged data with 400 snapshots in a period.

Since the PIV data were obtained at the symmetric plane of the
synthetic jet, the two-dimensional N–S equations in cylindrical coordi-
nates were used for the loss function of PINN. The PIV velocity field
was first interpolated to a structured grid, and then, the pressure was
calculated using all three methods, i.e., PINN, SDFPI, and IC-OPI.
Note that in the PINN calculation, the neural network was set to 14
layers with 64 neurons in each layer, and the pressure result was
extracted after 30 000 epochs when the loss was reduced to be less
than 10�2. For an axisymmetric flow and cylindrical coordinates, the
difference of PPE between cylindrical and Cartesian coordinate is one
or two orders of magnitude smaller than the PPE in Cartesian coordi-
nate (Naguib and Koochesfahani, 2004); thus, SDFPI and IC-OPI are
solved in Cartesian coordinate. In addition, to quantitatively show the
effect of coordinate system selection, the pressure calculated by PINN
using two-dimensional N–S equations in cylindrical coordinates and
Cartesian coordinates is compared in Fig. 9. The average difference
between pressures calculated using two coordinate systems is 0.8% at
t/T0¼ 0.2125 and 2% at t/T0¼ 0.35 relative to their respective maxi-
mum, which is negligibly small. Therefore, we consider that using
Cartesian coordinate is acceptable for a symmetric flow in Sec. III C.

The pressure fields computed by PINN, SDFPI, and IC-OPI are
presented in Figs. 10(a)–10(c), respectively. Three time instants at
t/T0¼ 0.0625, 0.2125, and 0.35 were chosen for comparison. As men-
tioned above, the IC-OPI and SDFPI is sensitive to both noise and
boundary conditions; therefore, these two methods have worse perfor-
mance on the experimental data. As illustrated in Figs. 10(c1)–10(c3),
although the SDFPI and IC-OPI could present the basic pressure dis-
tribution associated with an impinging synthetic jet, i.e., low pressure

FIG. 7. (a1) DNS streamwise velocity u
field, (a2) streamwise velocity u predicted
by PINN; (b1) DNS spanwise velocity v
field, (b2) spanwise velocity v predicted by
PINN; (c1) DNS pressure field, (c2) pres-
sure predicted by PINN using high-
resolution 2D3C PIV data.
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at the vortex cores and high pressure at the impingement stagnation, its
calculated pressure field is significantly contaminated by the measure-
ment noise especially in quiescent surrounding fluid [see Figs. 10(b) and
10(c)]. Figure 10(a) shows that the pressure fields reconstructed from
the PINN well resolve the vortex ring evolution of the impinging
synthetic jet. This result indicates that the PINN possesses the best

FIG. 8. (a1)–(a3) Relative streamwise velocity error eu, (b1)–(b3) relative spanwise velocity error ev, and (c1)–(c3) relative pressure error ep at input velocities with (a1)–(c1) high
resolution, (a2)–(c2) medium resolution, and (a3)–(c3) low resolution.

TABLE II. Correlation coefficient and relative L2 norm errors of velocity u, v, and
pressure p, compared with DNS velocity and pressure field. 2D3C PIV data is gener-
ated as low, medium, and high resolution.

u v p

R du(%) R dv(%) R dp(%)

High resolution 0.99 1.33 0.99 1.54 0.89 14.22
Medium resolution 0.99 1.29 0.99 1.55 0.89 14.51
Low resolution 0.99 2.56 0.99 3.05 0.84 16.95

TABLE III. Flow and PIV parameters for the impinging synthetic jet experiment.

Flow parameters Exit diameter D 10mm
Orifice-to-wall
distance H

40mm

Frequency of the
synthetic jet f0

0.6Hz

Reynolds number Resj 332
Non-dimensional
stroke length L/D

5.5

PIV parameters Laser thickness 1mm
Laser power 5 W

Camera resolution 1536� 836 pixels
Particle diameter 10 lm

Interrogation window size 32� 32 pixels
Overlap ratio 75%

Seeding particle density �0.0527 ppp
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performance in the pressure reconstruction and is minimally affected
by the experimental noise among all three tested methods.

To illustrate the role of pressure in revealing the mechanism of
flow dynamics, Fig. 11 shows the vorticity field and wall pressure dis-
tribution estimated from PINN. Three time instants at t/T0¼ 0.0625,
0.2125, and 0.35 correspond to the vortex ring evolution before the
impingement, impinging onto the wall and after the impingement,
respectively. As shown in Figs. 11(a1)–11(d1), before impinging onto
the wall, the fluid out of the jet orifice forms a vortex ring followed by
a trailing jet. The vortex cores have a low-pressure region and, in its
front and rear, generate high-pressure areas that are related to the
leading and trailing stagnation points in a frame of reference moving
with the ring (Lawson and Dawson, 2013). The wall pressure

distribution shows a peak at the jet centerline (x¼ 0), which indicates
a possible early interaction with the wall.

As the vortex ring moves forward to impinge onto the wall at
t/T0¼ 0.2125, a high-pressure area is formed around the wall stagna-
tion point, and two pressure valleys appear near x¼61 correspond-
ing to the position of primary vortex cores, as shown in Figs. 11(b2)
and 11(c2). The wall pressure distribution in Fig. 11(d2) shows that the
coefficient peak at the jet centerline experienced a significant increase
compared to Figs. 11(d1) and 11(d3) due to the intensive vortex/wall
interaction. In particular, following the pressure valleys (x¼61), it
seems that the flow would experience an adverse pressure gradient
(APG) along the radial direction. This means that a potential flow sep-
aration could occur.

FIG. 9. Pressure field reconstructed by PINN using
two-dimensional N–S equations in (a1)–(a2)
Cartesian coordinates, and (b1)–(b2) cylindrical coor-
dinates, when (a1)–(b1) t/T0¼ 0. 2125, and (a2)–(b2)
t/T0¼ 0.35.

FIG. 10. Pressure field reconstructed by (a1)–(a3) PINN, (b1)–(b3) SDFPI, and (c1)–(c3) IC-OPI methods, when (a1)–(c1) t/T0¼ 0.0625, (a2)–(c2) t/T0¼ 0.2125, and (a3)–(c3) t/
T0¼ 0.35.
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As time evolved to t/T0¼ 0.35, the primary vortex ring continues
to interact with the wall to expand along the radial direction. During
this process, both the stagnation peak and vortex core valleys in the
pressure field had a significant reduction, as shown in Fig. 11(c3). It
was notable that in addition to the primary vortex core valley, a second
pressure valley was detected in the wall pressure distribution, as shown
in Fig. 11(d3). This second valley was attributed to the secondary vor-
tex ring formed from the separation of the wall shear layer induced
by the impinging primary vortex ring, as pointed by red arrows in
Fig. 11(b3). Moreover, the wall pressure presents a plateau around the
jet centerline, which was due to the impingement of the trailing jet fol-
lowing the primary vortex ring. In general, for other complex flows
and for those which is difficult to measure the pressure field, the PINN
can help to reconstruct the pressure field, which is beneficial for in-

depth analysis of complex flow phenomena, such as the evolution of a
vortex/wall interaction shown in the current case.

IV. CONCLUSION

Unlike traditional methods of pressure reconstruction, i.e., SDFPI
and IC-OPI, PINN can simultaneously optimize the PIV velocity and
predict the pressure. PINN combines the laws of physics with tradi-
tional pure data-driven neural networks to calculate unknown pressure
by minimizing the total loss including equation loss and data loss. In
this work, the performance of PINN is numerically investigated using
two-dimensional Taylor’s decaying vortices, forced isotropic turbu-
lence, and then an experiment involving a synthetic jet impinging on a
solid wall is used to test the pressure-reconstruction ability of PINN
for noisy PIV data. This work produced several outcomes.

FIG. 11. (a1)–(a3) Vorticity field calculated by PIV data, (b1)–(b3) vorticity field calculated by velocity predicted by PINN, (c1)–(c3) pressure field reconstructed by PINN, and
(d1)–(d3) pressure coefficient on the wall at t¼ (a1)–(d1) 0.0625T0, (a2)–(d2) 0.2125T0, and (a3)–(d3) 0.35T0.
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First, compared to traditional methods, PINN reconstructs pres-
sure fields with the lowest relative pressure error even the input veloc-
ity field is contaminated by noise. This is because PINN can optimize
the velocity by imposing the physical constraint. Using the optimized
velocity fields, the traditional methods can also get better pressure
fields. Meanwhile, increasingNcell, Ndata, and Neqns can reduce pressure
error, and the influence of Ndata is greater than the influence of Neqns.
This implies that the performance of PINN-based pressure reconstruc-
tion can be improved by increasing the quantity of the measured data.

Second, for three-dimensional flow, such as forced homogeneous
isotropic turbulence, the pressure cannot be recovered from 2D2C
velocity fields even for the proposed PINN. However, a 3D PINN has
the capability to reconstruct the pressure from 2D3C velocity fields.
The modulation effect introduced by the cross correlation algorithm
in PIV deteriorates the performance of PINN; therefore, data with
high resolution and low noise can increase the accuracy of pressure
reconstruction.

Finally, two-dimensional PIV experimental data are used to test
pressure reconstruction performance. For complex nonperiodic turbu-
lence flow, traditional methods meet many problems such as conflict-
ing with N–S equations constraints when reconstructing a pressure
field. However, PINN can accurately predict the complex flow struc-
ture, such as a secondary vortex, which is hard to observe in experi-
mental measurements and is meaningful for understanding the flow
structure evolution of a synthetic impinging jet. From the pressure
field reconstructed by PINN, more information about the flow mecha-
nism, such as the pressure coefficient, is correctly obtained, which is
important for analyzing complex physical phenomena.

Herein, compared to traditional methods, PINN can reconstruct
pressure fields with high accuracy and reduce the influence of velocity
noise when PIV data are contaminated by noise. However, choosing
suitable parameters for PINN is critical and time-consuming. Further
investigation on the possibility of saving calculation time is also
needed.
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