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Model–consistent training has become trending for data-driven turbulence modeling since it can improve 
model generalizability and reduce data requirements by involving the Reynolds–averaged Navier–Stokes 
(RANS) equation during model learning. Neural networks are often used for the Reynolds stress 
representation due to their great expressive power, while they lack interpretability for the causal 
relationship between model inputs and outputs. Some post–hoc methods have been used to explain 
the neural network by indicating input feature importance. However, for the model–consistent training, 
the model explainability involves the analysis of both the neural network inputs and outputs. That 
is, the effects of model output on the RANS predictions should also be explained in addition to the 
input feature analysis. In this work, we investigate the explainability of the model–consistent learned 
model for the internal flow prediction of NASA Rotor 37 at its peak efficiency operating condition. The 
neural–network–based corrections for the Spalart–Allmaras turbulence model are learned from various 
experimental data based on the ensemble Kalman method. The learned model can noticeably improve 
the velocity prediction near the shroud. The explainability of the trained neural network is analyzed in 
terms of the model correction and the input feature importance. Specifically, the learned model correction 
increases the local turbulence production in the vortex breakdown region due to non–equilibrium effects, 
which capture the blockage effects near the shroud. Besides, the ratio of production to destruction and 
the helicity are shown to have relatively high importance for accurately predicting the compressor rotor 
flows based on the Shapley additive explanations method.

© 2023 Elsevier Masson SAS. All rights reserved.
1. Introduction

The compressor is one of the crucial components in an aircraft 
engine, concerning the overall performance of the aero-engine. Ac-
curate prediction of the internal compressor flows can provide 
prior assessments of the overall efficiency and further fuel con-
sumptions of the aero-engine [1], which is of significant inter-
est for the design of advanced engines. The Reynolds–averaged 
Navier–Stokes (RANS) method is the most widely used numerical 
approach for predicting compressor flows due to its computational 
efficiency. However, the accuracy of the RANS predictions in com-
pressor flows is highly affected by the ability of turbulence models. 
Therefore, it is necessary to develop accurate turbulence models 
for predictions of compressor flows.
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Over the past decades, various turbulence models [2–6], e.g., 
Spalart–Allmaras (SA) model and k–ε model, have been evaluated 
for compressor flows such as the NASA rotor 37 case [7–9], which 
is one canonical case for flows through a transonic compressor 
rotor. It has been recognized that the conventional eddy viscos-
ity models often lead to significant discrepancies for mean flow 
separation and curvature [10]. Especially for compressor flows, the 
occurring boundary layer transition, shock waves, tip leakage vor-
tices, and their interactions pose additional challenges for devel-
oping accurate turbulence models. Some efforts have been devoted 
to improving the RANS predictions of compressor flows by con-
sidering these physical phenomena. For instance, the modification 
with helicity and pressure gradient has been introduced in the SA 
model [11] to improve predictions of transonic axial compressor 
rotor flows, mainly in overall performance, e.g., the total pressure 
ratio. Further improvement is still worthy of investigation, particu-
larly for accurate flow field predictions.

Machine learning methods [12–14] are increasingly used for 
developing turbulence models due to their capability of learning 
complex functional relationships from data. The symbolic expres-
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sion [15,16], the tensor–based neural network [17], and the ran-
dom forest [18,19] are proposed to represent the Reynolds stress. 
However, such models are often trained directly with the Reynolds 
stress data, which is difficult to obtain for compressor flows due 
to the enormous computational cost [20]. On the one hand, the 
compressor flows of high Reynolds numbers exhibit small spatial 
and temporal scales of turbulence requiring a high computational 
cost for resolution [20]. On the other hand, complex characteristics 
of turbomachinery flow [21,22,1,23,24], such as the blade-to-blade 
interaction, row-to-row interaction, laminar-turbulent transition, 
surge, and stall, pose additional computational burdens. The mesh 
refinement is required near blades, end-walls, and tip gaps, as 
well as a comprehensive 360-degree computational domain when 
necessary [25], to capture these flow phenomena. Moreover, the 
model is often trained in the a priori manner, i.e., independent of 
the CFD solvers. This can result in significant discrepancies when 
coupled with the RANS solver due to the inconsistency between 
the training and the prediction environments [26]. In view of these 
difficulties, the model–consistent training strategy [26,27] is pro-
posed to learn data-driven turbulence models from indirect obser-
vation data such as velocity. It is achieved by involving the RANS 
solvers during the training process. Numerous methods have been 
proposed to perform the model–consistent learning including the 
ensemble Kalman method [28,29]. This method uses an ensem-
ble of samples to approximate gradient and Hessian information to 
perform second-order optimization implicitly. Hence given its good 
training efficiency, it is practical for complex configurations [30,31]
where the CFD calculation is computationally expensive.

The model–consistent training can improve the predictive abil-
ity of neural-network-based turbulence models, while the learned 
models still lack explainability. Some post–hoc methods such as 
the Shapley additive explanations (SHAP) analysis [32] have been 
introduced to indicate feature importance for neural-network-
based turbulence models [33] that are learned with the a priori
training. However, the model–consistent training involves the neu-
ral network and the RANS equations simultaneously. Hence, in ad-
dition to the input feature analysis of the neural network, predic-
tive improvement in the RANS calculation should also be explained 
based on the learned model correction. This is in contrast to the a 
priori training method that only needs to investigate the effects of 
input features on the neural network outputs.

This work focuses on the explainability of data-driven turbu-
lence modeling for the transonic flow of the axial compressor rotor. 
The neural network-based correction is introduced in the SA tur-
bulence model with selected input features, including helicity. The 
ensemble Kalman method is used to learn the turbulence model 
from various observation data, such as the velocity measurements. 
The effects of the neural network model on flow prediction are 
investigated from the perspectives of the model inputs and out-
puts. Specifically, the explainability analysis of the input features 
is performed through the SHAP method. The pure and interaction 
effects of the input features on the output are investigated, high-
lighting the importance of the production–to–destruction ratio and 
the helicity for accurate predictions of rotor flows. On the other 
hand, the effect of the learned model correction field on flow pre-
diction is also analyzed, which improves the velocity prediction by 
capturing the non–equilibrium effects in the vortex breakdown re-
gion.

The rest of the paper is outlined as follows. The ensemble 
Kalman-based turbulence modeling for rotor flows is introduced 
in Section 2. The test cases and corresponding results are pre-
sented and analyzed in Section 3. The explainability analysis of the 
learned model is discussed in Section 4. Finally, this paper is con-
cluded in Section 5.
2

2. Framework of turbulence modeling based on ensemble 
Kalman method

2.1. RANS equations

The Reynolds–averaged Navier–Stokes equations for compress-
ible flows in a rotating reference frame can be written as

∂ρ

∂t
+ ∂(ρu j)

∂x j
= 0, (1a)

∂(ρui)

∂t
+ ∂

(
ρuiu j + pδi j

)
∂x j

= ∂

∂x j
(σi j + τi j) + ρ f i, (1b)

∂(ρE)

∂t
+ ∂

[
(ρE + p) u j

]
∂x j

= ∂

∂x j

[
(σi j + τi j)ui − q j − qt

j

]
. (1c)

In the formula above, ui is the relative velocity, and the Coriolis 
force and centrifugal force are represented by f i = −2εi jk� juk +
∂

∂xi

(
�2r2/2

)
, with � = √

�i�i being the angular velocity magni-
tude, r is the radius to the rotating axis, and εi jk is the permutation 
tensor. The specific total energy E is defined as E = 1

γ −1 p/ρ +
1
2

(
uiui − �2r2

)
, where γ = 1.4 is the specific heat ratio of air. The 

equation of state p = ρRT relates the density ρ , the static pres-
sure p, and the static temperature T , where R = 287.03 m2s2K is 
the gas constant. The viscous stress tensor σi j and the heat flux q j

are defined as

σi j = μ

(
2Sij − 2

3

∂uk

∂xk
δi j

)
, q j = −κ

∂T

∂x j
. (2)

The mean strain rate tensor is defined as

Sij = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (3)

The thermal conductivity κ can be expressed as κ = μcp/Pr with 
Prandtl number Pr = 0.72 and the specific heat at constant pres-
sure cp = γ

γ −1 R . The dynamic viscosity μ depends on the tem-
perature described by Sutherland’s law. In this work, the Reynolds 
stress τi j and turbulent heat flux qt

j are expressed based on the 
Boussinesq hypothesis by

τi j = μt

(
2Sij − 2

3

∂uk

∂xk
δi j

)
, qt

j = −μtcp

Prt

∂T

∂x j
, (4)

where Prt = 0.9 is the turbulent Prandtl number and μt is the 
eddy viscosity estimated by the turbulence model.

The one-equation Spalart–Allmaras (SA) turbulence model [34]
is commonly used to simulate the compressor rotor flows due 
to its high computational efficiency. The eddy viscosity in the SA 
model is estimated by

μt = ρν̃ f v1, (5)

where f v1 is an intermediate function, and the working variable ν̃
is solved by the transport equation as

∂ν̃

∂t
+ u j

∂ν̃

∂x j
= P −D + T . (6)

The right-hand terms of the equation above are production, de-
struction, and diffusion, respectively. Their detailed formulas are 
presented in Appendix A. The working variable ν̃ transport equa-
tion is derived based on the equilibrium turbulence of the attached 
boundary layer flows [33], which often leads to significant predic-
tive discrepancies for flow with strong non-equilibrium effects. To 
address this issue, a correction coefficient β is multiplied on the 
production term of the SA model as [35]
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∂ν̃

∂t
+ u j

∂ν̃

∂x j
= βP −D + T . (7)

By doing so, the correction function β with respect to selected 
input features can be learned by minimizing the discrepancy be-
tween the model prediction and experimental data. The introduced 
coefficient β is dimensionless and can offer an appropriate ini-
tial value, i.e., β = 1, from the baseline SA model. The underlying 
mechanism of this correction is to consider the non-equilibrium 
effect as the conventional model assumes fixed ratios between the 
production and dissipation [36]. The introduction of β(x) is equiv-
alent to adding an extra source term (β(x) − 1)P , which changes 
the entire balance of the model, instead of merely a modification 
of the production term [37]. Note that one can also add corrections 
in the destruction terms, which have been conducted in Ref. [38]. 
Previous works [39,40,35,41,42,37,43] have demonstrated the ef-
ficacy of this corrective method to improve the accuracy of the 
RANS predictions. Hence we adopt this framework to enhance the 
turbulence models for transonic compressor flows.

2.2. Neural network-based turbulence model

Neural networks are often used to represent the Reynolds stress 
due to their great expressive power. We use a feedforward neural 
network to construct the correction β in the SA turbulence model. 
The neural network comprises 5 input features, i.e.,

q =
{
P
D

,
‖S‖
‖�‖ , δ, χ, h

}
. (8)

The first four features are suggested and chosen by Holland et 
al. [44], while the fifth feature, i.e., helicity h, is added based on 
the practice of turbulence modeling [45] for compressor flows. 
Specifically, the feature q1 is the ratio of production to destruc-
tion in the SA model, which indicates the non-equilibrium effects. 
Feature q2 is the ratio of strain rate magnitude to vorticity mag-
nitude, which measure the relative importance of shear strain and 
rotation. Feature q3 is an adverse pressure gradient indicator as

δ = 2

3

μt‖S‖
τw

, (9)

which measures the ratio of the local shear stress to the shear 
stress at the nearest wall. Medida et al. [46] used this indicator to 
modify the SA turbulence model and showed predictive improve-
ment for the flow over 2D airfoils at high angles of attack. Feature 
q4 is the ratio of the working variable ν̃ to molecular viscosity ν . 
Feature q5 is the local helicity h, defined by

h = u · ω
‖u‖‖ω‖ , (10)

which indicates the cosine value of the angle between velocity and 
vorticity. Note that the helicity is not Galilean invariant since it in-
volves a velocity vector. However, helicity is associated with the 
linkages and knottedness of vortex lines within fluid flows [47], 
which are typical flow structures in nonlinear energy transfer pro-
cesses, i.e., energy backscatter. Moreover, it has been introduced 
to improve the SA model by considering such phenomena in com-
pressor blade cascade [45] and compressor rotor [47]. Therefore, 
helicity is chosen as one of the input features in this work. The 
input features are summarized in Table 1. These raw input fea-
tures are mapped to a Gaussian distribution by q = F −1

q (F z(z)), 
where z is the raw input feature, F z(z) is the cumulative distri-
bution function of variable z, and Fq(q) is the standard accumu-
lative distribution. With the Gaussian scaling, all input features 
are brought in a similar distribution with zero mean and variance 
of one. The training results without the input feature of helicity 
3

Table 1
Input features of neural network.

Input Physical significance Description

q1 P/D ratio of production to destruction
q2 ‖S‖/‖�‖ ratio of strain magnitude to vorticity 

magnitude
q3 δ adverse pressure gradient indicator
q4 χ ratio of the SA variable to the kinematic 

viscosity
q5 h consistency of direction between velocity 

and vorticity

and production-to-destruction ratio are presented in Appendix B, 
which demonstrate the necessity of introducing the feature of he-
licity and production-to-destruction ratio.

2.3. Training neural-network using ensemble Kalman method

The ensemble Kalman method is adopted in this work to train 
the neural network weights due to its high efficiency and ease of 
implementation. Specifically, the ensemble Kalman method incor-
porates low-rank approximated Hessian information, leading to a 
second-order optimization. Moreover, the method is non-intrusive 
and derivative-free, without requiring extra effort in code redevel-
opment for CFD solvers.

The ensemble Kalman method is a statistical inference tech-
nique based on Monte Carlo sampling. The method draws random 
samples of weights and further uses the covariance of the sam-
ples to estimate the gradient of objective functions. The objective 
function to be minimized is defined as

J = ‖wi+1 − wi‖Pi + ‖H[wi+1] − y‖Ri ,

where w is the neural network weight, P is the sample covariance, 
H represents the model operator that propagates the neural net-
work weight to the observation quantity, R is the observation error 
covariance, and y is the observation data with random noise that 
conforms to a Gaussian distribution with mean zero and covari-
ance matrix R. The method employs an ensemble of realizations 
to estimate sample statistics. The sample mean W̄ and covariance 
P are represented as

W̄i = 1

M

M∑
j=1

wi
j ,

Pi = 1

M − 1
(Wi − W̄i)(Wi − W̄i)�,

(11)

where M is the sample size, i is the iteration number, j is the 
sample number, and W = {w j}M

j=1 is the ensemble of samples. Ac-
cording to the Gauss-Newton method, the neural network weight 
requires the gradient and Hessian information for iterative updates. 
The ensemble Kalman method employs the sample covariance to 
estimate the gradient and Hessian information [48]. In the i-th 
iteration step, the update scheme of each sample w j can be for-
mulated as

wi+1
j = wi

j + PiH�(HPiH� + Ri)−1(y j − Hwi
j), (12)

where H is the tangent linear observation operator. The readers re-
fer to Ref. [29] for further details of the ensemble-based learning 
framework. Fig. 1 illustrates the procedure of ensemble Kalman-
based turbulence modeling for compressor rotor flows. This proce-
dure consists of the following steps:

(a) The weights of neural networks are pre-trained to generate the 
baseline value, i.e., β = 1. Further, initial samples of weights 
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-

Fig. 1. Framework of the ensemble-based neural network training for the SA tur-
bulence model. The framework consists of the following steps: (a) sampling the 
weights of the neural network; (b) propagate the model correction β to velocity by 
solving the RANS equations; (c) update the neural network weights by incorporating 
observation data.

are drawn around the pre-trained weights based on Gaussian 
distribution.

(b) The flow features q are extracted based on the predicted flow 
field, which serves as inputs to the neural network. Further, 
the inputs are propagated to the model correction β through 
the neural network.

(c) The predicted quantities, such as the Mach number, the mass 
flow rate, the overall total pressure ratio, and the overall adi-
abatic efficiency, are propagated from the model correction β
by solving the RANS equations.

(d) The neural network weights are updated based on the ensemble
based statistical analysis of flow prediction and experimental 
observations.

Steps (b)-(d) are iterated until the data misfit is less than the ob-
servation noise level, or the maximum iteration number is reached.

2.4. Explainability for neural-network-based models

Intrinsic methods [49] are difficult to be used for the explain-
ability analysis of neural networks due to high model complexity. 
A feasible approach is to perform the post–hoc analysis that de-
termines the causal relationship between network inputs and out-
puts. The Shapley additive explanations (SHAP) method [50] is one 
widely used post–hoc approach to explain the feature contribution 
of neural networks. The idea behind the SHAP analysis comes from 
cooperative game theory. Each feature is treated as a player, and 
the model prediction is regarded as the payout. The SHAP analysis 
4

aims to compute the contribution, i.e., importance value, of each 
feature to the prediction.

In our neural network model, the network output β can be ex-
pressed as a sum of contributions from each feature, i.e.,

β = φ0 +
5∑

i=1

φi, (13)

where φi is the contribution of input feature qi , and φ0 is the null-
output of the model, i.e., the mean of outputs.

The SHAP values indicate feature contributions, which are com-
puted by

φi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!
|F |! δS(i),

δS(i) = f S∪{i}
(
xS∪{i}

) − f S (xS) , (14)

where F is the set of all features, the summation iterates over all 
possible subsets S of F excluding qi noted by S ⊆ F\ {i}, and the 
operator | · | means the number of elements in a set. The symbol 
! represents the factorial of a non-negative integer. δS represents 
the marginal contribution of qi as defined in Eq. (14), where xS

denotes the values of the input features in the set S . In the compu-
tation of δS , one model f S∪{i} is trained with the feature present, 
and another model f S is trained with the feature withheld. The 
factorial term in front of δS assigns each feature with a probability 
weight, representing the importance of the marginal contribution.

The SHAP interaction value φi, j indicates the interaction effect 
of two features qi, q j . It is calculated by [51]

φi, j =
∑

S⊆F\{i, j}

|S|!(|F | − |S| − 2)!
2 (|F | − 1)! δS (i, j) , i �= j,

δS (i, j) = f S∪{i, j}
(
xS∪{i, j}

) − f S∪{i}
(
xS∪{i}

) − f S∪{ j}
(
xS∪{ j}

)
+ f S (xS) , (15)

The pure effect of qi is then defined as

φi,i = φi −
∑
i �= j

φi, j , (16)

which subtracts all interaction values from the SHAP value.
The training algorithm of the ensemble Kalman method is im-

plemented in the DAFI code [52]. The open–source solver MUL-
TALL [53] is used to perform the CFD simulations for compressor 
rotor flows. The MULTALL code is a multistage, three-dimensional, 
steady viscous flow solver based on the time marching finite vol-
ume method, and the multigrid method is implemented to speed 
up calculation. The open-source SHAP library [54] is used to con-
duct the post–hoc analysis.

3. Training results for flows in NASA rotor 37

In this work, the ensemble Kalman method is used to improve 
the RANS prediction for internal flows in NASA Rotor 37. This tran-
sonic rotor is designed as an inlet stage for an eight-stage 20 : 1
pressure ratio advanced core compressor [7] and has been widely 
used for investigating compressor rotor flows [55,56]. The aerody-
namic design parameters are listed in Table 2. The CFD simulation 
is performed to predict the flow field for NASA Rotor 37 at the 
near peak efficiency operating condition, where mass flow is 98% 
of the choking mass flow (ṁchoke = 20.93 kg/s). This is the operat-
ing condition close to the design operating condition.
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Fig. 2. Geometry of computational domain and mesh. Panel (a) shows the geometry of the computational domain of one blade sector with the inlet, outlet boundary, and 
walls. The white-colored is stationary, and the green-colored is rotating. Panel (b) shows the H-type mesh in meridional view with green lines highlighting the 70% and 95% 
span. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
Table 2
Aerodynamic design parameters.

Number of blades 36

Tip diameter at leading edge 0.5074 m
Hub diameter at leading edge 0.3576 m
Rotational speed 17 188.7 rpm
Tip speed 454 m/s
Tip clearance 0.356 mm
Total pressure ratio 2.106
Total temperature ratio 1.270
Adiabatic efficiency 0.877
Mass flow rate 20.19 kg/s

3.1. Case set-up

An H-type structured mesh with about 0.51 million cells is 
used to discretize the computational domain based on our mesh 
sensitivity study. The numbers of cells in the pitchwise, stream-
wise, and spanwise directions are 45, 171, and 63, respectively. 
The near–wall mesh size in the spanwise and pitch-wise direc-
tions are scaled in viscous distance δν = 2.0 × 10−6 m and set 
as �r+

1 = 55.0 and � (rθ)+1 = 42.5, respectively. Fig. 2 shows the 
computational domain and the mesh from a meridional view. The 
locations of the 70% and 95% stream surfaces are highlighted by 
the green lines, which are used for the following plots. The inlet is 
located 4.19 cm upstream from the leading edge of the blade sec-
tion on the hub surface. The inlet boundary condition sets the total 
pressure and temperature profile measured by experiments along 
the spanwise direction. The axial velocity is imposed at the inlet. 
The outlet boundary condition adopts radial equilibrium assump-
tion [57] with the static pressure at the hub. The walls are no-slip 
and assumed adiabatic. The rotational periodic boundary condition 
is used since the computational domain covers one blade sector.

The experimental measurements [8] are used as observation 
data, including the Mach number, the mass flow rate, the overall 
total pressure ratio, and the overall adiabatic efficiency. The ob-
servation of Mach number is located at 70% span and 95% span 
for fixed axial locations corresponding to 20%, 40%, 65%, 90%, and 
104% of rotor chord. The experiment [8] only provides the mea-
surements of the Mach number at these two span positions. We 
use all the available measurements to ensure the predictive capa-
bility of the learned model at both span positions. The data points 
are uniformly distributed from the suction surface to the pressure 
surface, with a fixed interval being 0.025 rotor pitch. These loca-
tions are selected by Suder [8] to provide the flow field details near 
the shock/vortex interaction region, upstream and downstream of 
the shock impingement on the blade suction surface, and near the 
5

blade trailing edge. It is noted that the experimental data at 104% 
chord is shifted so that the profiled wake is centered in the middle 
of the plot. The experimental data of Mach number are acquired 
by laser anemometer system, and the overall performance is ac-
quired by aerodynamic probe measurements [8]. The integrity and 
reproducibility of experimental data have been validated in Suder’s 
report [8].

The neural network consists of an input layer, two hidden lay-
ers, and an output layer. The input layer consists of 5 neurons, 
where each neuron represents an input feature. Each hidden layer 
consists of 5 neurons which are activated by the rectified linear 
(ReLU) function. The output layer consists of 1 neuron, represent-
ing the correction coefficient β . The hyper-parameters in neural 
networks are determined by following the criteria [58] that two 
hidden layers can represent functions with any kind of shape, and 
the number of hidden neurons should be between the size of the 
input layer and the size of the output layer. We also perform a 
sensitivity study on the neural network architecture as shown in 
Appendix C, which shows that the selected network architecture 
provides the best predictive improvement in the Mach number.

We draw 50 samples to train the neural network based on the 
ensemble Kalman method. The standard deviation of neural net-
work weights is set as 0.6, and the standard deviation of the ob-
servation value is set as 0.1 in this work. The number of samples 
and the standard deviation value is set based on our sensitivity 
study to achieve a compromise between training accuracy and ef-
ficiency. An excessively large value of standard deviation can result 
in divergence of the CFD simulation, while an excessively small 
value can lead to slow convergence [59].

3.2. Training results in overall performance

The total pressure and total temperature at the streamwise lo-
cations are given by

pi

pref
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∫
Ai

(
pstg

pref

) γ −1
γ

ρu·ds

∫
Ai

ρu·ds

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

γ
γ −1

, T i =

∫
Ai

Tstgρu·ds

∫
Ai

ρu·ds

, (17)

where pstg is the stagnation pressure, pref is the reference pressure 
as 101 325 Pa in this work, Tstg is the stagnation temperature, ρu
is the momentum flux, and Ai is a cross-channel area. The total 
pressure ratio π and the adiabatic efficiency η are defined by
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Table 3
Overall performance.

ṁ/ṁchoke π η

Experimental 0.982 2.075 0.879
Baseline 0.996 2.130 0.874
Learned 0.985 2.115 0.865

Table 4
Summary of prediction error in radial total pressure ratio, radial total tempera-
ture ratio, radial adiabatic efficiency, and Mach number with the baseline and the 
learned models.

baseline learned

Radial total pressure ratio 2.73% 2.05%
Radial total temperature ratio 0.91% 0.97%
Radial adiabatic efficiency 1.62% 1.98%
Mach number 8.34% 7.28%

π = p2

p1
, η =

(
p2
p1

) γ −1
γ − 1

T 2
T 1

− 1
, (18)

where subscripts 1 and 2 indicate the inlet and outlet cross-
channel plane, respectively.

Our CFD simulations indicate that both the baseline and learned 
models can predict total pressure ratio and adiabatic efficiency 
close to experimental data. Compared to the baseline model, the 
learned model has better agreement with the experimental data, 
demonstrating the capability of the present ensemble-based turbu-
lence modeling. Table 3 shows the overall performance of the total 
pressure ratio and adiabatic efficiency of the NASA Rotor 37 case 
with a comparison among the baseline model, the learned model, 
and the experimental data. The learned results show the mean of 
all samples. The learned model slightly improves the prediction 
of the flow rate and pressure ratio but deteriorates the predic-
tion of the adiabatic efficiency compared to the baseline model. 
Such limited improvement in overall performance may be due to 
data imbalance since there are 330 data points for velocity, while 
there is only one data point for flow rate, pressure ratio, and adi-
abatic efficiency, respectively. The weight on the velocity observa-
tion should be reduced to further improve the prediction of the 
overall performance. However, we note that the present work fo-
cuses on the explainability of ensemble-based turbulence modeling 
in improving flow field predictions. The data balance strategies are 
of significant interest in learning from disparate data but are out 
of the scope of the present work, which will be investigated in the 
near future to improve the prediction of the overall performance 
and flow field simultaneously.

Fig. 3 presents the radial distribution of the total pressure ratio, 
total temperature ratio, and adiabatic efficiency for the NASA Rotor 
37. The learned model provides better predictions in total pres-
sure ratio and Mach number than the baseline model compared 
to experimental data. Moreover, the total pressure ratio is higher 
than the experimental values below the 40% span, which is also 
observed by other RANS or LES simulations [4,60,61]. The error 
is summarized in Table 4, quantitatively showing the comparable 
ability of the learned model in predicting the overall performance.

3.3. Training results in Mach number distributions

Fig. 4 compares the Mach number contours of the baseline 
model, the learned model, and experimental measurements at 95% 
span. Both the baseline and learned models can capture the vortex 
flow near the blade tip. Specifically, tip clearance flow passes over 
the rotor blade tip from the pressure surface to the suction surface 
over the front part of the blade chord, rolling into a tip vortex [4]. 
6

The tip vortex mitigates downstream and interacts with the nor-
mal shock wave at the leading edge, which causes the shape of 
the shock wave to be distorted [62]. The vortex breakdown occurs 
after the shock region, and the diffused vortexes move to the blade 
pressure surface and finally merge into the wake downstream [62]. 
It can be seen from Fig. 4(a)(b) that the learned models predict a 
more apparent region of low Mach number in the passage near 
the blade pressure surface side than the baseline model. The low-
momentum flow on the pressure surface side indicates the block-
age effects [8] due to the interaction between the shock wave and 
the tip leakage vortex. The difference in the predicted Mach num-
ber between the baseline and learned models can be clearly seen 
in Fig. 4(d). Note that there is a noticeable difference in Mach num-
ber near the bow shock wave between the baseline and learned 
models, likely due to variation of upcoming flow angle. Specifically, 
the flow angle α = arctan (‖� × r‖/ux) is the angle between rela-
tive velocity and x axial direction, where ux is the relative velocity 
component in x direction. Hence the flow angle with the learned 
model differs from the baseline as the learned models predict a 
slightly different mass flow rate as shown in Table 3, leading to 
the variation of ux [63].

Figs. 5(a)(b) show the contours of the Mach number at the 40% 
chord position. It can be seen that there is a low–speed region 
close to the shroud wall with both the baseline and learned mod-
els. The learned model reduces the Mach number near the shroud 
compared to the baseline model, as seen in Fig. 5(c), which is 
formed by the tip vortex rolled into the pressure surface side. Also, 
the learned model decreases the Mach number around the shock 
wave from hub to shroud, which indicates that the upcoming flow 
angle changes in the whole spanwise range.

The velocity profiles at various stations are plotted to better 
analyze the flow predictions with the learned model. Fig. 6 show 
the plots of the velocity profiles in Mach number from the suction 
surface to the pressure surface at different chord locations. The 
abscissa is normalized with the circumferential arc length at the 
local spanwise position.

At the 70% spanwise position, both the baseline and the learned 
models provide similar predictions of the Mach number at differ-
ent chord positions. At 70% span and 20% chord, the Mach number 
indicates that the shock impingement on the blade suction sur-
face occurs downstream. From 20% chord to 40% chord, there is 
a Mach number increment between the passage shock and the 
pressure surface. This suggests that the flow is accelerating near 
40% chord on the pressure surface side of the passage. The Mach 
number at 65% chord indicates that this location is downstream 
of the shock impingement point on the blade suction surface. At 
90% chord, the Mach number is almost constant across the pitch 
except near the blade surfaces. In addition, the blade suction sur-
face boundary layers become noticeably thicker from 65% to 90% 
chord. The Mach number downstream of the blade trailing edge 
at 104% chord illustrates the width and depth of the rotor wake. 
At the 104% chord, the width of the wake can be approximated as 
the sum of the blade thickness at the 90% chord and the boundary 
layer thicknesses on both the pressure and suction surface sides.

The observation location at 95% span and 40% chord is down-
stream of the shock-vortex interaction and upstream of the shock 
impingement on the blade suction surface. It can be seen that 
the learned model effectively improves the prediction of the Mach 
number behind the shock wave compared to the baseline. The ob-
servation location of 95% span and 65% chord is downstream of the 
shock impingement on the blade suction surface. Noticeable drops 
in Mach number can be seen near the mid-pitch, forming two dis-
tinct regions with a difference of 0.25 Mach number. This can also 
be observed from the contour plot in Fig. 4. The learned model 
significantly improves the velocity prediction in the low-speed re-
gion compared to the baseline model. At the observation location 
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Fig. 3. Radial distribution of the total pressure ratio, total temperature ratio, and adiabatic efficiency with comparison among experiments (square), the baseline model (blue 
dashed line), and the learned model. The results with the learned model show all samples (red band) and sample mean (red line).

Fig. 4. Mach number contours at 95% span. Panels (a) and (b) show the Mach number predicted with the baseline SA model and the learned model, respectively. Panel (c) 
shows the Mach number measured by experiments, and the black dashed line indicates the trajectory of tip leakage vortex [8]. Panel (d) shows the Mach number difference 
between the baseline model and the learned model, �(Ma) = Ma(learned) − Ma(baseline) . The green dash line with the constant streamwise location in (a)(b)(d) indicates the 
40% chord position.
7
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Fig. 5. Mach number contours at 40% chord. Panels (a) and (b) show the Mach number predicted by the baseline model and the learned model, respectively. Panel (c) shows 
the Mach number difference between the baseline model and the learned model, �(Ma) = Ma(learned) − Ma(baseline) . The green dash line with constant spanwise locations in 
(a)(b)(c) indicates the 95% span position.
of 95% span and 90% chord, the boundary layer on the suction 
surface side is thicker than that on the pressure surface side due 
to the shock-induced flow separation. The high–speed flow near 
the suction surface side can still be distinguished from the low–
speed flow near the pressure surface side. However, the difference 
in Mach number is not as pronounced as that at 65% chord due to 
diffusion effects as the flow moves downstream. The 104% chord 
position is located in the wake, where noticeable velocity loss can 
be seen. The wake near the suction surface side is wider due to 
the boundary layer separation, leading to asymmetric velocity dis-
tribution. The baseline model underestimates the wake mixing and 
predicts a sharp drop, while the learned model improves the pre-
diction of the velocity distribution near the suction surface side.

Note that the difference in Mach number before and after the 
shock wave can indicate the effect of the tip vortex on the flow [8]. 
Hence, the baseline model generally overpredicts Mach numbers 
at the observation location by underestimating the strength of the 
shock-leakage vortex interaction. In contrast, the neural network 
model can improve the prediction by appropriately capturing the 
interaction effect in this region. The relative error of the Mach 
number of the baseline and learned models is given in Table 4.

3.4. Generalizability tests

We validate the capability of the learned neural network model 
in predicting overall performance under other operating condi-
tions. The static outlet pressure ratio at the hub is varied to obtain 
the operating conditions of Rotor 37 at different flow rates at the 
design speed. The prediction results are presented in Fig. 7, with a 
comparison to the baseline model. It is observed that the baseline 
model overestimates the total pressure ratio at the design speed, 
while the learned model makes better predictions compared to the 
experimental data. In terms of predictive efficiency, the differences 
between the learned and baseline models were negligible. The se-
lected observation data primarily consists of Mach numbers, with 
the absence of thermodynamic variables like temperature. Conse-
quently, the prediction of isentropic efficiency does not exhibit a 
noticeable improvement. These results demonstrate that the neu-
ral network models have a certain degree of generalization ability 
to the unseen operating conditions.

4. Explainability analysis of the learned model

In this section, the behavior of the learned neural network 
model is investigated to explain the predictive improvement with 
the ensemble Kalman–based turbulence modeling. The explain-
ability in this work involves the learned model correction and 
8

the input feature contribution. Specifically, the predictive improve-
ment in Mach number should be explained based on the learned 
model correction. Also, the contribution of the input features to 
the learned model correction should be analyzed. In the following, 
the two aspects of explainability are investigated, respectively.

4.1. Explainability of learned model correction

We explain the improvements of the learned model in the 
Mach number prediction by analyzing the learned eddy viscos-
ity. Fig. 8 compares the eddy viscosity predicted with the baseline 
and learned models. From Fig. 8(a) and (b), it can be seen that 
both the baseline and learned models provide the eddy viscos-
ity with significantly large values downstream of the shock wave, 
near the shroud end wall and in the wake at 95% span. The inter-
action between the passage shock and the tip leakage flow leads 
to tip vortex breakdown and unsteady effects [4,9,64], which cause 
blockage effects to the mainstream. Compared with the baseline 
model, the learned model increases eddy viscosity significantly 
near the shroud on the pressure surface side and decreases that 
on the suction surface side, as shown in Fig. 8(c)(f). The baseline 
model may underestimate the eddy viscosity and further overes-
timate the Mach number near the shroud, as shown in Fig. 6. In 
contrast, the learned model increases the eddy viscosity after the 
interacting region between the shock and tip vortex. By doing so, 
the learned model enhances momentum and energy transfer. As 
such, the predicted velocity magnitude is reduced near the shroud 
and has a better agreement with the experimental data.

The learned eddy viscosity is further explained based on the 
neural network output β . Fig. 9 shows the sample mean of β at 
95% span and 40% chord. The red color highlights the region with 
β > 1, and the blue color indicates that with β < 1. It can be 
observed that β > 1 covers the region after the shock wave to a 
certain distance downstream of the trailing edge and the wake, as 
well as near the shroud and blade, indicating enhanced production 
in these regions. Note that the model correction β has noticeably 
large values in the wake while the eddy viscosity varies slightly 
from the baseline. This is likely due to the relatively small pro-
duction P in the wake, which can be seen by the contour plots in 
Fig. 10(a), and hence changes in β have little effect on eddy viscos-
ity. Besides, the correction β is reduced in the region upstream of 
the shock wave, indicating the weakened production effect. More-
over, the flow near the shroud is very sensitive to β , and a slight 
increase of β can result in significant changes in eddy viscosity 
based on Figs. 8 and 9. Such high sensitivity can be due to the 
local strong strain rate and further large production term P in 
the ν̃ transport equation, as seen in Fig. 10(b). Hence, small vari-
ations in β can result in significant changes in eddy viscosity by 
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Fig. 6. Plots of Mach number at 70% span (upper panels) and 95% span (bottom panels) for fixed streamwise locations of 20%, 40%, 65%, 90% and 104% chord at the near 
peak efficiency operating condition. The comparison is conducted among the experiments (dotted lines), the baseline SA model (blue dashed lines), and the learned model 
(red lines). The red band indicates the coverage of the samples from the learned model.

Fig. 7. Validation on the overall performance of Rotor 37: (left) the total pressure, (right) the adiabatic efficiency.
multiplying onto the production term. Besides, the neural network 
model increases the model correction β after the interacting region 
between the shock and tip leakage vortex, which augments eddy 
viscosity compared to the baseline model as shown in Fig. 8. The 
poor performance of the baseline model near the shroud can be 
due to the complicated interaction between the mainstream and 
the tip leakage vortices, which violates the equilibrium assump-
tion in the conventional SA model. In contrast, the learned model 
improves the prediction by increasing the turbulent production in 
the interacting region with strong non-equilibrium effects.

4.2. Explainability of model input features

The individual contribution of each input feature is investigated 
to explain the neural network in this section. The SHAP method 
is used to perform post–hoc explainability analysis based on the 
sample mean of the model correction β and network inputs q. The 
SHAP value φi can determine the contribution of the input feature 
qi to the neural network output β as illustrated in 2.4. The con-
9

tribution of each input feature to the learned model correction is 
discussed in the following.

Fig. 11 shows the SHAP values of the trained neural network. In 
Fig. 11(a), the input features are sorted in descending order of their 
average absolute SHAP value. The average absolute SHAP value re-
flects the overall importance of input features on the output, i.e., 
their global significance. It can be seen that P/D (i.e., q1) has the 
largest contribution to the output, which indicates the strong non-
equilibrium effects for the NASA Rotor 37 case. It is followed by 
helicity (i.e., q5) at nearly 0.2, demonstrating the significance of 
helicity for the compressor rotor flows. The importance of helic-
ity is also validated by various numerical simulations [45,47,65], 
where helicity is introduced to improve the SA model for com-
pressor flows. Features q2 (i.e., ‖S‖/‖�‖) and q3 (i.e., δ) have 
the similar magnitude around 0.09, which is about 30%–50% of 
mean absolute SHAP value of q1, q5. Feature q4 (i.e., χ ) has the 
minimum global significance. The SHAP analysis indicates that the 
production–to–destruction ratio and the helicity are the two most 
important influencing factors for the model prediction. Fig. 11(b) 
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Fig. 8. Contour plots of the eddy viscosity. Panels (a, b,c) show the eddy viscosity at 95% span of the baseline model, the learned model, and the difference between them, 
respectively. Panels (d, e,f) show the eddy viscosity at 40% chord of the baseline model, the learned model, and the difference between them, respectively. The difference is 
calculated by �(μt/μ) = (μt/μ)learned − (μt/μ)baseline .

Fig. 9. Contour plots of the neural network output β at 95% span and 40% chord.
shows the bee swarm plot of the correlation between the feature 
input qi and the corresponding SHAP value φi . It can be seen that 
the SHAP value φ1 is inversely proportional to q1, i.e., φ1 ∝ −q1, 
which means that the model correction β decreases as the ratio of 
the production to the destruction term increases. The SHAP value 
φ5 is proportional to q5, i.e., φ5 ∝ q5, which means that the net-
work output β increases as the value of helicity increases. The 
SHAP values φ2 and φ3 are inversely proportional to q2 and q3, 
respectively, i.e., φ2 ∝ −q2 and φ3 ∝ −q3. That means the model 
correction β decreases as the adverse pressure gradient and strain 
rates increase. Also, it is noted that the negative contribution of 
strain rates to the model output is much larger than the positive 
contribution. The SHAP value φ4 is proportional to the feature q4, 
i.e., φ4 ∝ q4. However, the correlation between φ4 and q4 is much 
10
less than other features, with most feature values having almost 
zero contribution to the output.

The spatial distribution of input feature values and SHAP val-
ues at the 95% span are plotted in Fig. 12 to illustrate the spatial 
relationship between input features and network output. The fea-
ture q1, i.e., P/D, has distinguished differences before and after 
the shock wave. Specifically, the feature q1 has relatively large val-
ues before the shock wave and small values after the shock wave. 
Its corresponding SHAP value is negatively correlated with the fea-
ture, as can be seen that the production term is reduced before 
the shock wave and increased after the shock wave. In the re-
gion with the shock wave, the input feature has relatively large 
values, while it has small feature values in the wake flows. Ac-
cordingly, the SHAP value of q1 is small in the shock region and 
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Fig. 10. Contour plots of the production term P predicted by the learned models at 95% span and 40% chord.

Fig. 11. SHAP analysis. (a) The bar chart shows the mean absolute SHAP value. (b) The bee swarm plot illustrates the details of the SHAP value. Each dot represents a CFD 
grid point, with horizontal coordinates indicating the SHAP value φ and the color bar indicating the value of inputs. Dots having the same SHAP value accumulate in the 
vertical direction, showing the distribution density of the SHAP value.
large in the wake. The feature q2, i.e., ‖S‖/‖�‖, characterizes the 
ratio of strain rate and rotation rate, which has large values in re-
gions with the shock wave, expansion wave, and near the center 
of the wake. These regions correspond to flow with strong strain 
rates. The corresponding SHAP values indicate that the production 
term of the baseline SA model should be reduced in these regions 
and increased in regions with lower strain rates. The feature q3, 
i.e., δ, characterizes the adverse pressure gradient effects, which 
have a large value after the shock wave. That is likely due to the 
abrupt pressure rise in the shock wave region. The SHAP values in-
dicate that the model correction needs to be reduced in regions 
with high adverse pressure gradients. The feature χ = ν̃/ν (q4) 
is the normalized working variable in the SA model, which is di-
rectly related to eddy viscosity. Hence its plot is very similar to 
the contour of eddy viscosity in Fig. 8. The SHAP value also indi-
cates a proportional correlation that the model correction term β

increases in regions with a large χ . The feature h (i.e., q5) charac-
terizes the consistency of velocity and vorticity directions, which 
has a larger value at the shock wave and in the wake. The corre-
sponding SHAP values indicate that the production term should be 
increased in these regions compared to the baseline model.

The SHAP value φi can be further divided into pure effects φi,i
and interaction effects φi, j . The pure effects φi,i indicate the ef-
fect of feature qi on the output subtracting the effect with other 
features, and φi, j represents the joint impact of input features qi
and q j on the output. Fig. 13(a) shows the mean absolute of the 
SHAP interaction value 

∣∣φi, j
∣∣. This is a symmetric matrix, where 

the diagonal elements represent the overall contribution of the 
pure impact of feature qi on the output, and the off-diagonal el-
11
ements represent the overall contribution of the joint impact of 
features qi and q j on the output. It can be seen that, for each in-
put feature, the contribution of pure effects to the output is greater 
than the contribution of its joint impact with other features. The 
values of the diagonal elements φi,i are sorted in the same order 
as the SHAP values φi . The rank according to the overall impact 
on the output is in the following order: 

∣∣φ1,1
∣∣ >

∣∣φ5,5
∣∣ >

∣∣φ3,3
∣∣ >∣∣φ5,1

∣∣ >
∣∣φ2,2

∣∣. In Fig. 13(b), the matrix from Fig. 13(a) is normal-
ized by dividing each off-diagonal element with the corresponding 
diagonal element, i.e., 

∣∣φi, j
∣∣/∣∣φi,i

∣∣. The resulting matrix represents 
the relative impact on the output when input features q j take joint 
effects with feature qi . The largest normalized interaction SHAP 
value (off-diagonal) in each row of the matrix in Fig. 11(b) are in 
the first column and the last column. It can be seen that features 
P/D (q1) and ‖S‖/‖�‖ (q2) have the greatest impact on the out-
put when interacting with helicity h (q5), and features δ (q3), χ
(q4), h (q5) have the greatest impact on the output when interact-
ing with feature P/D (q1).

Fig. 14 shows the relationship between φi,i and the correspond-
ing input feature qi , where each point represents a CFD grid point, 
and the solid blue line is a fitting curve to the data points. The 
relationship between the diagonal SHAP values and the input fea-
tures is similar to that shown in Fig. 11. That is, φ1,1 is propor-
tional to −q1; φ2,2 is proportional to q2 when q2 > 0; φ3,3 is 
proportional to −q3; φ4,4 is proportional to q4; φ5,5 is propor-
tional to q5. In terms of the pure effects of each feature, the output 
is most sensitive to the feature P/D since the fitting curve has 
the largest absolute value of the slope. The feature ‖S‖/‖�‖ has 
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Fig. 12. Contours of (a) input features (scaled) and (b) SHAP value at 95% span.

Fig. 13. Heatmap of (a) mean of absolute SHAP interaction values and (b) normalized mean of absolute SHAP interaction values.
12
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Fig. 14. Dialog SHAP interaction value φi,i on corresponding input feature qi .
negative effects on the output when q2 > 0, which indicates that 
this feature has noticeable impacts on the model output when the 
ratio of the strain rate tensor magnitude to the vorticity exceeds 
a certain threshold. The adverse pressure gradient indicator (i.e., 
q3) negatively correlates with the neural network output, which 
has a relatively moderate slope compared to q1. The feature χ
(i.e., q4) has a very small impact on the output, showing only 
a weak positive correlation. The pure effect of helicity h (q5) on 
the neural network output is relatively complex. When h is small 
(i.e., q5 < 0.25), its pure effect on the output increases monoton-
ically and reduces the network output. However, in the range of 
q5 > 0.25, the pure effect of helicity is not monotonic with two 
peaks.

Conclusively, we can gain insights into the black–box neural 
network model through explainability analysis of the input fea-
tures and model correction, as summarized in Fig. 15. The input 
features in descending order according to their global significance 
on model output are P/D, h, δ, ‖S‖/‖�‖, χ . It is found that the 
two most important features in the SA model correction are the ra-
tio of the production term to the destruction term and the helicity. 
The former measures non-equilibrium effects, while the latter af-
fects the energy backscatter in turbulence. The red arrows indicate 
larger values in feature importance, and the blue arrows indicate 
smaller values. Features P/D, ‖S‖/‖�‖, and δ have a negative 
correlation with the model output, while χ and h have a posi-
tive correlation. In the region after the tip leakage vortex interacts 
with the shock wave, model output has β > 1. The correction on 
the SA turbulence model captures the non-equilibrium effect in the 
vortex breakdown region by increasing the eddy viscosity. As such, 
the momentum and energy transfer are enhanced, and the Mach 
number in the blockage is well predicted compared to the base-
line model.

5. Conclusions

In this work, the explainability of the ensemble Kalman–based 
turbulence modeling is investigated for the transonic axial com-
pressor rotor flows. A neural network-based model correction is 
trained in a model–consistent manner, which improves the flow 
field prediction by incorporating various experimental data, includ-
13
ing the velocity. The learned neural network is analyzed to explain 
the predictive improvement based on the model correction and 
eddy viscosity fields. Moreover, the input features are analyzed to 
indicate their relative contributions to the learned model correc-
tions based on the SHAP method. The numerical results show that 
the learned neural network significantly improves the Mach num-
ber prediction near the shroud by capturing the blockage effects 
in the vortex breakdown region. Such blockage effects are under-
estimated with the baseline model, likely due to the equilibrium 
assumption. In contrast, the learned model can consider the non-
equilibrium effects to improve the flow prediction by increasing 
local production with the neural network-based model correction. 
Besides, our post–hoc explainability analysis of the neural network 
shows that the production–to–destruction ratio and the helicity are 
the two most important features of the learned neural network. 
This can guide the input feature selection for developing accurate 
turbulence models in future investigations.
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Fig. 15. Illustration of the neural network explanation in the input features and the model output.
Appendix A. Spalart–Allmaras turbulence model

The production, destruction, and transportation terms in the SA 
turbulence model read

P = cb1(1 − ft2) S̃ν̃,

D =
(

cw1 f w − cb1

κ2
ft2

)(
ν̃

d

)2

,

T = 1

σ

(
∇ · ((ν + ν̃

)∇ν̃
) + cb2

(∇ν̃
)2

)
,

(A.1)

in which

S̃ = S + ν̃

κ2d2
f v2, (A.2)

where S is the magnitude of the vorticity, and d is the nearest 
distance to the wall. Functions used in the model are defined by

f v1 = χ3

χ3 + c3
v1

, f v2 = 1 − χ

1 + χ f v1
,

f w = g

[
1 + c6

w3

g6 + c6
w3

]1/6

, (A.3)

where χ ≡ ν̃/ν, g = r + cw2
(
r6 − r

)
, r ≡ ν̃/( S̃κ2d2). The constants 

cb1, cb2, κ, σ , cw1 = cb1/κ + (1 + cb2)/σ , cw2, cw3, cv1 are specified. 
The boundary condition on the wall is expressed by setting ν̃ = 0. 
Fig. A.1. Plots of Mach number at 70% span (upper panels) and 95% span (bottom panel
peak efficiency operating condition. The comparison is conducted among the experimen
(green dashed lines), and the learned model (red lines). The red band indicates the cove
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Meanwhile, the ft2 related terms are ignored in the simulation. 
The SA-helicity model [45] is proposed to take account of the en-
ergy backscatter by modifying

S̃ =
(

1 + Ch1hCh2

)
ω + ν̃

κ2d2
fν2, (A.4)

where h is the helicity density, and Ch1 = 0.71, Ch2 = 0.6 are con-
stants.

We compare the prediction of the original SA model, the SA-
helicity model, and the learned model in the Mach number at 70%
span and 95% span. The results are presented in Fig. A.1, which 
show that the SA-helicity model does not achieve significant im-
provement compared to the SA model. We note that it is not a 
comprehensive comparison between the two turbulence models, 
and the results are obtained based on our particular implementa-
tion in the Multall code with the H-type mesh.

In the present work, we use the original SA model as the base-
line model to exclude the influence of helicity. By doing so, we can 
validate the capability of machine learning in identifying impor-
tant features, e.g., helicity, for turbulence modeling of compressor 
flows.

Appendix B. Neural network model with partial input features

We train the neural networks with partial input features to vali-
date the effects of specific features, i.e., the production-destruction 
ratio and helicity, on the flow prediction. The used method and 
s) for fixed streamwise locations of 20%, 40%, 65%, 90% and 104% chord at the near 
ts (dotted lines), the baseline SA model (blue dashed lines), the SA-helicity model 

rage of the samples from the learned model.
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Fig. B.1. Plots of Mach number at 70% span (upper panels) and 95% span (bottom panels) for fixed streamwise locations of 20%, 40%, 65%, 90% and 104% chord at the near 
peak efficiency operating condition. The comparison is conducted among the experiments (dotted lines), the baseline SA model (blue dashed lines), the mean of the learned 
model with all five inputs (red lines), the mean of the learned model without helicity as input (green lines), and the mean of the learned model without P/D as input 
(orange lines).

Fig. B.2. The bar chart of SHAP analysis. The chart shows the mean absolute SHAP value of neural network input features.
case setup are consistent with the case with full input features as 
illustrated in Section 3. The main results and discussion are pre-
sented in the following.

A neural network without the input of helicity is trained 
to highlight the importance of helicity as an input. The input 
features q only include the four features in Eq. (8), i.e., P/D, 
‖S‖/‖�‖, δ, χ . The predicted Mach number is illustrated in 
Fig. B.1. Compared to the full neural network with the input of 
helicity, the model has limited improvements in Mach number pre-
diction. It can be seen that the neural network model predicts a 
higher Mach number than the model with input of helicity in the 
subsonic region, e.g., the 40% chord and 95% span, as well as 65% 
chord and 95% span. In 104% chord and 95% span, the model with-
out inputs of helicity predicts a Mach number distribution in the 
wake center closer to the result of the baseline model. The appar-
ent discrepancy in Mach number predictions shows the importance 
of helicity for improving the SA turbulence model.

Also, the neural network without the input of P/D is trained to 
validate the importance of P/D as an input. The input features q
only include the four features in Eq. (8), i.e., ‖S‖/‖�‖, δ, χ , h. The 
15
predicted Mach number is illustrated in Fig. B.1. Compared to the 
full neural network with the input of P/D, the model has limited 
improvements in Mach number prediction. It can be seen that the 
neural network model without the input of P/D predicts a lower 
Mach number over the entire rotor pitch than the full model, e.g., 
the 40% chord and 95% span, 65% chord and 95% span, as well 
as 90% chord and 95% span. The apparent discrepancy in Mach 
number predictions shows the importance of P/D for improving 
the SA turbulence model.

To enhance the validation of SHAP analysis, the mean absolute 
SHAP value of the four features are illustrated in Fig. B.2. It shows 
that for the case without the input of h, the feature importance 
is consistent with the case with helicity as shown in Fig. 11. That 
is, the feature that contributes the most is P/D, while the feature 
that contributes the least is χ . The features δ, ‖S‖/‖�‖ still have 
a similar SHAP value to the case with helicity as input. For the 
case without the input of P/D, the feature δ exhibits the greatest 
influence on the output, surpassing helicity h in terms of contribu-
tion. Meanwhile, the features ‖S‖/‖�‖ and χ keep their positions 
as the least significant features, with unchanged relative order. The 
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Table C.5
Summary of prediction error in radial total pressure ratio, radial total temperature 
ratio, radial adiabatic efficiency, and Mach number with the baseline and different 
neural networks.

baseline NN 1 NN 2 NN3

Number of hidden layers 2 2 4
Number of neurons in each hidden layer 5 10 10
Radial total pressure ratio 2.73% 2.05% 3.78% 3.78%
Radial total temperature ratio 0.91% 0.97% 1.37% 1.37%
Radial adiabatic efficiency 1.62% 1.98% 1.50% 1.49%
Mach number 8.34% 7.28% 8.35% 8.35%

SHAP value of δ gets increased likely due to the strong connection 
between δ and P/D. The feature δ indicates the adverse pressure 
gradient, which can also represent the non–equilibrium effects as 
the feature P/D. The contribution of the feature δ is increased 
to capture the non–equilibrium effects with the exclusion of P/D. 
Also, it can be seen from Fig. 13(a) that 

∣∣φ3,1
∣∣, i.e., the interac-

tion between the feature δ and the feature P/D, has the highest 
interaction value, excluding the diagonals in the third row.

Appendix C. Sensitivity study of neural network 
hyperparameters

We employ different neural network architectures to investigate 
the effect of the hyperparameters on the predictive performance of 
the neural network. Three network architectures are tested: (1) 2 
hidden layers with 5 neurons per layer (NN1); (2) 2 hidden lay-
ers with 10 neurons per layer (NN2); and (3) 4 hidden layers with 
10 neurons per layer (NN3). The predictive error is summarized 
in Table C.5, quantitatively showing the comparable ability of dif-
ferent neural networks in predicting the radial performance and 
Mach number. The results demonstrate that neural network NN1 
exhibits the best prediction of Mach number improvement.
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