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Abstract Coalescing supermassive black hole binaries
(SMBHBs) are the primary source candidates for low fre-
quency gravitational wave (GW) detections, which could
bring us deep insights into galaxy evolutions over cosmic
time and violent processes of spacetime dynamics. Promis-
ing candidates had been found based on optical and X-ray
observations, which claims for new and ready-to-use GW
detection approaches before the operations of space-borne
antennas. We show that, satellite laser ranging (SLR) mis-
sions could serve as probes of coalescing SMBHBs through
the GW-induced resonant effects. Lasting and characteris-
tic imprints caused by such resonances in the residual dis-
tances or accelerations from SLR measurements are stud-
ied, and the detection SNR is analyzed with both the cur-
rent and future improved ranging precisions. Within redshift
z ∼ 1, the threshold SNR = 5 requires 1–2 years of accu-
mulated data for the current precision and months of data
for improved precision, which are workable for the data pro-
cessing of SLR missions. Meanwhile, joint detections with
multiple SLR missions could further improve the total SNR
and the confidence level. Such a detection scheme could ful-
fill the requirement of a tentative SMBHB probe during the
preparing stage of LISA and Taiji, and it requires no fur-
ther investment to any new and advanced facilities. It is also
worthwhile to look back and re-process the archived data
from the past decades, in where resonant signals from SMB-
HBs might be hidden.

Qiong Deng: co-first author.
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1 Introduction

Ever since the landmark event GW150914 observed by Adv-
LIGO [1,2], the new window to the Universe had been opened
by GW detections. With the follow-on observations of nearly
one hundred of events by the LIGO-VIRGO collaboration
[3,4], the new era of GW astronomy has gradually started
off. To enclose the exciting sources of much larger and heav-
ier astrophysical systems, one needs to explore the low fre-
quency end of the GW spectrum with detectors of much
longer baselines. In the next decade, the first generation
space-borne antennas, including LISA (Laser Interferome-
ter Space Antenna) [5] and the LISA-like Taiji mission [6–9]
would be launched and cover the mHz band [10]. Mission
concepts for decihertz band now include the DECIGO [11],
AMIGO [12] and TianQin [13] projects. For the μHz band,
the more advanced space missions with baselines of Solar
system size like the μAres [14] and ASTROD [15] were
suggested. Pulsar Timing Arrays (PTA) are reported to be
promising probes for nHz GWs [16–18].

Among the candidate sources within the low frequency
range, coalescing SMBHBs (106 −109 M⊙) are of the most
exciting ones [19]. Their collisions and mergers give rise to
the most violent events in the visible Universe and produce
the loudest GW signals within their frequency band. The
knowledge of the population of coalescing SMBHBs and
the detailed measurements of the entire wavetrains (inspi-
ral, merger, and ringdown) will bring us deep insights into
the growths and co-evolutions of the SMBHBs and their host
galaxies, the expansion history of our Universe, the most vio-
lent dynamic behavior of curved spacetime and the nature
of gravitation [19–21]. Therefore, coalescing SMBHBs are
the primary candidates for many aforementioned missions.
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According to the roadmap of GW physics and astronomy
[22], LISA will firstly reveal the detailed information about
SMBHBs till the 2030s. On the other hand, SMBHB candi-
dates could be identified by means of optical and X-ray obser-
vations. For example, Ref. [23] claimed that the rapid decay-
ing binary system SDSSJ1430+2303 discovered via optical
and X-ray observations is expected to merge within 3 years,
which might provide us an excellent opportunity for multi-
messenger observations if any low frequency GW detector
was ready [24,25]. Having the plentiful scientific objectives
and the potential opportunities, it would be of great signifi-
cance if any tentative detection of coalescing SMBHB could
be made within this decade before the operations of LISA
and Taiji missions.

Similar to the case for a bound system of charged parti-
cles, which could have resonant interactions with incident
electromagnetic waves when the wave frequency matches
with the energy difference between certain states of the sys-
tem, the response of a self-gravitating binary system to GW
is especially evident when the frequency of GW matches a
harmonic of the binary’s orbital frequency, thereby induc-
ing a resonant effect. Such resonant evolution of the orbit
can accumulate in time, and may eventually enter the scope
of possible detections. The studies of resonant responses of
self-gravitating binary systems to incident GWs can be traced
back to the 1970s [26–30], and had raised more concerns in
these years [31–40]. Recently, Blas and Jenkins had made
important progress for this detection scheme and developed
powerful tools to estimate the resonant evolutions of the
binary orbital elements under stochastic GW backgrounds
[41]. Sensitivities to such resonant effects from stochastic
backgrounds in SLR, Lunar laser ranging (LLR) and PTA
missions turn out to be promising [42], which approves the
detectability of such scheme.

Most of the GW signals studied in the aforementioned lit-
erature are stochastic in nature, and still the resonant detec-
tion scheme for general deterministic and individual signals
is not yet fully investigated. In this work, we aim to study
the feasibility and prospect of detecting, in the circumstance
where orbital resonance takes place, the deterministic GW
signals from coalescing SMBHBs via the SLR technique of
the present day and the next decade. The Earth-satellite dis-
tances can be measured precisely and continuously for SLR
missions, which hence provides the long-term and faithful
tracking of the orbital evolutions of the satellites [43,44]. In
fact, data from SLR missions, such as LAGEOS 1, 2 and
LARES, had already been proved to be very useful in rela-
tivistic experiments [45–53]. For GW detections, the orbital
harmonics of all the in-orbit laser-range satellites [54] could
form a “comb” in the sub-mHz range, which makes it pos-
sible to capture the strong chirping signals from coalescing
SMBHBs consecutively by most of the missions in opera-
tion. Based on previous studies [29,55–58], and especially

[41], we give analytical and numerical analysis of the reso-
nant evolutions of osculate orbital elements induced by GWs
from coalescing SMBHBs in SLR missions and their depen-
dence on relevant parameters. An important finding is that,
when such resonance takes place, a characteristic signature
is left in the orbital evolutions of the laser-ranged satellites.
With the precision and multi-year data of orbit tracking, the
resonance signal could be recovered with sophisticated data
analysis methods. Given the joint detections of each individ-
ual signal by different SLR missions, this would finally pro-
duce the high-confidence detection of a coalescing SMBHB.

Limited by the precision of SLR measurements in present-
days and in the near future, such detections may not give
rise to detailed physical parameters of the sources, but the
multi-year observations could probably provide us the first
estimation of the population or event rate of coalescing SMB-
HBs within redshift z ∼ 0.1. Such a detection scheme could
fulfill the requirement of a tentative SMBHB probe in the
decade before the launch of LISA (and Taiji), and it requires
no further investment to any new and advanced facilities. The
only efforts demanded will be the thorough analysis of the
data, especially the re-analysis of the archived data from the
past decades in where resonant signatures from coalescing
SMBHBs might be hidden.

2 Theoretical tools

For clarity, we will refer to the SMBHB as the “source binary”
and the Earth-satellite system as the “test binary”. The phe-
nomenon of orbital resonance can be described by the equa-
tions of motion (EoM) of the osculating orbital elements of
the test binary, with GWs acting as small perturbations.

We introduce a cylindrical coordinate {r̂, θ̂ , �̂} whose ori-
gin is placed at the test binary’s center of mass, and {r̂, θ̂}
represent the bases of polar coordinates within the orbital
plane, �̂ being the unit vector perpendicular to them. The
unperturbed Keplerian motion of the satellite is characterized
by six orbital elements X = {P, e, I,�, ω, ε}, including the
orbital period, eccentricity, inclination, longitude of ascend-
ing node, argument of pericenter, and the compensated mean
anomaly.

In the absence of perturbations, the separation r(t; X) of
test binary, that is related to the most important observable
of SLR missions, follows the Kepler’s equations

r(t; X) = a [1 − e cos E(t; X)] , (1)

E(t; X) − e sin E(t; X) = 2π t

P
+ ε, (2)

ψ(t; X) = 2 arctan

[√
1 + e

1 − e
tan

E(t; X)

2

]

, (3)
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where the true anomaly ψ is defined as the angular position
of the satellite measured from the pericenter, and E is the
so-called eccentric anomaly.

With perturbations induced by incident GWs, Eqs. (1–
3) are valid under the condition that X are regarded as the
osculating orbital elements, which varies with time satisfying
the RTN-type Gaussian perturbation equations [56,57,59].
The effects of GWs, treated as small perturbations, can be
written down in the form of Newtonian forces [29,60]:

FGW = r(R r̂ + T θ̂ + N �̂), (4)

where R, T and N are the perturbing forces per unit mass
in the radial, tangential and normal directions relative to the
orbit

R = 1

2
ḧi j r̂

i r̂ j , T = 1

2
ḧi j r̂

i θ̂ j ,

N = 1

2
ḧi j r̂

i �̂ j , hi j = hAe
A
i j . (5)

eAi j being the polarization tensors of the GW (A = +,×).
Finally, in terms of transfer function, the EoM of X can be
written in a compact form [41]:

Ẋ = T A(X, ψ, n̂GW)ḧ A(n̂GW, t), (6)

where n̂GW = n̂GW(ϑ, φ) denotes the direction of source.
The transfer functions T A define the linear responses of
the orbital elements X to the incident GWs. Such linear
responses are valid under the conditions that perturbations
from GWs are small compared to that from Newtonian grav-
ity and the back reactions from resonance to the incident GW
field are ignorable. The explicit forms of the transfer func-
tions T A and the coefficients of eAi j in the test binary frame
can be found in the work [41]. For SLR measurements, we
are most concerned about the orbital period P (or the semi-
major axis a), which is directly related to the total energy of
the test binary. The transfer function of P can be expressed
as

T A
P = 3P2γ

4π

(
e sin ψ

1 + e cos ψ
r̂ i + θ̂ i

)

r̂ j eAi j , (7)

where γ ≡ √
1 − e2.

Equation (6) constitute a system of ODEs, which are
solved numerically in the following analysis using the ini-
tial conditions X|t=0 = X0. The orbital perturbation theory
suggests that ψ(t) can be calculated by solving the Kepler
equations Eqs. (2) and (3) with the orbital elements regarded
as the osculating ones.

To understand the resonant behavior qualitatively, we also
derive an analytical solution under the simplifications that the
orbit of test binary is nearly circular (e � 1) and the incident
GW is modeled as a monochromatic wave with redshifted
frequency fGW, initial phase ϕGW and amplitudes HA. At
the “main” resonance frequency fGW = fres = 2/P , the

variation of P is dominated by a linear drift term. The secu-
lar perturbation of P , defined as Ṗ averaged over one orbit
revolution, reads

Ṗsec = 6πγ HA

√
G2

1A + G2
2A

× sin

(

ϕGW − 2ε − arctan
G1A

G2A
− δA×

π

2

)

, (8)

where G1A, G2A are constants determined by the angles of
the GW source and the test binary (see Appendix A), and
δA× = 1 if A = × or 0 if A = +. In the case where
the source binary and test binary are face-on, Ṗsec can be
expressed more concisely:

Ṗsec = 12πγ H sin(ϕGW − 2ω − 2ε), (9)

with H ≡ HA(ι = 0). Depending on the values of ϕGW, ω

and ε, Ṗsec can be either positive or negative. Besides, two
“secondary” resonances of order O(e) occur at fGW = 1/P
and 3/P . The detailed derivation of this solution can be found
in A. These discussions provide an intuitive demonstration
of orbital resonance.

3 An example of merging SMBHB

We assume a SMBHB with the parameters of SDSSJ1430+2303
[23] as an example for the SMBHBs that will merge in the
near future. Although the interpretation and detectability of
SDSSJ1430+2303 are still under discussion, we are inter-
ested in a group of similar SMBHB systems instead of this
specific one. This example will be referred to as our repre-
sentative Target Source in the rest of this paper (TS for short),
and the variation of its parameters over a wide range will be
discussed in B. Among all the SLR missions, we take the laser
ranging mission LAGEOS 2 (L2 for short) as a typical rep-
resentative. The resonant responses of other SLR missions,
including LAGEOS 1, LARES 1/2, Ajisai and ETALON 1/2
to the same GW signal are also discussed. The parameters of
these missions can be found in [52,61].

The parameters relevant to our example are listed in
Table 1, where the initial values of P, e, I for L2 are taken
from Ref. [52]. Reference [23] reported the properties of
the TS constrained from electromagnetic observations. It is
proposed that this system is an uneven mass-ratio, highly
eccentric SMBHB. While, at the frequencies of our inter-
est, its orbit would be sufficiently circularized. Moreover,
the components masses of the TS are only determined with
large uncertainty. Therefore, here we simply assume that it
consists of two black holes with equal source-frame masses
Mbh = 4 × 107M⊙, and redshift z = 0.08105. The sky
position and inclination of the TS, as well as � and ω are
randomly selected, since � and ω could change in time, and
we are interested in a family of SMBHBs with properties
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Table 1 Parameters of LAGEOS2 (L2) and SDSSJ1430 + 2303 (TS)
in our example

L2 P0 e0 I0 �0 ω0 ε0

13,349s 0.0135 52.64◦ π/3 0 0

TS Mbh z ι ϑ φ ϕc

4 × 107M⊙ 0.08105 π/6 π/6 0 0

similar to SDSSJ1430+2303 rather than this specific one. A
detailed discussion on the impacts of the mass ratio and other
parameters is given in B. Regarding the modeling of the GW
signal, we utilize the SEOBNRv4 time-domain waveform
[62,63] provided by the open-source code PyCBC [64], and
the phase at coalescence is set as ϕc = 0.

Roughly speaking, the inspiral stage ends when fGW

equals the GW frequency of the innermost stable circular
orbit fISCO ≡ 1/(63/2πM), where M is the total mass
of the source. For the case under consideration, fres ≈
1.5 × 10−4 Hz > fISCO, indicating that resonance hap-
pens mainly during the merger stage. As is shown in the top
panel of Fig. 1, for L2, P exhibits a monotonic growth for
∼ 104 s, and finally reaches a steady value with �Pfin/P0 =
4.374 × 10−14.

The resonant responses of different SLR missions to the
same GW signal from the TS are also shown in Fig. 1. As
expected, the secular variation Ṗsec can be either positive or
negative, depending on the parameters of satellite orbits and
GW sources. The resonance frequencies of these satellites
form a “comb” in the sub-mHz frequency range, and res-
onances would take place consecutively among these SLR
missions when the chirping signal sweep across the “comb
tooth”. Hence, the correlations among such resonant events
could give a high confidence level of the detection, and may
even help to investigate the physical properties of the cor-
responding GW sources, like the TS. To make such detec-
tion scheme attainable, the more sophisticated and important
observable, that of the residual separation δr(t), is defined
and employed in the following discussions, see Figs. 2 and 3.

4 GW detection with orbital resonance

Based on the above example, the GW-induced secular change
in semi-major could only reach �afin ≈ 2a

3P �Pfin ∼ 10−7.
Compared with the resolution of SLR distance measure-
ments, which is at millimeter or sub-millimeter level [51],
it seems difficult to identify such small changes in the semi-
major out of uncertainties.

On the other hand, SLR is particularly superior in tracking
the orbital dynamics of satellites. Collecting the round-trip
times of laser pulses allows one to track the “normal point”
distances over time. The orbital elements of the laser-ranged

Fig. 1 The responses of 7 laser-ranged satellites, including LAGEOS
1/2, LARES 1/2, ETALON 1/2 and Ajisai, to the same GW signal (the
lowest panel) emitted by the TS. In each panel, the vertical line repre-
sents the time when fGW = fres. Note that the resonance frequencies
of ETALON 1/2 are much smaller than other satellites, therefore for
these two satellites, we have labeled the times corresponding to fres,
rather than showing them as vertical lines. Resonances take place con-
secutively among these SLR missions when the chirping signal sweep
across the “frequency comb” in the sub-mHz frequency range

satellite can be derived based on such distance measurements
with the help of the precise orbit determination programs,
such as GEODYN [65]. This inspired us to make use of more
sophisticated observables instead of the averaged orbital ele-
ments, that of the residual normal point distance δr(t) or
the residual acceleration δa(t), to reveal the signatures from
the GWs of coalescing SMBHBs. The residual distance is
defined as

δr(t) ≡ rdata(t) − r(t; X0) − δrmod(t), (10)

where rdata(t) is obtained from the SLR measurements, and
r(t; X0) is calculated from the initial elements X0 via Eq.
(1). δrmod(t) consists of the contributions of all other mod-
eled perturbations except for GWs. The residual acceleration
is defined in the similar way δ�a(t) ≡ �̈r(t; X) − �̈r(t; X0) −
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Fig. 2 The residual distance of L2 in the most optimistic case. The
mean value of δr(t) after resonance equals �afin = 5.67 × 10−7 m

Fig. 3 The long-term (30 days) distance residuals of LAGEOS 1/2,
ETALON 1 and LARES 1 calculated based on their optimal responses

δ �̈rmod(t). To make use of such data, one needs to accu-
rately model and account for the possible gravitational and
non-gravitational perturbations. A wide variety of perturba-
tions have been investigated in the literature, such as Earth
geopotential harmonics [66,67], atmospheric drag [68,69],
thermal-thrust effects [70], Solar radiation pressure, dynamic
solid tide and ocean tide [71,72], etc.

With these tools, one could track the long-term dynamical
evolutions of the orbits and investigate in details the differ-
ences (residuals) between the observed and modeled orbits to
search for the expected signals. Such data analysis method is
slightly different from the one used for interferometric GW

detectors [73], but has already been employed in SLR mis-
sions in a wide range of literature [49,51,69,72,74]. Con-
sidering residual accelerations, after modelling the known
perturbations, the residual mean accelerations deviated away
from the geodesic motion for L2 (or LARES) are less than
1-2 × 10−12m/s2 (or 0.5 × 10−12m/s2) [49,74]. While, for
the optimal response of L2 to TS (see B for the determina-
tion of “optimal parameters”), the radial residual acceleration
δar will oscillate around −2.5 × 10−13m/s2 at the start of
the post-resonance stage. This order-of-magnitude estimate
gives a rather optimistic evaluation of the feasibility of this
new detection method.

For the convenience of SNR estimations, we use the resid-
ual distance in the following analysis and assume the ideal
case that the only perturbation to the satellite orbit is from the
incident GWs of SMBHBs. And, considering the expected
event rate of coalescing SMBHBs [19], resonances in SLR
measurements can be treated as individual events. Shown in
Fig. 2 is the optimal response of L2 to TS in terms of δr(t),
and in Fig. 3 the comparison of optimal responses of dif-
ferent SLR missions. During resonance (e.g. t ∈ (0.2, 0.4)

day for L2), δr(t) grows in time, and finally reaches a steady
value δrfin = �afin. Afterwards, in the post-resonance stage,
the behavior of δr(t) is in consistence with our theoretical
prediction (see Appendix C for the derivation)

δr(t) ≈ �afin

[

1 − e

(

1 + �efin/e

�afin/a

)

cos M

− e

(
3π t

P
− �εfin

�afin/a

)

sin M + O(e2)

]

, (11)

where M = 2π t/P + ε is the mean anomaly. That is, under
the long-term condition (3π t/P 
 1), δr(t) would oscil-
late around �afin with linearly varying amplitude, and the
rate of variation is proportional to e. After subtraction of the
known and modeled perturbations, if the similar behaviors as
in Figs. 2 and 3 were observed in the residuals for different
SLR missions, it would indicate with high confidence that
the GW-induced resonance as the cause. Another conclusion
which can be drawn from Fig. 3 is that the eccentricity of
satellite orbit plays an important role in the post-resonance
evolution, as is predicted by Eq. (11). Indeed, the growth rate
of δr for L2 (e = 0.0135) is relatively large compared to, for
example, LAGEOS 1 (e = 0.0045), ETALON 1 (e = 0.001)
and LARES 1 (e = 0.001).

To extract the signal of GW, the residual data should be
analyzed with methods such as matched filtering. Based on
long-term data tracking, the SNR (dubbed ρ) for the optimal
response of L2 can be approximated as

ρ2 = 4
∫ ∞

0

|δr̃( f )|2 d f

Sn( f )
≈ �a2

fin

σ 2ts

(

Tobs + 3π2e2

2P2 T 3
obs

)

,

(12)
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Fig. 4 The SNRs of the most optimistic responses to TS for different
satellites. The thin curves are obtained by numerical calculation, while
the thick ones represent the polynomial function (Eq. 12)

where δr̃( f ) is the Fourier transform of δr(t), and Sn( f ) rep-
resents the one-sided noise power spectral density of SLR.
The resonance stage lasts less than 1 day and contributes a
rather small fraction to the total SNR. Whereas, in the post-
resonance stage, δr(t) oscillates with growing amplitude and
results in the above polynomial SNR on the observation time
Tobs (see Appendix C). Sn( f ) depends on the uncertainty σ

of normal point measurement. Reference [42] predicted that
the precision of SLR coincides with that of LLR, and the lat-
ter will have an order-of-magnitude improvement in the next
decade (which might require the installation of new retrore-
flectors [75]). Following their assumption, we consider two
values of σ in this paper:

a. current precision: σ = 3 mm, 50, 000 normal point mea-
surements per year;

b. improved precision: σ = 0.3 mm, 200, 000 measure-
ments per year.

In Fig. 4 we plot the SNR against Tobs for different mis-
sions under different laser ranging precision. As is shown, for
L2, SNR > 1 can be achieved when Tobs > 124 days (current
precision a) or 17 days (improved precision b). Once we set a
realistic threshold for GW detection to SNR = 5, Tobs > 356
days are required for precision a and 49 days for precision b,
which turns out to be practical and workable.

In the derivation of Eq. (12), it is implicitly assumed that
we have perfect knowledge of the unperturbed orbital period,
thus Sn( f ) does not account for the contribution of the prior
uncertainty of P0 (dubbed σP0 hereafter). This can only be
achieved with infinitely long in-orbit time used for the cal-
ibration of orbital elements. Therefore, it is necessary to
examine whether the impact of σP0 can be safely neglected

Fig. 5 The relationship between the error of theeorbital period σP0

and the in-orbit time T used for calculating P0. The blue curve and the
red curve represents the results based on precision a and precision b,
respectively. For comparison, the optimal response of L2 to TS is also
plotted with grey dashed line in the same figure

compared to the effect of passing GWs, provided that P0

is determined from a reasonable number of SLR measure-
ments. To estimate σP0 , we employ the Fisher information
matrix (FIM) formalism presented in Ref. [41], which con-
verts the uncertainties of laser ranging to those of orbital
elements. Within a given time T (which does not have to
coincide with Tobs),

Fi j = 1

σ 2

T∑

t

∂i r(t)∂ j r(t), σi =
√(

F−1
)
i i , (13)

where i represents the parameters relevant to r(t), i.e. i =
P, e, ε. The σP0 −T relationship for L2, as well as the target
signal (e.g. the optimal response of L2 to TS) are plotted in
Fig. 5. It is clearly shown that, under precision b, the prereq-
uisite (σP0 � �P) for our SNR calculation is fully satisfied
with T ∼ 103 days. This is achievable for missions like
LAGEOS which have been operating for decades. While for
precision a, the SLR data collected over a period of ∼ 103

days only yield a σP0 comparable to the signal, necessitating
a longer time of calibration, or the signal should be stronger
by one or more orders (such as the examples given in the
following analysis).

In addition, it should be noted that although the prior
uncertainty of P0 has been considered, this is still an ideal sce-
nario in the sense that other gravitational or non-gravitational
perturbations are well modeled and subtracted from the data.
Given the specific models of these perturbing factors to the
SLR missions, the error analysis would become more realis-
tic, while this is beyond the scope of our work and belongs
to a separate research topic.

The magnitudes of resonant responses also depends on the
properties of GW sources, especially the masses and redshifts
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(see Appendix B.4), we then go beyondTS and look for more
promising candidates. The nearest SMBHB system reported
so far is located in NGC 7277, with redshift 0.006 and compo-
nent masses 1.54×108M⊙ and 6.3×106M⊙ [76]. Although
this system itself is not an imminent merging one, the exis-
tence of SMBHB at redshift around z ∼ 0.01 can not be
ruled out. Suppose that L2, as the representative, is in reso-
nant interaction with the GW from a SMBHB with redshift
z = 0.01 and equal component masses Mbh = 5.9×107M⊙,
in the most optimistic case, SNR = 5 can be achieved after
an observation time of 68 days (current precision a) or 9
days (improved precision b). Furthermore, for an imaginary
SMBHB at z = 0.001, by only taking the data within res-
onance stage into consideration, the most optimistic SNR
could reach 0.15 (current precision a) or 3 (improved preci-
sion b). To the far end, for mergers of TS-like SMBHBs at
z = 0.1, data sets of 410 days (current precision a) or 56 days
(improved precision b) are needed to achieve SNR > 5. The
above analysis indicates that this new method could give ten-
tative detections of the violent mergers of SMBHBs within
the reach of z ∼ 0.1. Moreover, as expected, when consid-
ering the joint detection by all SLR missions in operation,
both the total SNR and the confidence level could be further
improved.

5 Concluding remarks

In this work, we have investigated the feasibility of the detec-
tion scheme for GWs from coalescing SMBHBs, through
their resonant interactions with the laser-ranged satellites.
The observable of residual distance or residual acceleration
are introduced to make the detection attainable. The SNR
of measuring the resonance-induced characteristic signals in
the residual distances and the dependence on relevant param-
eters of GW sources and orbiters are analyzed. It turns out
that, before the launches of the space-borne antennas, SLR
may be the only ready-to-use approach of probing coalescing
SMBHBs in the sub-mHz range.

Among the promising candidates, we take SMBHB
SDSSJ1430+2303 (TS) as the representative example, which
is expected to merge within 3 years. For LAGEOS 2, we dis-
cussed the SNR of detecting the merger of TS for two sets
of ranging precision. In the optimistic case, SNR > 1 can be
achieved when Tobs > 124 days for the current precision or
17 days for the future improved precision. For the threshold
SNR = 5, 356 days is required for the current precision, and
356 days for improved precision. These results are generated
to similar sources and SLR missions. For TS like candidates
at redshift z = 0.1, SNR = 5 requires less than two years
data for the current precision and a few months data for the
improved precision. These are workable for data processing
of SLR missions. Moreover, as the chirping waves sweep

across the“frequency comb” in the sub-mHz range, the pos-
sible joint detection by the multiple laser-ranged satellites
could further improve the total SNR and the detection confi-
dence.

To summarize, SLR missions with the resonant detection
scheme could fulfill the requirement of a tentative SMBHB
probe that within the reach of z ∼ 1. Not just future-oriented,
the re-analysis of the archived data from the past decades
with our method is also worthwhile. At last but not least, the
prospect of our method also improves with the understand-
ings of the total orbital perturbations for SLR missions.
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Appendix

A Derivation of the simplified analytical solution

An analytical solution can be obtained under the conditions
that the test binary’s orbit is near circular (e � 1) and the
incident GW is modeled as a monochromatic wave:

h+ = H+ cos(2π fGWt + ϕGW),

h× = H× sin(2π fGWt + ϕGW), (14)

where fGW and ϕGW are the redshifted frequency and initial
phase of GW, respectively. The amplitudes HA(A = +,×)

can be expressed in terms of the redshifted chirp mass Mc,
luminosity distance dL and inclination ι as

H+ = 4M5/3
c (π fGW)2/3

dL

1 + cos2 ι

2
,
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H× = 4M5/3
c (π fGW)2/3

dL
cos ι. (15)

It will be demonstrated that the resonance is strongest in the
face-on case. In this scenario, the inclination angle ι equals
zero, thus the polarization angle ψP and the initial phase of
GW ϕGW are complete degenerate. Hence for simplicity we
will omit the dependence on ψP in the subsequent analysis.

In the case of small orbital variation, we can expand X in
powers of hA as X = X0 + X1(t; hA) + O(h2

A), insert this
expansion into Eq. (6) in the body of the paper, and keep only
the linear order. Taking the orbital period as an example, it
follows that

Ṗ = T A
P

[
X0, ψ(t; X0), n̂GW

]
ḧ A(n̂GW, t). (16)

In the rest of this appendix we will drop the subscript “0”
for brevity, and one should keep in mind that X in the r.h.s.
stand for X0.

The most cumbersome parts of T A
P are eAi j r̂

i r̂ j and eAi j r̂
i θ̂ j ,

which take the following forms in the frame of test binary:

eAi j r̂
i r̂ j = CA

r cos 2θ + SA
r sin 2θ + K A,

eAi j r̂
i θ̂ j = CA

θ cos 2θ + SA
θ sin 2θ, (17)

with θ ≡ ω + ψ , and

C+
r = 1

2

(
cos2 ϕ cos2 I− sin2 ϑ sin2 I− cos2 ϑ sin2 ϕ cos2 I

+ 1

2
sin 2ϑ sin ϕ sin 2I − sin2 ϕ + cos2 ϑ cos2 ϕ

)

,

S+
r = −1

2

(
sin 2ϑ cos ϕ sin I + sin2 ϑ sin 2ϕ cos I

)
,

K+= 1

2

(− cos2 ϕ cos2 I+ sin2 ϑ sin2 I+ cos2 ϑ sin2 ϕ cos2I

− 1

2
sin 2ϑ sin ϕ sin 2I − sin2 ϕ + cos2 ϑ cos2 ϕ

)

,

C×
r = 1

2

(− cos ϑ sin 2ϕ cos2 I + sin ϑ cos ϕ sin 2I

− cos ϑ sin 2ϕ) ,

S×
r = cos ϑ cos 2ϕ cos I + sin ϑ sin ϕ sin I,

K× = 1

2

(− cos ϑ sin 2ϕ sin2 I − sin ϑ cos ϕ sin 2I
)
,

C+
θ = −1

2
sin 2ϑ cos ϕ sin I + 1

2
(1 + cos2 ϑ) sin 2ϕ cos I,

S+
θ = 1

2
sin2 ϕ − 1

2
cos2 ϕ cos2 I − 1

2
cos2 ϑ cos2 ϕ

+1

2
(sin ϑ sin I − cos ϑ sin ϕ cos I )2 ,

C×
θ = cos ϑ cos 2ϕ cos I + sin ϑ sin ϕ sin I,

S×
θ = −1

2

[
sin ϑ cos ϕ sin 2I + cos ϑ sin 2ϕ(1 + cos2 I )

]
,

(18)

where we have defined ϕ ≡ φ − � for convenience.

For elliptic orbits, the explicit time-dependence of Kepler
motion can be expressed in terms of the Hansen coefficients
[77,78]:

( r

a

)n
sinmψ =

+∞∑

p=−∞
Xnm

p (e) sin pM,

( r

a

)n
cosmψ =

+∞∑

p=−∞
Xnm

p (e) cos pM, (19)

where M is the mean anomaly M = 2π t/P + ε. As a result,
up to the linear order of e, we have

Ṗ = −3πγα2HA cos

(
2πα

P
t + ϕGW − δA×

π

2

)

×
[√

G2
1A + G2

2A sin

(

2M + arctan
G1A

G2A

)

+ e
√

(F4A − 2G1A)2 + (F2A − 2G2A)2

× sin

(

M + arctan
F4A − 2G1A

F2A − 2G2A

)

+ e
√

(F3A + 2G1A)2 + (F1A + 2G2A)2

× sin

(

3M + arctan
F3A + 2G1A

F1A + 2G2A

)

+ O(e2)

]

. (20)

In the first line, α ≡ fGWP denotes the ratio between GW
frequency and the orbital frequency of the test binary, and
δA× = 1 if A = × or 0 if A = +. The factors Fi A and Gi A

are combinations of CA
r , CA

θ , SA
r and SA

θ defined as

F1A = 1

2γ 2

(
CA
r cos 2ω + SA

r sin 2ω
)

,

F2A = 1

2γ 2

(
−CA

r cos 2ω − SA
r sin 2ω + 2K A

)
,

F3A = 1

2γ 2

(
CA
r sin 2ω − SA

r cos 2ω
)

,

F4A = 1

2γ 2

(
−CA

r sin 2ω + SA
r cos 2ω

)
,

G1A = CA
θ cos 2ω + SA

θ sin 2ω,

G2A = −CA
θ sin 2ω + SA

θ cos 2ω. (21)

By integrating Eq. (20), it is straightforward to show that
P has a secular and linear evolution when α = 2, which is
of order O(e0), and we will refer to α = 2 as the “main”
resonance frequency. Besides, two “secondary” resonances
of order O(e1) occur at α = 1 and 3, indicating that the res-
onant responses of eccentric binaries are more complicated
than the circular ones.

Within the context of our discussion, e ∼ 10−3 − 10−2,
thus for the simplified analytical solution we will mainly
focus on the “main” resonance frequency fGW = fres =
2/P . The secular evolution rate of P , defined as Ṗ averaged
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over one revolution, reads

Ṗsec = 6πγ HA

√
G2

1A + G2
2A

× sin

(

ϕGW − 2ε − tan−1 G1A

G2A
− δA×

π

2

)

. (22)

Equation (22) can be further simplified if we consider the
case where the orbital planes of the source binary and the
test binary are face-on i.e. {ϑ = I, φ = � − π/2, ι = 0},
which gives

Ṗsec = 12πγ H sin(ϕGW − 2ω − 2ε), (23)

where H ≡ 4M5/3
c (π fGW)2/3d−1

L . For circular orbits, ω

and ε become ill-defined. This issue is usually solved by
introducing the combination ξ = ε + ω, which, for a stable
circular orbit, stands for the angle from the ascending node
to the initial position. Therefore

Ṗsec = 12πH sin(ϕGW − 2ξ). (24)

B A detailed discussion on the parameter space and the
determination of optimal parameters

The orbital resonance of the satellite depends on several
parameters, including the position, orientation, redshift, and
component masses of the GW source, and the initial orbital
elements of the test binary. For monochromatic sources, the
relationship between orbital resonance and aforementioned
parameters are well manifested by the formulae deduced
in Appendix A. As for chirp signal, to illustrate the impacts
of these parameters, and look for the “optimal parameters”
that maximize the effect of resonance, we vary some of their
values while keeping others the same as Table 1, and calcu-

Fig. 6 The dependence of �Pfin/P0 on (ϑ, φ). The normal vector of
L2’s orbit ((ϑ, φ) = (0.919, 5.760)) is marked as a red star

late the evolution of P numerically. For brevity, we will leave
out the subscript “0” of X0 in the rest of this appendix.

B.1 The celestial coordinate (ϑ, φ) of GW source

The role of inclination angle ι in GW amplitude is quite
straightforward. To seek for the celestial position of source
which leads to maximum resonance, we set ι = 0, vary (ϑ, φ)

and calculate �Pfin/P0 numerically. The result is visualized
in Fig. 6, where the normal vector of L2 orbit is marked as a
red star. As is shown, maximum resonance occurs when the
source binary and the test binary are face-on.

B.2 ω of the test binary and ϕc of the source binary

Equation (23) indicates that the effects of ω, ε and ϕGW are
degenerate, and Ṗsec depends on the combination ϕGW − 2ω

(since we have set the initial condition ε = 0). This rela-
tionship also holds for chirping signals, only that ϕGW − 2ω

should be replaced by 2(ϕc − ω), for ϕc is defined as the
source’s orbital phase at coalescence. To prove this, we vary
(ω, ϕc) and keep their difference invariant. Shown in the
upper panel of Fig. 7 are the results of 3 equivalent combina-
tions, and other parameters take the values in Table 1. Obvi-
ously, the results of these combinations are indistinguishable.

Furthermore, we investigate the dependence of �Pfin/P0

on 2(ϕc − ω), which is equivalent to varying ϕc and keeping
ω = 0. It can be seen from the lower panel of Fig. 7 that
�Pfin/P0 acts like a sinusoidal function of 2ϕc. In the fol-
lowing we will denote the values of {ϑ, φ, ι, ω, ϕc} which
maximize �Pfin/P0 as the Optimal Parameters (OP here-
after).

B.3 The semi-major axis a of test binary

We consider four values of the semi-major axis:
a = {0.782, 1.21, 2, 3, 4} × 104 km. The 1st and 2nd of
them correspond to the configurations of L2 and LARES 1.
Besides, to illustrate the impact of a on the same basis, for
each value of a we iterate over {ϑ, φ, ι, ω, ϕc}, and then set
them to theOP. Given the total mass of the test binary (which
is approximately the mass of Earth), the orbital frequency,
and hence the resonance frequency, are totally determined by
a. Consequently, for different values of a, resonance takes
place at difference stages of GW (see Fig. 8):

(1) Inspiral (e.g. a = 4 × 104 km): fGW increases slowly,
thus resonance can last for a relatively long time (∼ 105

s). The resulting �Pfin/P0 is the largest among all the a
values in consideration;

(2) Merger (e.g. a = 1.21 × 104 km, 2 × 104 km, 3 × 104

km): The duration of resonance is shorter than case (1),
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Fig. 7 Upper panel: �P/P0 under 3 equivalent sets of (ω, ϕc). Lower
panel: the dependence of �Pfin/P0 on ϕc with ω fixed to 0. The first
set in the upper panel is marked with dashed lines

while hA and ḧ A of this stage get much larger, thus the
effect of resonance is only slightly weaker than case (1);

(3) Coalescence and ring down (e.g. a = 0.782×104 km):
In this extreme situation, resonance can only last for a
very short duration, leading to a much smaller �Pfin/P0.

For the variation of a, when a = {0.782, 1.21, 2, 3, 4} ×
104 km, �afin = {0.23, 5.67, 8.03, 13.89, 20.91}× 10−7 m.

B.4 The component masses Mbh, redshift z and mass ratio
q of SMBHB

For simplicity, we first consider equal-mass SMBHBs with
component mass Mbh. Still, for each value of Mbh, we
set the angular parameters to OP. For sources at cosmo-
logical distances, Mbh enters the expression of GW in the
form of redshifted mass Mbh,z ≡ (1 + z)Mbh. Theoreti-

Fig. 8 The relative variations of P for a = {0.782, 1.21, 2, 3, 4} ×104

km. tISCO and tc are shown with dashed lines to roughly divide the
incident GW signal into different stages

Fig. 9 The relationship between �Pfin/P0 and Mbh at redshifts 0.01,
0.08105 and 1

cally, the influence of Mbh,z is twofold. Firstly, for different
Mbh,z , fres appears at different stages of GW; secondly, the
amplitude of GW is directly related to Mbh,z . In addition,
the GW amplitude is also inversely proportional to dL(z),
which, at low redshifts, follows the Hubble law dL ∝ z.
The relationships between �Pfin/P0 and Mbh at redshifts
z = 0.01, 0.08105, 1 are shown in Fig. 9. At the redshift of
TS (z = 0.08105), range (M1, M2) marked in Fig. 9 includes
the Mbh values which would cause resonance to start at the
merger stage, while if Mbh > M2, resonance occurs dur-
ing the inspiral stage. A peak of �Pfin/P0 can be found at
Mbh ≈ 5.5 × 107M⊙.

The TS is reported to be an uneven mass-ratio system,
thus there is necessity to examine the role of mass ratio
q ≡ m2/m1. By varying q and keeping the chirp mass Mc

fixed, the resonant responses of L2 are plotted in Fig. 10.
Results show that equal mass (q = 1) turns out to be the
most optimistic case.

123



Eur. Phys. J. C (2023) 83 :554 Page 11 of 13 554

Fig. 10 The optimal resonant responses of L2 for different values of
q with fixed Mc

C The signal-to-noise ratio of distance residual

The one-sided PSD Sn( f ) is defined as twice the Fourier
transform of auto-correlation function R(τ ) = 〈n(t)n(t +
τ)〉, n(t) being the noise at time t . Following [41], the range
measurements are assumed to be unbiased, with uncorrelated
Gaussian noise of variance σ 2. Thus, for discrete SLR data,
by denoting the time interval between two adjacent measure-
ments as ts , R(τ ) can be modeled as

R(τ ) =
{

σ 2, |τ | < ts/2
0 |τ | ≥ ts/2

, (25)

thus

Sn( f ) = 2σ 2tssinc(π ts f ). (26)

Considering that the maximum frequency fmax of δr̃( f )
is usually much smaller than 1/ts , we can approximate
sinc(π ts f ) to 1, and it follows that

ρ2 ≈ 2

σ 2ts

∫ fmax

0
|δr̃( f )|2 d f

≈ 1

σ 2ts

∫ Tobs

0
δr2(t) dt ≈ 1

σ 2

Nobs∑

i=1

δr2
i , (27)

where δri ≡ δr(ti ), Nobs is the total number of normal point
measurements, and Tobs = ts Nobs. Note that to derive the
second line, we have used the Parseval’s theorem.

For long-term data tracking, SNR is mainly contributed
by the post-resonance stage. By assuming the ideal case that
the only perturbation to the satellite orbit is from the incident
GW of SMBHB, during the post-resonance stage, δr(t) is
the difference between two stable Keplerian orbits. We first
expand r(t) in terms of the Hansen coefficients to the linear
order of e as

r(t; a, e, ε) = a
[
1 − e cos M(t; a, ε) + O(e2)

]
. (28)

Thus the GW-induced distance residual reads

δr(t) ≈ ∂r

∂a
�afin + ∂r

∂e
�efin + ∂r

∂ε
�εfin

≈ �afin

[

1 − e

(

1 + �efin/e

�afin/a

)

cos M

− e

(
3π t

P
− �εfin

�afin/a

)

sin M

]

, (29)

indicating that under the long-term condition (3π t/P 
 1),
δr(t) would oscillate around �afin with a linearly varying
amplitude, and the rate of variation is proportional to e. The
results of numerical calculation allow us to make an examina-
tion on the magnitudes of �afin, �efin and �εfin. In the case
of L2’s optimal response, the 3π t/P sin M term dominates
over other O(e) terms, thus

δr(t) ≈
(

1 − 3π t

P
e sin M

)

�afin. (30)

By inserting Eq. (30) into Eq. (27), the SNR of L2 can be
approximated as

ρ2 ≈ �a2
fin

σ 2ts

(

Tobs + 3π2e2

2P2 T 3
obs

)

. (31)
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