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A B S T R A C T   

A dynamic mode-I energy release rate (ERR) of a double cantilever beam (DCB) under impact from a striker is 
derived for the first time for isotropic and orthotropic composite materials, accounting for DCB properties, a 
striker mass and an initial impact velocity. This is achieved in the context of structural vibration analysis by 
employing beam dynamics. It is found that the initial impact velocity determines the magnitude of the ERR, 
which is proportional to the velocity squared, while the delamination length ratio and the mass ratio between the 
striker and the DCB defines the time response. To understand the transient effect, a dynamic factor is defined as a 
function of the mass ratio. This factor decreases with an increasing striker mass, indicating a transition in the 
dynamic response from flexural-wave dominant to quasi-static-motion dominant, allowing an attunable dynamic 
effect. The developed theory is verified against the finite-element simulations for isotropic and orthotropic 
materials as well as experimental verification using published data. This work allows the measurements of 
fracture toughness under the impact load with the derived analytical solution. In addition, the developed theory 
can guide a design of impact tests and provide a fundamental understanding of impact-induced fracture for 
carbon-fiber-reinforced plastics.   

1. Introduction 

Carbon-fiber-reinforced-plastics (CFRPs) are a type of laminated 
composite material, which are of particular interest for light-weight 
structures in aerospace, automotive, energy, civil engineering and 
other fields, thanks to their high specific stiffness and strength. One of 
the main challenges in application of CFRPs is the prevention of 
delamination or debonding which is seen as one of the most detrimental 
damages [1]. 

Delamination, or, in general, interfacial fracture, is generally mixed- 
mode since delamination tends to be confined to the weak interface 

between laminae [2]. Conventionally, however, the fracture behavior of 
laminated composites is studied with pure-fracture-mode coupon con
figurations, such as double-cantilever beam (DCB) tests for mode-I 
fracture [3,4] and end-loaded split (ELS) [5,6] and end-notched 
flexure (ENF) [7,8] tests for mode-II fracture. Such coupon tests pro
vide measurements of fracture toughness for respective fracture modes. 
Real-life engineering problems with mixed-mode delamination are 
therefore solved by considering the decomposition of a total energy 
release rate (ERR) into its pure-fracture-mode components together with 
suitable mixed-mode failure criteria [9]. 

For mode-I delamination with DCB tests in the quasi-static load 
regime, standard test methods with analytical descriptions are well 
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established in standards such as for CFRPs (ASTM D5528 [10] and ISO 
15024 [11]) and for adhesives (ISO 25217 [12]). For the dynamic load 
regime with high loading rates, however, the literature mainly focuses 
on experimental aspects of high loading rates using a servo-hydraulic 
machine [13], a drop weight impact [14,15], or a split Hopkinson 
pressure bar [16,17]. As pointed out in a review [18], a limited upper 
bound of the loading rate of servo-hydraulic machines make them un
suitable to study the rate-dependent fracture behavior of CFRPs, and, 
therefore, the SHPB and the drop weight impact are more suitable 
techniques to study the impact-induced delamination and assess the 
rate-dependence of fracture toughness. In the mechanical perspective, 
notion should be given to essences of these experimental loading con
ditions, which can mainly be put into two categories: (a) 
high-loading-rate-displacement loads, for instance SPHB and (b) mo
mentum loads, that is, drop weight impact. For the DCB under 
high-loading rate displacement, Smiley and Pipes [19] first associated 
the rate effect with the crack-tip opening rate ẏct that is an extrapolation 
of applied loading rate v at vicinity of crack tip as ẏct = 3vε2 /(2a2), 
where ε is the arbitrarily small distance from the crack tip and they 
chose ε = 0.25 mm without further explanation; the determination of 
the ERR, then, included the contribution of kinetic energy from 
quasi-static motion of the applied loading rate with − 33ρhv2/ 280. The 
significance of this investigation acknowledged the crack-tip opening 
rate is associated but different from the applied opening rate, and a 
study of rate effects on the fracture toughness must take this into ac
count. Blackman et al. [20] applied a similar technique to further study 
the dynamic effect of steady-state crack propagation, including a 
contribution to the DCB arm displacement from the crack propagation 
speed using u̇ = du/dt+ ȧdu/da, as well as a transient effects consid
ering crack propagation acceleration ä. However, these two analytical 
developments only consider the quasi-static motion and did not take into 
account of effects of structural vibration, which can nevertheless be 
significant for the slender DCB configuration, giving a smooth ERR. The 
authors took these effects into account to develop analytical solutions 

and successfully captured the oscillatory nature of the ERR with dy
namic effect being an intrinsic property of DCB configuration under 
high-loading rates [21,22] and not alterable. It is also found that the 
high-loading rate displacement as the quasi-static motion provides a 
mean value of the ERR; however, it was also demonstrated that under 
high-loading rate displacement, the dynamic effect increases with 
applied loading rates and cannot be avoidable, and this poses a draw
back to accurately assess the fracture toughness and its rate effect with 
considerable oscillatory dynamic factor, a reflection of significant 
opening-and-closing movement. This is also the case for mode-II 
delamination with forth-to-back movement at crack tip [23,24]. It is 
then desirable to have a method capable of manipulating the dynamic 
effect to alleviate or even cancel the significant opening-and-closing 
movement at crack tip to ensure a constant opening displacement to 
study the rate effect of fracture toughness. And in this work, it is found 
that the momentum loads, that is, drop weight impact, can achieve this. 

For the DCBs under drop weight impact as momentum loads, to the 
best authors’ knowledge, there is no analytical solution for the ERR, and 
effects of the mass of striker and configuration of DCB remains unknown, 
and researchers instead might have to resort to experimental-numerical 
methods by incorporating the experimentally measured parameters into 
finite-element-method (FEM) simulations. Experimental-numerical 
methods [16,17,25] are usually restricted to specific individual cases 
with limited transferability of their results. This might be one of the 
reasons that no standard test employing impact was established to 
measure the dynamic mode-I fracture toughness [18]. 

As discussed above, an analytical theory of DCBs under drop weigh 
impact loads is highly desirable to study the dynamic fracture behavior 
in laminated composites. This aim is achieved in this work with novel 
findings in the attunable dynamic effect by designating mass ratio be
tween drop weight and DCB system. The development of the theory is 
presented in Section 2, which is then verified with FEM simulations and 
published experimental data in Section 3, while the conclusions are 
given in Section 4. Apart from the findings on delamination in DCB 

Nomenclature 

An Area of cross-section of beam section n 
a Delamination length 
aeff Effective delamination length 
b Width of beam 
E Young’s modulus 
E* Effective Young’s modulus 
fdyn Total dynamic factor 
f1
dyn Dynamic factor of first vibration mode 

G Total ERR 
Gdyn ERR component due to total dynamic effect 
GU

st Quasi-static ERR 
h Thickness of one DCB arm 
In Second moment of area of beam cross-section for beam 

section n 
L Uncracked region length 
M Mass of striker 
Mn(x, t) Internal bending moment of beam section n 
m Total mass of the DCB system 
Ti(t), Ṫi(t) Modal displacement and velocity of ith normal mode 
t Time 
v Initial impact velocity 
wn(x, t) Deflection of beam section n 
Wni(x) ith normal mode for beam section n 
αi ith mode wavenumber for beam section ① 
βi ith mode wavenumber for beam sections ② and ③ 

δij Kronecker delta 
η Delamination length ratio 
Λi(η,ξ) ith mode contribution to total ERR from beam section ② 
λi ith mode eigenvalue 
ν Poisson’s ratio 
ξ Mass ratio of total DCB system and striker 
ρ Density 
φni(x) ith mode shape of beam section n 
Ψi(η,ξ) ith mode contribution to total ERR from beam section ③ 
ωi Angular frequency of ith vibration mode 

Differential notation 
w(n) nth partial derivative of w with respect to coordinate x 

w(n) = ∂nw/∂xn 

ẇ first partial derivative of w with respect to time ẇ = ∂w/∂t 
ẅ second partial derivative of w with respect to time ẅ =

∂2w/∂t2 

Abbreviations 
CFRP Carbon fiber reinforced plastic 
DCB Double cantilever beam 
ELS End-loaded split 
ENF End-notched flexure 
ERR Energy release rate 
FEM Finite-element method 
SHPB split Hopkinson pressure bar 
VCCT Virtual crack closure technique  
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under impact loads in this study, the developed analytical techniques 
can also be applied to analysis of other important aspects of dynamic 
delamination in CFRPs. A brief roadmap for the next-stage in
vestigations would be as follows: (a) analysis of pure mode-II delami
nation under impact loads with an emphasis on its difference from that 
in the mode-I one; (b) investigation of mixed-mode delamination with a 
focus of the dynamic ERR partition and its difference from the quasi- 
static partition theories; (c) assessment of the dynamic effect and 
contribution to it from each vibration mode for impacts with different 
configurations. All these investigations aim to generate a fundamental 
and comprehensive understanding of the delamination in CFPRs under 
impact loads. 

2. Theory 

In this section, the dynamic mode-I ERR of a DCB specimen under 
drop weight impact load is derived analytically with consideration of 
structural vibration by employing beam dynamics. The DCB configura
tion is shown in Fig. 1(a) with a delamination length of a, an uncracked 
length of L, a thickness of h for each DCB arm and a width of b. In the 
drop weight test, the loading block of the upper DCB arm is pinned with 
an only rotational degree of freedom unconstrained, while the loading 
block of the lower DCB arm is impacted by a striker. Note that the 
loading conditions of DCB in Fig. 1(a) is different from that in Ref. [15] 
where the lower DCB arm was constrained to slide down according to 
the vertical sliding rail and this might lead to axial force; and when the 
axial force was significant, as found in Ref. [15] with impact velocity 
larger than 3 m s− 1, the delamination becomes a mixed mode one. 
However, in Fig. 1(a) the lower DCB arm was not constrained vertically, 
and no axial force was generated to provide a pure mode-I delamination, 
and realization of this can be achieved by enlarging the sliding rail in the 
test configuration in Ref. [15] (a schematic is given in Fig. A.1 in 
Appendix A). 

The full DCB system is modelled as shown in Fig. 1(b) with three 
beam sections: beam section ① being the uncracked region, beam sec
tions ② and ③ being DCB arms for the delamination region, and their 
deflections are denoted w1(x, t), w2(x, t) and w3(x, t), respectively. The 
coordinate was signed with crack tip at x = L. The mass of the drop 
weight is M with initial impact velocity v. Note that other than the 
boundary conditions and continuity conditions specified in Section 
2.1.1, there is no additional constraint to maintain beam section ① 
horizontally and beam section ① can deflect freely according to the 
continuity conditions associated with movement of beam sections ② 
and ③ due to impact. In addition, the simplification and idealization 
from Fig. 1(a) to Fig. 1(b) neglects the influence of loading blocks 
assuming their distance from the end of load line longer than 50 mm 
according to ASTM D5528 [10], or otherwise the corrections should be 

made following Annex A.1 in ASTM D5528. 
Generally, the ERR of a stationary delamination in DCB under dy

namic loading can be determined by crack-tip bending moments by 
using a crack-tip energy flux integral [22,26,27], and the dynamic ERR 
for the plane-stress condition is 

G=
1

2bE

[
M2

2(L, t)
I2

+
M2

3(L, t)
I3

−
M2

1(L, t)
I1

]

, (1)  

where M1(L,t), M2(L, t) and M3(L, t) are the internal bending moments at 
crack tip of beam sections ①, ② and ③, respectively; I1 = 8bh3/12 and 
I2 = I3 = bh3/12 are the corresponding second moment of area of the 
beam cross-section. Eq. (1) is for assessing the total ERR of the DCB 
configuration. Further examination of mode-mixity is required, and in 
light of mode-mixity partition theories [28–30], this is an approximately 
pure mode-I case (details in Section 2.3 and Appendix F). For the 
plane-strain condition, the effective Young’s modulus of E* = E/(1 − ν2)

should replace Young’s modulus E in Eq. (1) and throughout this paper. 
Note that Lagrange’s notation w(n) = ∂nw/∂xn is used to denote nth 
partial derivative of w with respect to the x coordinate, and Newton’s 
dot notation ẇ = ∂w/∂t and ẅ = ∂2w/∂t2 are the first and second partial 
derivative with respect to time. The deflections of the respective beam 
sections are derived in Section 2.1. 

2.1. Dynamic transverse response of DCB arm 

2.1.1. Boundary conditions and assumptions 
The boundary condition for beam section ① is free at x = 0 allowing 

the uncracked region deflecting downwards. The boundary condition for 
beam section ② is pinned at x = L+ a. And for beam section ③ at free 
edge x = L + a the rotational degree of freedom is unconstrained 
without introducing axial force. These conventional boundary condi
tions are detailed in Appendix B. 

The other boundary condition for beam section ③ due to the drop 
weight impact is given in Eq. (2), following the method proposed in 
Ref. [31] assuming that the contact between the DCB arm’s end and 
striker is “hard” without elastic contact deformation and shear force at 
the contact point must be equal to the reversed effective force of the 
striker. 

EI3w(3)
3 (L+ a, t)=Mẅ3(L+ a, t) . (2) 

Eq. (2) applies while the striker drives the DCB system downwards 
without separating from free edge of beam section ③. The maximum 
ERR is achieved when the striker arrives the maximum displacement 
after which the DCB arm rebounds and drives the striker back (Fig. H.1). 

It is also assumed that h ≪ a and h ≪ L, where the shear is considered 
to be insignificant, and so the Euler-Bernoulli beam theory applies, and 

Fig. 1. (a) Schematic of DCB specimen under drop weight impact; (b) boundary condition and coordinate system for three divided beam sections.  
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then the equations of motion for beam sections ①, ② and ③ are 

EI1w(4)
1 (x, t)+ ρA1ẅ1(x, t)= 0, (3)  

EI2w(4)
2 (x, t)+ ρA2ẅ2(x, t)= 0, (4)  

EI3w(4)
3 (x, t)+ ρA3ẅ3(x, t)= 0, (5)  

where A1 = 2bh and A2 = A3 = bh are respective areas of the cross- 
section. 

The general solutions for Eqs. (3)–(5) by separation of variables are 

w1(x, t) =
∑∞

i=1
W1i(x)Ti(t), (6)  

w2(x, t) =
∑∞

i=1
W2i(x)Ti(t), (7)  

w3(x, t) =
∑∞

i=1
W3i(x)Ti(t), (8)  

where W1i(x), W2i(x) and W3i(x) are the respective ith normal modes; 
and Ti(t) is the ith modal displacement. Combining Eqs. (3) and (6), (4) 

and (7), (5) and (8), three ordinary governing equations for normal 
modes of respective beam sections and one ordinary equation for modal 
displacement are derived: 

W(4)
1i (x) − α4

i W1i(x) = 0, (9)  

W(4)
2i (x) − β4

i W2i(x) = 0, (10)  

W(4)
3i (x) − β4

i W3i(x) = 0, (11)  

T̈ i(t)+ω2
i Ti(t) = 0, (12)  

where αi and βi are the wavenumbers with α4
i = ω2

i ρA1 /(EI1) and β4
i =

ω2
i ρA2 /(EI2), and ωi is the angular natural frequency. The solutions for 

the normal modes and the modal displacement are derived in Sections 
2.1.2 to 2.1.3, respectively. 

2.1.2. Solutions for normal modes and frequency equation 
The normal mode solutions for beam sections ①, ② and ③ in Eqs. 

(9)–(11) together with the boundary conditions in Tables. B.1, B.2 and 
B.3 are 

W1i(x)=Ci1φ1i(x), (13) 

Fig. 2. Eigenvalues for (a) first, (b) second, (c) third and (d) fourth vibration modes.  
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W2i(x)=Ci1φ2i(x), (14)  

W3i(x)=Ci1φ3i(x), (15)  

where φ1i(x), φ2i(x) and φ3i(x) are corresponding mode shapes: 

φ1i(x)= cosh(αix)+ cos(αix) +
Ci2

Ci1
[sinh(αix) + sin(αix)], (16)  

φ2i(x)=
Ci3

Ci1
sinh[βi(x − L − a)] +

Ci4

Ci1
sin[βi(x − L − a)], (17)  

φ3i(x)=
Ci5

Ci1
{cosh[βi(x − L − a)]+ cos[βi(x − L − a)]}

+
Ci6

Ci1
sinh[βi(x − L − a)] +

Ci7

Ci1
sin[βi(x − L − a)],

(18)  

with Ci1, Ci2, Ci3, Ci4, Ci5, Ci6 and Ci7 being the coefficients to be 
determined by the orthogonality and continuity conditions. 

Particularly, the other boundary condition for normal mode of beam 
section ③ W3i(x) can be obtain by Eq. (2). Combining Eqs. (8), (11) and 
(12), this boundary conditions for W3i(x) is then 

EI3W(3)
3i (L+ a)+ω2

i MW3i(L+ a)= 0 . (19) 

Substituting ω2
i = β4

i EI3 /(ρA3) and Eqs. (15) and (18) into (19), and 
introducing the delamination length ratio η = a /(a+L) and the mass 
ratio ξ = m/M between the DCB and the striker, where m = 2ρbh(L+a) is 
the total mass of the whole DCB system, the relation for coefficients Ci5, 
Ci6 and Ci7 is 

4βiaCi5 + ηξCi6 − ηξCi7 = 0 . (20) 

Now applying the continuity conditions for beam sections ①, ② and 
③ at crack tip x = L (Table. B.4) and combining Eq. (20), the following 
linear equation system for coefficients Ci1 to Ci7 is obtained:  

where λi = βia is the eigenvalue. For coefficients Ci1 to Ci7 to have non- 
zero solutions, the determinant of coefficient matrix of Eq. (21) must be 
zero, giving the frequency equations whose solutions are the eigenvalues 

as functions of the delamination length ratio η and mass ratio ξ between 
the DCB system and the striker. The eigenvalues for first four vibration 
modes are shown in Fig. 2. 

Note that eigenvalues λi for the DCB system, with the given boundary 
conditions and configuration, as a function of delamination length ratio 
η and mass ratio ξ determine the intrinsic dynamic response of the DCB 
system, such as natural frequency via ωi = (λi/a)2 ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

EI2/(ρA2)
√

, wave
number via βi = λi/a and mode shape via Eqs. (16)–(18). 

Turning back to the solution of coefficients Ci1 to Ci7, Ci1 can be 
obtained by orthogonality condition Eq. (C.5) (derivation in 
Appendix C) with i = j, giving 

C2
i1 =

1
(L + a)

1
χi
, (22)  

with 

χi =

∫ L

0
[φ1i(x)]

2dx+
1
2

∫ L+a

L
[φ2i(x)]

2dx+
1
2

∫ L+a

L
[φ3i(x)]

2dx

+
(L + a)

ξ
[φ3i(L + a)]2 . (23) 

Then ratios between coefficients, that is, Ci2/Ci1 to Ci7/Ci1 

(Appendix D) can be applied to determine each coefficient. 

2.1.3. Solution for modal displacement 
The general solution for the modal displacement in Eq. (12) is 

Ti(t) =Ti(0)cos(ωit) +
Ṫ i(0)

ωi
sin(ωit), (24)  

where Ti(0) and Ṫi(0) are the initial modal displacement and velocity, 
respectively. Initially at t = 0, the DCB system with beam sections ①, ② 
and ③ is at its undeformed state, and so, according to Eqs. (6)–(8), w1(x,
0) =

∑∞
i=1W1i(x)Ti(0) = 0, w2(x,0) =

∑∞
i=1W2i(x)Ti(0) = 0 and w3(x,0)

=
∑∞

i=1W3i(x)Ti(0) = 0, giving Ti(0) = 0. 
For the initial modal velocity, the initial velocity of respective beam 

sections of the DCB system are ẇ1(x,0) =
∑∞

i=1W1i(x)Ṫi(0) = 0, ẇ2(x,0)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[

cosh
[
(1− η)

̅̅̅
2

√
η

λi

]

+cos
[
(1− η)

̅̅̅
2

√
η

λi

]] [

sinh
[
(1− η)

̅̅̅
2

√
η

λi

]

+sin
[
(1− η)

̅̅̅
2

√
η

λi

]]

sinh(λi) sinh(λi) 0 0 0

0 0 sinh(λi) sin(λi) cosh(λi)+cos(λi) − sinh(λi) − sin(λi)
[

sinh
[
(1− η)

̅̅̅
2

√
η

λi

]

− sin
[
(1− η)

̅̅̅
2

√
η

λi

]] [

cosh
[
(1− η)

̅̅̅
2

√
η

λi

]

+cos
[
(1− η)

̅̅̅
2

√
η

λi

]]

−
̅̅̅
2

√
cosh(λi) −

̅̅̅
2

√
cos(λi) 0 0 0

0 0 cosh(λi) cos(λi) sinh(λi)− sin(λi) − cosh(λi) − cos(λi)

4
[

cosh
[
(1− η)

̅̅̅
2

√
η

λi

]

− cos
[
(1− η)

̅̅̅
2

√
η

λi

]]

4
[

sinh
[
(1− η)

̅̅̅
2

√
η

λi

]

− sin
[
(1− η)

̅̅̅
2

√
η

λi

]]

sinh(λi) − sin(λi) − cosh(λi)+cos(λi) sinh(λi) − sin(λi)

2
̅̅̅
2

√
[

sinh
[
(1− η)

̅̅̅
2

√
η

λi

]

+sin
[
(1− η)

̅̅̅
2

√
η

λi

]]

2
̅̅̅
2

√
[

cosh
[
(1− η)

̅̅̅
2

√
η

λi

]

− cos
[
(1− η)

̅̅̅
2

√
η

λi

]]

− cosh(λi) cos(λi) sinh(λi)+sin(λi) − cosh(λi) cos(λi)

0 0 0 0 4λi ηξ − ηξ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ci1
Ci2
Ci3
Ci4
Ci5
Ci6
Ci7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (21)   
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=
∑∞

i=1W2i(x)Ṫi(0) = 0, and ẇ3(x, 0) =
∑∞

i=1W3i(x)Ṫi(0) = 0, but the 
initial velocity at the impact point is ẇ3(L + a, 0) =

∑∞
i=1W3i(L + a)

Ṫi(0) = − v. Multiplying ẇ1(x,0) by W1j(x) and integrating over the 
beam length (0,L), multiplying ẇ2(x,0) by W2j(x)/2 and integrating over 
the beam length (L, L + a), multiplying ẇ3(x,0) by W3j(x)/ 2 over the 
beam length (L,L + a), and, then, summing these integrals together with 
(L+a)ẇ3(L+a,0)W3j(L+a)/ξ and applying the orthogonality condition 
(Eq. (C.5)), the initial modal velocity is found to be 

Ṫ i(0)=

⎡

⎢
⎢
⎢
⎣

∫ L

0
ẇ1(x, 0)W1i(x)dx +

1
2

∫ L+a

L
ẇ2(x, 0)W2i(x)dx

+
1
2

∫ L+a

L
ẇ3(x, 0)W3i(x)dx +

(L + a)
ξ

ẇ3(L + a, 0)W3i(L + a)

⎤

⎥
⎥
⎥
⎦

= − v
(L + a)

ξ
W3i(L+ a) .

(25) 

Now, combining the results from Sections 2.1.1 to 2.1.3, the de
flections of the beam sections ①, ② and ③ are respectively 

w1(x, t) = − v
1
ξ
∑∞

i=1

1
χiωi

φ3i(L+ a)φ1i(x)sin(ωit), (26)  

w2(x, t) = − v
1
ξ

∑∞

i=1

1
χiωi

φ3i(L+ a)φ2i(x)sin(ωit), (27)  

w3(x, t) = − v
1
ξ
∑∞

i=1

1
χiωi

φ3i(L+ a)φ3i(x)sin(ωit) . (28)  

2.2. Energy release rate 

By combining Eqs. (1) and (26)–(28) with the continuity condition 
for bending moment at crack tip EI1w(2)

1 (L, t) = EI2w(2)
2 (L, t) +

EI3w(2)
3 (L, t) (Table. B.4), the total dynamic ERR of the DCB specimen 

under impact, shown in Fig. 1, is obtained as 

G=
ρA2v2

16b

⎧
⎪⎪⎨

⎪⎪⎩

7

[
∑∞

i=1
Λi(η, ξ)sin(ωit)

]2

+ 7

[
∑∞

i=1
Ψi(η, ξ)sin(ωit)

]2

− 2

[
∑∞

i=1
Λi(η, ξ)sin(ωit)

][
∑∞

i=1
Ψi(η, ξ)sin(ωit)

]

⎫
⎪⎪⎬

⎪⎪⎭

, (29)  

where Λi(η, ξ) and Ψi(η, ξ) are ith mode contribution from beam sections 
② and ③ respectively: 

Λi(η, ξ)=
2
ξ

1
χi

[

−
Ci3

Ci1
sinh(λi)+

Ci4

Ci1
sin(λi)

]
Ci5

Ci1
, (30)  

Ψi(η, ξ)=
2
ξ

1
χi

{
Ci5

Ci1
[cosh(λi) − cos(λi)] −

Ci6

Ci1
sinh(λi)+

Ci7

Ci1
sin(λi)

}
Ci5

Ci1
.

(31) 

Fig. 3. Effect of mass ratio and delamination length ratio on contribution of first vibration mode to ERR for (a) upper beam and (b) lower beam, (c) comparison for 
η = 0.4 and (d) comparison for ξ = 0.01. 
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Note that the parameter Λi(η, ξ) and Ψi(η, ξ) are dimensionless and 
only a function of the delamination length ratio η and mass ratio ξ. The 
contributions of the ith vibration mode to the total ERR from the two 
DCB arms at the crack region, which Λi(η, ξ) and Ψi(η, ξ) represent, are 
therefore universal for DCBs under impact. 

It is also worth noting that the impact velocity only determines the 
magnitude of the total ERR, which is proportional to v2, while the 
delamination length ratio η and the mass ratio ξ defines the time 
response of dynamic ERR via Λi(η, ξ) and Ψi(η, ξ), showing a potential 
attunable contribution to the total ERR. 

In the experimental regard of measuring the delamination initiation 
toughness employing Eq. (29), it is required that the time for delami
nation initiation be recorded, such as by high-speed cameras and strain 
gauges. 

2.3. Contribution of ith vibration mode to ERR 

In Eq. (29), the contribution of the ith vibration mode to the total 

ERR is determined by the parameters Λi(η, ξ) and Ψi(η, ξ). For the first 
vibration mode, Λ1(η, ξ) and Ψ1(η, ξ) are solved and plotted in Fig. 3(a) 
and (b); particularly, for η = 0.4, the values of Λ1(0.4, ξ) and Ψ1(0.4, ξ)
are plotted in Fig. 3(c) with respect to various mas ratio ξ (exact values 
in Table. E.1); and for ξ = 0.01, their values are plotted in Fig. 3(d) 
(exact values in Table. E.2). 

It is seen that Λ1(η,ξ) ≈ − Ψ1(η,ξ), and note that Λ1(η, ξ) and Ψ1(η,ξ), 
representing the bending moments of first vibration mode at crack tip, 
are contributions from beam sections ② and ③, respectively, and Λ1(η,
ξ) ≈ − Ψ1(η, ξ), then, indicating a pure mode-I fracture mode from the 
first vibration mode, according to partition theories [28–30] and 
experimental support [32]. Note that despite the uncertainty around 
mode mixity for asymmetric DCBs, i.e., DCB arms with different thick
ness, the literature is generally in agreement for symmetric DCBs, i.e., 
DCB arms with same thickness, the case in this study. An examination 
using William’s partition theory is given in Appendix F. This is also the 
case for other vibration modes, and detailed comparison are given in 
Figs. E.1, E.2 and E.3 for the second, third and fourth vibration modes. 

Fig. 4. (a) Effect of mass ratio on contribution of ith vibration mode to ERR with η = 0.4 and (b) absolution values of contribution.  

Fig. 5. (a) Effect of mass ratio and delamination length ratio on dynamic factor of first vibration mode and (b) dynamic factor of first vibration mode for typical 
delamination length ratios. 
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Therefore, the ERR can be simplified by substituting Λi(η, ξ) for −
Ψi(η, ξ) into Eq. (29), giving 

G=
ρA2v2

b

[
∑∞

i=1
Λi(η, ξ)sin(ωit)

]2

. (32) 

Now the modal contribution from each vibration mode can be 
studied by investigating the values of Λi(η, ξ) from each vibration modes. 
For η = 0.4 (recommended in ASTM D5528), Λi(0.4, ξ) for the first four 
vibration modes are plotted in Fig. 4(a) with their absolute values in 
Fig. 4(b). 

It is seen that in Fig. 4, the first vibration mode makes the greatest 
contribution compared with other vibration modes, and its contribution 
becomes even significant when the mass ratio ξ is small. The variation of 
Λi(η, ξ) with the mass ratio ξ provides a very important feature of the 
time response of the dynamic ERR: (1) when the striker mass is large 
(and, hence, ξ is small), the first vibration dominates the ERR time 
response and forms a baseline, around which the contributions of other 
vibration modes oscillate; (2) when the striker mass is small (ξ is large), 
the contributions from all vibration modes are comparable, and the total 
ERR behaves as a coupled noise, without less dominant feature. 

2.4. Dynamic factor 

To study the dynamic effect associated with the delamination length 
ratio η and impact mass ratio ξ, a dynamic factor is defined as follows, 
considering the quasi-static solution. The quasi-static ERR (the super

script U denotes the strain energy, and the subscript st denotes the quasi- 
static motion) can be determined in terms of the opening displacement 
w3(L+a, t) of the DCB system, as GU

st. 

GU
st =

9EI2

ba4

[
1
2
w3(L + a, t)

]2

=
ρA2v2

b

[
∑∞

i=1
Хi(η, ξ)sin(ωit)

]2

, (33)  

where 

Хi(η, ξ)=
6
ξ

1
χi

1
λ2

i

(
Ci5

Ci1

)2

, (34)  

where the coefficient ratio Ci5/Ci1 is given in Eq. (D.1). The ERR 
component due to the dynamic effect is therefore Gdyn = G − GU

st, and 
the dynamic factor is defined as 

fdyn =
Gdyn

GU
st
=

[
∑∞

i=1
Λi sin(ωit)

]2

[
∑∞

i=1
Xi sin(ωit)

]2 − 1 . (35) 

According to Fig. 4, the dominant vibration mode is the first. It may 
therefore be insightful to study the dynamic factor with only the first 
vibration mode, which is 

f 1
dyn =

[Λ1(η, ξ)sin(ω1t)]2

[Х1(η, ξ)sin(ω1t)]2
− 1=

Λ2
1(η, ξ)
Х2

1(η, ξ)
− 1 . (36) 

For delamination length ratio 0.2 ≤ η ≤ 0.8 and 0.001 ≤ ξ ≤ 100, 
the dynamic factor f1

dyn is plotted in Fig. 5(a), and the evolution of f1
dyn 

with typical delamination length ratios (η = 0.2,0.4,0.6,0.8) are plotted 
with Fig. 5(b) as a function of mass ratio ξ. 

As seen in Fig. 5(a) and (b) when ξ ≤ 1 the first vibration mode 
dynamic factor f1

dyn varies log-linearly with respect to the mass ratio ξ, 
and, therefore, for ξ→0 (i.e., a very large striker mass), the dynamic 
factor approaches to zero f1

dyn→0; when ξ ≥ 1, the dynamic factor f1
dyn 

increases with respect to the mass ratio ξ and tends asymptotically to 
about 2.02 for η = 0.2, 0.83 for η = 0.4, 0.37 for η = 0.6 and 0.20 for 
η = 0.8 (Fig. 5(b)). 

This is an interesting observation as one might intuitively consider 
the opposite: dynamic factor should increase with increasing impact 
mass, but it is not the case. Considering the eigenvalue solutions in 
Section 2.1.2 for Fig. 2(a), when the striker mass increases as ξ→0, the 
eigenvalue of the first vibration mode approaches zero, that is, λ1→0, 
and, therefore, so does the natural frequency of the first vibration mode 
since ω1 = (λ1/a)2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
EI2/(ρA2)

√
, that is, ω1→0. The flexural vibration 

therefore transitions into the quasi-static motion. This is also seen in the 
mode shape in Eq. (17): as λ1→0, the wavenumber of the first vibration 
mode β1 = λ1 /a→0, and so the wavelength goes to infinity, which 
corresponds to the quasi-static motion. 

A similar phenomenon on was also reported in Refs. [33,34]. As 
illustrated in Fig. 6, as flexural vibration changes to quasi-static motion 
with ξ→0, the ERR component GU

st due to the strain energy of quasi-static 
motion becomes increasingly close to the total ERR G, with the ERR 
component Gdyn due to the dynamic effect and the dynamic factor both 
approaching zero. 

The significance of this finding is that it demonstrates the dynamic 
effect can be attunable and adjusted by experimental setup with various 
focuses of researchers. In addition, for significantly small mass ratio ξ 
(with large drop weight), the response of the DCB system tends to be 
same as the quasi-static one, and it might be assumed that the deflections 
of beam sections hold for various delamination length ratios, by 
employing Freund’s solution [26], the ERR can be related to the 
delamination propagating speed, giving 

Fig. 6. Beam deflections under impact with striker with small (a) and large 
(b) masses. 

Table 1 
Eigenvalues and modal contribution for η = 0.4 and ξ = 0.0255.  

Mode number 1 2 3 4 

λi(0.4, 0.0255) 0.29558 3.92691 7.06876 10.21030 
Λi(0.4,0.0255) − 17.14258 0.35006 − 0.20025 0.13847  

Fig. 7. VCCT for numerical determination of mode-I and –II ERR.  
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Fig. 8. Comparison of dynamic ERR versus time results obtained with developed theory and FEM with increasing numbers of vibration modes for isotropic material.  

Fig. 9. (a) Relative opening displacement at the vicinity of crack tip; (b) corresponding ERR comparison between developed theory and FEM.  

Table 2 
Material properties of unidirectional T800H/3900-2 graphite/epoxy composite.  

E11 =

154.72 GPa 
E22 = 7.58 GPa E33 = 7.58 GPa 

G12 = 4.27 GPa G13 = 4.27 GPa G23 = 2.88 GPa 
ν12 = 0.32 ν13 = 0.32 ν23 = 0.32 
E1f = 143.13 GPa    

Table 3 
Eigenvalues and modal contribution for η = 0.4 and ξ = 0.0318.  

Mode number 1 2 3 4 

λi(0.4, 0.0255) 0.31239 3.92699 7.06881 10.21033 
Λi(0.4, 0.0255) − 15.34176 0.35001 − 0.20023 0.13847  
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G=
ρA2v2

b

(

1 −
ȧ2

C2
0

)[
∑∞

i=1
Λi(η,ξ)sin(ωit)

]2

=
ρA2v2

b

(

1 −
ȧ2

C2
0

)[
∑∞

i=1
Хi(η,ξ)sin(ωit)

]2

,

(37)  

where ȧ is the delamination propagating speed and C0 =
̅̅̅̅̅̅̅̅
E/ρ

√
is the 

longitudinal wave speed. 

2.5. Crack-tip compliance correction 

The above derivation for the isotropic DCB under an impact load 
considers the uncracked region as a beam section (beam section ①) 
without taking account of the effect of interfacial stiffness between the 
upper and lower DCB arms. Still, shear compliance of the uncracked 
region due to small interfacial stiffness (for instance, adhesively bonded 
interface) may be significant and requires correction. 

The simplest method for uncracked-region compliance was devel
oped by Kanninen [35] by introducing an elastic Winkler foundation to 
model the interface between the DCB arms. Subsequently, various 
models were suggested, such as Pasternak foundation [36], a normal 
stress distribution [37], a combination of Euler-Bernoulli and Timo
shenko beam formations [38], a rotational spring for a crack tip [39] and 
a Timoshenko beam on elastic foundation [40]; the details and com
parison of these modeling techniques can be found in Ref. [41]. 
Nevertheless, one difficulty of these methods is their complicated 
analytical solutions that are not easy to obtain and implement. As for 
direct engineering applications, such as in ASTM D5528 (for CFRPs) and 
ISO 25217 (for adhesives), an additional delamination length Δ is usu
ally experimentally determined by relating the effective delamination 

length aeff = (a+Δ) to the cube root of the compliance to compensate 
for the uncracked-region shear compliance and crack-tip rotation. 
Particularly, the authors previously developed a relation between the 
interfacial stiffness based on the elastic Winkler foundation, this effec
tive delamination length aeff and the additional delamination length Δ 
[42]: 

Δ= aeff − a=
1
γ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2a3γ3 + 6a2γ2 + 3)2

4(aγ + 1)2
4

√

− a, (38)  

where γ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k/(4EI)4

√
and the elastic Winkler foundation stiffness is for 

an isotropic DCB; γ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k/(4E11I)4

√
and k = E33b/h for a composite DCB 

with E11 and E33 being the longitudinal and transverse moduli of the 
orthotropic composite materials. Note that for the isotropic DCB, the 
foundation stiffness is of the same order as that of the DCB arm and can 
be deemed as a rigid interface. Also, since the DCB is modelled as three- 
beam sections, the shear forces from these sections at the crack tip are 
represented, and the shear effect of the uncracked region might be 
ignored. Still, this is not the case for orthotropic composite materials, 
since the foundation stiffness usually is considerably smaller than the 
longitudinal modulus with significant shear strain at crack tip So, the 
shear-compliance correction, for instance using Eq. (38), for the un
cracked region must be considered, and this is further verified in Sec
tions 3.2 and 3.3. 

3. Numerical and experimental verifications 

3.1. Numerical verification for isotropic DCB 

FEM simulations were used to verify the analytical theory developed 

Fig. 10. Comparison of dynamic ERR versus time results obtained with developed theory and FEM with increasing numbers of vibration modes for orthotropic fiber- 
reinforced composite. 
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in Section 2 for the total dynamic ERR. The geometries for the DCB 
specimen are as follows: the length of the uncracked region is L = 75 mm 
and the delamination length is a = 50 mm (according to ASTM D5528), 
giving a total length of 125 mm and a delamination length ratio of η =

0.4; the total thickness 2h = 4 mm, and the width b = 1 mm. Isotropic 
elastic properties were used with the Young’s modulus of 100 GPa, the 
Poisson’s ratio of 0.3, and density of 103 kg m− 3. The impactor mass is 
0.0196 kg (giving a mass ratio ξ = 0.0255), and the initial impact ve
locity is 2 m s− 1. For the given delamination length ratio η = 0.4 and 
mass ratio ξ = 0.0255, the eigenvalues λi and modal contribution to ERR 
Λi are shown in Table 1. 

A 2D FEM model of the full DCB was built in Abaqus/Explicit using 
four-node plane-stress elements (CPS4R) in SI (mm) consistent units, 
and the uniform element size was 0.05 after convergence study. The 
uncracked region was modelled by sharing nodes of two DCB arms. The 
impact took place at the upper surface of the lower beam at the free end 
(Appendix G). The total dynamic ERR from the FEM was calculated 
using the virtual crack closure technique (VCCT) [43] as shown in Fig. 7 
and compared to that obtained with the analytical theory. 

Fig. 8 shows a comparison of the mode-I dynamic ERR from the 
analytical theory developed in Section 2 (red line) and from FEM 
simulation results (black line) with various numbers of vibration modes 
(long-term ERR comparison in Appendix H). In Fig. 8(a), note that for 
the FEM results the mode-II ERR is also examined which has a maximum 
value of 3.5 N m− 1 (blue line) and is insignificant compared to mode-I 
ERR. Therefore, the DCB under impact from a striker can be seen as a 
pure mode-I fracture case, consistent with the findings in Section 2.3. It 
is seen that the first vibration mode provides an “average” value of the 
ERR (Fig. 8(a)). By adding more vibration modes, the total ERR begins to 
oscillate around the ERR component from the first vibration mode, and 
becomes increasingly close to the FEM simulation results. The developed 

analytical theory and FEM simulations are generally in excellent 
agreement, for a sufficient number of vibration modes. 

Also note that the analytical theory does not take into account the 
contact or interpenetration, but at the beginning of the impact there can 
be interpenetration at the vicinity of crack tip, which, nevertheless, al
leviates and disappears with the increasing opening displacement. The 
relative opening displacement at the vicinity of crack tip Δw = w1 − w2 
for VCCT (Fig. 7) is checked, and result is in Fig. 9. 

It is seen that at the very beginning of the impact up to 0.065 ms, the 
beam sections ② and ③ can experience interpenetration (Fig. 9(a)). In 
reality at this period, the ERR should be zero since the opening 
displacement is restrained; however, the analytical model gives a 
maximum prediction for ERR of 1.86 N m− 1 (Fig. 9(b)). Considering the 
entire ERR time response, the influence of the interpenetration at the 
beginning of impact can be seen as negligible. 

3.2. Numerical verification for orthotropic fiber-reinforced composite 

In this section, the developed theory is verified against a simulation 
of an orthotropic CFRP material. To apply the developed theory, the 
conventional methods for determining the elastic modulus, as suggested 
in ASTM D5528, can be used to calculate the dynamic mode-I ERR in Eq. 
(32) with the longitudinal modulus of elasticity E11 or flexural modulus 
E1f . As indicated in Ref. [44], the results based on E11 are less accurate 
than those with E1f , and, therefore, E1f is employed together with Eq. 
(32) to determine the ERR. 

The orthotropic material properties of unidirectional T800H/3900-2 
CFRP, as tabulated in Table 2, were taken from Ref. [45] and adopted for 
an orthotropic FEM simulation. The same DCB dimensions of Section 3.1 
were used. 

Note that the transverse modulus E33 is far smaller than the longi

Fig. 11. Comparison of dynamic ERR versus time results obtained with developed theory and experiments with increasing numbers of vibration modes.  

T. Chen et al.                                                                                                                                                                                                                                    

astm:D5528
astm:D5528


Composites Science and Technology 241 (2023) 110120

12

tudinal modulus E11, and shear compliance due to the interfacial stiff
ness is significant, and correction is required. By employing Eq. (38), for 
the foundation stiffness of k = E33b/h = 3.79 GPa, the additional 
delamination length to compensate is Δ = 3.17 mm, and, therefore, the 
effective delamination length aeff = 53.17 mm is used. The density of 
T800H/3900-2 was taken from manufacturer’s data sheet as 1.25 × 103 

kg m− 3, giving a mass ratio of ξ = 0.0318. The eigenvalues and modal 
contribution are given in Table 3. 

The comparison between the analytical solutions and the FEM 
simulation results are shown in Fig. 10 with various vibration modes. As 
before, the first vibration mode determines the average value of the total 
ERR; by adding more vibration modes, the magnitude of the developed 
theory approaches the FEM result. The frequencies predicted with the 
analytical solution, however, are not as accurate. This may be due to the 
inaccuracy of the isotropy assumption in modeling the orthotropic 
composite material analytically. The discrepancy between the analytical 
solution and the FEM simulation in terms of frequency is not significant, 
and the analytical solution can still accurately predict the amplitude of 
the ERR for each vibration mode giving a reasonable assessment of the 
magnitude of the total ERR. 

3.3. Experimental verification 

Although the analytical configuration free of axial force to ensure a 
pure mode-I delamination in this study is different from experimental 
setup in Ref. [15], it was found that when the loading rate is smaller than 
3 m s− 1, it is still a pure mode-I case, which can be used to further 
validate the proposed theory in Section 2. The experimental data for 
loading rate of 1.5 m s− 1 and impact mass of 7 kg was used from the 
reference. Note that the ‘interface Young’s modulus’ as called in 
Ref. [15] is 2.9 GPa smaller than ‘laminate Young’s modulus’ of 63 GPa, 
crack-tip compliance has to be considered using Eq. (38). 

The comparison between the analytical solutions with various vi
bration modes and the experimental results are shown in Fig. 11. It is 
seen that with adding more vibration modes, the ERR derived using the 
proposed theory becomes increasing close to the experimental results, 
further verifying the developed theory. 

4. Conclusion 

The theory of a full DCB under impact from a striker was derived for 
the first time including the effect of structural vibration, providing 
analytical solutions for the dynamic deflection and the ERR. The dy
namic ERR is a function of the DCB properties, the initial impact velocity 
and the mass ratio between the DCB arm and the striker. It was found 
that the dynamic ERR is proportional to the square of the initial impact 
velocity and the mass ratio determines the dynamic ERR time response. 
And, therefore, the dynamic effect can be attunable by designating DCB 
configuration of delamination length ratio and mass ratio between the 
striker and the DCB. 

The dynamic effect was studied by defining a dynamic factor as the 
contribution to the total ERR from dynamic effects normalized against 
the ERR for the quasi-static motion. It was found that the first vibration 
mode made the main contribution to the total dynamic ERR for small 
mass ratios, and that this dynamic factor decreased with the increasing 
mass ratio until the response was dominated by quasi-static motion. 

The analytical theory was verified against the FEM simulations and 
experimental results from the literature. Two numerical cases were 
considered – an isotropic bi-layer composite and a laminated CFRP DCB 
– and one experimental case of initial impact velocity of 1.5 m s− 1 were 
considered. The results from the developed analytical theory are in 
excellent agreement with the FEM and experimental results. 

To the best of the authors’ knowledge, the dynamic mode-I ERR of a 
DCB test under impact with the striker has not been solved before 
including the effects of structural dynamics and beam vibration. More
over, previous investigations in the literature ignored the effect of 
structural vibration, leading to the conclusion that the dynamic effect 
was not significant in mode-I loading. It was demonstrated in this work, 
however, that structural vibration did make a significant contribution to 
the ERR and could not be neglected but adjustable. 

The derived theory is applicable in various applications, such as to 
measure the dynamic mode-I delamination toughness of materials, or to 
study the impact-induced fracture behavior. 
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Appendices. 

Appendix A. DCB testing configurations

Fig. A.1. Testing configurations: (a) Ref. [15] and (b) proposed in this study  

Appendix B. Boundary conditions and continuity conditions   

Table. B.1 
Boundary conditions for normal mode of beam section ①  

Coordinate Deflection w1(x, t) Normal modes W1i(x)

x = 0 EI1w(2)
1 (0, t) = 0 W(2)

1i (0) = 0 

EI1w(3)
1 (0, t) = 0 W(3)

1i (0) = 0   

Table. B.2 
Boundary conditions for normal mode of beam section ②  

Coordinate Deflection w2(x, t) Normal modes W2i(x)

x = L+ a w2(L + a, t) = 0 W2i(L + a) = 0 
EI2w(2)

2 (L + a, t) = 0 W(2)
2i (L + a) = 0   

Table. B.3 
Boundary conditions for normal mode of beam section ③  

Coordinate Deflection w3(x, t) Normal modes W3i(x)

x = L+ a EI3w(2)
3 (L + a, t) = 0 W(2)

3i (L + a) = 0   

Table. B.4 
Continuity conditions   

Deflection Normal modes 

Deflection w1(L, t) = w2(L, t) = w3(L, t) W1i(L) = W2i(L) = W2i(L)
Slope w(1)

1 (L, t) = w(1)
2 (L, t) = w(1)

3 (L, t) W(1)
1i (L) = W(1)

2i (L) = W(1)
2i (L)

Bending moment EI1w(2)
1 (L, t) = EI2w(2)

2 (L, t)+ EI3w(2)
3 (L, t) 8W(2)

1i (L) = W(2)
2i (L)+ W(2)

3i (L)
Shear force EI1w(3)

1 (L, t) = EI2w(3)
2 (L, t)+ EI3w(3)

3 (L, t) 8W(3)
1i (L) = W(3)

2i (L)+ W(3)
3i (L)

Appendix C. Derivation of orthogonality condition 

Integrating Eq. (9) twice by parts and applying the boundary conditions for W1i(x) in Table. B.1 to have 
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ω2
i
ρA1

EI1

∫ L

0
W1i(x)W1j(x)dx = W1j(L)W(3)

1i (L) − W(1)
1j (L)W

(2)
1i (L)+

∫ L

0
W(2)

1i (x)W
(2)
1j (x)dx . (C.1) 

Similarly, for beam section ②, integrating Eq. (10) twice by parts with the boundary conditions for W2i(x) in Table. B.2, and for beam section ③, 
integrating Eq. (11) twice by parts with the boundary conditions for W3i(x) in Table. B.3 

ω2
i
ρA2

EI2

∫ L+a

L
W2i(x)W2j(x)dx = − W(3)

2i (L)W2j(L)+W(1)
2j (L)W

(2)
2i (L)+

∫ L+a

L
W(2)

2i (x)W
(2)
2j (x)dx, (C.2)  

ω2
i
ρA3

EI3

∫ L+a

L
W3i(x)W3j(x)dx =

⎡

⎢
⎣
−

ω2
i

EI3
MW3i(L + a)W3j(L + a)

− W(3)
3i (L)W3j(L) + W(1)

3j (L)W
(2)
3i (L)

⎤

⎥
⎦+

∫ L+a

L
W(2)

3i (x)W
(2)
3j (x)dx . (C.3) 

Then, summing Eqs. (C.1), (C.2) and (C.3) with the continuity conditions in Table. B.4, subtracting itself with i and j exchanged, and introducing 
mass ratio ξ = m/M with m = 2ρbh(L+a) (the total mass of the DCB system) to have 

(
ω2

i − ω2
j

)

⎡

⎢
⎢
⎢
⎣

∫ L

0
W1i(x)W1j(x)dx +

1
2

∫ L+a

L
W2i(x)W2j(x)dx

+
1
2

∫ L+a

L
W3i(x)W3j(x)dx +

(L + a)
ξ

W3i(L + a)W3j(L + a)

⎤

⎥
⎥
⎥
⎦
= 0 . (C.4) 

Note that the natural frequency ωi is unique, that is, for i ∕= j, ωi ∕= ωj, and, therefore, the terms in bracket in Eq. (C.4) must be zero for i ∕= j; and 
incorporating the case for i = j, the orthogonality condition is obtained: 
∫ L

0
W1i(x)W1j(x)dx+

1
2

∫ L+a

L
W2i(x)W2j(x)dx +

1
2

∫ L+a

L
W3i(x)W3j(x)dx+

(L + a)
ξ

W3i(L+ a)W3j(L+ a)= δij . (C.5)  

Appendix D. Coefficient ratios 

Employing the continuity conditions in Table. B.4 to normal modes in Eqs. (13)–(15), the coefficients Ci2, Ci3, Ci4, Ci5, Ci6 and Ci7 can be expressed 
linearly with respect to Ci1, and their ratios are 

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ci2/Ci1

Ci3/Ci1

Ci4/Ci1

Ci5/Ci1

Ci6/Ci1

Ci7/Ci1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

{

sinh
[ ̅̅̅

2
√

2
(1 − η)

η λi

]

+ sin
[ ̅̅̅

2
√

2
(1 − η)

η λi

]}

sinh(λi) sin(λi) 0 0 0

0 sinh(λi) sin(λi) [cosh(λi) + cos(λi)] − sinh(λi) − sin(λi)

[

cosh
[ ̅̅̅

2
√

2
(1 − η)

η λi

]

+ cos
[ ̅̅̅

2
√

2
(1 − η)

η λi

]]

−
̅̅̅
2

√
cosh(λi) −

̅̅̅
2

√
cos(λi) 0 0 0

0 cosh(λi) cos(λi) [sinh(λi) − sin(λi)] − cosh(λi) − cos(λi)

4
[

sinh
[ ̅̅̅

2
√

2
(1 − η)

η λi

]

− sin
[ ̅̅̅

2
√

2
(1 − η)

η λi

]]

sinh(λi) − sin(λi) − [cosh(λi) − cos(λi)] sinh(λi) − sin(λi)

2
̅̅̅
2

√
[

cosh
[ ̅̅̅

2
√

2
(1 − η)

η λi

]

− cos
[ ̅̅̅

2
√

2
(1 − η)

η λi

]]

− cosh(λi) cos(λi) [sinh(λi) + sin(λi)] − cosh(λi) cos(λi)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−

{

cosh
[ ̅̅̅

2
√

2
(1 − η)

η λi

]

+ cos
[ ̅̅̅

2
√

2
(1 − η)

η λi

]}

0

−

{

sinh
[ ̅̅̅

2
√

2
(1 − η)

η λi

]

− sin
[ ̅̅̅

2
√

2
(1 − η)

η λi

]}

0

4
{

cosh
[ ̅̅̅

2
√

2
(1 − η)

η λi

]

− cos
[ ̅̅̅

2
√

2
(1 − η)

η λi

]}

2
̅̅̅
2

√
sinh

[ ̅̅̅
2

√

2
(1 − η)

η λi

]

+ sin
[ ̅̅̅

2
√

2
(1 − η)

η λi

]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(D.1)  
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Appendix E. Modal contributions to ERR  

Table. E.1 
Magnitudes of Λ1(0.4, ξ) and Ψ1(0.4, ξ) for various mass ratios  

Mass ratio ξ 0.001 0.005 0.01 0.05 0.1 0.5 1 5 10 

Λ1(0.4, ξ) − 86.60 − 38.73 − 27.38 − 12.24 − 8.65 − 3.84 − 2.69 − 1.10 − 0.69 
Ψ1(0.4, ξ) 86.60 38.72 27.37 12.21 8.61 3.76 2.58 0.93 0.53   

Table. E.2 
Magnitudes of Λ1(η,0.01) and Ψ1(η, 0.01) for various mass ratios  

Delamination length ratio η 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Λ1(η,0.01) − 38.73 − 31.62 − 27.38 − 24.49 − 22.35 − 20.69 − 19.36 
Ψ1(η,0.01) 38.70 31.60 27.37 24.48 22.35 20.69 19.36  

Fig. E.1. Effect of mass ratio and delamination length ratio on contribution of second vibration mode to ERR for (a) upper beam and (b) lower beam, (c) comparison 
for η = 0.4 and (d) comparison for ξ = 0.01  
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Fig. E.2. Effect of mass ratio and delamination length ratio on contribution of third vibration mode to ERR for (a) upper beam and (b) lower beam, (c) comparison 
for η = 0.4 and (d) comparison for ξ = 0.01  
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Fig. E.3. Effect of mass ratio and delamination length ratio on contribution of fourth vibration mode to ERR for (a) upper beam and (b) lower beam, (c) comparison 
for η = 0.4 and (d) comparison for ξ = 0.01 

Appendix F. Examination of mode mixity 

According to William’s partition theory [28], the mode-I and –II ERR are respectively: 

GI =
M2

I

bEI1

(1 + ψ)
16(1 − ζ)3 , (F.1)  

GII =
M2

II

bEI1

3
16

(1 − ζ)
ζ2 (1+ ζ), (F.2)  

where ζ = h /(2h) = 1 /2 is the thickness ratio, ψ = (1 − ζ)3
/ζ3 and MI and MII are partitioned bending moment pairs given as 

M2(L, t) =MII − MI, (F.3)  

M3(L, t) =ψMII + MI, (F.4)  

where M2(L, t) and M3(L, t) being the bending moments of beam sections ② and ③ at crack tip, respectively. 
Note that in Section 2.3, it is found that Λi(η, ξ) ≈ − ψ i(η, ξ), which represents the bending moments M2(L, t) and M3(L, t) respectively, and, 

therefore, M2(L, t) ≈ − M3(L, t). By applying this condition to Eqs. (F.3) and (F.4), MII = 0 which gives GII = 0, demonstrating a pure mode-I case. 
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Appendix G. FEM model for full DCB

Fig. G.1. Full DCB FEM model  

Appendix H. Long-term ERR evolution

Fig. H.1. Long-term ERR evolution with first (a) and first four vibration modes (b)  
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