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ABSTRACT
Traditional deterministic aerodynamic optimisation cannot consider environmental uncertainty,
which may lead to sensitivity issues. The present study proposes a robust design framework for
the aerodynamic optimisation of high-speed trains, which accounts for the uncertain wind and its
impact on crosswind stability. In this framework, a variance analysis method based on the Non-
Intrusive Polynomial Chaos is proposed to determine the deformation area, and a parametric model
is subsequently established. TheNon-dominatedSortingGeneticAlgorithm-II (NSGA-II) is usedas the
optimiser to minimise the mean and variance of the aerodynamic response. The mean and variance
can be quickly predicted by an uncertainty analysis approach combining Monte Carlo simulation
and Kriging model. The framework is then applied to the optimisation of a high-speed train under
crosswind. The results of the robust optimisation are compared with those of the baseline geome-
try and deterministic optimisation. The mean and variance of the rolling moment under crosswind
are reduced by 2.26% and 3.37% respectively after optimisation, indicating that the performance
and robustness are both improved. The proposed framework is effective for the engineering design
of high-speed trains and can also provide a reference for the robust design of other aerodynamic
shapes.
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1. Introduction
The aerodynamic performance of high-speed trains sub-
jected to crosswinds deteriorates sharply, which may
increase the risk of overturning derailments. Indeed,
many incidents of trains overturning in crosswind con-
ditions have been reported around the world (Andersson
et al., 2004). Thus, the running stability of trains sub-
jected to crosswinds is one of the major problems of
railway safety and has been widely studied in recent years
(Huo et al., 2023; Liu et al., 2022; Tomasini et al., 2016;
Yao et al., 2020) through experimental tests or computa-
tional fluid dynamics (CFD) methods. While the exper-
imental investigation enables higher confidence in the
absolute values of themeasured forces, the numerical cal-
culations allow to easily obtain aerodynamic coefficients
and more detailed field information, which is very use-
ful to optimal design. By analysing the flow around the
train, Cheli et al. (2010) found that the shape of the train’s
nose has a significant effect on the stability of the train
subjected to crosswinds. The three-dimensional vortex,
created by the interaction between the flow separated
from the vehicle nose, creates a narrow wake that sucks
in the flow passing the body along the leeward flank. This
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suction is one of the major causes of the rolling moment.
Consequently, crosswind stability is an important indica-
tor of train safety and is largely influenced by the shape
of the train’s nose.

In recent years, the aerodynamic optimisation of the
train’s nose has attracted a lot of attention. Traditional
methods (Raghunathan et al., 2002) are carried out by
evaluating and comparing the aerodynamic performance
of several pre-designed shapes which relies on the engi-
neer’s experience. Currently, new approaches that use
intelligent algorithms for automatic optimisation have
become increasingly prevalent. As the utilisation of opti-
misation requires a substantial number of samples, the
construction of surrogate models, such as the Kriging
model and the Radial Basis Function model, is fre-
quently utilised to minimise the computational cost. The
nose shape of the high-speed train has been optimised
using intelligent optimisation algorithms and a surrogate
model, both in windless (Yao et al., 2015) and crosswind
conditions (Krajnovic et al., 2012; Muñoz-Paniagua &
García, 2019).However, although there aremany applica-
tions of aerodynamic shape optimisation for high-speed
trains, none of them is robust enough.
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It is important to notice that existing research on
high-speed train optimisation seeks the optimal objective
value under ideal and deterministic constraints. How-
ever, there are uncertainties in the external environ-
ment, especially the wind field, during train operations.
In the railway field, some studies have been carried out
on the unsteady stochastic wind model (Montenegro
et al., 2020) such as the discrete gust model and tur-
bulent wind models, to evaluate the crosswind safety.
However, the aerodynamic coefficients of the train used
in these evaluations were obtained under a single wind
speed, which does not consider the changes in aerody-
namic coefficients with the external environment. In this
paper, the influence of uncertainty of the external envi-
ronment is taken into account in the design through
robust optimisation. A robust optimisation design is a
design insensitive to variations (Park et al., 2006). With
the development of computer technology, robust optimi-
sation is becoming more widespread in fluid mechan-
ics. Pelletier et al. (2003) and Luckring et al. (2003)
have described the sources and classification of uncer-
tainty in computational fluid dynamics. Unfortunately,
the authors are not aware of any publication that consid-
ers robust optimisation for a high-speed train.

In this study, a robust optimisation approach is pro-
posed to design the nose shape of a high-speed train,
taking into account the uncertain nature of crosswinds.
The optimisation objective is to reduce both the expec-
tation and variance of the rolling moment on the leading
car. In section 2, the numerical method for CFD simula-
tion is presented, which includes details on the simplified
geometry model, the computational domain and bound-
ary conditions, the meshing technique, and the solver
utilised. The validity of the CFDmethod is demonstrated
through comparisons with wind tunnel experiments. In
section 3, the authors propose a convenient framework
for the aerodynamic robust optimisation problem. The
comparison and analysis of optimisation results are pre-
sented in section 4, where the unsteady flow field is also
analysed to study the mechanisms responsible for the
improvement. Finally, the study concludes with a sum-
mary of the key findings and implications in the last
section.

2. Computational model

2.1. Geometrymodel

The current study focuses on optimising the crosswind
stability of the CRH380A high-speed train through the
design of the nose shape. To this end, a full-scale sim-
plified model of the Chinese CRH380A train is utilised
as the baseline geometry in the optimisation design. The

Figure 1. Simplified computational model.

model shown in Figure 1 consists of three cars - a lead-
ing car, a middle car and a trailing car, each with a length
of 25m. The height of the train models, H = 3.80m, the
maximum width,W = 3.38m, and the maximum cross-
sectional area, S = 11.12m2 remain constant throughout
all designs. The leading and trailing cars are identical in
shape, with a streamlined nose length of 12m, whereas
the middle car is flat. The aim of this investigation is
to solely evaluate the effect of nose shape on crosswind
stability. Therefore, the impact of bogies, pantographs
and connecting parts is ignored for computational
expediency.

2.2. Computational domain, boundary conditions,
andmeshing

Taking the height of the train,H = 3.80m, as the charac-
teristic length, the computational domain is established,
as illustrated in Figure 2. The height of the domain is set at
12H, a value deemed sufficient to negate the influence of
the top boundary. In the longitudinal (X-axis) direction,
the distance from Inlet1 to the leading nose is determined
to be 10H, while that fromOutlet1 to the tail nose is 20H.
This arrangement can guarantee a fully developed wake.
Due to the crosswind conditions, asymmetric position-
ing is introduced in the lateral direction (Y-axis). The
upstream distance is set at 10H, while the downstream
distance is placed at 15H, which is designed to capture
the leeward flow accurately and comprehensively.

Both inlet boundaries of the domain are assigned a
velocity inlet condition, while the outlet boundaries are
set to zero pressure outlet. The longitudinal velocity of
the inlet boundaries is 83.33 m/s, corresponding to the
train operation speed, and the lateral velocity is set to vary
values to account for crosswind uncertainty. The turbu-
lence intensity is limited to 1% at the inlet. In addition,
the no-slip condition is used at both the train surface
and the ground surface. The difference is that the ground
has a longitudinal velocity of 83.33 m/s while the train
is stationary to simulate the real ground effect. Finally, a
symmetry boundary is employed at the top of the domain
to further.
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Figure 2. The simulation model’s computational domain.

The hexahedral-dominated grids for flow simulation
are constructed using the trimmer grid module of the
commercial software STAR-CCM+ . To accurately pre-
dict flow separation around the train, three refinement
boxes, namely Box1, Box2, and Box3, are developed.
Box1 is employed to cover the flow field underneath
the train model using the minimum-sized grid. Box2
refines the meshes around the train and its wake, with
the grid size matching that of the train’s surface mesh.
The third refinement box, Box3, represents the transition
region between Box2 and the far-field area. The grid size
increases accordingly from Box1 to Box3. Furthermore,
a seven-layer prism layer mesh is constructed on the
train’s surface and the ground to capture the near-wall
flow structures. The standard wall functions are utilised,
with the first cell’s height set at 0.4mm, corresponding to
a y+ value of approximately 40 for the simulated cases.
This value is within the y+ range of 30–300 required by
the standard wall function. Mesh refinement scheme and
prism layer grids are shown in Figure 3. The total amount
of computing grids is approximately 17.35 million.

2.3. Numerical algorithms

In this paper, all computational fluid dynamics analyses
are conducted using the commercially available software
STAR-CCM+ 9.06. The train moves with train veloc-
ity: utrain = 83.33m/s, and the crosswind speed vwind
variation is set within the range of [17, 23] m/s. The
maximum resultant velocity is 86.45m/s, corresponding
to a Mach number of 0.254, so the air compressibil-
ity can be neglected. Therefore, the governing equations
are the incompressible Navier-Stokes equations, which
are discretised by the method of finite volume in CFD

simulations. The Semi-Implicit Method for Pressure-
Linked Equation (SIMPLE) technique is employed to
couple the pressure and velocity fields. And the second-
order upwind scheme is adopted for spatial discretiza-
tion.

The Reynolds-averaged Navier-Stokes (RANS) equa-
tions, commonly adopted for streamlined vehicles at
small yaw angles (Baker et al., 2009), are used in this
study. The shear-stress transport (SST) k-ω model is
selected as the turbulence model, and the k and ω are
solved by the second-order upwind scheme. Li et al.
(2019) study the performance of different turbulence
models in the numerical simulation of trains in cross-
wind. Comparing the wind tunnel experimental data and
numerical results, the SST k-ω model is considered to
be the most accurate model for the aerodynamic predic-
tion of trains. In recent years, the SST k-ω model has
been widely used in the field of high-speed trains and its
validity has been proven (Xia et al., 2020; Zhang et al.,
2022).

To facilitate analysis, define the aerodynamic coeffi-
cient and moment coefficient as follows:

Drag coefficient CD:

CD = 2Fx
ρV2Sx

(1)

Lift coefficient CL:

CL = 2Fz
ρV2Sx

(2)

Side force coefficient CS:

CS = 2Fy
ρV2Sx

(3)
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Figure 3. The distribution of grids. (a) side view; (b) front view

Rolling moment coefficient CM :

CM = Mx

0.5ρV2SxH
(4)

In the formula, Fx is the aerodynamic drag of the train,
Mx is the rolling moment of the train. ρ is the air den-
sity, taken as 1.225kg/m3;V is the incoming flow velocity,
taken as 300km/h; Sx is the reference area, which is the
maximum cross-sectional area of the train model, taken
as 11.12m2. The characteristic length H is 3.8m.

2.4. Numerical validation

To validate the numerical algorithms employed in this
study, a comparison between the numerical simulation
andwind tunnel test is performedunder a 8.77° yaw angle
condition. As depicted in Figure 4(a), thewind tunnel test
model is a 1:8 scaledmodel, inclusive of bogies andwind-
shields. The model consists of a leading car, a middle car
and a trailing car, with a total length of approximately
10m. The test was conducted in a closed wind tunnel
at the China Aerodynamic Research and Development

Centre. The test section of thewind tunnel is 8mwide, 6m
high and 15m long.With the installation of a special floor
for train tests, the height of the test section is 4.94m and
the effective cross-sectional area is 39.2m2. The cross-
sectional area of the train model is less than 0.25m2, so
the blockage ratio is less than 1%, where the interference
from the cave wall could be negligible. Three cassette-
type six-component strain balances were selected for the
test to measure the forces andmoments of the head, mid-
dle and tail cars. The balances were firmly mounted in
the inner the model and rigidly fixed to the test floor
by stanchions. The domain and boundary conditions in
CFD are kept identical to that of the experimental setup.
The mesh distribution for the CFD calculation along the
longitudinal section and in the boundary layer is shown
in Figure 4(b), with a meshing strategy similar to that
described previously. In addition, the mesh in the region
of bogies and connecting parts is refined, with the total
number of grids being approximately 21.7 million. The
numerical methodology adopted is in accordance with
that described in Section 2.3.
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Figure 4. CFD validation. (a) wind tunnel test model, (b) numerical calculation meshing.

Table 1. Comparison of RANS calculation results with wind tun-
nel test data.

Experiment CFD Error

Total CD 0.4149 0.4277 1.28%
Head car CL 0.4701 0.4534 3.55%
Head car CS 0.6973 0.7131 2.27%
Head car CM 0.0441 0.0452 2.49%
Middle car CL 0.4924 0.4867 1.16%
Middle car CS 0.2293 0.2196 4.23%
Middle car CM 0.0159 0.0156 1.89%
Tail car CL 0.3524 0.3425 2.81%
Tail car CS 0.045 0.0441 2.00%
Tail car CM 0.0118 0.0115 2.54%

A comparison of aerodynamic force and rolling
moment coefficients of each car from the wind tunnel
experiments and numerical simulations is presented in
Table 1. The errors of all the aerodynamic loads arewithin
5%, and the errors of the rolling moment coefficients are
with 3%, indicating that the numerical algorithms and
the mesh configuration are sufficiently precise for aero-
dynamic design of high-speed trains under crosswind
conditions.

3. Robust optimisation process

In the present paper, the process of robust optimisation
design is proposed, as shown in Figure 5, which com-
prises three primary components: parametric modelling,
uncertainty analysis, and multi-objective optimisation.
The key steps are summarised as follows:

(1) Environmental Uncertainty: The wind speed of the
crosswind is defined as the source of uncertainty, and
the crosswind speed vwind variation interval is set to
[17, 23] m/s.

(2) Determining the Deformation Area: The aerody-
namic performance of baseline geometry is eval-
uated under varying crosswind speeds, and the
Non-Intrusive Polynomial Chaos method is used to
obtain the variance of the pressure distribution on
the train surface, which facilitates the determination
of deformation areas.

(3) Parametric Shape: The Local shape function (LSF)
method is utilised to parameterise the shape based
on the baseline geometry, corresponding to the
deformation area.

(4) Initial Sampling Points: The Uniform Latin hyper-
cubemethod is adopted to generate 30 initial sample
points used to calculate the CFD response.

(5) Uncertainty Analysis: The cross-validated Kriging
surrogate model is developed using the calculated
sample points to predict the aerodynamic response
in the uncertainty analysis. Then, The Monte Carlo
simulation method is used to obtain the mean and
variance of the rolling moment in crosswind condi-
tions.

(6) Multi-Objective Optimisation: Themean and vari-
ance of the rolling moment of the leading car are
chosen as the optimisation objectives. With appro-
priate constraints, the Pareto solutions are identified
usingNon-dominated Sorting Genetic Algorithm-II
(NSGA-II).

(7) Optimal Design: The accuracy of the surrogate
model can be improved by increasing the num-
ber of training sample points. The optimal design
is achieved when the surrogate model reaches the
desired accuracy and the optimisation converges.

The proposed robust optimisation design method
provides a convenient approach for optimising the aero-
dynamic performance of trains under crosswind condi-
tions, taking into account environmental uncertainties.

3.1. Uncertainty analysis

In order to achieve robust optimisation, it is impera-
tive to consider sources of environmental uncertainty.
In aerodynamic shape optimisation, sources of uncer-
tainty can typically be divided into flow conditions and
geometric errors. However, since geometric manufac-
turing errors are comparatively negligible in high-speed
trains, this study only considers the effect of uncer-
tain flow conditions. Even a small change in cross-
wind velocity may affect the flow separation around the
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Figure 5. Flow chart of optimisation process.

train, thus uncertainty of crosswind is mainly considered
in the present study. For the operating speed, utrain =
300km/h, the upper limit of the crosswind velocity is
20m/s according to Chines technical management reg-
ulations for railway(China State Railway Group Co.,
Ltd, 2019). Consequently, the crosswind velocity change
interval is set to [17, 23] m/s in the current research to
enhance safety.

The uncertainty propagation method is a crucial
step in obtaining the statistical properties of the output
response. In this study, the Non-Intrusive Polynomial
Chaos (NIPC) method (Ghanem & Spanos, 2003) and
theMonteCarlo simulationmethod (Caflisch, 1998) have
been employed as the uncertainty propagation methods
in pre-analysis and optimisation iteration, respectively.
The Monte Carlo simulation method is a standard
method to obtain the mean and variance, often used to
characterise the uncertainty of output response, through
repeated tests, as shown in equations (3-4). In the present
study, the mean E(CM) and variance σ 2(CM) of the
rolling moment are obtained by the Monte Carlo simula-
tionmethod in amulti-objective optimisation process, as
shown in equations (5-6). The surrogatemodel calculates
the response of n samples obtained by Latin hypercube
sampling (Schaefer et al., 2017).

E(CM) =
∑n

i=1 CM(xd, xu(i))
n

(5)

σ 2(CM) =
∑n

i=1 (CM(xd, xu(i)) − E(CM))2

n − 1
(6)

Uncertainty propagation is also required for determining
the deformation area in pre-analysis, where the uncer-
tainty associated with the baseline shape under various

crosswinds is analysed. Due to the vast amount of data
required for Monte Carlo simulation in low-dimensional
problems, theNIPCmethod is employed in this step. This
method was first proposed by (Wiener, 1938) and can
be divided into two types: intrusive and non-intrusive.
The non-intrusive method treats the solver as a ‘black
box’ and calculates the statistical characteristics based
on the deterministic solution. In the present work, the
non-intrusive method is utilised. The fundamental con-
cept of the NIPC is to approximate stochastic processes
as a sum of orthogonal polynomials of random vari-
ables. ξ = {ξ1(θ), ξ2(θ), . . . ,ξn(θ)} represents random
variables.�k(ξi) is a set of orthogonal polynomials. Then
the response Y of random variable can be approximated
by the following chaotic polynomial expansion:

Y =
∞∑
k=0

ak�k(ξ) ≈
NPC∑
k=0

ak�k(ξ) (7)

Where, ak is the chaotic polynomial coefficient to be
solved. NPC is the number of polynomial terms in the
approximate expression, which can be determined by the
following formula:

NPC = (p + n)!
p!n!

− 1 (8)

p is the order of the polynomial; n is the number of ran-
dom variables. The linear regression method is adopted
to solve chaotic polynomial coefficients ak, which was
proposed by(Isukapalli, 1999). With these coefficients,
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Figure 6. Distribution of variance of surface pressure.

the mean E(Y) and variance σ 2(Y) the statistical prop-
erties of the output response can be determined.

E(Y) = a0 (9)

σ 2(Y) =
NPC∑
k=1

ak2E(�k
2) (10)

3.2. Parametric modelling

The objective of the robust design is to enhance the
crosswind stability of high-speed trains while minimis-
ing their sensitivity to crosswind velocity. Thus, prior
to the parametric modelling, a pre-analysis is necessary
to determine the deformation area. This is achieved by
selecting 20 crosswind velocity in the range [17, 23] m/s
using Latin hypercube sampling and calculating the train
surface pressure. The NIPC method is then used to esti-
mate the variance of the surface pressure under different
crosswind conditions. The variance distribution of sur-
face pressure on the leading car is presented in Figure 6.
The regions with significant variances of pressure distri-
bution indicate higher sensitivity to crosswind velocity.
Notably, the variance of the region where flow separation
occurs is substantial. As such, the deformation of areas
such as the cowcatcher, nose tip, and driver’s cab, which
exhibit large variances, is crucial in robust optimisation
design.

The method of parametric modelling is of great sig-
nificance for optimisation. Cui et al. (2012) proposed the
LSF method and applied it to the design of high-speed
trains. In the present study, the LSF method is utilised to
parameterise the streamlined shape. Thismethod divides
the geometric shape into several deformation regions
that are then discretised into grid points. The defor-
mation of each grid point corresponds to the displace-
ment of control points by the shape functions, which are

Figure 7. Deformation area division and control point.

Table 2. Range of design variables.

design variable minimum value/mm maximum value/mm

W1 −840 360
W2 −180 120
W3 −360 0
W4 −120 48
W5 −720 120

trigonometric functions that ensures a smooth surface.
According to the coordinates of all grid points, the defor-
mation surface can be fitted precisely. A more detailed
description of the LSF method can be found in previous
study (Yao et al., 2012).

In this case, the nose shape is divided into five defor-
mation regions, as shown in Figure 7. Using Point1 as
the origin of the axis, the exact positions of each con-
trol points have been presented in the figure, where the
unit is metres. Point1 is located on the nose tip, and two
design parameters, W1 and W2, are extracted to control
the nose’s length and height, respectively. In addition,
Point2 relates to the cab, the bottom side, and the tran-
sition zone, which controls the body width. The span-
wise displacement of Point2 represents the third design
parameter, W3. Furthermore, the driver’s room is con-
trolled by Point3, and its normal displacement is the
fourth design parameter, W4. Point4 controls the shape
of the cowcatcher, and its streamwise displacement is the
fifth design parameter,W5. It is important to specify the
sign of these design variables, where a positiveW1means
the nose tip becomes shorter, a positive W2 means the
nose tip becomes higher, a positiveW3 represents a wider
body, a positiveW4 results in a higher cab, and a negative
W5 leads to a more prominent cowcatcher. The ranges
of these design variables, considering the engineering
limitation, are presented in Table 2.

3.3. Construction of surrogatemodel

Compared with traditional deterministic optimisation, a
key feature of robust optimisation is the analysis of uncer-
tainty in each calculation of sample points. Consequently,
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the computational cost of robust optimisation is typically
higher. For robust aerodynamic optimisation, it is not
feasible to use CFD to calculate every sample due to its
high cost. As a result, the surrogate model, which is a
mapping between the target response and the variables,
is adopted instead of CFD for uncertainty analysis. The
Kriging model, derived from geostatistics (Krige, 1951),
is used as the surrogate model due to its nonlinear fit-
ting ability and error estimation method, which make
it widely used in aerodynamic shape optimisation. The
Kriging model is defined as follows:

y(x(i)) = FT(x(i))β + z(x(i)), (i = 1, . . . , n) (11)

n represents the quantity of sampled points, whereas
x(i) refers to an individual sample point. The regression
coefficient is represented by the symbol β , and FT(x(i))

denotes a deterministic function that furnishes a compre-
hensive approximation of the design space. In this paper,
FT(x(i)) is a constant. z(x(i)) is an error of random distri-
bution that provides an approximation of the simulated
local deviation. The average value of z(x(i)) is zero, and its
variance is represented by σ 2

z , and its covariance matrix
is given by:

cov[z(x(i)), z(x(j))]

= σ 2
z [R(θ , x(i), x(j))], (i, j = 1, . . . , ns) (12)

ns is the number of training sample points, and
R(θ , x(i), x(j)) is the correlation function with parame-
ter θ , indicating the spatial correlation between training
sample points. Gaussian function is commonly used as
the correlation function, and its expression is.

R(θ , x(i), x(j)) = exp

[
−

m∑
k=1

θk|x(i)
k − x(j)

k |2
]
,

(i, j = 1, . . . , ns) (13)

Where,m is the number of design variables, and x(i)
k is the

corresponding design variable value of sample point x(i).
To enhance the accuracy of the prediction, the Kriging
model necessitates the identification of an appropriate θk
that renders the prediction error’s mean value equal to
0, and the mean square deviation of the prediction error
smallest. This is represented mathematically as:

Min ϕ(θk) = n
2
ln(σ 2

z ) + 1
2
ln(|R|)

s.t. θk > 0 (14)

The values of the Kriging model’s parameters can be
obtained by implementing various optimisation algo-
rithms. In the current study, the first Kriging model is

created using the initial samples and their aerodynamic
response. Subsequently, in each optimisation step, the
accuracy of theKrigingmodel can be enhanced by adding
new accurately computed samples, which are selected
based on a suitable points-adding criterion.

3.4. Multi-objective optimisation

Robust optimisation is a multi-objective optimisation
problem that aims to simultaneously minimise the mean
and variance of a given metric. Under uncertain cross-
wind conditions, robust optimisation is applied to reduce
the mean and variance of the rolling moment of the lead-
ing car. The optimisation problem can be formulated as
follows:

Min (E(CM), σ(CM))

s.t. xL ≤ x ≤ xU

CM ≤ CM
CRH380A

V ≥ 97%VCRH380A (15)

Where, E(CM) and σ 2(CM) denote themean and vari-
ance, respectively, of the rolling moment of the leading
car when crosswind velocity varies in the range of [17, 23]
m/s. The variable vector x includes both the design vari-
ables xd = {W1,W2,W3,W4,W5} and the uncertainty
variable xu. The variables are subjected to constraints
within a certain range where xL and xU are the lower
and upper bounds of the design variables respectively.
Furthermore, it is required that the rolling moment of
the optimised shape CM be lower than that of the base-
line geometryCM

CRH380A. It also ensures that the volume
of the leading car V at least 97% greater than the initial
profile volume VCRH380A.

To solve this optimisation problem, the current study
employs the NSGA-II (Deb et al., 2002) algorithm, a
multi-objective genetic algorithm based on the Pareto
optimal concept. Because of the need to analysis uncer-
tainty, the surrogate model is required to have high
accuracy in both the local and overall design space. To
improve the accuracy of the surrogate model, the points-
adding criterion, which combines the MSP (Minimising
the Surrogate model Prediction) criterion and the MSE
(Mean Square Error) criterion, is employed. Thismethod
involves adding points near the optimal point and the
maximum variance point of the Kriging model in several
iterations until the desired accuracy is achieved.

4. Results and discussion

The initial 30 sample points are chosen using Latin hyper-
cube sampling within the range of five parametric design
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Figure 8. Pareto front resulting from the multi-objective optimi-
sation problem.

variables and the crosswind velocity, and the rolling
moment for these points is calculated using CFD to con-
struct the initial Krigingmodel. Subsequently, six rounds
of adding points are performed, for a total of 105, and
the optimisation objectives gradually converged towards
a narrow region. The Pareto front of this multi-objective
optimisation problem, which aims to minimise the mean
and variance of the rolling moment CM , is obtained and
shown in Figure 8. The green dot refers to the baseline
geometry, and the red dot refers to the robust optimal
design chosen from the Pareto front. In addition, a deter-
ministic optimal design is also obtained using traditional
optimisation methods for a crosswind speed of 20m/s
(the average value of the crosswind speed in the design
space). The aerodynamic performance of the baseline
geometry, the deterministic optimal shape and the robust
optimal shape will be compared in this section.

4.1. Accuracy analysis of the Krigingmodel

It is necessary to validate the accuracy of the Kriging sur-
rogate model before analysing the optimisation results.
The baseline geometry, the deterministic optimal shape
and the robust optimal shape are computed for ten ran-
dom crosswind speeds, vwind, ranging from 17 to 23
m/s. Specifically, the baseline geometry, the determin-
istic optimal shape, and the robust optimal shape are
assessed by calculating their rolling moment coefficient
using computational fluid dynamics. In addition to the
CFD results, the predicted rolling moment coefficient
obtained from the Kriging model for each of these 30
scenarios is also recorded. The comparison of CFD and
Kriging predictions is depicted in Figure 9 (a) (b) (c).

The surrogatemodel’s predictions for the three shapes
at various wind speeds are in excellent agreement with

the CFD calculations. Additionally, Figure 9 (d) displays
the relative prediction error distribution. The maximum
relative prediction error is less than 0.7%, indicating that
the Kriging model can accurately represent the mapping
between the input variables and aerodynamic forces. To
further assess the accuracy of the surrogate model, the
root mean square error (RMSE) is introduced as a metric
for quantifying the prediction error.

RMSE =
√√√√ 1

m

m∑
i=1

(f (xi) − yi)2 (16)

Where, f (xi) is the Kriging model’s predictions; yi is the
rolling moment of the leading car calculated by high-
fidelity CFD. m is the number of samples, which is 10.
RMSE for these three shapes is shown in Table 3. The
RMSE of the Kriging model is less than 0.01, indicating
the model is constructed with high accuracy. Overall, the
validation results demonstrate that the Kriging model is
sufficiently accurate to provide reliable predictions.

4.2. Optimisation results

Table 4 displays the exact values of the design vari-
ables for the baseline geometry, the deterministic opti-
mal shape, and the robust optimal shape. In addition,
Figure 10 presents a visual comparison of these three
designs, where the baseline geometry is depicted in
blue, the deterministic optimal shape in purple, and the
robust optimal shape in yellow. It can be seen that the
optimised shapes exhibit significant changes, particu-
larly in the nose tip, driver’s cab, and the cowcatcher
area. Specifically, the optimised nose tips are shorter and
lower than the baseline geometry, resulting in a more
streamlined and aerodynamic shape. The driver’s cab has
also been slightly reduced in height, further contribut-
ing to the overall improved aerodynamic performance.
Interestingly, although the shapes of the two optimised
designs are quite similar, there are noticeable differences
in the cowcatcher area. In particular, the cowcatcher of
the deterministic optimal shape is longer than that of
the robust optimal shape. This difference depends on
whether uncertainty is taken into account in the optimi-
sation process.

When the train operates at utrain = 300 km/h under
crosswind in the range of [17, 23] m/s, Table 5 displays
the mean E(CM) and variance σ 2(CM) of the rolling
moment coefficient of the leading car. Specifically, the
rolling moment coefficient under 20 m/s crosswind is
presented in the Table 5. The mean and variance of both
the robust optimal shape anddeterministic optimal shape
are substantially lower than those of the baseline geome-
try. The robust optimal shape, in particular, exhibits the
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Figure 9. Comparison of model predictions and CFD calculations for test sample points and prediction error distribution. (a) baseline
geometry, (b) deterministic optimal shape, (c) robust optimal shape, (d) distribution of the relative prediction error.

Table 3. Comparison of RMSE.

Design scheme RMSE

Baseline geometry 0.0009
Deterministic optimal shape 0.0045
Robust optimal shape 0.0032

lowest values. These findings suggest that the aerody-
namic performance of the robust optimal shape is less
sensitive to the changes in crosswind speed due to its
lower variance. Compared to the baseline geometry, the
robust optimal shape reduces the mean and variance val-
ues by 2.26% and 3.37%, respectively. Moreover, C20m/s

M
indicates the rollingmoment coefficient under the 20m/s
crosswind. The rolling moment coefficient under the
20m/s of the robust optimal train is 2.45% lower than that
of the baseline geometry.Given the streamlined and aero-
dynamically superior design of the prototype train, this
reduction in rollingmoment is a significant achievement.

To compare the aerodynamic performance more con-
veniently, the reduction of rolling moment RM is defined
as the ratio of the change in rolling moment before and
after optimisation to the rolling moment of the baseline
geometry, as expressed in Equation (17):

RM = Copt
M − Cbase

M

Cbase
M

× 100% (17)

Where, Copt
M represents the rolling moment coefficient

of the deterministic optimisation or the robust opti-
misation, while Cbase

M is the rolling moment coefficient
of the baseline geometry. Figure 11 displays the dis-
tribution of RM when the crosswind velocity ranges
from 17 to 23 m/s. While the deterministic optimisa-
tion performs better at a crosswind speed of 20 m/s,
the robust optimisation exhibits superior performance
across the entire range of crosswind. These comparisons
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Table 4. Comparison of design parameters.

Design scheme W1/mm W2/mm W3/mm W4/mm W5/mm

Baseline geometry 0 0 0 0 0
Deterministic optimal shape 357 −165 −75 −85 62
Robust optimal shape 359 −172 −39 −98 −4

Figure 10. Shape comparison before and after optimisation.

Table 5. Comparison of rolling moment before and after optimi-
sation.

Design scheme E(CM) σ 2(CM) C20m/s
M

Baseline geometry 0.515 0.00861 0.511
Deterministic optimal shape 0.502 0.00849 0.496
Robust optimal shape 0.501 0.00831 0.498

of the aerodynamic force exhibit the superiority of robust
optimisation.

4.3. Analysis of flow field

When the train operates under crosswind conditions,
the unsteady characteristics of the flow field around
the train become apparent. To explore the reasonable-
ness of the optimisation result in detail, the Improved
Delayed Detached-Eddy Simulation (IDDES) method
based on the k-ω SST two-equation model is used to
analysis the difference of flow field between the base-
line geometry and the robust optimal shape. IDDES has
been frequently used to analyse the aerodynamic per-
formance of trains due to its well-known performance
for separate flow predictions (Wang et al., 2021) The
SIMPLE technique is employed to couple the pressure
and velocity fields. The convective term is discretised
using a hybrid scheme where the RANS regions use
the second-order upwind scheme and the LES regions
use the bounded central differentiation. A second-order
implicit scheme was employed for the time progression.
The unsteady calculation method accompanying the
dual-time step format was used for time discretization.

The number of internal iteration steps is 15 to ensure
that the residual value decreases by at least 1 order
of magnitude within each time step. Set feature time
Tref = H/utrain, and the physical time step is set to

t = 1 × 10−4s ≈ 0.002Tref , which is sufficient to cap-
ture not only the main flow structures, but also details
such detachment and vortex formation. The computa-
tional domain and boundary conditions are the same
as before, but with finer grids of approximately 90 mil-
lion in amount. The baseline geometry and the robust
optimal shape is recalculated by the IDDES. The rolling
moments and side forces under a crosswind of 20m/s
obtained from the RANS and the IDDES are compared,
as shown in the Table 6. The upper right corner marker
indicates a crosswind wind speed of 20m/s. Minor differ-
ences were found in the magnitude of the aerodynamic
forces obtained by the two calculation methods, but the
trend of improvement before and after optimisation was
consistent.

First, a comparison is made between the surface pres-
sure distributions, which directly determine the aerody-
namic force differences, of the baseline geometry and the
robust optimal shape. Figure 12 displays the time-average
pressure distribution of these two shapes, which exhibit
some similarities before and after optimisation. On the
windward side, the nose of the train has a significant area
of positive pressure. On the leeward side, there is an enor-
mous negative pressure area, most noticeable near the
driver’s cab. The immense pressure difference between
the windward and leeward sides is the main cause of the
rolling moment. Compared to the baseline geometry, the
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Figure 11. Distribution of RM.

Figure 12. Time-average surface pressure distribution at the nose of the train. (a) windward; (b) leeward.

transition from positive to negative pressure on the nose
of the robust optimal shape is smoother. This optimised
shape can suppress flow separation and, as a result, reduce
the rollingmoment. In contrast, the area of negative pres-
sure near the driver’s cab of the optimised shape is less

prominent on the leeward side than it is in the baseline
geometry.

Figure 13 illustrates the difference in time-average
velocity contours along the longitudinal section of the
train. The flow field forms a stagnation point at the front

Table 6. Comparison of rolling moment and side force of head car calculated by
IDDES and RANS.

C20m/s
M ( IDDES) C20m/s

M ( RANS) C20m/s
S ( IDDES) C20m/s

S ( RANS)

Baseline geometry 0.527 0.511 1.112 1.069
Robust optimal shape 0.511 0.496 1.108 1.066
Reduction 3.03% 2.93% 0.36% 0.28%
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Figure 13. Time-average velocity contours on longitudinal section. (a)baseline geometry; (b)robust optimal shape.

of the nose tipwhere the pressure is high, and the pressure
gradually decreases as the airflow speed increases along
the streamline. Due to the large curvature of the driver’s
cab, the airflow further speeds up, leading to the forma-
tion of a negative pressure area. The optimised airflow
accelerates more smoothly from front to back compared
to the baseline geometry. Moreover, the velocity at the
driver’s cab is also lower in the optimised flow field. It
can be deduced that the optimisation makes the veloc-
ity change much smoother, resulting in a more uniform
pressure distribution on the surface.

Figure 14 displays the instantaneous iso-surfaces of
the Q criterion shaded by pressure for both the base-
line geometry and the robust optimal shape. The vor-
tices observed in both cases are similar, with three main
vortices present, named V1, V2 and V3 respectively.
V1 arises from the separation the nose cone and the

streamlined region, and has the most significant impact
on the rolling moment coefficient of the head car. V2 is
created on the roof of themiddle car while V3 arises from
the separation of the trail car. V1 is most influenced by
the streamlined shape of the head car. Compared to the
baseline geometry,V1 in the optimised flowfield is signif-
icantly weaker than that in the initial flow field. Thus, V1
carries less energy and is more easily dissipated because
of the small scale after optimisation. Due to the weak-
ness of vortex structures on the leeward side, the rolling
moment induced by vortex shedding is reduced.

5. Conclusions

Current study presents an innovative approach to the
aerodynamic robust optimisation of high-speed trains,
with the aim of enhancing their stability and reducing
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Figure 14. The instantaneous iso-surfaces of Q criterion at 5000. (a)baseline geometry; (b)robust optimal shape.

their sensitivity to crosswind variations. The follow-
ing highlights the methods and conclusions of this
study:

(1) Environmental uncertainty is taken into consider-
ation during the optimisation process, with cross-
wind speeds, vwind, ranging from 17 m/s to 23 m/s.
The Non-Intrusive Polynomial Chaos method is
utilised to analyse the variance of surface pressure,
which helped in determining the deformation area.
Furthermore, a parametric model of the train is

developed using the LSF method, which can control
the shape deformation of the cowcatcher, driver’s
room, nose tip, and cross-section.

(2) The Monte Carlo simulation method and Kriging
surrogate model are elaborately combined to cre-
ate an efficient uncertainty propagation method for
high-speed trains, which is then integrated with
NSGA-II to establish an aerodynamic robust optimi-
sation framework. This framework enables efficient
robust design of the aerodynamic shape of high-
speed trains.
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(3) After optimisation, the aerodynamic performance
of the train under uncertain crosswind velocities is
significantly improved. Specifically, the robust opti-
misation reduces the mean and variance of train
rolling moment by 2.26% and 3.37%, respectively,
compared to the baseline geometry. Additionally,
the aerodynamic performance of the robust optimal
train is better than that of the deterministic optimal
train across the entire range of crosswind speeds.

(4) Robust optimisation not only improves the aerody-
namic performance of high-speed trains but also
reduces their sensitivity to crosswind variations.
By adopting this framework, high-speed trains can
achieve higher levels of security.

Overall, current study offers an innovative and effi-
cient approach to achieve aerodynamically robust opti-
misation of high-speed trains. It can be applied into prac-
tical applications to promote safe and reliable operation
of these vehicles.
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