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The hypersonic flow is in a thermochemical nonequilibrium state due to the high-
temperature caused by the strong shock compression. In a thermochemical nonequilibrium 
flow, the distribution of molecular internal energy levels strongly deviates from the 
equilibrium distribution (i.e., the Boltzmann distribution). It is intractable to directly obtain 
the microscopic nonequilibrium distribution from existed experimental measurements 
usually described by macroscopic field variables such as temperature or velocity. Motivated 
by the idea of deep multi-scale multi-physics neural network (DeepMMNet) proposed 
in [1], we develop in this paper a data assimilation framework called DeepStSNet
to accurately reconstruct the quantum state-resolved thermochemical nonequilibrium 
flowfield by using sparse experimental measurements of vibrational temperature and pre-
trained deep neural operator networks (DeepONets). In particular, we first construct several 
DeepONets to express the coupled dynamics between field variables in the thermochemical 
nonequilibrium flow and to approximate the state-to-state (StS) approach, which traces 
the variation of each vibrational level of molecule accurately. These proposed DeepONets 
are then trained by using the numerical simulation data, and would later be served as 
building blocks for the DeepStSNet. We demonstrate the effectiveness and accuracy of 
DeepONets with different test cases showing that the density and energy of vibrational 
groups as well as the temperature and velocity fields are predicted with high accuracy. We 
then extend the architectures of DeepMMNet by considering a simplified thermochemical 
nonequilibrium model, i.e., the 2T model, showing that the entire thermochemical 
nonequilibrium flowfield is well predicted by using scattered measurements of full or even 
partial field variables. We next consider a more accurate and complex thermochemical 
nonequilibrium model, i.e., the StS-CGM model, and develop a DeepStSNet for this model. 
In this case, we employ the coarse-grained method, which divides the vibrational levels 
into groups (vibrational bins), to alleviate the computational cost for the StS approach 
in order to achieve a fast but reliable prediction with DeepStSNet. We test the present 
DeepStSNet framework with sparse numerical simulation data showing that the predictions 
are in excellent agreement with the reference data for test cases. We further employ the 
DeepStSNet to assimilate a few experimental measurements of vibrational temperature 

* Corresponding authors.
E-mail addresses: lvjiaqi@imech.ac.cn (J. Lv), hongqizhen@imech.ac.cn (Q. Hong), wangxy@imech.ac.cn (X. Wang), zpmao@xmu.edu.cn (Z. Mao), 

qsun@imech.ac.cn (Q. Sun).
https://doi.org/10.1016/j.jcp.2023.112344
0021-9991/© 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2023.112344
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2023.112344&domain=pdf
mailto:lvjiaqi@imech.ac.cn
mailto:hongqizhen@imech.ac.cn
mailto:wangxy@imech.ac.cn
mailto:zpmao@xmu.edu.cn
mailto:qsun@imech.ac.cn
https://doi.org/10.1016/j.jcp.2023.112344


J. Lv, Q. Hong, X. Wang et al. Journal of Computational Physics 491 (2023) 112344
obtained from the shock tube experiment, and the detailed non-Boltzmann vibrational 
distribution of molecule oxygen is reconstructed by using the sparse experimental data for 
the first time. Moreover, by considering the inevitable uncertainty in the experimental data, 
an average strategy in the predicting procedure is proposed to obtain the most probable 
predicted fields. The present DeepStSNet is general and robust, and can be applied to 
build a bridge from sparse measurements of macroscopic field variables to a microscopic 
quantum state-resolved flowfield. This kind of reconstruction is beneficial for exploiting 
the experimental measurements and uncovering the hidden physicochemical processes in 
hypersonic flows.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Hypersonic re-entry and hypersonic cruise would result in a strong bow shock at the front of a vehicle. The high tem-
perature, due to the compression of the shock wave, inside the shock layer gives rise to thermochemical nonequilibrium 
phenomena such as relaxation between different internal energy modes, dissociation, ionization, and radiation. All these 
processes occur at finite-rate [2], and their characteristic times are usually comparable to the characteristic time of the gas 
flow. The aforementioned physical processes are strongly coupled with fluid dynamics and significantly affect the vehicle’s 
thermal environment and aerodynamic performance. Therefore, accurately modeling the thermochemical nonequilibrium 
flows is a key point to developing hypersonic flight technology.

Great efforts have been devoted to developing accurate physical models for hypersonic thermochemical nonequilibrium 
flows. The two-temperature (2T) model [3] has been proposed as the primary tool to describe thermochemical nonequilib-
rium flows and is widely used in engineering. In the 2T model, the population of each internal energy mode is assumed to 
follow a Boltzmann distribution under a particular temperature, namely, the translational and rotational energy modes are 
described by temperature Ttr , and the vibrational (and electronic) energy is treated by temperature T v . Besides the well-
known Park model [4], the coupled vibration-dissociation-vibration (CVDV) model [5] with preferential dissociation of high 
vibrational levels and the Macheret-Fridman (MF) model [6] that introduces two dissociation mechanisms, among others, 
are developed to better consider the vibration-dissociation coupling. Moreover, the effect of non-Boltzmann internal energy 
distribution on chemical kinetics has been considered recently by introducing the non-Boltzmann correction into the 2T 
models [7,8]. However, there are empirical parameters in the above physical models and corrections. Consequently, these 
models cannot accurately capture the nonequilibrium (non-Boltzmann) distribution of internal energy levels. Therefore, the 
accuracy of the above models in describing a strong thermochemical nonequilibrium flow deviates case by case.

The rapid development of computational resources has promoted to use the high-fidelity state-to-state (StS) approach 
[9] in the simulation of thermochemical nonequilibrium flows [9–15]. The StS approach treats each internal energy level as 
a pseudo-specie in the gas mixture by solving the master equations, and thereby the non-Boltzmann distribution of internal 
energy mode can be represented. Transition processes between the internal energy levels of molecules and state-specific 
chemical reactions are considered elementary reactions in the StS kinetics. Therefore, the key for the StS approach is to 
get the state-specific reaction rate coefficients for the state transitions and chemical reactions, which are mostly taken from 
the data calculated by the Forced Harmonic Oscillator model [16,17], Quasi-Classical Trajectory calculation [12,18,19] and 
even mixed Quantum-Classical calculation [20,21] for the common neutral air species (N2,O2,NO,N,O). Since a typical 
StS simulation needs to calculate a large number of internal energy levels and state-to-state transitions, it is very time-
consuming and so far mostly limited to simple one-dimensional geometries such as post-shock flows [10,13,22,23], nozzle 
flows [24,25] and flows along the stagnation streamline [14]. Although the recent use of GPU allows one to apply the StS 
approach with reduced StS kinetics to calculate two-dimensional configurations [15], applying the StS approach to realistic 
engineering problems is still intractable. To reduce the considerable computational cost, the coarse-grained method (CGM) 
[11,12,26] has been developed for the StS approach (called StS-CGM hereafter), in which the internal energy levels are 
lumped into different groups, thus less number of the master equations (for groups) and transitions (between groups) 
remain. The population of the internal energy levels is then reconstructed (assuming a piecewise distribution) from groups 
by the maximum entropy principle [27]. Different level reconstruction assumptions concerning the specification of the group 
distribution have been studied in [26].

In the experimental study of thermochemical nonequilibrium flow, it is intractable to directly obtain the detailed molec-
ular energy level distribution from experimental measurements or flight data, which are usually limited to macroscopic field 
variables like temperature or velocity [28,29]. Therefore, the main motivation of the present work is to integrate the results 
of StS calculations with scarce experimental data to infer the detailed population of internal energy levels in the experimental 
flowfield. Assimilating scarce experimental data is non-trivial because, in the conventional approaches, it relies on repeated 
procedures with solutions of governing equations, and knowledge from previous assimilation tasks is usually not effectively 
exploited. Now data-driven and data assimilation via machine learning are used successfully in many scenarios, for example, 
discovering the macroscopic governing equations in fluid mechanics [30] and unknown equations hidden in the sufficient 
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data [31], inverse problems in supersonic flows [32], to name but a few. Recently a new data assimilation framework, i.e., 
the deep multi-scale multi-physics neural network (DeepMMNet) [1,33], has been demonstrated to assimilate scarce data 
from sensors accurately and efficiently with the help of pre-trained deep neural operator networks (DeepONets), which are 
used to approximate continuous nonlinear functional or operator [34,35] and proposed by Lu et al. in [36]. More precisely, 
DeepMMNets use neural networks as surrogate models and integrate several pre-trained DeepONets [36] with a few mea-
surements to produce the entire fields of the coupled multi-physics and multi-scale systems [1,33]. The DeepONet has been 
successfully employed to several problems such as electroconvection multiphysics fields [33], prediction of linear instability 
waves in high-speed boundary layers [37], modeling of the inelastic reaction rates [38], etc. In [1], both parallel and series 
DeepMMNets have been proposed for hypersonic flows with finite-rate chemistry. These two architectures of DeepMMNet 
have been demonstrated to successfully infer the set of all fields in the domain of interest with scarce sensor data.

However, the thermochemical nonequilibrium effect, which is the most significant feature of hypersonic flows, has not 
been considered in the previous work [1]. Therefore, the aim in this paper is to extend the idea of DeepMMNet to de-
velop a data assimilation framework, based on the state-to-state approach with the coarse-grained method, for solving the 
thermochemical nonequilibrium flows and reconstructing the vibrational state-resolved flowfield at the condition of sparse 
experimental measurements (specifically, the measured vibrational temperatures in the experiment of Ibraguimova et al. 
[28]). The present framework, named DeepStSNet hereafter, will use the pre-trained DeepONets for StS-CGM field variables 
as building blocks.

The rest of the paper is organized as follows: in Sec. 2, we first introduce the StS approach for simulating the postshock 
thermochemical nonequilibrium flows of O2/O gas mixture. Then we present the architecture of DeepONet and the data 
generation procedure. In Sec. 3, we extend the DeepMMNet framework to develop and test a data assimilation framework 
for the reduced 2T model. In Sec. 4, we design and test the architecture of DeepStSNet based on the StS-CGM model. The 
related DeepONets for StS-CGM field variables are also developed and tested. In Sec. 5, the DeepStSNet is then employed 
to assimilate a few experimental measurements of vibrational temperature in the shock tube experiment and, to infer the 
full fields. The molecule’s detailed non-Boltzmann vibrational energy distribution is reconstructed from scarce experimental 
data for the first time. Concluding remarks are given in the last section.

2. Methodology and data generation

Ibraguimova et al. [28] measured vibrational temperature T v behind normal shock wave at temperatures 4000-10800 K 
in undiluted oxygen by studying oxygen absorbance in the Schumann-Runge band. These experimental measurements will 
serve as input data of DeepStSNet training (see the details in Sec. 5), so we first make StS simulations for the postshock flows 
with different freestream conditions of O2/O gas mixture and generate the reference dataset. Since the number of collisions 
to reach equilibrium for vibration is larger than the one for rotation [39], the rotational energy mode of O2 is assumed to 
be in equilibrium with the translational energy mode, corresponding to a translational-rotational temperature Ttr (called T
in short hereafter). Moreover, only the ground electronic state is considered for O2 and O, which is a good approximation 
in the temperature range of interest. Therefore, the present paper only applies the StS approach to the vibrational energy 
mode.

In this section, we first introduce governing equations for the StS approach and the related physics. Then we present the 
architecture of DeepONet, and describe the data generation process and the details of the test samples.

2.1. Governing equations and physical models

The StS approach well describes the thermochemical nonequilibrium processes by treating each internal energy level as a 
pseudo-species. Therefore, there is no need to make assumptions on the formulation of the internal energy level distribution. 
A total of 46 vibrational levels proposed in [40] are considered for molecular oxygen O2 in its ground electronic state. The 
postshock flow of O2/O mixture is governed by the following one-dimensional steady compressible Euler equations:

d

dx

⎡
⎣

ρiu
ρu2

ρuH

⎤
⎦ =

⎡
⎢⎣

ωi

−dp
dx

0

⎤
⎥⎦ , (1)

where ρi is species density with i = 0 −45 representing vibrational levels of O2 and i = 46 representing O. ρ , u, p and H are 
the density, velocity, pressure and specific total enthalpy of the gas mixture, respectively, and x is the distance coordinate 
behind the normal shock. ωi is the mass production rate of species i and obtained by the state-to-state kinetics in the 
master equations. Specifically,
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NAv

MO2

ωO2(i) =
∑

j

∑
l

∑
m

kV−V−T(l,m → i, j)nO2(l)nO2(m)

−
∑

j

∑
l

∑
m

kV−V−T(i, j → l,m)nO2(i)nO2( j)

+
∑

j

[
kV−T( j → i)nO2( j)nO − kV−T(i → j)nO2(i)nO

]

+ kM
V−D(c → i)n2

OnM − kM
V−D(i → c)nO2(i)nM

, (2)

where NAv is the Avogadro constant, MO2 is the molecular mass of O2 and ni is the species number density. kV−V−T(i, j →
l, m) are the vibration-vibration-translation (V-V-T) transition rate coefficients of the processes

O2(i) + O2( j) ↔ O2(l) + O2(m). (3)

These state-specific rate coefficients are obtained based on the forced harmonic oscillator model by Hao et al. [10] and 
validated against the mixed Quantum-Classical calculations [41] by Gu et al. [23].

kV−T(i → j) are the vibration-translation (V-T) transition rate coefficients of the processes

O2(i) + O ↔ O2( j) + O. (4)

These rate coefficients are obtained from the quasi-classical trajectory calculations by Esposito et al. [42].
Furthermore, kM

V−D(i → c) are the vibration-dissociation (V-D) bound-free transition rate coefficients of the processes

O2(i) + M ↔ O + O + M. (5)

The V-D rate coefficients of O2 − O collision are obtained from the quasi-classical trajectory calculations by Esposito et al. 
[42], while the V-D data reported in the Stellar database [43] are adopted for O2 − O2 collision.

The above processes make up the state-to-state kinetics considered in the present StS calculation for O2/O mixture. The 
backward rate coefficients of the above processes are derived from the detailed balance principle.

The post-shock vibrational distribution function (VDF) of O2 can be obtained by solving Eqs. (1), so one can trace the 
detailed evolution of the vibrational energy levels. However, the above StS calculation is time-expensive, thence various 
vibration-dissociation coupling models based on the two-temperature (2T) assumption have been developed [3,5,6] to re-
duce the computational cost. The two-temperature assumption assumes that the translational and rotational energy modes 
are described by temperature Ttr , the vibrational energy mode is treated by temperature T v , and the population of each in-
ternal energy mode follows a Boltzmann distribution. Therefore, the postshock flow of O2/O mixture based on the reduced 
2T model is governed by the following one-dimensional steady compressible Euler equations:

d

dx

⎡
⎢⎢⎣

ρsu
ρu2

ρuH
ρuev

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ωs

−dp
dx

0
ωv

⎤
⎥⎥⎥⎦ , (6)

where ρs and ωs are the density and the mass production rate of the species s, i.e., O2 or O. It is noted that an additional 
vibrational energy conservation equation is added in the above equations, and ev is vibrational energy per unit mass of 
the gas mixture. The VDF of O2 is reconstructed by Boltzmann distribution from T v (obtained from ev ), so it is no longer 
needed to solve the master equations as in the StS approach. Moreover, ωv is the source term of vibrational energy, and 
it consists of two parts: ωV−T and ωV−D. ωV−T is the energy transfer between the translational-rotational and vibrational 
modes and is usually modeled using the Landau-Teller model [44]. ωV−D is the vibrational energy added or removed by 
reactions, whose formulation varies with the 2T models such as preferential and non-preferential models [3,5,6,8].

The reduced 2T model is more efficient than the StS approach but less accurate due to the simplified physical assump-
tions and existing empirical parameters. Eqs. (6) are not explicitly solved in the present paper, and the field variables in the 
2T framework are extracted from the StS results, which will be described in Sec. 2.3.

2.2. DeepONet architecture

The universal approximation theorem states that a neural network can not only approximate a continuous function, but 
also nonlinear continuous operators [35]. Lu et al. [36] proposed deep operator networks (DeepONets) to learn nonlinear 
operators from data based on the universal approximation theorem. The DeepONet, whose architecture is shown in Fig. 1, 
consists of a branch network that takes the function u(x) as the input and a trunk network that takes the location points yi
as the input, learning the mapping G : (u, y) → G(u)(y) = ∑p

i=1 biti , where bi, i = 1, 2, . . . , p and ti, i = 1, 2, . . . , p are the 
outputs of the branch net and trunk net, respectively.
4
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Fig. 1. Schematic of the unstacked DeepONet [36], which is the building block of the DeepMMNet [1] and DeepStSNet. DeepONet learns the mapping from 
the function u to G(u).

Table 1
Freestream conditions used in the StS calculations.

M∞ Pressure Temperature

10-15 106.658 Pa 295 K

DeepONet uses the weakest possible constraints on the dataset, and networks such as the convolutional neural network 
can be implemented depending on the problem. It is important to note that we train the DeepONet offline and make 
predictions online without further training in the present work. We develop DeepONets in Sec. 3.1 for the 2T model and in 
Sec. 4.2 for the StS-CGM model, respectively, to express the coupled dynamics between these field variables. By inputting 
some field variables, the DeepONets can accurately predict all the remaining fields. Furthermore, as a substitute for directly 
solving the governing equations, DeepONets will be used as building blocks for the DeepMMNet proposed in Sec. 3 and 
DeepStSNet proposed in Sec. 4.

2.3. Data generation

We describe in this subsection the process for generating the reference dataset. Since we aim to assimilate the experi-
ments reported in [28], the postshock flows of O2/O gas mixture are calculated by the StS approach. The selected freestream 
conditions are given in Table 1. Specifically, the freestream pressure and temperature are the same as the ones in the highest 
total enthalpy case of the experiments [28], and the freestream gas is pure O2. Furthermore, the freestream Mach number 
(M∞) is varied within the range of [10-15], which contains the experimental Mach number.

The post-shock values (or the inflow conditions for StS calculation) are derived from Rankine-Hugoniot relations, assum-
ing that vibrational modes and gas composition are frozen across the shock wave. The stiff Eqs. (1) are solved by the CVODE 
solver [45], and field variables U , T , ρO2(i) and ρO (these variables are called ‘StS variables’ hereafter) behind the normal 
shock are obtained. The simulations are performed on a uniform grid of 1000 nodes covering 5 mm in the distance behind 
the normal shock. Totally, the dataset contains 501 cases as the freestream Mach number step is 0.01. And we randomly 
choose 425 of them for the training set, 50 for the validation set, and 26 for the test set in developing DeepONets in 
Secs. 3.1 and 4.2.

Although Eqs. (6) for the 2T model are not explicitly solved in the present paper, the field variables in the 2T framework 
can be extracted from the above StS results. Specifically, a vibrational temperature is extracted from the VDF of O2 as 
follows:

Tv = ε1 − ε0

kB ln
[
nO2(1)/nO2(0)

] , (7)

where εi is the vibrational energy and kB is the Boltzmann constant. Note that the above definition is also called the 
vibrational temperature of the first excited state. Moreover, the density of O2, namely ρO2 , is obtained by summing the 
densities of all the vibrational levels ρO2(i) . In the end, field variables U , T , T v , ρO2 and ρO (these variables are called ‘2T 
variables’ hereafter) behind the normal shock are obtained.

3. DeepMMNet for the 2T model

We begin by constructing DeepMMNets for the 2T model in describing thermochemical nonequilibrium flow. To this 
end, we develop DeepONets for learning the coupled dynamics between 2T variables. Then these pre-trained DeepONets 
are used as the building blocks for the DeepMMNets. This extension helps to assimilate the scarce sensor data to infer the 
set of all field variables representing the thermochemical nonequilibrium feature in hypersonic flows. Note that this kind of 
5



J. Lv, Q. Hong, X. Wang et al. Journal of Computational Physics 491 (2023) 112344
Fig. 2. Schematic of DeepONets for the coupled dynamics between the 2T variables. (a) DeepONets GρO2
and GρO . (b) DeepONets GU , GT and GT v .

reconstruction reported in this section is based on the two-temperature assumption, so the VDF of O2 is reconstructed by 
the Boltzmann distribution from T v .

3.1. DeepONets for the coupled dynamics between 2T variables

We now develop DeepONets for learning nonlinear operators (namely approximating Eqs. (6)) to represent the coupled 
dynamics between the flow and the chemical species. As mentioned in Sec. 2.2, the present DeepONet has two sub-
networks: a trunk network takes the coordinates y of the output function, and a branch network takes the discretized 
input function at the sensors {x1, x2, . . . , x100}. For convenience, the number and values of y are the same as the sensor 
points in the present work.

We then design five independent DeepONets describing the coupled dynamics between the flow and the chemical species 
as follows:

(i) DeepONets GρO2
and GρO taking the field variables [U , T , T v ] as the inputs for the branch net and the chemical species [

ρO2 ,ρO
]

as the outputs (see Fig. 2(a)).
(ii) DeepONets GU , G T and G T v taking the chemical species 

[
ρO2 ,ρO

]
as the inputs for the branch net and field variables 

[U , T , T v ] as the outputs (see Fig. 2(b)).

We take the densities of O2 and O in the logscale to improve the accuracy and robustness in the DeepONets training, 
while we use the non-dimensionalized field variables U , T and T v . The DeepONets are trained independently by minimizing 
the mean squared error (MSE) loss function. As mentioned in Sec. 2.3, the StS dataset is divided into a training, a validation, 
and a test dataset according to the ratio of 0.85: 0.1: 0.05. All the above DeepONets have the same hyperparameters listed 
in Appendix A. We have performed sensitivity tests with different training parameters, and the results are similar to the 
ones obtained by the reported parameters.

We show the comparisons between the predictions of DeepONets and the reference data in Fig. 3. It is observed that 
each DeepONet of GU , G T , G T v , GρO2

and GρO prediction, randomly chosen from cases in the test dataset with different 
freestream Mach number, is in excellent agreement with the reference data obtained in Sec. 2.3. It is noted that the density 
of O varies by orders of magnitude (zero at post-shock position) downstream of the shock, and the DeepONet GρO predicts 
the variation accurately. The corresponding loss functions for training and validation datasets on GU , G T and G T v are also 
shown in Fig. 3, and the trends and orders of magnitude of the loss functions of the density variables are similar. The 
validation losses are commensurate with the training losses. The perfect agreement between prediction and reference data 
demonstrates that the present DeepONets have been trained successfully to represent the coupled dynamics between 2T 
variables, and they cost much less than directly solving the governing equations for obtaining flow parameters. These pre-
trained DeepONets will serve as building blocks for the design of DeepMMNet for the 2T model.

3.2. Parallel DeepMMNet for the 2T model

In practical applications, measurement data in the thermochemical nonequilibrium flow are only available for some field 
variables, and the number of sensors is usually sparse. However, the above DeepONets require full knowledge of input 
functions to make predictions. Mao et al. [1] relax the above requirement by proposing the data assimilation framework, 
DeepMMNet, to infer the full fields when only a few measurements (sensor data) for some field variables are available. 
The pre-trained DeepONets are embedded in the DeepMMNet framework as the physics constraints. However, the thermo-
chemical nonequilibrium effects have yet to be considered in the previous work of Mao et al. [1]. Therefore, we extend the 
DeepMMNet framework for the 2T model in the following.

We start with the parallel DeepMMNet architecture for the 2T model (see Fig. 4 for the schematic), which supposes 
sparse sensor data for all the 2T variables are needed. For convenience, the measurements of these variables share the same 
space coordinates in the following test examples, i.e., ρ j , ρ j , U j , T j and T j , j = 1, 2, . . . , nd , and nd is 
O2,data O,data data data v,data

6
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Fig. 3. (a-e) Predictions of DeepONets for the 2T model, and (f) the training and validation losses for DeepONets GU , GT and GT v .

Fig. 4. Schematic of the parallel DeepMMNet. Sparse sensor data for all the 2T variables are needed in this parallel framework.

the number of measurements data. A simple neural network (NN) is trained, which takes the coordinate x as input and 
all the 2T field variables as the outputs. Then the field variables U , T , T v are fed to independent pre-trained DeepONets 
GρO2

and GρO , and the predicted field variables ρO2
∗ and ρO

∗ are obtained, respectively. Similarly, field variables ρO2 and 
ρO are fed to independent pre-trained DeepONets GU , G T , G T v , and the predicted field variables U∗ , T ∗ , T ∗

v are obtained, 
respectively. Furthermore, an additional restriction related to the global mass conservation (i.e., ρ(x)U (x) ≡ Const derived 
from the continuity equation in the present one-dimensional post-shock flow) is added in the framework to make the 
prediction more robustly and physically. Finally, the total loss is obtained by summing the following terms:

L = wdata
Ldata

nd
+ wop

Lop

nop
+ wregLreg + wG

LG

nG
, (8)

in which data loss Ldata represents the mean square errors (MSE) between the NN outputs and the reference data, i.e.,
7
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Fig. 5. Predictions of the parallel DeepMMNet for the 2T model in the test case with M∞ = 12.71. The pink circle symbols represent sensor data extracted 
from the StS calculations (labeled as ‘Reference value’ in the figure). (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Ldata =
nd∑
j=1

∑
k∈{O2,O}

∥∥∥ρ j
k, data − ρk

(
x j

)∥∥∥2 +
nd∑
j=1

∥∥∥U j
data − U

(
x j

)∥∥∥2

+
nd∑
j=1

∥∥∥T j
data − T

(
x j

)∥∥∥2 +
nd∑
j=1

∥∥∥T j
vdata

− T v
(
x j

)∥∥∥2
.

(9)

The operator loss Lop is the MSE between the NN outputs and the DeepONets predictions, i.e.,

Lop =
nop∑
j=1

∑
k∈{O2,O}

∥∥ρ∗
k

(
x j

) − ρk
(
x j

)∥∥2 +
nop∑
j=1

∥∥U∗ (
x j

) − U
(
x j

)∥∥2

+
nop∑
j=1

∥∥T ∗ (
x j

) − T
(
x j

)∥∥2 +
nop∑
j=1

∥∥T ∗
v

(
x j

) − T v
(
x j

)∥∥2
,

(10)

where nop is the number of points for field variables. The global mass conservation loss LG gives the MSE between the 
mass fluxes of the NN outputs and the reference data, i.e.,

LG =
nG∑
j=1

‖ρ (
x j

)
U

(
x j

) − Const ‖2, (11)

where ρ (x) = ρO2 (x)+ρO (x), nG is the number of points for the global mass conservation and the value ‘Const’ takes from 
the average of the known data Const = 1

nd

∑nd
j=1 ρ

j
dataU j

data .

Moreover, the L2 regularization of the training parameters (i.e., Lreg = ‖θ‖2
2, θ is the set of training parameters of the 

neural network) is also added in Eq. (8) to avoid overfitting and stabilize the training process. The parameters wdata , wop , 
wG and wreg in Eq. (8) are the weighting coefficients for each loss term.

To test the above parallel DeepMMNet framework for the 2T model, we randomly choose a test sample from the test 
dataset and assume five reference data are known for all the 2T variables, which means nd = 5, nop = nG = 100. With many 
pre-tests, we set wdata = wop = wG = 1.0 for fast training, and it has only a minor influence on whether the regularization 
term is used or not. The hyperparameters for training the parallel DeepMMNet are listed in Appendix A.

It is observed in Fig. 5 that the outputs of both NN and DeepONets are available in training, and both of them are smooth 
and accurate (compared to the sparse input sensor data and reference values of the field), which is a result of adding Lop
8
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Fig. 6. Schematic of the series DeepMMNet. Sparse sensor data for variables U , T and T v are needed in this series framework.

(a surrogate model for the governing equations [46]) and LG (embedding the physical mass conservation constraint) in the 
total loss. In this test case, it is seen from Fig. 5 that the vibrational temperature first increases due to the V-T energy 
relaxation and decays after maximum value due to the vibration-dissociation coupling, and a considerable amount of O2 is 
dissociated because of the high post-shock temperature.

Although the above parallel DeepMMNet performs well in inferring the entire thermochemical nonequilibrium flowfield 
(on the assumption of two-temperature), the training still requires sensor data of all the field variables. The above require-
ment is usually unpractical in the applications because some 2T variables are rather difficult to measure directly. In addition, 
the number of measurements is generally sparse. Therefore we extend the series DeepMMNet for the 2T model to address 
the above issues in the following.

3.3. Series DeepMMNet for the 2T model

In the practical use of data assimilation, only sparse data of some 2T variables, such as velocity and temperature, are 
expected to be available. Therefore, we extend the series DeepMMNet architecture [1] for the 2T model, which in the present 
case only requires a few data of the velocity U and temperatures T and T v to predict all the remaining field variables. The 
series DeepMMNet architecture is adjusted from the parallel one and shown in Fig. 6. A simple NN is trained, which takes 
the coordinate x as input and only variables U , T and T v as the outputs. The NN outputs U , T and T v are then fed as the 
inputs to the pre-trained GρO2

and GρO which outputs ρ∗
O2

and ρ∗
O respectively. The densities ρ∗

O2
and ρ∗

O are fed again 
to the pre-trained GU , G T and G T v that outputs variables U∗ , T ∗ and T ∗

v respectively. Note that the inputs to GU , G T and 
G T v are ‘naturally’ regularized because they are the outputs of the upstream DeepONets, and the physics modeled by these 
operators are encoded during their training. Moreover, an additional restriction related to global mass conservation (the 
mass flux is now calculated using ρ∗ and U∗) is again added to the framework. Finally, the total loss is also represented by 
Eq. (8), and the loss terms are given as follows:

Ldata =
nd∑
j=1

∥∥∥U j
data − U

(
x j

)∥∥∥2 +
nd∑
j=1

∥∥∥T j
data − T

(
x j

)∥∥∥2 +
nd∑
j=1

∥∥∥T v
j
data − T v

(
x j

)∥∥∥2
,

Lop =
nop∑
j=1

∥∥U∗ (
x j

) − U
(
x j

)∥∥2 +
nop∑
j=1

∥∥T ∗ (
x j

) − T
(
x j

)∥∥2 +
nop∑
j=1

∥∥T v
∗ (

x j
) − T v

(
x j

)∥∥2
,

LG =
nG∑
j=1

‖ρ∗ (
x j

)
U∗ (

x j
) − Const ‖2.

(12)

To validate the series DeepMMNet architecture, a test sample is randomly selected from the test dataset and only 2 
reference data points are known for variables U , T and T v . Therefore, nd = 2, nop = nG = 100. With a large number of pre-
tests, we set wdata = wop = wG = 1.0 and wreg = 6 × 10−5 for fast training. The hyperparameters for training the series 
DeepMMNet are listed in Appendix A.

Fig. 7 shows that the serial DeepMMNet results (NN and DeepONet outputs) agree well with the sensor data and refer-
ence values. Note that we do not use any sensor data of densities ρO2 and ρO in the neural network training, but we can 
still predict these variables accurately thanks to the pre-trained DeepONets. Moreover, it is found that the absolute value of 
the total loss increases with increasing weight wreg , but the declining trend (though not shown in the figure) is smoother. 
The above results show that one can predict all field variables without complete knowledge of the fields by using the serial 
DeepMMNet, even with fewer sensor data of fewer variables.

To summarize, both the parallel and series DeepMMNets perform well in predicting the 2T variables and thermochemical 
nonequilibrium flowfield with sparse sensor data. They can incorporate newly added measurements for learning to achieve 
data assimilation. In addition, the pre-trained DeepONets and global mass conservation constraint implicitly describe the 
thermochemical nonequilibrium processes and contain the physics law of the hypersonic flow. The framework to predict the 
quantum state-resolved thermochemical nonequilibrium flowfield is developed in the next section.
9
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Fig. 7. Predictions of the series DeepMMNet for the 2T model in the test case with M∞ = 13.29. Only 2 reference data points are known for variables U , T
and T v . The pink circle symbols represent sensor data extracted from the StS calculations (labeled as ‘Reference value’ in the figure).

4. DeepStSNet framework: architecture and results

The StS simulation can describe the full coupling between vibrational chemical kinetics and fluid dynamics and give 
detailed vibrational energy distributions. Therefore, in order to predict the quantum state-resolved thermochemical nonequi-
librium flowfield from sparse experimental data, the StS variables of the dataset generated in Sec. 2.3 should be used in the 
above training of DeepONet and DeepMMNet. However, describing the coupled dynamics between StS variables requires too 
many DeepONets (for predicting densities of vibrational levels ρO2,i , i.e., GρO2,i

), which are very time-consuming to train, 
especially when rot-vibrational StS [12,26,38] are considered. Moreover, inserting too many DeepONets in the DeepMMNet 
is detrimental to the stability and convergence of the neural network training. The problem of training DeepONets for all the 
vibrational levels of O2 can be alleviated by using the coarse-grained method (CGM) [11,12,26], which is a reduced model 
for the StS approach.

4.1. Coarse-grained method

We employ the coarse-grained method to reduce the computational expense of the StS approach with an acceptable 
accuracy. Instead of directly solving the master equations for every vibrational energy level of O2, we divide these levels into 
several groups, and the level populations in each group are reconstructed based on the maximum entropy principle [27], 
which states that molecular collisions like to generate post-collision internal energy distributions that maximize entropy. 
The strategies for dividing the levels and the reconstruction schemes are detailed in [26,47]. Herein, we use the energy-
based grouping strategy [12] by dividing the levels into groups of equal energy intervals. Specifically, the 46 energy levels 
of O2 are first divided into 3 groups. The energy width of each group is determined by �E = D0

Nb
, where D0 represents 

the dissociation energy of O2 and Nb = 3 is the number of groups. As a result, the 0th − 9th vibrational levels of O2 are 
lumped into the 1st group, the 10th − 20th levels are lumped into the 2nd group and the remaining 21th − 45th levels are 
lumped into the 3rd group. Furthermore, the distribution within a group is approximated by a local representation, and the 
maximum entropy linear model is used for reconstruction, i.e.,

ln ng
O2,i

= αg + β gεi, (13)

where g denotes the group and vibrational level i ∈ g . The unknown parameters αg and β g in the above formulation are 
determined by the macroscopic constraints

∑
ng

O2,i
= ng

O2
,

∑
ng

O2,i
εi = E g

v , (14)

i i

10
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Fig. 8. Mole fractions of O2(0 − 45) behind shock wave for the case of M∞ = 13.55. CGM results with 3 groups (a) and 4 groups (b) are given, respectively. 
And the reference distribution of the StS result is also shown for comparison.

where ng
O2,i

and E g
v are the number density and vibrational energy of group g . Based on the maximum entropy linear model 

[22,47], the vibrational level distribution within group g can be described by the Boltzmann distribution governed by group 
vibrational temperature T g

v (note that in the following, we call T 1
v as T v for short). The vibrational temperature T g

v is related 
to β g via β g = − 1

kB T g
v

and is calculated by an iterative method from Eqs. (13) and (14).

To test the accuracy of the coarse-grained method, the StS variables of the case with M∞ = 13.55 from the StS dataset 
are used to generate ng

O2,i
and E g

v . Then the VDF of O2 is reconstructed from Eqs. (13) and (14). The mole fractions of 
O2(0 − 45) behind shock wave obtained by CGM with 3 groups are shown in Fig. 8(a) for the case of M∞ = 13.55, and 
the reference distribution of StS results are also shown. The CGM and StS results agree well at low and medium vibrational 
energy levels. However, CGM results with 3 groups are not satisfactory for describing the distribution of very high vibrational 
levels (that favor dissociation and become under-population), so significant differences are found between CGM with 3 
groups and the StS results. To this end, we make a secondary division for the 3rd group (in 3 groups strategy) to describe 
better the behavior of the higher vibrational energy levels, i.e., 1st group (0-9), 2nd group (10-20), 3rd group (21-39), and 4th

group (40-45). It is seen from Fig. 8(b) that the CGM results obtained with 4 groups capture the behaviors of high energy 
levels much better than that obtained with 3 groups. It should be noted that the CGM results can be further improved by 
including more groups, which, however, would take much more time to train the DeepONets. Therefore, CGM results with 
up to 4 groups are used in the following. Field variables U , T , T v , ρ i=1,Nb

O2
and Ei=1,Nb

v (these variables are called ‘StS-CGM 
variables’ hereafter) are extracted from the StS variables of the StS dataset. The variable T v is still needed in the StS-CGM 
variables because the vibrational temperature is measured in the experiment of Ibraguimova et al. [28].

4.2. DeepONets for the coupled dynamics between StS-CGM variables

We now develop and train DeepONets for learning nonlinear operators to represent the coupled dynamics between 
StS-CGM variables. We design the following independent DeepONets, describing the coupled dynamics between StS-CGM 
variables and serving as the building blocks of DeepStSNet:

(i) DeepONets GU and G T taking the field variable T v as the input for the branch net and the velocity U and temperature 
T as the outputs, respectively (see Fig. 9(a)).

(ii) DeepONets Gi
ρO2

and GρO taking the field variables [U , T , T v ] as the inputs for the branch net and the densities ρ i
O2

and ρO as the outputs, respectively (see Fig. 9(b)).

(iii) DeepONets Gi
E v

taking the field variables 
[

U , T ,ρ i
O2

,ρO

]
as the inputs for the branch net and the vibrational energy 

of group Ei
v as the output (see Fig. 9(c)).

(iv) DeepONet G T v taking the field variables 
[
ρ1

O2
, E1

v

]
as the inputs for the branch net and the vibrational temperature T v

as the output (see Fig. 9(d)).

The above DeepONets are summarized in Table. 2. Again, we take the densities of ρ i
O2

and ρO in logscale in the training 
to improve the accuracy and robustness, and we take the non-dimensionalized data for field variables U , T and T v and 
the original data for the vibrational energy of each group E g

v . The hyper-parameters for these DeepONets are presented 
in Appendix A. These DeepONets are trained independently by minimizing the MSE loss function. The dataset reported in 
Sec. 2.3 is again divided into a training, a validation, and a test dataset according to the ratio 0.85: 0.1: 0.05. We have 
performed sensitivity tests with different training parameters, and the results are similar to the ones obtained by the 
parameters listed in Appendix A.
11
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Table 2
DeepONets for StS-CGM variables.

DeepONets Input function Output function

GU T v U
GT T v T

Gi
ρO2

U , T , T v ρ i
O2

GρO U , T , T v ρO

Gi
E v

U , T ,ρ i
O2

,ρO Ei
v

GT v ρ1
O2

, E1
v T v

Fig. 9. Schematic of DeepONets for the coupled dynamics between StS-CGM variables.

We observe from Fig. 10 that the predictions of DeepONets for the coupled dynamics between StS-CGM (with 4 groups 
division) variables are in excellent agreement with the StS-CGM variables extracted from reference data obtained in Sec. 2.3. 
The test samples are randomly chosen from the StS dataset. The corresponding loss functions for training and validation 
datasets on GU , G T and G T v are also shown in Fig. 10 (a-c), and the trends and orders of magnitude of other variables are 
similar. Although ρ i

O2
and Ei

v vary by several orders of magnitude downstream of the normal shock, the related DeepONets 
predict the variation accurately and the MES loss function is the order of 10−5. The DeepONets for StS-CGM variables with 
3 groups division are also successfully trained and tested, though the results are not shown here for brevity. The above-
trained DeepONets are effective substitutes for solving the StS-CGM governing equations, namely the density and energy of 
vibrational group (thus VDF of O2) can be efficiently predicted from macroscopic field variables (U , T and T v ). The present 
DeepONets serve as building blocks for the design of DeepStSNet for the StS-CGM variables in the following.

4.3. DeepStSNet framework and results

It is intractable to directly measure the distribution of molecular internal energy levels in experimental measurements, 
which are usually limited to macroscopic field variables like temperature or velocity. Based on the approach of data assim-
ilation used in Secs. 3.2 and 3.3 for the 2T model, a new data assimilation framework, DeepStSNet, for the StS-CGM model 
is proposed herein and used to predict the quantum state-resolved thermochemical nonequilibrium flowfield from sparse 
sensor data (experimental measurements).

Since the experiment [28] of interest only gives experimental data of vibrational temperature T v , a series DeepStSNet 
(whose schematic is shown in Fig. 11) requiring only a few sensor data of T v is explicitly designed. A simple NN is trained, 
which takes the coordinate x as input and outputs vibrational temperature T v . The data loss (Ldata) is calculated as the 
difference between the NN output and the sensor data. Then, a closed loop of the StS-CGM variables is constructed using 
the pre-trained DeepONets (reported in Sec. 4.2) embedding the physical constraints. The NN output T v function is fed into 
the DeepONets GU and G T , which output functions U∗ and T ∗ , respectively. The functions U∗ and T ∗ together with T v

are fed into Gi
ρO2

and GρO to obtain ρ i∗
O2

and ρ∗
O, respectively. Next, the functions U∗ , T ∗ , ρ i∗

O2
and ρ∗

O are fed into Gi
E g

to 
predict the energy of vibrational group Ei∗

v . The output of G1 , namely E1∗
v , together with the density of first vibrational 
E v

12
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Fig. 10. Predictions of DeepONets for the StS-CGM (with 4 groups division) variables.

group ρ1∗
O2

, are used to predict T ∗
v via G T v . The first operator constraint Lop1 is calculated as the difference between the 

NN output T v and the DeepONet G T v output T ∗
v . Since the DeepONet outputs are generally smoother than the NN output 

in practical training [1], we add second operator constraint Lop2 by differencing the G T v output T ∗
v and the sensor data to 

make the training more robust. Also, an additional constraint, LG , related to the global mass conservation is considered by 
13



Fig. 11. Schematic of the series DeepStSNet. Sparse sensor data of vibrational temperature T v are needed.

the difference between the mass flux of the freestream and (
∑

i ρ
i∗
O2

(x) + ρ∗
O (x))U∗ (x). As a result, the total loss and the 

loss terms are represented as follows:

L = wdata
Ldata

nd
+ wop1

Lop1

nop1

+ wop2

Lop2

nop2

+ wregLreg + wG
LG

nG
,

Ldata =
nd∑
j=1

∥∥∥T v
j
data − T v

(
x j

)∥∥∥2
,

Lop1 =
nop1∑
j=1

∥∥T ∗
v

(
x j

) − T v
(
x j

)∥∥2
,

Lop2 =
nop2∑
j=1

∥∥∥T ∗
v

(
x j

) − T v
j
data

∥∥∥2
,

LG =
nG∑
j=1

‖ρ∗ (
x j

)
U∗ (

x j
) − Const ‖2.

(15)

To validate the above series DeepStSNet architecture, a test sample with M∞ = 13.55 is selected from the StS dataset, and 
5 points of reference data are known for variables T v . Therefore, nd = nop2 = 5, nop1 = nG = 180. With a large number of 
pre-tests, we set wdata = wop1 = wop2 = wG = 1.0 and wreg = 1 × 10−5 for fast training. The hyperparameters for training 
the series DeepStSNet are listed in Appendix A.

It is observed in Fig. 12 that the present DeepStSNet results agree well with the reference data of StS calculation. 
Although only 5 points of T v data in the flowfield are known, we can still predict the nonequilibrium flowfield details, 
including the densities and energies of the vibrational groups, thanks to the pre-trained DeepONets, which incorporate the 
physics laws and the coupled dynamics between the StS-CGM variables. Moreover, the obtained T v result shows that the 
NN and DeepONet outputs both match well with the available sensor data.

Furthermore, we investigate the ability of DeepStSNet to predict the flowfield using even fewer sensor data. The same 
test sample with M∞ = 13.55 is used, and this time only 2 reference data points are known for variables T v . The training 
settings are the same as the above ones except for wreg = 3 ×10−5. We observe from Fig. 13 that the DeepStSNet predictions 
still agree well with reference data even when only 2 data of T v are available. These results show that one can predict 
a vibrational-group-resolved flowfield without a large number of data of the field variables by using the present series 
DeepStSNet.

To obtain the vibrational state-resolved flowfield, the VDF of O2 are reconstructed from Eqs. (13) and (14). The recon-
structed mole fractions of O2(0 − 45) behind the normal shock and the reference distribution of StS result are shown in 
Fig. 8(b). Observe that the excited vibrational levels increase rapidly postshock due to the energy transferred from the trans-
J. Lv, Q. Hong, X. Wang et al. Journal of Computational Physics 491 (2023) 112344
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Fig. 12. Predictions of the series DeepStSNet for the StS-CGM (with 4 groups division) variables in the test case with M∞ = 13.55. The pink circle symbols 
represent sensor data extracted from the StS calculations (labeled as ‘Reference value’ in the figure).
15
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Fig. 13. Predictions of the series DeepStSNet for the StS-CGM (with 4 groups division) variables in the test case with M∞ = 13.55. The pink circle symbols 
(only 2 reference data points are known for variables T v ) represent sensor data extracted from the StS calculations (labeled as ‘Reference value’ in the 
figure).
16



J. Lv, Q. Hong, X. Wang et al. Journal of Computational Physics 491 (2023) 112344
Fig. 14. Number density distributions of vibrational energy levels of O2 at selected positions behind the shock for the case of M∞ = 13.55. The DeepStSNet 
reconstructions with (a) 3 groups division and (b) 4 groups division are compared with the StS results and the local Boltzmann distribution.

lational energy (V–T energy transfer), and then a competition between the V–T energy transfer and vibrationally favored 
molecular dissociation results in a peak in the mole fraction profiles of the excited vibrational levels. It is also observed from 
Fig. 8(b) that the DeepStSNet results agree well with the StS results for all the vibrational energy levels except for slight 
differences of very high levels due to the strong vibration-dissociation coupling effects. And the DeepStSNet results with 4 
groups division have overall better performance than the ones with 3 groups division that reported in Fig. 8(a). To check the 
nonequilibrium deviation, the number densities of vibrational levels of O2 at two space locations (i.e., 0.1 mm and 0.3 mm) 
behind the normal shock are plotted in Fig. 14, and the local Boltzmann distribution is also shown for comparison. It is seen 
that the reconstructed distribution from DeepStSNet results with 4 groups division agrees well with the StS results, even 
for very high energy levels. At the location of 0.1 mm, the number density of high vibrational levels is significantly larger 
than the local Boltzmann distribution. This over-population state is because many molecules from low vibrational levels 
are pumped to high vibrational levels via the V–T processes. As the excited vibrational levels accumulate, the molecular 
dissociation becomes dominant so that the number density of the excited vibrational levels drops below the local Boltz-
mann distribution at 0.3 mm. Again, the reconstructed distribution from DeepStSNet results with 3 groups division can not 
capture the behaviors of very high energy levels compared to StS results. Note that the reconstructed results can always be 
improved by including more vibrational groups in the coarse-grained treatment, but it will inevitably take much more time 
to train the related DeepONets and be detrimental to the stability and convergence of the neural network training. In con-
clusion, the above results demonstrate the ability of the present DeepStSNet framework to reconstruct accurately (compared 
to reference StS results) the vibrational state-resolved flowfield from sparse sensor data.

5. Reconstruction of state-resolved flowfield with sparse experimental data

Though usually scarce and limited to macroscopic variables, the quantitative experimental data have been used to assess 
the performance of the 2T model and StS (or StS-CGM) approach [8,13,22]. Nevertheless, the microscopic nonequilibrium 
distribution of internal energy levels in the flowfield is challenging to measure directly due to the limitations of exper-
imental techniques. Therefore, in this section, we use the DeepStSNet framework proposed in Sec. 4 to assimilate the 
experiment measurements [28] to predict the vibrational state-resolved thermochemical nonequilibrium flowfield. In the 
experiment of Ibraguimova et al. [28], the time evolution of vibrational temperature T v of O2 behind the normal shock 
is measured utilizing absorption spectroscopy in the O2 Schumann-Runge bands. Several sets of measurements are con-
ducted at different operation conditions [28], and only the case with the highest total enthalpy is considered herein, i.e., 
V∞ = 4440 m/s, P∞ = 106.658 Pa, T∞ = 295 K. Note that the above freestream pressure and temperature are the same as 
in Table. 1.

The present DeepStSNet framework assimilates experimental data T v to predict the VDF of O2 and their confidence 
intervals related to the inevitable experimental uncertainties (determined by the total error in measuring velocity, initial 
pressure, absorption value, photomultiplier noise, etc. [28]). Firstly, all the experimental data shown in Fig. 15 are used as 
sensor data of T v in training, so nd = nop2 = 10. With a large number of pre-tests, we set the weights of the loss function 
to be wdata = 1.0, wop1 = 3.0, wop2 = 5.0, wG = 1.0, wreg = 1 × 10−5 for stable and fast training. The hyperparameters of 
the series DeepStSNet are listed in Appendix A. The DeepStSNet predictions are shown in Fig. 15 as the red line (DeepONet 
output) and light blue dot line (NN output). Both DeepONet and NN outputs of T v lie within the experimental uncertainty 
bound, which has a considerable uncertainty about ±500 K. Moreover, the NN output is slightly unsmooth near the first and 
second experimental data behind the normal shock, which is because these two data points seem noisy and scattered from 
the others and overfitting occurs in the NN training. On the contrary, DeepONet outputs are always smooth and accurate, 
even without regularization.

Next, we separate all the experimental data into two-point pairs (a total of C2
10 = 45) and assimilate these pairs sepa-

rately by DeepStSNet to form the equivalent uncertainty bound of DeepStSNet predictions. As reported in Sec. 4.3, two data 
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Fig. 15. The comparisons between experimental measurements and DeepStSNet predictions of vibrational temperature by assimilating (a) the 1st, 2nd

experimental data points and (b) the 1st, 3rd experimental data points.

Fig. 16. Comparisons of vibrational temperature between experimental measurements and (a) the NN outputs and (b) the DeepONet outputs of DeepStSNet 
for assimilating 45 two-point data pairs. The averaged results are also shown.

points are sufficient to predict the accurate thermochemical nonequilibrium parameters of the flowfield. Examples of using 
the 1st, 2nd data points (see Fig. 15(a)) and the 1st, 3rd data points (see Fig. 15(b)) as data constraints of DeepStSNet are 
performed respectively. It is seen from Fig. 15 that the above results differ from the ones assimilating all the experimen-
tal data, which illustrates that the experimental errors make measured data points not rigorously correspond to the same 
freestream conditions. Furthermore, Fig. 16 gives DeepStSNet predictions of T v for assimilating all the 45 two-point data 
pairs. Again, the DeepONet outputs are smoother than the NN outputs. The envelope of DeepONet (or NN) output curves can 
be considered as the equivalent uncertainty bound of the measured data points, and it nearly overlaps with the error bars 
estimated from the experimental errors [28], except for the first two data points. By averaging the results for all the data 
pairs, it is seen from Fig. 16 that the averaged results (dashed lines) lie within the error bars of experimental measurements 
and are close to the ones assimilating all the experimental data (shown in Fig. 15).

The other ‘StS-CGM variables’ unavailable in the experiment can also be obtained in the series DeepStSNet prediction. 
Fig. 17 depicts field variables velocity U and translational temperature T , obtained by DeepONets GU and G T (shown in 
Fig. 11) respectively. Again, the curves of assimilating all the 45 two-point data pairs give the uncertainty bound of Deep-
StSNet predictions, and the averaged results are also shown in the figure. More importantly, the information on vibrational 
groups is embedded in the DeepStSNet framework. Therefore, the fields of density and energy of the four divided vibrational 
groups can be predicted by the corresponding DeepONets for each DeepStSNet prediction. By adopting an average operation, 
Fig. 18(a) shows the averaged densities ρ i

O2
of DeepStSNet predictions. Then the energy-representative vibrational tempera-

ture of each vibrational group is calculated by DeepONet G T v i (similar to G T v and the description of its training is omitted 
for brevity) based on the averaged results. Finally, the number density distribution of each vibrational energy level is re-
constructed from Eqs. (13) and (14) according to the maximum entropy principle and shown in Fig. 18(b). It is noted that 
the above VDF of O2 should be considered as the most probable prediction (in the content of the coarse-grained method) 
from the available experiment measurements of T v . This most probable prediction of VDF of O2 shows that the excited 
vibrational levels are populated significantly due to the V–T energy transfer behind the shock and decreased when dissoci-
ation dominates. A piecewise distribution (unsmooth variation of the adjacent levels of two vibrational groups) is seen in 
the profile of VDF, which is characteristic of the coarse-grained method. Therefore, depending on the accuracy required in 
18
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Fig. 17. DeepStSNet predictions of field variables: (a) velocity and (b) temperature.

Fig. 18. Reconstruction of state-resolved flowfield using DeepStSNet framework. (a) Densities of each vibrational group of O2 and O, and the total density. 
(b) Mole fraction distribution of O2(0 → 45).

the practical application, a more precise (continuous) prediction of VDF is available if more vibrational groups are divided 
in the coarse-grained strategy, and it is straightforward to make such an extension in the present DeepStSNet framework.

6. Conclusion

In order to reconstruct the thermochemical nonequilibrium flowfield from scarce experimental measurements, in this 
work, we first extend the DeepMMNet [1] framework for the 2T model. To obtain the building blocks of the extended 
DeepMMNet, a series of DeepONets for learning the coupled dynamics between 2T variables are trained and validated. 
Upon training, these pre-trained DeepONets can predict the target field variables accurately and efficiently. Then the parallel 
and series DeepMMNet frameworks for the 2T model are designed and proved to perform well in inferring the entire 
thermochemical nonequilibrium flowfield (on the two-temperature assumption) based on scarce sensor data. Only very 
few (low to 2) sensor data points are needed to achieve an accurate DeepMMNet prediction thanks to the pre-trained 
DeepONets and the global mass conservation constraint, which implicitly describes the thermochemical nonequilibrium 
processes. Moreover, the series architecture only requires sensor data of partial field variables, which is in line with the 
practical application.

Furthermore, in order to achieve the quantum-state resolution in the reconstruction from scarce experimental data, the 
DeepStSNet framework is developed based on the StS-CGM model. The coarse-grained method is adopted herein to alleviate 
the enormous computational cost of the detailed state-to-state approach, and the strategies of dividing the vibrational levels 
into 3 or 4 vibrational groups are tested and discussed. The pre-trained DeepONets, representing the functional mapping 
between the StS-CGM variables, are integrated as the building blocks of the DeepStSNet. By testing within the StS reference 
dataset, the DeepStSNet is proved to reconstruct the vibrational-group-resolved thermochemical nonequilibrium flowfield 
accurately, and the vibrational state-resolved information is derived via the maximum entropy principle. Then an important 
step forward is taken to assimilate the experimental data of vibrational temperature from shock tube [28] using the present 
DeepStSNet. The predicted envelope of vibrational temperature is generated by assimilating all the two-point data pairs, and 
the averaged result is found to lie within the experimental uncertainty bound. Moreover, the StS-CGM variables unavailable 
in the experimental measurement, including velocity, translational temperature, and most importantly, density and energy 
of vibrational groups, are also obtained naturally in the DeepStSNet prediction. Finally, the most probable prediction of the 
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Table 3
Hyperparameters for the DeepONets (in Secs. 3.1 and 4.2) and neural networks (in Secs. 3.2, 3.3, 4.3 and 5).

Hidden-layers Activation function Optimizer Learning rate Epochs

Sec. 3.1 4 × 100 Adaptive ReLU Adam 6 × 10−4 120000
Sec. 3.2 6 × 50 tanh Adam 5 × 10−4 30000
Sec. 3.3 6 × 50 tanh Adam 2 × 10−4 60000

Sec. 4.2 4 × 128 Adaptive ReLU Adam
2 × 10−4 for Gi

E v

6 × 10−4 for others
120000

Sec. 4.3 2 × 100 tanh Adam 8 × 10−5 60000
Sec. 5 2 × 100 tanh Adam 1 × 10−4 40000

number density distribution of each vibrational energy level of O2 is reconstructed. It is thus able to predict the (vibrational) 
quantum-state information of thermochemical nonequilibrium flowfield based on scarce experimental measurements (of 
macroscopic field variables) using the present DeepStSNet, and this kind of microscopic reconstruction is beneficial for 
exploiting the sparse experimental data and uncovering the hidden physicochemical processes in the hypersonic flows. Note 
that there is no difficulty in extending the present DeepStSNet framework to multicomponent gas flows, like the common 
five air species O2/O/N2/N/NO, which will be reported in a subsequent paper.
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Appendix A. Hyperparameters of neural networks

To achieve fast and stable training for the DeepONets and neural networks used in the present work, we have performed 
many (sensitivity) tests with different training hyperparameters to determine the best ones. These hyperparameters are 
summarized in Table 3. Note that the hidden layers of the branch and trunk nets of DeepONet are set to the same value.
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