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In this paper, we present a systematic study of the nonlinear evolution of the travelling
Mack modes in a Mach 3 supersonic boundary layer over a rotating cone with a 7◦
half-apex angle using the nonlinear parabolic stability equation (NPSE). To quantify the
effect of cone rotation, six cases with different rotation rates are considered, and from
the same streamwise position, a pair of oblique Mack modes with the same frequency but
opposite circumferential wavenumbers are introduced as the initial perturbations for NPSE
calculations. As the angular rotation rate Ω increases such that Ω̄ (defined as the ratio of
the rotation speed of the cone to the streamwise velocity at the boundary-layer edge) varies
from 0 to O(1), three distinguished nonlinear regimes appear, namely the oblique-mode
breakdown, the generalised fundamental resonance and the centrifugal-instability-induced
transition. For each regime, the mechanisms for the amplifications of the streak mode
and the harmonic travelling waves are explained in detail, and the dominant role of the
streak mode in triggering the breakdown of the laminar flow is particularly highlighted.
Additionally, from the linear stability theory, the dominant travelling mode undergoes the
greatest amplification for a moderate Ω , which, according to the eN transition-prediction
method, indicates premature transition to turbulence. However, this is in contrast to the
NPSE results, in which a delay of the transition onset is observed for a moderate Ω .
Such a disagreement is attributed to the different nonlinear regimes appearing for different
rotation rates. Therefore, the traditional transition-prediction method based on the linear
instability should be carefully employed if multiple nonlinear regimes may appear.
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1. Introduction

Laminar–turbulent transition in supersonic boundary layers is an attractive issue of
practical importance in recent decades, due to its relevance to the aerodynamic design
of high-speed vehicles (Fedorov 2011; Zhong & Wang 2012). Natural transition, usually
occurring in real-flight or wind-tunnel conditions, is significantly influenced by external
perturbations, greatly underpinned by an inherent linear instability mechanism (Reed,
Saric & Arnal 1996; Saric, Reed & White 2003), and to a large extent, dominated
by the ensuing nonlinear dynamics (Kachanov 1994). In a pioneering work on linear
stability analysis in supersonic boundary layers, Mack (1987) reported that more than
one discrete-mode solution exists, which are named the Mack first, second, . . ., modes
according to the ascending order of their frequencies. The linear evolution of these modes
was confirmed by a great number of subsequent numerical works (Fedorov 2011; Zhong
& Wang 2012). It was revealed by asymptotic analysis that only the Mack first mode
with Θ > tan−1

√
M2 − 1 (where Θ and M denote the wave angle and Mach number,

respectively) has a viscous nature (Smith 1989; Liu, Dong & Wu 2020), while the
quasi-two-dimensional first and all the higher-order Mack modes are inviscid (Cowley &
Hall 1990; Smith & Brown 1990; Dong, Liu & Wu 2020; Zhao, He & Dong 2023). When
the unstable modes are accumulated to finite amplitudes, the nonlinear interaction among
different Fourier components becomes the leading-order impact. A series of theories
were established in order to probe the nonlinear-interaction mechanisms, such as the
weakly nonlinear theory (Stuart 1958, 1960; Watson 1960), triad resonance (Craik 1971)
and secondary instability (Maseev 1968; Herbert 1988). In recent decades, the nonlinear
breakdown of supersonic/hypersonic boundary-layer flows has received more and more
attention; see the series of numerical works by Mayer, Von Terzi & Fasel (2011a); Franko
& Lele (2013); Sivasubramanian & Fasel (2015); Chen, Zhu & Lee (2017); Hader & Fasel
(2019); Hartman, Hader & Fasel (2021) and Song, Dong & Zhao (2022).

In general, there exist three typical types of nonlinear-interaction regimes in
two-dimensional (2-D) (or axisymmetric) boundary-layer flows, namely the oblique-mode
breakdown (OB) regime, the fundamental resonance regime and the subharmonic
resonance regime.

The OB regime appears when the dominant perturbations in the early nonlinear phase
are three-dimensional (3-D), referred to as oblique travelling waves. A schematic of the
OB regime is shown in figure 1(a), where two dominant perturbations with the same
frequency but different spanwise wavenumbers, marked by (1, 1) and (1, −1) (here M
and N in (M,N ) represent the ratio of the frequency and spanwise wavenumber to
their fundamental counterparts, respectively), are highlighted in yellow circles (in fact,
the two dominant modes are not necessarily symmetric about the frequency axis; the
plot is convenient for demonstration). For low-Mach-number supersonic boundary layers
(roughly speaking, 1 < M < 4), there only exists one branch of instability, the Mack
first-mode instability, and the most unstable mode appears as an oblique travelling wave.
Thus, in the early nonlinear phase, the most amplified linear modes are most likely to be
3-D, leading to the OB route to trigger transition to turbulence. Numerical calculations
in Thumm (1991), Fasel, Thumm & Bestek (1993) and Chang & Malik (1994) showed
that, when a pair of oblique modes as in figure 1(a) are introduced and evolve to the
nonlinear phase, a stationary streak mode, (0, 2), is generated and grows with a greater
rate; the streak mode eventually overwhelms the introduced oblique modes and supports
the amplification of the secondary instability (SI) travelling modes with a large unstable
zone and high growth rates, leading to breakdown of the laminar flow and transition to
turbulence. It is also observed that, in the early nonlinear phase, the growth rate of the
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Figure 1. Parametric resonance in the frequency–spanwise-wavenumber space. (a) the OB regime; (b) the
fundamental resonance regime; (c) the subharmonic resonance regime. Here, ω0 and β0 denote the fundamental
frequency and spanwise wavenumber, respectively. A similar figure can be found in Hader & Fasel (2019).

streak mode is the same as that of the 2-D travelling mode (2, 0) and the mean-flow
distortion (MFD) (0, 0), but its amplitude is much greater than those of the latter two.
Such an extra amplification of the streak mode was recently explained using an asymptotic
analysis by considering that the growth rate of the travelling Mack mode is much smaller
than its wavenumber (Song et al. 2022). It was found that the transverse and lateral
perturbation velocities, showing a roll structure, are preliminarily amplified due to the
nonlinear interaction of the oblique modes, but the streamwise perturbation velocity
undergoes a further amplification due to the lift-up mechanism induced by the roll
structure.

If the dominant perturbation in a 2-D (or axisymmetric) base flow is a 2-D travelling
wave, (1, 0), then in the nonlinear phase, the 3-D oblique perturbations would undergo
rapid amplifications due to the SI mechanism. For a hypersonic boundary layer where
the Mack second mode is the most linearly amplified perturbation, the most unstable
SI modes are the ones with the same frequency but non-zero spanwise wavenumbers
(Sivasubramanian & Fasel 2015; Chen et al. 2017; Hader & Fasel 2019). This scenario
is referred to as the fundamental resonance. Based on the critical-layer theory (Wu 2004;
Zhang & Wu 2022), Wu, Luo & Yu (2016) deduced the evolution equations for the oblique
modes and claimed that the 2-D mode acts as a catalyst to promote the growth of the
oblique modes. The 2-D and the oblique modes are found to be phase locked. As reported
by the experimental studies of Brad et al. (2009), Chou et al. (2011) and Chynoweth et al.
(2019), the streak component in this regime is always much greater than the other SI
modes, forming longitudinal streak patterns. This phenomenon was later confirmed by
the SI analysis based on a base flow including the saturated Mack second mode (Chen
et al. 2017; Xu et al. 2020).

For a subsonic or incompressible boundary layer, the most unstable Tollmien–Schlichting
mode is two-dimensional, proven by the Squire theorem, and its nonlinear saturation also
leads to the rapid amplification of the SI oblique mode. Both numerical calculations
(Herbert 1988) and experimental observations (Saric, Kozlov & Levchenko 1984)
suggested that the frequency of the most unstable SI modes in the low-speed boundary
layers is half that of the dominant 2-D mode, rendering a subharmonic resonance nature.
For supersonic boundary layers, Kosinov, Maslov & Shevelkov (1990), Kosinov et al.
(1994) and Kosinov & Tumin (1996) reported a generalised subharmonic regime, for which
the dominant perturbation is a 3-D first mode, and the two most promoted SI modes are
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Figure 2. Sketch of the instability modes in the θ–Ω̄ space.

subharmonic in frequency. This scenario was later confirmed by the numerical simulations
in Mayer, Wernz & Fasel (2011b).

Boundary layers over a rotating disc or a rotating cone are representative 3-D boundary
layers, whose linear instability for an incompressible configuration has been studied by
a series of works (see Reed & Saric (1989), Kobayashi (1994), Saric et al. (2003) and
the references therein). For a rotating cone in a still fluid, the half-apex angle θ is a key
factor influencing the instability characteristics. As reported by Gregory et al. (1955),
Kobayashi, Kohama & Takamadate (1980), Kobayashi & Izumi (1983), Hussain, Garrett
& Stephen (2014) and Kato et al. (2021), the cross-flow and the centrifugal instability
dominate the linear instability for a broad cone (θ > 40◦) and a slender cone (θ < 40◦),
respectively. For a broad cone, the cross-flow instability at the upper-branch neutral point
is driven by an inviscid regime, associated with the inflectional point of the base flow,
whereas that at the lower-branch neutral point is driven by the balance of the viscosity,
pressure gradient and Coriolis force in the near-wall region, which is a viscous mode
(Hall 1986; Malik 1986; Garrett, Hussain & Stephen 2009). For a slender cone inserted
into an axial flow, increase of the axial velocity leads to a suppression of the centrifugal
instability (Kobayashi, Kohama & Kurosawa 1983; Hussain et al. 2016; Tambe et al.
2021) but an enhancement of the travelling Tollmien–Schlichting wave (Schubauer &
Skramstad 1943). The compressible effect on the linear instability of rotating discs or
cones was considered by Turkyilmazoglu, Cole & Gajjar (2000), Turkyilmazoglu (2005),
Towers & Garrett (2012, 2016) and Towers (2013). In the design of spinning projectiles
in defence applications, a rotating slender cone with a supersonic axial flow is a more
relevant model. The rotation-induced Magnus effect was studied by Sturek et al. (1978)
and Klatt, Hruschka & Leopold (2012), but the flow instability mechanism and transition
to turbulence are not well understood. Very recently, Song & Dong (2023) performed
a systematic study on the linear instability of a Mach-3 boundary layer over a slender
rotating cone with 7◦ half-angle, which reported the appearance of the Mack mode (MM),
the cross-flow mode (CFM) and the centrifugal mode (CM) as the rotation rate Ω̄ (defined
as the ratio of the rotation velocity to axial-flow velocity) increases. The aforementioned
linear instability regimes for a rotating-cone configuration are summarised in figure 2,
where the relevant references are also shown.
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As the instability modes accumulate to finite amplitudes, the nonlinear interaction
among different Fourier perturbations and the MFD become dominant, which determines
the nonlinear route to trigger transition. Based on the nonlinear critical-layer analysis,
Gajjar (2007) studied the upper-branch cross-flow instability on an incompressible
rotating-disc boundary layer, driven by inflectional base flow. The lower-branch nonlinear
instability was studied by Turkyilmazoglu (2007) based on the triple-deck theory, for
which the leading-order balance appears among the convection, the viscosity and the
Coriolis force. However, both of the aforementioned works are insufficient to reveal the
nonlinear interaction of the instability modes in a supersonic rotating-cone boundary layer.
First, as mentioned above, the instability regimes for incompressible and supersonic 3-D
boundary layers are different, and so the asymptotic descriptions in Gajjar (2007) and
Turkyilmazoglu (2007) do not apply to supersonic regimes. Second, the nonlinear phase
is usually reached upstream of the upper-branch neutral point, for which the linear growth
rate is moderate, disagreeing with the assumptions in the critical-layer analysis. Therefore,
in this paper, we will focus on the nonlinear evolution of supersonic rotating-cone modes
by employing the nonlinear parabolised stability equation(NPSE), and the effect of the
cone rotation on the nonlinear evolution of the travelling MMs will be particularly
highlighted. In addition to the convective instability, the rotating-disc or rotating-cone
boundary layers may support the absolute instability (Lingwood 1995, 1996). However,
as reported by Garrett & Peake (2007) and Garrett, Hussain & Stephen (2010), the
critical Reynolds number for the absolute instability increases remarkably as the axial-flow
velocity increases, and/or the apex angle of the rotating cone decreases. Therefore, for a
supersonic boundary layer over a rotating slender cone, the absolute instability is not likely
to appear. Thus, in this paper, we only focus on the convective instability.

The rest of this paper is structured as follows. In § 2, we introduce the physical model,
the mathematical description and the numerical treatment. The numerical results of the
base flow and the linear instability analysis are provided in § 3. The nonlinear evolution of
the boundary-layer instability modes is provided in § 4, in which three types of nonlinear
regimes are studied in detail. The crucial role of the streak component is highlighted in § 5
and the effect of the rotation rate on transition is discussed in § 6. In § 8, we provide the
concluding remarks.

2. Mathematical details

The physical model to be studied is a supersonic boundary layer over a sharp rotating cone
inserted into a uniform supersonic stream with zero angle of attack, as sketched in figure 3.
The half-apex angle of the cone θ is small, which is taken to be 7◦ in this paper because
it is representative in wind-tunnel experiments (Schuele, Corke & Matlis 2013; Craig &
Saric 2016). A viscous boundary layer forms in the vicinity of the wall. To describe the
problem, the body-fitted coordinate system (x∗, y∗, ϕ) is employed with its origin located
at the cone tip, where x∗ and y∗ are along and perpendicular to the generatrix, respectively,
and ϕ is the circumferential angle. Throughout this paper, the superscript ∗ denotes the
dimensional quantities. To study the effect of the cone rotation on the instability nonlinear
evolution, we choose a number of case studies with different rotation rates. For each case
study, the NPSE calculation is carried out from the same initial position with the same
initial perturbations introduced. The initial position is an arbitrarily chosen position for
convenience of comparison, but in § 7 we will show that the qualitative results are not
affected if this initial position is changed.

The velocity field u = (u, v, w), density ρ, temperature T , pressure p, dynamic viscosity
μ are normalised by U∗

e , ρ∗
e , T∗

e , ρ∗
e U∗2

e and μ∗
e , respectively, where U∗

e , T∗
e , ρ∗

e and
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Supersonic oncoming flow

Shock wave

Boundary layer

x∗

y∗

r0
∗ = x∗ sin θ

x0
∗

Ω∗

θ ϕ

Transiti
on

Nonlinear

interactions

Linear

growth

Figure 3. Sketch of the physical model, where the NPSE calculation starts from x∗
0, and marches downstream

until its blowup, as marked in the blue dashed box.

θ (◦) M R T∗
e (K) ρ∗

e (kg m−3) μ∗
e (kg (m s)−1) T∗

w (K) δ∗ (mm) x∗
0 (mm) x0 ≡ x∗

0/δ
∗

7 3 1170 52 0.077 3.36 × 10−6 300 0.117 137 1170

Table 1. Parameters characterising the flow condition.

μ∗
e are the velocity, temperature, density and dynamic viscosity at the boundary-layer

edge. The unit length is taken to be the characteristic length of the boundary layer,
δ∗ = √

x∗
0μ

∗
e/ρ

∗
e U∗

e , where x∗
0 measures the distance from the leading edge to the initial

position of the NPSE calculations. Thus, the coordinate system and time are normalised
as (x, y) = (x∗, y∗)/δ∗ and t = t∗δ∗/U∗

e , respectively. The flow is governed by three
characteristic parameters, the Reynolds number, the Mach number and the dimensionless
angular velocity, which are defined as

R = ρ∗
e U∗

e δ∗/μ∗
e =

√
ρ∗

e U∗
e x∗

0/μ
∗
e , M = U∗

e /a∗
e , Ω = Ω∗δ∗/U∗

e , (2.1a–c)

where a∗
e is the sound speed at the edge of the boundary layer. For convenience, we

introduce X = x/R. Additionally, the dimensionless location of the initial position of the
NPSE calculation is

x0 = x∗
0/δ

∗ = R, or X0 = x0/R = 1, (2.2)

and at this location the ratio of the rotating velocity to U∗
e is defined by

Ω̄ = Ω∗x∗
0 sin θ/U∗

e = Ωx0 sin θ. (2.3)

We choose Ω̄ = O(1), and thus Ω is only O(R−1). The values of θ , M and R in this
paper will be introduced in table 1, and the values of Ω for different case studies will be
introduced in table 2.

The dimensionless compressible Navier–Stokes (N-S) equations in the rotating frame
(x, y, ϕ) are (Towers 2013)
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Case Initial rotation rate Dimensionless angular velocity Dimensional angular velocity Description
Ω̄ Ω Ω∗ (r/min)

I 0.00 0.0000 0 small
II 0.10 0.0007 3216 small
III 0.34 0.0024 10 932 moderate
IV 0.51 0.0036 16 404 moderate
V 0.75 0.0053 24 120 large
VI 1.01 0.0071 32 484 large

Table 2. Parameters of the rotation speed in this paper.

∂ρ

∂t
+ ∇ · (ρu) = 0,

ρ

[
Du
Dt

+ 2Ω × u + Ω × (Ω × r)
]

= −∇(ρT)

γ M2 + 1
R

[
2∇ · (μS) − 2

3
∇ (μ∇ · u)

]
,

1
γ

ρ
DT
Dt

− γ − 1
γ

T
Dρ

Dt
= 1

PrR
∇ · (μ∇T) + (γ − 1) M2

R

[
2μS : S − 2

3
μ(∇ · u)2

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.4)

where S = [∇u + (∇u)T]/2 is the rate of the strain tensor, Pr is the Prandtl number,
Ω = Ω(cos θ, − sin θ, 0) is the angular velocity vector, γ is the ratio of the specific heats
and D/Dt = ∂/∂t + u · ∇ denotes the material derivative. The dimensionless equation of
the state p = ρT/γ M2 has been used to eliminate the pressure p. The Sutherland viscosity
law is assumed, namely, μ(T) = (1 + C)T3/2/(T + C) with C = 110.4/T∗

e and we take
Pr = 0.72 and γ = 1.4. Additionally, r = r(sin θ, cos θ, 0) is the position vector with r
being the distance to the cone axis

r = x sin θ + y cos θ. (2.5)

The local radius of the wall is denoted by r0 = x sin θ . The instantaneous flow field φ ≡
(ρ, u, v, w, T) can be decomposed into a steady base flow ΦB ≡ (ρB, UB, R−1VB, WB, TB)

and an unsteady perturbation φ̃

φ = ΦB(x, y) + φ̃(x, y, ϕ, t). (2.6)

2.1. Base flow
The calculation of the base flow is the same as that in Song & Dong (2023). Using the
Mangler transformation and Dorodnitzyn–Howarth transformation

dX̄ = r̄2 dX, dη = ρBr̄ dy√
X̄

, (2.7a,b)
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where r̄ = X sin θ , we obtain the boundary-layer equations (BLEs)

X̄
∂UB

∂X̄
+ ∂V̄B

∂η
+ 1

2
UB = 0,

X̄UB
∂UB

∂X̄
+ V̄B

∂UB

∂η
− 1

3
Ω̄2(W̄B + 1

)2
(

3X̄

sin2θ

)2/3

= ∂

∂η

(
μB

TB

∂UB

∂η

)
,

X̄UB
∂W̄B

∂X̄
+ V̄B

∂W̄B

∂η
+ 2

3
UB

(
W̄B + 1

) = ∂

∂η

(
μB

TB

∂W̄B

∂η

)
,

X̄UB
∂TB

∂X̄
+ V̄B

∂TB

∂η
= (γ − 1) M2 μB

TB

[(
∂UB

∂η

)2

+
(

3X̄

sin2θ

)2/3

Ω̄2
(

∂W̄B

∂η

)2]

+ 1
Pr

∂

∂η

(
μB

TB

∂TB

∂η

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.8)

with V̄B = r̄−1ρB
√

X̄(VB + X−1yUB) + X̄UBηX̄ and W̄B = WB/Ω̄ . Note that, for a
supersonic flow past a slender cone, a shock wave forms from the cone tip, after which
the potential flow shows a conic-flow feature, where all the physical quantities stay almost
unchanged along each ray from the cone tip. This was confirmed by performing full N-S
calculations, as shown in appendix B of Song & Dong (2023). Thus, the pressure gradient
along the cone surface can be taken to be zero, which leads to ρBTB = 1. The boundary
conditions read

(UB, V̄B, W̄B, TB) = (0, 0, 0, Tw) at η = 0,

(ρB, UB, W̄B, TB) → (1, 1, −1, 1) as η → ∞,

}
(2.9)

where the wall is assumed to be isothermal.
The system (2.8) is parabolic with respect to X̄, which requires an initial condition

at X̄ = 0; this initial condition was illustrated in detail in Song & Dong (2023). The
third-order backward finite differential scheme is employed to march from X̄ = 0; at each
X̄ location, the flow field is governed by a group of ordinary differential equations, which
is solved by the Chebyshev collocation method.

2.2. Perturbations
Substituting the decomposition (2.6) into the N-S equations (2.4), and subtracting the base
flow out, we obtain the nonlinear equations governing the disturbance

G
∂φ̃

∂t
+ A

∂φ̃

∂x
+ B

∂φ̃

∂y
+ C

∂φ̃

∂ϕ
+ Dφ̃ + V xx

∂2φ̃

∂x2 + V yy
∂2φ̃

∂y2

+ V ϕϕ

∂2φ̃

∂ϕ2 + V xy
∂2φ̃

∂x∂y
+ V xϕ

∂2φ̃

∂x∂ϕ
+ V yϕ

∂2φ̃

∂y∂ϕ
= F , (2.10)

where the coefficient matrices G, A, B, C , D, V xx, V yy, V ϕϕ , V xy, V yϕ , V xϕ and the
nonlinear forcing F can be found in Appendix A.
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Effect of cone rotation on the nonlinear evolution

2.2.1. Linear stability theory (LST)
Under the parallel-flow assumption, the perturbation φ̃ at each x is expressed in terms of a
travelling-wave form

φ̃ = εφ̂ (y) exp[i (αx + nϕ − ωt)] + c.c., (2.11)

where α, n and ω represent the streamwise wavenumber, circumferential wavenumber
and frequency, c.c. represents the complex conjugation, i ≡ √−1 and φ̂ denotes the
normalised shape function. In what follows, the shape functions are normalised by the
maximum of the streamwise velocity perturbation, such that maxy|û| = 1. Here, ε � 1
measures the amplitude of the perturbation. We are interested in the spatial mode for
which only α = αr + iαi is complex with −αi representing its growth rate. Substituting
(2.11) into (2.10) with the non-parallel terms and O(ε2) terms neglected, we arrive at the
compressible Orr–Sommerfeld (O-S) equation

B̃
∂φ̂

∂y
+ V yy

∂2φ̂

∂y2 + D̃φ̂ = 0, (2.12)

where
B̃ = B + iαV xy + inV yϕ,

D̃ = −iωG + iαA + inC + D − α2V xx − n2V ϕϕ − αnV xϕ.

}
(2.13)

The perturbation field is subject to the no-slip, isothermal boundary conditions û(0) =
v̂(0) = ŵ(0) = T̂(0) = 0 at the wall and the attenuation conditions φ̂ → 0 as y → ∞.
Malik’s scheme (Malik 1990) is employed to solve the linear system (2.12).

2.2.2. Parabolised stability equations (PSE)
The PSE approach (Bertolotti, Herbert & Spalart 1992; Chang & Malik 1994) is
considered as a more accurate means because it allows the streamwise variation of the
perturbation profiles and takes into account the non-parallelism of the base flow. The only
approximation is that the ∂xx terms are neglected. Expressing φ̃ and F in terms of the
Fourier series with respect to ϕ and t, we obtain

φ̃(x, y, ϕ, t) =
Me∑

M=−Me

Ne∑
N=−Ne

�

φM,N (x, y) exp[i (N n0ϕ − Mω0t)],

F (x, y, ϕ, t) =
Me∑

M=−Me

Ne∑
N=−Ne

F̃M,N (x, y)exp[i (N n0ϕ − Mω0t)],

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.14)

where Me and Ne denote the order of the Fourier-series truncation. In this paper, we choose
Me = 8 and Ne = 16, which has been confirmed to be sufficient via resolution studies (see
Appendix C). Considering that the perturbations are propagating with two length scales,
a fast one with an oscillatory manner and a slow one related to the non-parallelism, we

express the perturbation profile
�

φ as a Wentzel–Kramers–Brillouin form

�

φM,N (x, y) = φ̌M,N (x, y) exp
(

i
∫ x

x0

αM,N (x̄) dx̄
)

, (2.15)

where each Fourier component is denoted as (M,N ), ω0 and n0 are the fundamental
frequency and circumferential wavenumber, respectively, and αM,N represents the
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complex streamwise wavenumber of (M,N ). The shape function φ̌M,N varies slowly
with x. Here, x0 is a reference streamwise position as defined in (2.2).

Neglecting the ∂xxφ̌M,N terms, system (2.10) is parabolised to

ÃM,N
∂φ̌M,N

∂x
+ B̃M,N

∂φ̌M,N
∂y

+ V yy
∂2φ̌M,N

∂y2 + D̃M,N φ̌M,N = F̌M,N , (2.16)

where the matrices ÃM,N , B̃M,N and D̃M,N are given by

ÃM,N = A + 2iαM,N V xx + iN n0V xϕ,

B̃M,N = B + iαM,N V xy + iN n0V yϕ,

D̃M,N = −iMω0G + iαM,N A + iN n0C + D − N 2n2
0V ϕϕ

−
(

α2
M,N − i

dαM,N
dx

)
V xx − NαM,N n0V xϕ,

F̌M,N = F̃M,N exp(−i
∫ x

x0

αM,N dx̄).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.17)

Such a system can be solved numerically using a marching scheme, for which the flow
quantities only depend on their upstream information. Thus, as initial perturbations, a
pair of oblique normal modes with the same frequency but the opposite circumferential
wavenumbers is introduced at X = 1 (or x = x0 = R)

φ̃(x0, y, ϕ, t) = ε1,1φ̂1,1( y)E1,1 + ε1,−1φ̂1,−1( y)E1,−1 + c.c., (2.18)

where EM,N = exp[i(N n0ϕ − Mω0t)], and εM,N measures the amplitude of each mode.
The shape functions of the unstable modes φ̂M,N are obtained by solving numerically the
compressible O-S equation (2.12). The nonlinear PSE calculation marches downstream
until its blowup, indicating that the transition onset will not be far away (Dong, Zhang &
Zhou 2008; Mayer et al. 2014). The wall-normal boundary conditions for the system (2.16)
are

(ǔM,N , v̌M,N , w̌M,N , ŤM,N ) = (0, 0, 0, 0) at y = 0,

(ρ̌M,N , ǔM,N , v̌M,N , w̌M,N , ŤM,N ) → (0, 0, 0, 0) as y → ∞.

}
(2.19)

Because the complex streamwise wavenumber αM,N and the nonlinear terms F̌M,N
are unknown, an iterative procedure is used to solve the flow quantities at each streamwise
position. More details about the iterative procedures, the discretisation scheme and code
validation can be found in our previous works (Zhao et al. 2016; Song et al. 2022).

Additionally, if F̌M,N is set to be zero, then (2.16) is recast to the linear PSE (LPSE),
which can be used to track the evolution of each linear mode separately. To distinguish it,
the PSE approach with F̌M,N retained is referred to as the nonlinear PSE (NPSE) in this
paper.

2.3. Secondary instability analysis (SIA)
When the amplitude of the dominant perturbation has accumulated to a finite level, the SI
may appear. In this subsection, two types of SIs are considered. The first one is based on
a wavy profile driven by a saturated travelling mode, while the second one is based on a
streaky profile driven by finite-amplitude longitudinal streaks.
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Effect of cone rotation on the nonlinear evolution

2.3.1. The SIA for a wavy base flow
For simplicity, we assume that the perturbation field is dominated by only one travelling
mode (whose frequency, streamwise wavenumber and circumferential wavenumber are
denoted by ω0, α1,1 and n0, respectively) and its harmonics. When the dominant mode
reaches the nonlinear saturation state, its growth rate becomes almost zero, and so α1,1 to
leading order is almost real. The SIA is performed in the wave-propagating direction,
whose oblique angle to the x axis is Θ = tan−1[β1,1/αr,(1,1)] with β1,1 = n0/r0. The

composite wavenumber in the wave direction is given by ᾰ =
√

α2
r,(1,1) + β2

1,1, which is
also real. The base flow for the SIA is a superposition of the steady base flow and the
saturated wavy travelling waves and is expressed in terms of a Fourier series. Thus, the
base flow Φ̆B ≡ [ρ̆B, ŬB, V̆B, W̆B, T̆B] in a moving frame reads

Φ̆B(x̃, y) = [ρB, Ũ − c, 0, W̃, TB]( y) +
MW∑

m=−MW

�

φm,m (y) exp(imᾰx̃) + · · · , (2.20)

where c = ω0/ᾰ, x̃ = x cos Θ + z sin Θ − ct is the Galilean transformed coordinate along
the wave direction, Ũ = UB cos Θ + WB sin Θ , W̃ = −UB sin Θ + WB cos Θ and MW
denotes the order of the Fourier-series truncation. The laminar base flow ΦB develops
with a length scale much greater than the wavelength of the fundamental mode 2π/ᾰ, and
so the non-parallelism of ΦB in the local region is neglected in the present analysis. Thus,
Φ̆B is periodic in x̃. We introduce the coordinate z̃ = −x sin Θ + z cos Θ to denote the
direction perpendicular to the wave direction. Here, ŬB and W̆B are the velocities along
the x̃- and z̃-directions, respectively.

According to Floquet theory, the periodic base flow supports the instability modes which
can be expressed as

φ̃(x, y, z, t) = εφ̆W (x̃, y) exp [iγW(x̃ + ct) + iβ̆ z̃ + iσdᾰx̃] + c.c.,

φ̆W (x̃, y) =
NW∑

k=−NW

φ̂W,k (y) exp (ikᾰx̃),

⎫⎪⎪⎬
⎪⎪⎭ (2.21)

where γW is the complex wavenumber in the x̃ direction with its imaginary part
representing the opposite of the growth rate, β̆ is the wavenumber in the z̃ direction, σd
is the detuning parameter and NW is the order of the Fourier-series truncation. For the
fundamental resonance, we take σd = 0. Here, φ̂W,0 denotes the streak component, and
φ̂W,k represents the travelling mode for a non-zero k value. Substituting (2.20) and (2.21)
into (2.10) with O(ε2) terms neglected forms an eigenvalue problem

[M0 + (iγW) M1 + (iγW)2M2]φ̆W (x̃, y) = 0, (2.22)
where

M0 = (A + iβ̆V x̃z̃)
∂

∂ x̃
+ (B + iβ̆V yz̃)

∂

∂y
+ [D + iβ̆C̃ + (iβ̆)

2
V z̃z̃]

+ V xx
∂2

∂ x̃2 + V yy
∂2

∂y2 + V xy
∂2

∂x∂y
,

M1 = (A + iβ̆V x̃z̃) + 2V xx
∂

∂ x̃
+ V xy

∂

∂y
+ cG,

M2 = V xx,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.23)
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with C̃ = rC , V x̃z̃ = rV xϕ , V yz̃ = rV yϕ and V z̃z̃ = r2Vϕϕ . The wall-normal boundary
conditions read

ŭW = v̆W = w̆W = T̆W = 0 at y = 0,

(ρ̆W , ŭW , v̆W , w̆W , T̆W) → 0 as y → ∞.

}
(2.24)

In the x̃-direction, the periodic boundary condition is employed. System (2.22) is
discretised by using the fourth-order finite difference scheme with five points in the
y-direction and the spectral method in the x̃-direction. A total of JW grid points are
allocated in the wall-normal direction. The discretisation leads to a high-dimensional
(the dimension of the coefficient matrix is 5JWNW × 5JWNW ) eigenvalue problem
with γw being the eigenvalue, which is solved using the Rayleigh quotient iteration
method (see the Appendix of Han et al. (2021)). In our calculations, we select
MW = 3, NW = 6 and JW = 581. In general, only one unstable discrete mode exists
for a given β̆, and thus, we simply take the initial guess for the iteration to be
γw = (((Ω̄X cos Θ + sin Θ)/(−Ω̄X sin Θ + cos Θ))β̆, −0.01), which is based on the
approximation that the streak direction is roughly along the potential-flow direction, and
the convergence of the iteration is usually reached in 6 to 8 steps.

Such an analysis has also been used in the study of the SI of 2-D Mack second modes
in a hypersonic boundary layer (Chen et al. 2017; Xu et al. 2020), and our code validation
and resolution test are provided in Appendix D.

2.3.2. The SIA for a streaky base flow
Now we consider a base flow perturbed by longitudinal streaks, and the streak direction
is not necessarily along the streamwise direction. We denote the angle between the streak
direction and the streamwise direction by θs. For convenience, we introduce a coordinate
transformation

xs = x,
zs = z − x tan θs,

}
(2.25)

which yields

∂

∂x
= ∂

∂xs
− tan θs

∂

∂zs
,

∂

∂z
= ∂

∂zs
.

⎫⎪⎪⎬
⎪⎪⎭ (2.26)

The streaky base flow obtained by NPSE can be expressed as

Φ̆B(x, y, z) = ΦB( y) +
MS∑

m=−MS

�

φ0,m (y) exp(i(α0,mx + β0,mz)) + · · · , (2.27)

where β0,m = mn0/r0 and MS is the Fourier-series truncation. The SIA is performed when
the streak mode reaches a finite amplitude, for which the locally parallel assumption is
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Effect of cone rotation on the nonlinear evolution

also approximately valid. Therefore, the perturbation field φ̃ can be expressed as

φ̃(x, y, z, t) = εφ̆S( y, zs) exp[ i(αsxs + σdβ0,1zs − ωt)] + c.c.,

φ̆S (y, zs) =
NS∑

k=−NS

φ̂S,k (y) exp
(
iβ0,kzs

)
,

⎫⎪⎪⎬
⎪⎪⎭ (2.28)

where σd = 0 is a detuning parameter and NS is the Fourier-series truncation. For the
spatial mode, the frequency ω is real and αs is complex, whose real and imaginary parts
represent the wavenumber and the opposite of the growth rate, respectively.

Substituting (2.28), (2.27) and (2.26) into (2.10) and collecting the O(ε) terms, we obtain

[Ds + iαsAs + (iαs)
2V xx]φ̆S (y, zs) = 0, (2.29)

where

Ds = D + B
∂

∂y
+ Cs

∂

∂zs
+ D

∂2

∂y2 + V zz,s
∂2

∂z2
s

+ V yz,s
∂2

∂y∂zs
− iωG,

As = A + V xy
∂2

∂y
+ V xz,s

∂2

∂zs
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.30)

with Cs = rC + hA, V zz,s = r2V ϕϕ + rhV xϕ + h2V xx, V yz,s = rV yϕ + hV xy, V xz,s =
rV xϕ + 2hV xx and h = − tan θs. The periodic boundary condition is employed in the zs
direction, and the same boundary conditions in the wall-normal direction as in (2.24)
are employed. The numerical scheme is the same as that in § 2.3.1, and we choose
(MS, NS, JS) = (8, 16, 581). The Arnoldi method is used to search the initial eigenvalues
because a multiplicity of unstable discrete modes may exist, and the Rayleigh quotient
iteration method is employed to confirm the accuracy of each eigenvalue solution. This
method has been used to analyse the SI of the Görtler vortices over a concave wall in our
previous work (Song, Zhao & Huang 2020).

3. Numerical results of the base flow and its linear instability

3.1. Base flow
In the following calculations, the computational parameters are listed in table 1. Note that
the values of the oncoming Mach number and temperature represent those at the outer
reach of the boundary layer, and from conic-flow theory (Sims 1964), we can estimate
that the oncoming Mach number and temperature before the shock are M∞ = 3.214 and
T∞ = 48.28 K, respectively. A detailed verification can be seen in Song & Dong (2023).
The apex angle of the cone follows the models in the numerical studies (Zhong & Ma 2006;
Balakumar 2009; Hader & Fasel 2021) and the experimental studies (Schuele et al. 2013;
Craig & Saric 2016), and the Mach number and the temperature of the oncoming flow are
chosen from the studies of the Magnus effect in Sturek et al. (1978) and Klatt et al. (2012).
The base flow is obtained by solving numerically the BLEs (2.8) with boundary conditions
(2.9) in a 2-D domain X̄ ∈ [0, 0.1] and η ∈ [0, 15], with 401 and 121 grid points allocated
in the X̄- and η-directions, respectively. The numerical method was also employed and
confirmed to be sufficiently accurate in the study of the linear instability of a rotating-cone
boundary layer in Song & Dong (2023).
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Figure 4. Base flow for different cases. (a,b) Are the profiles of UB and −WB at X = 1.0, respectively. (c,d)
Are the streamwise distributions of the wall shears of the streamwise and spanwise velocities, respectively. The
circles in (c) denote the scaling of X−1/2, and the triangles in (d) denote the scaling of X1/2.

In this paper, we focus on a series of case studies with different Ω values, as shown
in table 2, and the UB- and WB-profiles at X = 1 are shown in figure 4(a,b), respectively.
In the boundary layer, as Ω increases, both UB and |WB| increase monotonically, leading
to higher wall shears. The streamwise distributions of the wall shears of UB and |WB| are
shown in figure 4(c,d), respectively. For Ω = 0, the self-similar solution determines that
the boundary-layer thickness grows like X1/2, and hence the wall shear UB|y=0 decays
like X−1/2, as confirmed by the black circles. Such a scaling is not strictly satisfied as
Ω increases, and an appreciable discrepancy is observed when Ω = 0.0071 for case VI.
According to (b), WB is approximately proportional to X, and the boundary-layer thickness
almost grows like X1/2. Therefore, the wall shear of the spanwise velocity −WB|y=0 grows
like X1/2; such a scaling law is approximately correct even when Ω = 0.0071 for case VI.
The velocity profiles in the potential-flow direction Up and the cross-flow direction Uc for
different cases at X = 1 are plotted in figure 5, where Up and Uc are defined as

Up = UB cos Φe + WB sin Φe, Uc = −UB sin Φe + WB cos Φe, Φe ≡ tan−1 Ω̄.

(3.1a–c)

971 A4-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

62
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.629


Effect of cone rotation on the nonlinear evolution
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Figure 5. Wall-normal profiles of (a) Up and (b) Uc at X = 1 for different cases.

As Ω increases, Up increases monotonically since WB induced by the rotation increases.
The value of Uc is zero at y = 0 and y → ∞, and an inflectional point appears for Ω /= 0,
which is likely to support the inviscid cross-flow instability.

3.2. Linear instability analysis
The linear instability analysis can be performed using either the LST, for which the local
growth rate is predicted based on the base flow at each streamwise location, or the LPSE,
for which the amplitude evolution is predicted by a marching scheme.

The LST analysis for a rotating cone at this Mach number in Song & Dong (2023)
reveals that, when the rotation speed is small, only one unstable zone exists, but for a
sufficiently high rotation rate, an additional unstable zone near the zero-frequency band
appears. To be distinguished, the unstable modes in the two zones are referred to as the
type-I and type-II instabilities, respectively, following Song & Dong (2023). Note that
this notation is different from that in Garrett et al. (2009), where the two instability
types are referred to as the inviscid CFM and the viscous Coriolis mode. The type-I
instability may be a MM or a quasi-stationary CFM, while the type-II instability may be
a CM at a moderate R or a CFM at a large R. For cases V and VI, both type-I CFM
and type-II CM exist. As confirmed by figure 20 in Song & Dong (2023), the CFM
appears as a pair of co-rotating vortices near the critical line, while the CM appears as
a pair of counter-rotating vortices in the near-wall region, agreeing with the experimental
observations in Kobayashi et al. (1983) and Kobayashi (1994). The CM shows a much
greater growth rate than that of the CFM. In figure 6, we show the contours of the growth
rates for the type-I instability modes for different cases. For Ω = 0, shown in (a), the
unstable zone is symmetric about the n = 0 line, and the most unstable mode appears as
a pair of oblique waves. This mode is the Mack first mode, abbreviated as MM. When
Ω is slightly increased, as shown in (b), the unstable zone leans towards the positive-n
direction, also showing an MM-instability nature. For Ω = 0.0024 and 0.0036 (cases III
and IV), the right-branch unstable zone crosses the zero-frequency line, indicating the
appearance of the stationary mode. Previous analysis (Song & Dong 2023) confirmed that
the quasi-stationary mode is driven by the cross-flow effect, and so it is referred to as the
type-I CFM, while the majority of the travelling mode is still the MM instability. As Ω

is further increased such that Ω̄ reaches 0.75 and 1.01, the unstable zone of the type-I
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Figure 6. Growth-rate contours of type-I instability in the ω–n plane for different cases at X = 1. The black
contour in each panel represents the neutral curve where αi = 0.

CFM enlarges. Simultaneously, as shown in figure 7, the type-II CM instability appears in
the vicinity of the zero-frequency line, whose growth-rate peak (0.017) exceeds that of the
MM instability (0.009) for case VI when Ω̄ reaches 1.01.

A clearer observation by showing the dependence of the growth rate on ω for different n
values for representative cases is shown in figure 8. For a moderate rotation rate (case IV),
shown in (a), only the type-I instability appears. The curve for n = 25 shows a single-peak
feature, representing the MM instability, whereas for n = 55, the growth rate shows two
mild maxima near ω = 0, corresponding to an MM and a CFM, as marked in the plot.
For a strong rotating case (case VI), shown in (b), the CFM already appears when n =
25, and becomes the dominant mode for type-I instability when n = 55. Additionally, the
type-II CM instability appears in the low-frequency band when n = 55 with a much greater
growth rate.

The accumulated amplitude of the instability mode at each frequency and
circumferential wavenumber can be measured by an N factor, which can be predicted by
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Figure 7. Growth-rate contours of the type-I and type-II instabilities in the ω–n plane for cases V (a) and VI
(b) at X = 1.
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Figure 8. Dependence on ω of the growth rate −αi for different n values for cases IV (a) and VI (b) at X = 1.

the LST-predicted growth rate via

N(x) = exp
[∫ x

x0

−αi(x̃) dx̃
]

, (3.2)

or by the LPSE-calculated amplitude via

N(x) = ln[Au (x)/Au (x0)], (3.3)

where Au(x) = maxy|�u(x, y) + c.c.| denotes the amplitude of the streamwise velocity
disturbance. For the type-I instability, the travelling MM is always more unstable than the
quasi-stationary CFM, and the most unstable MMs appear around n = 20. However, the
frequency of the most unstable mode varies with the angular rotation rate Ω . In figure 9(a),
we compare the streamwise evolution of the N factors of the type-I MM for different Ω

values. The greatest amplitude appears for case IV with Ω = 0.0036, further increase or
decrease of the rotation speed leads to a reduction of the accumulated amplitude. (b) Plots
N-factor accumulation of the stationary type-I CFM for cases III to VI, because for smaller
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Figure 9. The comparison of the N-factor obtained by LST (solid lines) and LPSE (symbols) for the most
unstable type-I MM (a), the most unstable stationary type-I CFM (b) and the most unstable stationary type-II
CM (c).

Ω values the CFM are stable. The accumulated N factor of the CFM is much smaller than
that of the MM for each case, indicating that the CFM is not the dominant perturbation
to trigger transition. Figure 9(c) shows the N-evolution for the type-II CM instability for
cases V and VI. In the interval X ∈ [1, 2], the type-II CM instability can be amplified
approximately twenty times, remarkably greater than that for the type-I instability. The
CM instability is more unstable for a higher rotation speed. Additionally, for both the
type-I and type-II instabilities, the LST predictions agree well with the LPSE predictions,
indicating that the non-parallel effect is rather weak.

In figure 10(a), we summarise the dependence of the N factor at X = 2 on Ω for
the travelling MM. It is clearly seen that the MM amplification reaches its peak at
Ω ≈ 0.0036, corresponding to case IV. As shown in (b), the frequency of the most
amplified MM decreases with the increase of Ω , but approaches a constant 0.06 when Ω

is greater than 0.0036. The circumferential wavenumber stays unchanged for all rotation
rates considered. Therefore, from the traditional eN transition prediction method, we may
conclude that for the travelling-mode-induced transition, the earliest transition occurs
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Figure 10. (a) Dependence on Ω of the N factors at X = 2, N(X = 2), for the type-I MMs; (b) dependence
on Ω of the most unstable frequency ωmax and circumferential wavenumber nmax for the type-I MMs; (c,d)
dependences of N(X = 2) and nmax on Ω for the stationary CFMs and CMs, respectively.

when Ω ≈ 0.0036. However, things are not that simple. In the following, we will show
that the nonlinear effect will lead to a different dependence of the transition onset on Ω .
In (c), we plot the dependence on Ω of the N-factor accumulation and the circumferential
wavenumber of the stationary CFM. Note that the CFM is stable for Ω ≤ 0.0007.
Similar to the results in (a), the N factor of the stationary CFM reaches its maximum
at Ω ≈ 0.0036, but its value is much smaller than that of the MM. The most unstable
circumferential wavenumber decreases with Ω . In (d), we plot the dependence of the N
factor for the CM on Ω . Because the CM is unstable only for cases V and VI, the plot starts
from Ω = 0.0053. The accumulated N factor increases with Ω , and its value is remarkably
greater than that for the MM.

4. Nonlinear evolution of the boundary-layer perturbations

4.1. Parameters for the NPSE calculations
Based on the base flow obtained from § 3.1, we perform the NPSE calculations starting
from a streamwise position X = 1, which march downstream until their blowup. The
streamwise grid spacing is chosen to be dX = 0.0043 (or dx = 5.07). In the wall-normal
direction, we choose y ∈ [0, 2500] (such a large y-domain is employed to ensure that the
attenuation conditions are satisfied in the far field) and 581 non-uniform grid points that
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are clustered in the near-wall region are employed, for which the coordinate yj at the jth
point is

yj = j/J
1 + ( yJ/δ99 − 2)(1 − j/J)

yJ, j ∈ [0, J], (4.1)

where δ99 = 8.7 denotes the nominal boundary-layer thickness at x = x0 and J = 580.
Such an allocation ensures that half of the total grid points are allocated to the boundary
layer, which has also been used in our previous work (Zhao, Dong & Yang 2019; Song
et al. 2022).

From § 3, we know that, for cases I and II, there is only one linear instability mode,
the travelling MM; for cases III and IV, the type-I MM and the type-I CFM coexist;
for cases V and VI, there are three instability modes, namely, type-I MM, type-I CFM
and type-II CM. The type-I CFM is always less unstable than the MM, but the type-II
CM, if exists, is much more unstable. In this paper, the NPSE calculations start from a
location where the linear instability modes have already been excited, and so a careful
selection of the initial perturbations is required. First, we decide to exclude the type-I
CFM as the initial perturbation because of its small growth rate. Second, the type-II
CM shows a quasi-stationary nature, which is more likely to be excited by either surface
imperfections, such as roughness, or the nonlinear interactions between travelling modes.
In this paper, we assume the cone to be smooth without any surface imperfection, and so
the CM instability is not introduced in the first place. However, for high rotation rates, the
nonlinear interaction of the travelling modes can support its initial amplitude, and its high
growth rate for strong rotation cases ensures its dominant role in the downstream locations.

For each of the six rotation rates as studied in § 3.1, we choose the most linearly
amplified type-I travelling MM as one of the two initial perturbations, whose frequency
and circumference wavenumber can be found in figure 10(a,b), respectively. They
are denoted by the fundamental frequency ω0 and the fundamental wavenumber n0,
respectively. In the following, each Fourier component with a frequency Mω0 and a
circumference spanwise wavenumber N n0 is denoted by (M,N ) for convenience, and so
the aforementioned introduced mode is denoted by (1, 1). An MM with the same frequency
but the opposite circumferential wavenumber, denoted by (1, −1), is also introduced.
The detailed parameters for the two introduced modes are listed in table 3, and the
shape functions of û1,±1 and ŵ1,±1 are shown in figure 11. Note that the calculations
are performed in a moving frame, and are not affected by the rotation. In the NPSE
calculations, the nonlinear interaction between the introduced MMs leads to generation
of the MFD (0, 0), the streak mode (0, 2), the high-order harmonics (2, 0) and so on.
Sketches of the wall pressure in the t–ϕ plane for representative Fourier components,
(1, 1), (1, −1), (2, 0) and (0, 2), are shown in figure 12. When the amplitudes of the
perturbations have accumulated to sufficiently high levels, the mean flow would undergo
such a rapid distortion due to the strong Reynolds stress that the parabolic assumption
ceases to be valid. This leads to a blowup of the NPSE calculation. As confirmed by a
number of previous direct numerical simulation (DNS) studies (Dong et al. 2008; Zhang
& Zhou 2008; Mayer et al. 2014), such a blowup phenomenon indicates the onset of
laminar–turbulent transition, and the NPSE calculations upstream of the blowup point
agree well with the DNS results.

4.2. Cases I and II: OB regime
The OB regime usually appears in a quasi-2-D supersonic boundary layer, as for cases I
and II in this paper. The solid curves in figure 13 show the evolution of the ũ-amplitude
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Effect of cone rotation on the nonlinear evolution

Case Ω ω0 n0 (M,N ) α ε

I 0.0000 0.080 20 (1, 1) 0.0980 − 0.0057i 0.0001
(1, −1) 0.0980 − 0.0057i 0.0001

II 0.0007 0.070 20 (1, 1) 0.1010 − 0.0062i 0.0001
(1, −1) 0.0714 − 0.0046i 0.0001

III 0.0024 0.063 20 (1, 1) 0.1268 − 0.0074i 0.0001
(1, −1) 0.0286 − 0.0017i 0.0001

IV 0.0036 0.061 20 (1, 1) 0.1475 − 0.0079i 0.0001
(1, −1) 0.0011 + 0.0006i 0.0001

V 0.0053 0.060 20 (1, 1) 0.1813-0.0083i 0.0001
(1, −1) −0.0316 + 0.0024i 0.0001

VI 0.0071 0.060 20 (1, 1) 0.2161 − 0.0081i 0.0001
(1, −1) −0.0659 + 0.0025i 0.0001

Table 3. Parameters of the introduced MMs for the NPSE calculations.
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Figure 11. Eigenfunctions of the introduced MMs obtained by LST at X = 1: (a) |û1,1|; (b) |û1,−1|; (c) |ŵ1,1|;
(d) |ŵ1,−1|.
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Figure 12. Sketches of the wall pressure in the t–ϕ plane for representative Fourier components: (a) (1,1);
(b) (1, −1); (c) (2, 0); (d) (0, 2).
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Figure 13. The Au-evolution of the Fourier components obtained by NPSE for cases I (a) and II (b). The
dashed lines denote the theoretical prediction of the growth rate by direct interaction of the introduced oblique
modes.

of representative Fourier components obtained by NPSE for these two cases. Note that the
local Reynolds number Rx and the local rotation rate Ω̄x vary with the streamwise location
X, and so they are also marked in the horizontal axis in each panel, where

Rx = ρ∗
e U∗

e x∗

μ∗
e

, Ω̄x = Ω∗x∗ sin θ

U∗
e

. (4.2a,b)

In case I, the amplitude evolution of the fundamental modes (1, 1) and (1, −1) are
identical, and so only the former is plotted. We also show the LPSE predictions by
the circles for comparison. For each case, the evolution of the fundamental modes
(1, ±1) agrees with the LPSE prediction until X ≈ 1.8, indicating the linear feature of
the fundamental modes for the majority of the laminar phase. The growth of the streak
mode (0, 2) is mainly attributed to the direct interaction of (1, 1) and (1, −1). It shows a
super-exponential growth in the close neighbourhood of X = 1, followed by a growth rate
that is the sum of the fundamental modes (1, ±1), as confirmed by the pink dashed lines;
although its amplitude is preliminarily smaller than those of the fundamental modes, its
high growth rate ensures its dominant role in the downstream region. The 2-D travelling
component (2, 0), also driven by the direct interaction of (1, ±1), shows the same growth
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Figure 14. Contours of the perturbation profiles |ũ2ω0 | in the y–ϕ plane for case I. The dashed lines denote
the contours of Φ̆B( y, ϕ).

rate as that of (0, 2) (see the green dashed lines), but its amplitude is not as large as the
streak component (0, 2) because of its weaker amplification initially. The MFD is also
much weaker than the streak mode in the early laminar phase. For Ω = 0 (case I), the
extra amplification of the streak mode (0, 2) in the early laminar phase has been explained
by an asymptotic theory based on the weakly nonlinear analysis (WNA) in Song et al.
(2022); the explanation for a non-zero Ω (case II) is in principle the same, and can be
found in Appendix B.

For case I, in the late laminar phase, X > 1.88, the harmonics (2, 0), (2, 2), (2, 4)

and (2, 6) undergo drastic amplification with almost the same growth rate. Because the
dominant perturbations in this region are the streak mode (0, 2) and the MFD (0, 0),
this phenomenon is a reminiscent of the SI of a streaky profile. In order to confirm the
occurrence of the SI of a streaky base flow, we compare the perturbation profiles |ũ2ω0 | in
the y–ϕ plane at different X locations for case I in figure 14, where

ũ2ω0 (x, y, ϕ) =
∫ 2π/ω0

0
ũ (x, y, ϕ, t) exp (−2iω0) dt, (4.3)

with ũ being obtained by NPSE. The dashed black lines denote the streaky base flow
consisting of the laminar base flow, the MFD and the streak components including
(0, 2), (0, 4), etc. It can be seen that, as X increases, the profile of the unsteady
travelling perturbation becomes concentrated around the top of the streak ‘head’, and the
perturbation is found to be symmetric about the centre of the streak, showing a varicose
feature.

Then, we perform the SIA (introduced in § 2.3.2) based on the streaky base flow
obtained by NPSE, and the eigenvalues of the growth rates at X = 2 for case I are plotted
in figure 15(a). Four dominant unstable modes are found, including two sinuous modes
(whose eigenfunctions are anti-symmetric about the centre line) and two varicose modes
(whose eigenfunctions are symmetric about the centre line), and the varicose I mode is
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Figure 15. (a) Eigenvalues obtained by SIA for ω = 2ω0 at X = 2; (b) comparison of the growth rates
between SIA and NPSE. (c,d) Eigenfunctions of the varicose I and varicose II modes obtained by SIA,
respectively.

the most unstable one. The other eigen-solutions with quasi-neutral or stable features are
not of our interest, and so are not labelled. Tracing the growth rates of the two varicose
modes, as shown by the symbols in (b), we find that the growth rate of the varicose I
agrees well with the NPSE results of (2, 0) until X = 1.97, confirming that the dominant
mechanism of the growth of this component is the SI of the (0, 2)-induced streaky base
flow. However, the higher-order modes, (2, 2), (2, 4) and (2, 6) show greater growth rates
than the SIA-predicted growth rate, because these modes are also affected by the nonlinear
interaction of (2, 0) with other components. The eigenfunctions of the two varicose modes
are shown in figure 15(c,d), respectively, which can well predict the local peaks and the
overall shape of the perturbation profile in figure 14(h).

For case II, shown in figure 13(b), the nonlinear evolution is quite similar, but the only
difference is that the growth rate of the MFD, which is twice the growth rate of (1, 1), is
not equal to that of the streak mode, which is the sum of the growth rates of (1, 1) and
(1, −1). Because for a rotating cone, where the growth rate of (1, 1) is larger than that of
(1, −1), the MFD grows with a faster rate than the streak mode (0, 2) and the travelling
mode (2, 0). Thus, although the amplitude of the MFD is initially smaller than the streak
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Figure 16. The amplitude evolution of the Fourier components obtained by NPSE for cases III and IV. (a,c)
Case III; (b,d) case IV. (a,b) Au; (b,d) Aw. The vertical dashed line in each panel represents the position where
(1, 1) saturates.

mode, it overwhelms the latter in a downstream position, X = 1.96. It is also predicted that,
if Ω is increased further, the streak-mode-dominated region would shrink and eventually
disappear, and so the oblique breakdown regime would be replaced by another regime, as
will be introduced in the next subsection.

4.3. Cases III and IV: generalised fundamental resonance (GFR) regime
When Ω is increased to 0.0024 and 0.0036, or Ω̄ reaches 0.34 and 0.51 (cases III and
IV), the growth rates of the two introduced oblique modes are remarkably different,
namely, (1, 1) becomes more unstable but (1, −1) becomes almost neutral. This is
because the base flow shows a strong asymmetric feature due to the rotation, for which
the oblique-breakdown regime as in the quasi-symmetric cases, cases I and II, is not
likely to occur. Figure 16(a,c) shows the amplitude evolution of the streamwise and
spanwise velocity perturbations for each Fourier component for case III, respectively.
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Figure 17. Comparison of the Au-evolution for (0, 2) obtained by different approaches for case IV.

The component (1, 1) shows a linear amplification until around X = 1.80, after which
it saturates due to the nonlinear effect; the other introduced mode, (1, −1), shows a much
weaker amplification due to its small growth rate before X = 1.80, which is followed by a
drastic amplification until reaching the same magnitude as that for (1, 1). Additionally, the
evolution of both (1, 1) and (1, −1) before X = 1.8 agrees well with the linear prediction
(LPSE). Before X = 1.8, the MFD grows with a doubled growth rate of that of (1, 1),
which ensures that the amplitude of the MFD reaches the same magnitude of (1, 1) in
a short distance, leading to the nonlinear saturation of (1, 1). In this region, the growth
rates of the streak mode (0, 2) and the harmonic travelling mode (2, 0) are the sum of the
growth rates of (1, 1) and (1, −1), and are smaller than that of the MFD. For case IV,
as shown in (b,d), the scenario is the same, but the saturation position of the fundamental
oblique mode (1, 1) appears earlier. Comparing with cases I and II, we find that an increase
of the angular rotation rate Ω leads to a greater difference between the MFD and the
streak mode. As a consequence, for a moderate Ω , the streak mode no longer becomes
dominant before the MFD overwhelms (1, 1), and so the OB regime does not appear in
cases III and IV. After the saturation of the dominant component (1, 1), the amplitude
of the MFD ceases to grow, but the components (0, 2), (2, 0) and (1, −1) undergo rapid
amplifications with almost the same rate, which is attributed to the SI of the saturated
(1, 1) component, as will be proven in the following. Being different from the SI of the
streaky profiles Φ̆B( y, ϕ) discussed in § 4.2, the SI here is supported by a wavy base
flow Φ̆B(x̃, y).

Actually, the amplification of the streak mode (0, 2) may be attributed to a few
mechanisms, including (A) the nonlinear interaction of components (1, 1) and (1, −1),
(B) the linear growth of the type-I CFM, (C) the linear growth of the type-II CM and
(D) the SI induced by the wavy base flow Φ̆B(x̃, y). In order to prescribe the dominant
mechanism leading to the streak amplification, we compare the theoretical predictions
of the Au evolution of (0, 2) based on these candidates with the NPSE calculations for
case IV in figure 17. It is seen that neither of the mechanisms (B) and (C) can reproduce
the streak amplification. In the region X < 1.78, the NPSE result agrees with the WNA
prediction as introduced in Appendix B, confirming that the growth of the streak mode
in the early phase is driven by mechanism (A). This is also the reason why the streak
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Figure 18. Comparison of the eigenfunction of (0, 2) obtained by the NPSE and SIA at X = 1.9: (a) |û0,2|;
(b) |v̂0,2|; (c) |ŵ0,2|; (d) |T̂0,2|.

mode (0, 2) shows a greater amplitude than the MFD (0, 0) in the close neighbourhood
of X = 1. Performing the SIA introduced in § 2.3.1 based on a wavy base flow consists of
the laminar base flow, the MFD, the saturated fundamental mode (1,1) and its harmonics
(2, 2), (3, 3), etc., we calculate the amplitude growth of the SI mode for a skewed spanwise
wavenumber β̆ = − sin Θαr,(0,2) + cos Θ2n0/r0, as shown by the crosses in figure 17,
which is confirmed to agree well with the NPSE calculation for X > 1.78. As shown
in figure 18, the agreement of the eigenfunctions obtained by SIA and NPSE is also
satisfactory, confirming that the late-stage growth of the streak mode is attributed to the
mechanism (D).

Such an SI is a reminiscent of the fundamental resonance regime in hypersonic
boundary layers, as observed in Sivasubramanian & Fasel (2015), Chen et al. (2017) and
Hader & Fasel (2019). In the present study, the introduced fundamental mode (1, 1) plays
the same role as the 2-D Mack second mode in the 2-D boundary layers in the fundamental
resonance regime. It dominates the perturbation field in the early laminar phase, and
promotes the growth of the MFD due to its direct interaction with its complex conjugate.
When the fundamental mode saturates, its SI encourages the rapid amplification of the
streak mode, as well as other travelling waves. Therefore, this regime is referred to as the
GFR regime. In the very late stage, as shown in figure 16(a,b), the streak mode becomes
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Figure 19. The Au-evolution of the Fourier components obtained by NPSE for cases V (a) and VI (b).

the dominant perturbation eventually, supporting the SI modes as for the OB regime.
The blowup of the NPSE calculation appears when the mean flow undergoes sufficient
distortion forced by the SI modes.

4.4. Cases V and VI: centrifugal-instability-induced transition (CIT) regime
Now we consider the nonlinear evolution of the perturbations for strong rotation rates.
The solid curves in figure 19(a) display the Au-evolution of the representative Fourier
components obtained by NPSE for case V. It is seen that the introduced fundamental
component (1, 1) amplifies with its linear growth rate until X ≈ 1.8, where it reaches
the saturation state with an amplitude of approximately 0.1. The other introduced mode
(1, −1) decays with its linear decay rate until X ≈ 1.67, after which a sharp amplification
appears. The streak component (0, 2) also shows a growth rate that is the sum of (1, 1)
and (1, −1) before X ≈ 1.52, confirmed by the pink dashed line in (a), after which a much
greater growth rate is observed. Increasing Ω to 0.0071 or Ω̄ reaches 1.01, as shown in
figure 19(b), the linear growth regions of (1, 1) and (1, −1) become shorter, and the steak
component (0, 2) shows a much greater growth rate than the sum of (1, 1) and (1, −1)
from a position rather close to X = 1. This phenomenon is in contrast to the cases with
smaller Ω values.

In order to explain the greater growth rate of the (0, 2) component, we perform the linear
stability analysis of the type-II CM instability by the LPSE approach for these two cases,
and compare their accumulated amplitudes with the NPSE results, as shown by the pink
circles in figure 19. For case V, the linear growth of the CM can well predict the evolution
of (0, 2) when X > 1.5. For case VI, because the CM shows a much greater growth rate,
the linear stability analysis yields a good prediction from almost x = x0.

For case VI, in the late laminar phase, X > 1.7, the harmonics (2, 0), (2, 2), (2, 4)

and (2, 6) undergo drastic amplification with almost the same growth rate as shown
in figure 19(b). Similar to case I, the dominant perturbations in this region are the
streak mode (0, 2) and the MFD (0, 0), and the rapid growths of the harmonics are
attributed to the SI of the streaky base flow. However, the difference is that the
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Figure 20. Contours of the perturbation profiles |ũ2ω0 | in the y–ϕ plane for case VI. The dashed lines denote
the contours of Φ̆B( y, ϕ).

streak mode (0, 2) is driven by the rapid growth of the CM, instead of the nonlinear
interaction between (1, 1) and (1, −1). In figure 20, we plot the perturbation profiles
of |ũ2ω0 | in the y–ϕ plane at different X locations for case VI. The perturbations
become localised downstream of X ≈ 1.7, where the streak mode becomes the dominant
perturbation.

Performing the SIA for a streaky base flow as introduced in § 2.3.2, we can obtain a
set of unstable eigenvalue solutions for ω = 2ω0 at X = 1.73, as shown in figure 21(a),
where the most unstable two modes are marked mode I and mode II. Tracing the growth
rates of the two modes as shown by the symbols in (b), the growth rates of the travelling
components (2, 0), (2, 2), (2, 4) and (2, 6) obtained by NPSE are compared with the SIA
predictions, and favourable agreement is observed in the late phase (X > 1.71), confirming
that the rapid amplifications of the travelling modes in this region are attributed to the SI
of the streaky base flow. The eigenfunctions of the two modes obtained by SIA are shown
in 21(c,d), respectively. Both eigenfunctions can predict the overall shape of the NPSE
perturbation profile in figure 20(g).

4.5. Summary
In summary, there exist three mechanisms leading to the rapid amplification of the streak
component in a supersonic boundary layer over a rotating cone. For small Ω values
including Ω = 0, the growth of the streak mode is driven by the direct interaction between
the introduced fundamental modes (1, 1) and (1, −1), which can be well explained by
the asymptotic analysis based on the WNA. Such a nonlinear process belongs to the OB
regime. Increasing Ω to a moderate level, say Ω = 0.0036, the accumulated amplitude
of (1, 1) is much greater than that of (1, −1), and the rapid growth of the streak mode is
due to the SI of the saturated travelling mode (1, 1). In the late laminar phase, the streak
mode would become the dominant perturbation. Such a nonlinear process belongs to the
GFR regime. Further increasing Ω to 0.0071 or Ω̄ = O(1), the linear growth rate of the
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Figure 21. (a) Eigenvalues obtained by SIA at X = 1.73 for ω = 2ω0; (b) comparison of the growth rates
between SIA and NPSE. (c,d) Eigenfunctions of mode I and mode II obtained by SIA, respectively.

centrifugal instability becomes greater than the amplification due to the aforementioned
two regimes, which ensures that the stationary CM (that also shows a stationary streak
nature) becomes the dominant perturbation in a short distance. Such a process belongs to
the CIT regime.

5. Role of the streak mode in triggering transition

Figure 22 shows the contours of the instantaneous velocity u in the ϕ–X plane at y/
√

X =
2.25 for the six cases. In each panel, the high- and low-speed streaks are observed in the
late laminar phase, which is parallel to the cone generatrix for Ω = 0 but tilts towards
the opposite direction of the rotation speed for Ω /= 0. The inclined angle increases with
the increase of the rotation rate. The pink arrow in each panel shows the direction of the
streamline at the boundary-layer edge, which agrees overall with the inclined direction of
the streaks for each case.
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The spiral angle of the streak mode (0, 2) for each case can be evaluated by

Φ =
(

tan−1 αr,(0,2)r0

2n0

)
X=Xb

, (5.1)

where αr,(0,2) represents its streamwise wavenumber, and 2n0/r0 represents its spanwise
wavenumber. The measurement is carried out at a location X = Xb where the NPSE
calculation blows up due to the strong nonlinearity. In figure 23(a), we show its variation
on the local rotating rate Ω̄x, where the experimental results in Kobayashi et al. (1987) and
Tambe et al. (2022) are also plotted for comparison. In Kobayashi et al. (1987), the flow is
incompressible with the local Reynolds number Rx ∼ O(104–105) and the half-apex angle
θ ranges from 7.5◦ to 30◦, whereas in Tambe et al. (2022), the Mach number, the local
Reynolds number Rx and the half-apex angle θ are M ∈ [0.4, 0.6], Rx ∈ [1 × 106, 3 × 106]
and θ ∈ [15◦, 40◦], respectively. All the results in (a) almost collapse with the dashed
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Figure 23. Comparison of the spiral angle of the streaks (a) and the transitional Reynolds number (b) with
the literature data.

curve, representing the streamline direction of the potential flow, Φe = tan−1 Ω̄x. The
implication is that the spiral angle of the nonlinear structure almost aligns with the
direction of the potential flow, irrespective of the Mach number, the Reynolds number
and the half-apex angle. Panel (b) shows the dependence on the local rotation rate of the
transitional Reynolds number, defined by

Rt = ρ∗
e U∗

e x∗
b

μ∗
e

, (5.2)

where x∗
b represents the dimensional transition location. The experimental results in

Kobayashi et al. (1987) and Tambe et al. (2022) are also plotted for comparison. Overall,
unless the rotation rate is low, the transitional Reynolds number Rt decreases with the
increase of Ω̄x, indicating the significant role of the CM in the CIT transition regime. It
needs to be noted that our NPSE calculations do not reflect the exact physical situation
because the receptivity process is excluded. Actually, two factors may contribute to the
change of Rt: (i) the initial amplitudes of the introduced MMs should be different; (ii)
the CM may also appear as the initial perturbation for strong rotation cases. Thus, it is
expected that Rt for a higher Ω̄x should be reduced remarkably in reality.

Since the longitudinal streaks are never absent in the late laminar phase, we may
postulate the crucial role of the streaks in triggering transition for all the three regimes.
This can be verified by comparing the NPSE results with those obtained by removing
artificially the streak component, as shown in figure 24. In the numerical process, the ‘no
streak’ curves are calculated by setting the (0, 2) components to zero at each streamwise
location. In each case, removing the streak component leads to a reduction of the other
components in the late laminar phase, and so the blowup of the NPSE calculation
disappears or is postponed significantly. Additionally, the streak-impact region is much
greater for the GFR and the CIT regimes than that for the OB regime.
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Figure 24. Comparison of the Au-evolution between the NPSE calculations and those by artificially removing
the streak component: (a) Ω = 0.0000; (b) Ω = 0.0007; (c) Ω = 0.0024; (d) Ω = 0.0036; (e) Ω = 0.0053;
( f ) Ω = 0.0071.

(i) For the OB regime appearing in the low-Ω cases, the amplification of the MFD
and the travelling mode (2, 0) for the majority of the laminar phase is attributed to the
nonlinear interaction of the introduced fundamental modes, while the streak impact only
appears when the oblique modes become saturated and the streak mode reaches O(0.1)

magnitude. The streak-impact region is rather short because the SIA of the streaky profile
determines a much higher growth rate of the travelling components, which ensures, in a
short distance, their accumulated amplitude to be sufficiently large to distort the mean flow
via the Reynolds stress. The latter eventually leads to the sharp rise of the surface friction
curve, as will be shown in figure 25(a,b).

(ii) For the GFR regime for a moderate Ω , the streak impact appears when the
fundamental mode (1, 1) and the MFD (0, 0) saturate. Through the SIA for a wavy base
flow, it is indicated that the streak mode and a series of travelling modes would also
grow. Removing the streak mode artificially would suppress the growth of other travelling
modes. Thus, the streak-impact region starts from the saturation of the (1, 1) component.
This region is longer than that of the OB regime, because the initial amplitudes of the SI
modes are much smaller.

(iii) For the CIT regime in large-Ω cases for which Ω̄ = O(1), the amplification of
the streak mode is actually due to the CM instability of the rotating base flow. Since the
inflow perturbations do not include the CM, the excitation of the CM instability requires
a receptivity process, i.e. the nonlinear interaction of the introduced (1, 1) and (1, −1)
serves as a seed for its initial energy, and its profile adjusts to the CM eigenfunction as it
propagates downstream. When the CM amplitude reaches a sufficiently high level, its SI
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Figure 25. Comparison of the Cf curves between the NPSE calculations and those by artificially removing the
streak component: (a) Ω = 0.0000; (b) Ω = 0.0007; (c) Ω = 0.0024; (d) Ω = 0.0036; (e) Ω = 0.0053; ( f )
Ω = 0.0071.

ensures the high growth of the travelling modes, which eventually leads to a remarkable
MFD to trigger transition. Such a high growth is not supported if the streak component
(CM) is removed.

To demonstrate the impact of the streak mode on the MFD, we compare the streamwise
evolution of the coefficients of the skin friction

Cf =
(

2μ̄

R
∂ ū
∂y

)
y=0

, (5.3)

obtained by the original NPSE calculations and those by removing artificially the streak
mode, as shown in figure 25, where the overbar represents the temporal and circumferential
averaging. For the OB regime ((a) or (b)), the Cf curve undergoes a sharp increase when
the MFD reaches a sufficiently strong level, leading to the blowup of the NPSE calculation.
However, when the streak mode is removed, the sharp increase of the Cf curve is replaced
by a rather mild increase, leading to a postponement of the blowup position. For the
GFR regime, shown in (c,d), the Cf curves undergo sharp increases three times, and
only the third one leads to the blowup of the NPSE calculation. The previous two are
related to the saturation and oscillation of the fundamental mode (1, 1), which is not
affected by the streak mode. However, since the third increase is attributed to the SI of
the streak, removing the streak mode again postpones the blowup position of the NPSE
calculation. The multiple increases of the Cf curve also exist in the fundamental resonance
in hypersonic boundary layers (Sivasubramanian & Fasel 2015; Chen et al. 2017; Hader
& Fasel 2019). For the CIT regime, shown in (e, f ), the streak mode is the key factor to
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Effect of cone rotation on the nonlinear evolution

support the SI. Therefore, the Cf curve recover to the laminar state when the streak mode
is removed.

6. Effect of the rotation rates on transition

To demonstrate the impact of the rotation rate on the transition location, we normalise the
Cf curves by the laminar skin friction coefficient Cf 0, namely, Cf = Cf /Cf 0, as shown in
figure 26(a). For the OB and CIT regimes, the C̄f curve only undergoes a sharp increase
once. However, for the GFR regime, the C̄f curve increases more than once, and so,
different thresholds for the transition onset may lead to different outcomes. Thus, we
introduce Xi and Xt such that

Cf (Xi) = 1.05, Cf (Xt) = 1.5. (6.1a,b)

Admittedly, the choices of these thresholds are a bit artificial, but if we choose Cf (Xi) =
1.1 and Cf (Xt) = 1.6, then the values of Xi and Xt vary only 1.63 % and 0.88 % ,
respectively. Both thresholds are displayed in (a). The dependence of the two locations
on the rotation rate Ω is summarised in figure 26(b). For the OB regime, the locations
of Xi and Xt are quite close, and increase of Ω does not lead to an apparent change of
the transition onset. For the CIT regime, premature transition is observed for a higher
rotation rate. For the GFR regime, the first increase of the Cf curve (Xi) is much earlier
than that of the OB regime and the CIT regime with relatively low Ω , but the last increase
(Xt) is remarkably postponed. Since the transition onset of the GFR regime is related
to the last increase, it is readily asserted that, for a moderate Ω , the transition appears
later.

To this end, two conclusions are drawn. First, for a low-M supersonic boundary
layer over a cone, increase of the rotation rate to a moderate level could postpone the
transition onset, which is favourable for the reduction of the total drag for flying vehicles.
Second, considering the different nonlinear transition regimes, the transition prediction
based on the linear instability analysis, i.e. the eN method, should be carefully used.
From the linear prediction as in figure 10, it is seen that the introduced fundamental
mode undergoes the greatest amplification when the rotation rate is moderate. Therefore,
from the traditional eN method we may conclude that the transition is promoted at this
rotation rate. However, it is seen from the NPSE calculations that such a conclusion is
completely wrong, which is attributed to the nonlinear regimes appearing for different Ω

values.

7. Effect of the initial position on NPSE calculations

Since the above NPSE calculations are all started from the same streamwise position
x∗

0 = 137 mm that is arbitrarily chosen, one may query the impact of the initial
position on the nonlinear transition regimes. Therefore, in this section, we choose
another x∗

0, namely, x∗
0 = 548 mm, to perform the NPSE calculations with the other

conditions unchanged, and make comparison with the previously obtained nonlinear
regimes.
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2.5(a) (b)
Ω = 0 Case I
Ω = 0.0007 Case II
Ω = 0.0024 Case III
Ω = 0.0036 Case IV
Ω = 0.0053 Case V
Ω = 0.0071 Case VI

(×106) (×106)

Xi, Xt

Rx

Ω

1.0 1.5 2.0 2.5 3.0

1.37 2.05 2.74 3.42 4.11

0

1.4

2.8

4.2

5.6

7.0 Xi
XtHigh

Small

Moderate

CIT regime

GFR regime

OB regime

(×10–3)

C̄f C̄f = 1.5

C̄f = 1.05

Figure 26. (a) Normalised skin friction coefficients C̄f , where the black dashed and dot-dashed lines denote
C̄f = 1.05 and C̄f = 1.5, respectively. (b) Dependence on Ω of Xi (where C̄f = 1.05) and Xt (where C̄f = 1.5).

Case R Ω ω0 n0 (M,N ) ε

AI 2340 0.0000 0.082 20 (1, 1) 0.0001
(1, −1) 0.0001

AII 2340 0.00035 0.071 20 (1, 1) 0.0001
(1, −1) 0.0001

AIII 2340 0.0012 0.064 20 (1, 1) 0.0001
(1, −1) 0.0001

AIV 2340 0.0018 0.062 20 (1, 1) 0.0001
(1, −1) 0.0001

AV 2340 0.00265 0.060 20 (1, 1) 0.0001
(1, −1) 0.0001

AVI 2340 0.00355 0.060 20 (1, 1) 0.0001
(1, −1) 0.0001

Table 4. Parameters of the introduced MMs for the NPSE calculations.

From (2.1a), it is calculated that, for x∗
0 = 548 mm, the Reynolds number R = 2340,

which is twice that in table 1. To fix the initial rotation rate Ω̄ for the six case studies,
the angular velocity Ω , according to (2.3), is half of that in table 2 for each case.
From the linear instability analysis, the parameters of the introduced perturbations are
shown in table 4. Here, the frequency of the introduced MM instabilities for each case
changes slightly in comparison with that in table 2, but the fundamental circumferential
wavenumber n stays the same.

Skipping the numerical details, we directly show the normalised skin friction coefficient
C̄f in figure 27(a). Compared with figure 26(a), we find that the sharp increase of the
C̄f curve, representing the strong distortion of the mean flow, appears at a smaller X
value for each case, due to the more unstable nature for a greater Reynolds number.
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Rx
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1.0

1.5

2.0

2.5(a) (b)

X
1.5 2.0 2.5

(×106) (×106)Rx

Ω

5.48 8.21 10.95 13.69 16.43

0

1.0

2.0

3.0

4.0

Xi, Xt

1.0 1.5 2.0 2.5 3.0

Xi
Xt

(×10–3)

C̄f

Ω = 0 Case AI
Ω = 0.00035 Case AII
Ω = 0.00120 Case AIII
Ω = 0.00180 Case AIV
Ω = 0.00265 Case AV
Ω = 0.00355 Case AVI

High

Small

Moderate

CIT regime

GFR regime

OB regime

Figure 27. (a) Normalised skin friction coefficients C̄f , where the black dashed and dot-dashed lines denote
C̄f = 1.05 and C̄f = 1.5, respectively. (b) Dependence on Ω of Xi (where C̄f = 1.05) and Xt (where C̄f = 1.5).

However, the transitional Reynolds number is greater in figure 27(a), which is because the
initial position x∗

0 of the NPSE calculation is four times greater than that in figure 26(a).
Nonetheless, the overall trend of C̄f curves in the two figures are rather close, which can be
clearly demonstrated by summarising the dependence of Xi and Xt shown in figure 27(b).
The effect of the three nonlinear regimes agrees qualitatively with those in figure 26(b),
indicating that an arbitrarily chosen initial position is adequate for the purpose of the
present study.

8. Concluding remarks and discussion

In this paper, the effect of cone rotation on the nonlinear evolution of travelling MMs in a
Mach-3 supersonic boundary layer over a 7◦-semi-apex-angle rotating cone is studied.
The linear instability analysis shows that the most linearly amplified travelling MMs
appear when the circumferential wavenumber n ≈ 20, and their frequencies decay with the
increase of Ω . These modes, marked by (1,1), together with their counterparts (1, −1), are
introduced as the initial perturbations for the NPSE calculations, and three distinguished
regimes, namely, the OB regime, the GFR regime and the CIT regime, appear sequentially
from low to high Ω values.

For a small Ω value, the boundary-layer transition is most likely to be triggered by
the OB regime, as sketched in figure 28(a). In the early stage (stage I), the introduced
two oblique modes amplify with their linear growth rates, and their interaction leads
to the amplifications of the streak component (0, 2) and the travelling-wave component
(2, 0) with a growth rate being the sum of those of (1, 1) and (1, −1). The streak mode
undergoes an extra amplification, showing a much greater amplitude than (2, 0), as well
as other components. This phenomenon can be explained by the asymptotic analysis in
Song et al. (2022) or in Appendix B of this paper. In stage II, the streak mode becomes the
dominant perturbation, which, together with the MFD, supports the rapid amplification
of the harmonic travelling waves (HTWs) due to the SI regime. When the latter have
accumulated to finite amplitudes (stage III), they can promote a rapid distortion of the
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(0, 2)
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Au
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Stage II
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(1, 1)

(1, –1)

(0, 0)

(1, 1)
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Amplification

Promote

(0, 0)
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(0, 2)
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CM instability
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HTWs

SI

Promote
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Figure 28. Schematics of the OB (a), GFR (b) and CIT (c) regimes, where HTW stands for harmonic
travelling wave.
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mean flow by producing sufficient Reynolds stress, leading to a sharp increase of the
surface friction coefficient and the transition onset.

For a moderate Ω , the component (1, 1) shows a greater linear growth rate, while the
component (1, −1) is stabilised. When the dominant mode (1, 1) saturates, the SI regime
supports the rapid amplification of other Fourier components, including the streak mode
(0, 2) and the travelling waves such as (1, −1). In a skewed moving frame with the same
direction of (1, 1), such a regime is the same as the fundamental resonance in principle,
i.e. the saturated oblique mode (1, 1) plays the same role as the saturated 2-D travelling
mode as marked by the yellow circle in figure 1(b), and the SI modes (0, 2) and (1, −1)
act as the fundamental resonance modes as marked by the grey circles in figure 1(b).
Remarkably, the consequence of this SI would eventually ensure the dominant role of the
streak mode (0, 2), which further encourages the SI of a streaky base flow. This repeats
the stage III of the OB regime, and leads to the transition onset. The process is sketched
in figure 28(b).

For a large Ω value such that Ω̄ = O(1), shown in figure 28(c), the streak mode (0, 2),
originally generated by the direct interaction of (1, 1) and (1, −1), undergoes a rapid
amplification due to the centrifugal-induced instability. This amplification is indeed a
linear regime, in contrast to the aforementioned two regimes. When the linear CM has
accumulated to a finite amplitude, the mean flow would show a streaky feature, which
supports the high growth rate of the SI modes (HTWs). Again, since these modes produce
sufficient MFD via the Reynolds stress, the breakdown of the laminar flow would appear
eventually.

Comparing the transition processes as sketched in figure 28, we find that the last two
stages of each regime show the same scenario, namely, the rapidly amplified HTWs,
supported by the SI of the streaky base flow, promote sufficient MFD to trigger transition.
Remarkably, the streak mode plays a crucial role in the transition process, and if the
streak mode is removed artificially, the transition location would be severely postponed
or disappear, as shown in figure 25.

Remarkably, since different nonlinear transition regimes appear for the different
rotation rates, the traditional transition-prediction approach by only considering the linear
instability may be insufficient. For the present configuration, as shown in figure 10, the
accumulated amplitude due to the linear instability reaches its maximum when Ω ≈
0.0036. On the contrary, the NPSE calculations show that the transition induced by the
OB regime (low Ω) and CIT regime (large Ω such that Ω̄ = O(1)) could be much earlier.
The main reason is that, for Ω ≈ 0.0036, the GFR regime appears, for which the Cf
curve undergoes sharp increases more than once. The linear prediction usually predicts
the first sharp increase of the Cf curve, which, however, does not indicate the breakdown
of the laminar flow. Therefore, the transition-prediction method based on the linear
instability analysis should be carefully used if multiple nonlinear breakdown regimes may
appear.
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Appendix A. Matrices and nonlinear terms in disturbance equation

In (2.10), G, A, B, C , D, V xx, V yy, V ϕϕ , V xy, V yϕ and V xϕ are 5 × 5-order matrices. Most
of the non-zero elements are the same as those in the appendix A of Song et al. (2022),
and here we only present the ones with different expressions

A45 = −2τSB,13

R
, A54 = −4 (γ − 1) M2

R
μBSB,13, B45 = −2τSB,23

R
,

B54 = −4 (γ − 1) M2

R
μBSB,23, C11 = WB

r
, C22 = ρBWB

r
,

C25 = −2τSB,31

rR
, C33 = ρBWB

r
, C35 = −2τSB,32

rR
, C44 = ρBWB

r
,

C51 = −γ − 1
rγ

TBWB, C52 = −4 (γ − 1) M2

rR
μBSB,31,

C53 = −4 (γ − 1) M2

rR
μBSB,32, C55 = ρBWB

rγ
,

D21 = (UBUB,x + ṼBUB,y − g
�

W
2

B) + TB,x

γ M2 , D24 = −2gρB
�

WB,

D31 = (UBṼB,x + ṼBṼB,y − h
�

W
2

B) + TB,y

γ M2 , D34 = −2hρB
�

WB,

D41 = UB
�

WB,x + ṼB
�

WB,y + gUB
�

WB + hṼB
�

WB,

D42 = ρB(
�

WB,x + g
�

WB), D43 = ρB(
�

WB,y + h
�

WB),

D45 = − 1
R

{
τ [(2SB,13)x + (2SB,23)y + 4hSB,23 + 4gSB,13]+2SB,13τx + 2SB,23τy

}
,

D54 = 4μ(γ − 1)M2

R
(gSB,13 + hSB,23).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A1)

In the above expressions, we have put ṼB = R−1VB, τ = dμB/dTB,
�

WB = WB + Ωr, g =
sin θ/r, h = cos θ/r. Here, SB denotes the rate of strain tensor of the base flow, whose
components are

SB,11 = UB,x, SB,22 = ṼB,y, SB,33 = gUB + hṼB,

SB,12 = SB,21 = (ṼB,x + UB,y)/2,

SB,13 = SB,31 = (WB,x − gWB)/2, SB,23 = SB,32 = (WB,y − hWB)/2.

⎫⎪⎪⎬
⎪⎪⎭ (A2)
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The nonlinear forcing F = [F(1), F(2), F(3), F(4), F(5)]T, with

F(1) = − (ρ̃∇ · u + u · ∇ρ̃) ,

F(2) = −ρ̃ũt − ρ̃(UBũx + ṼBũy + WBũϕ/r + ũUB,x + ṽUB,x − 2g
�

WBw̃)

− (ρ̃ + ρB)(ũũx + ṽũy + w̃ũϕ/r − gw̃2) − (ρ̃T̃)x

γ M2 − 2
3R

(μ̃∇ · u)x

+ 2
R

[(μ̃S̃11)x + (μ̃S̃21)y + (μ̃S̃31)ϕ/r + μ̃(gS̃11 + hS̃21 − gS̃33)],

F(3) = −ρ̃ṽt − ρ̃(UBṽx + ṼBṽy + WBṽϕ/r + ũṼB,x + ṽṼB,y − 2h
�

Ww̃)

− (ρ̃ + ρB) (ũṽx + ṽṽy + w̃ṽϕ/r − hw̃2
3) − (ρ̃T̃)y

γ M2 − 2
3R

(μ̃∇ · u)y

+ 2
R

[(μ̃S̃12)x + (μ̃S̃22)y + (μ̃S̃32)ϕ/r + μ̃(gS̃12 + hS̃22 − hS̃32)],

F(4) = −ρ̃w̃t − ρ̃[UBw̃x + ṼBw̃y + ũ
�

WB,x + ṽ
�

WB,y + g(
�

WBũ + w̃UB)

+WBw̃ϕ/r + h(
�

WBṽ + w̃VB)] − (ρ̃T̃)ϕ

γ rM2 − 2
3rR

(μ̃∇ · u)ϕ

− (ρ̃ + ρB)
(
ũw̃x + ṽw̃y + w̃w̃ϕ/r + gũw̃ + hṽw̃

)
+ 2

R
[(μ̃S̃13)x + (μ̃S̃23)y + (μ̃S̃33)ϕ/r + 2μ̃(gS̃13 + hS̃23)],

F(5) = − ρ̃

γ
(T̃ t + u · ∇TB + U · ∇T̃ + u · ∇T̃) − ρB

γ
(u · ∇T̃) + ∇ · (μ̃∇T̃)

+ γ − 1
γ

T̃
(
ρ̃t + u · ∇ρB + U · ∇ρ̃ + u · ∇ρ̃

) + γ − 1
γ

TB (u · ∇ρ̃)

+ (γ − 1) M2
[

2μBS̃ : S̃ − 2
3
μB(∇ · u)2 + 4μ̃SB : S̃ − 4

3
μ̃ (∇ · U) (∇ · u)

]

+ (γ − 1) M2
{

2μ̃S̃ : S̃ − 2
3
μ̃(∇ · u)2

}
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A3)

In the above expressions, U = [UB, ṼB, WB]T, u = [ũ, ṽ, w̃]T, ∇ · U = UB,x + ṼB,y +
gUB + hṼB, ∇ · u = (ũx + ṽy + w̃ϕ/r + gũ + hṽ) and S̃ denotes the rate of strain tensor
of disturbance, whose six independent components are

S̃11 = ũx, S̃22 = ṽy, S̃33 = w̃ϕ/r + gũ + hṽ, S̃12 = S̃21 = (ṽx + ũy)/2,

S̃13 = S̃31 = (w̃x + ũϕ/r − gw̃)/2, S̃23 = S̃32 = (w̃y + ṽϕ/r − hw̃)/2.

}
(A4)
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Appendix B. Explanation of the extra amplification of the streak mode for a small
rotation rate

To explain the extra amplification of the streak mode, we perform the WNA to probe the
evolution of the streak mode (0, 2) driven by the direct interaction between (1, 1) and
(1, −1)

ε1,1ε1,−1φ̆3( y; X) exp
[

i
∫

α3(x) dx + i2n0ϕ

]
+ O(ε2

1,1, ε
2
1,−1, ε1,1ε1,−1) + c.c., (B1)

where φ̆3 represents the shape function of the streak mode and α3 ≡ α3r + iα3i = (α1,1 −
α1,−1)r + i(α1,1 + α1,−1)i. Note that, for an unstable MM, we have −α1i � α1r = O(1),
and thus σ = −α3i � 1 is introduced. In the high-R approximation, the inviscid MMs
show a double-deck structure, namely, a main layer where y = O(1) and a viscous Stokes
layer where y = O(R−1/2) (Dong et al. 2020; Dong & Zhao 2021). For the present
configuration, the stokes layer is passive, and so we only focus on the evolution in the main
layer. Substituting (2.18) and (B1) into the system (2.10) and collecting the O(ε1,1ε1,−1)
terms, we obtain

(σUB + iα̃Ũ)M2p̆3 + (iα3r + σ)ŭ3 + v̆3,y + iβ3w̆3 = F̂
(1)

3 , (B2a)

ρB[(σUB + iα̃Ũ)ŭ3 + U′
Bv̆3] + (iα3r + σ)p̆3 = F̂

(2)

3 , (B2b)

ρB(σUB + iα̃Ũ)v̆3 + p̆3,y = F̂
(3)

3 , (B2c)

ρB[(σUB + iα̃Ũ)w̆3 + W ′
Bv̆3] + iβ3p̆3 = F̂

(4)

3 , (B2d)

where β3 = 2n0/r0, α̃ =
√

α2
3r + β2

3 , Ũ = UB cos Φ + WB sin Φ (with Φ = tan−1(β3/

α3r) denoting the wave angle). Here, F̂(1)
3 , F̂(2)

3 , F̂(3)
3 and F̂(4)

3 are O(1), and can be easily
deduced from (A3).

For convenience, we introduce w̃3 = ŭ3 cos Φ + w̆3 sin Φ and ũ3 = ŭ3 sin Φ −
w̆3 cos Φ. Actually, Ũ represents the base-flow velocity along the wave angle, which is
numerically small for inviscid modes, as confirmed by Song & Dong (2023). We assume
Ũ ∼ σ , and introduce Ũ1 = Ũ/σ = O(1). Then, from a scaling estimate, we obtain
ũ3 ∼ 1/σ 2, v̆3 ∼ w̃3 ∼ 1/σ and p̆3 ∼ 1. Thus, we introduce

ū3 = σ 2ũ3, (v̄3, w̄3) = σ(v̆3, w̃3), (B3a,b)

and the system (B2), neglecting the O(σ ) terms, can be rewritten as

sin Φū3 + v̄3,y + iα̃w̄3 = 0, (B4a)

(iα̃Ũ1 + UB)ū3 + W̃yv̄3 = 0, (B4b)

ρB(iα̃Ũ1 + UB)v̄3 + p̆3,y = F̂
(3)

3 , (B4c)

ρB[(iα̃Ũ1 + UB)w̄3 + Ũ1,yv̄3] + iα̃p̆3 = F̂
(2)

3 cos Φ + F̂
(4)

3 sin Φ, (B4d)

with W̃ = UB sin Φ − WB cos Φ denoting the velocity perpendicular to the wave-vector
direction. Eliminating ū3 and w̄3 from (B4), we arrive at a second-order differential
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Figure 29. Comparison of the amplitudes of (0, 2) components between NPSE and WNA. (a) Case I; (b)
case II.

equation system

v̄3,y = sin ΦW̃y + iα̃Ũ1,y

iα̃Ũ1 + UB
v̄3 + (iα̃)2

ρB(iα̃Ũ1 + UB)
p̆3 − iα̃

F̂
(2)

3 cos Φ + F̂
(4)

3 sin Φ

ρB(iα̃Ũ1 + UB)
, (B5a)

p̆3,y = −ρB(iα̃Ũ1 + UB)v̄3 + F̂
(3)

3 , (B5b)

and the boundary conditions read

v̄3 = 0 at y = 0; p̆3 → 0 as y → ∞. (B6a,b)

It is indicated from the above analysis that the key factor causing the extra amplification
of the streak mode is the small growth rate of the fundamental mode (of O(σ )). The
O(σ−1) v̆3 and w̆3 velocities behave like a roll, which are driven by the nonlinear
interaction of (1, 1) and (1, −1), whereas the streak component ŭ3 is driven by the linear
lift-up mechanism, as indicated by (B4b). Thus, the extra amplification of ŭ3 leads to the
appearance of the longitudinal streaks.

In figure 29(a,b), we compare the perturbation evolution of the (0, 2) component
between NPSE and WNA for cases I and II, respectively. Good agreement is observed
for all the velocity components before the streak mode saturates.

Appendix C. Resolution study for NPSE

In order to confirm the sufficiency of the Fourier-series truncation for the NPSE
calculations, we choose cases I and II, and compare the numerical results for (Me, Ne) =
(16, 32) and (8, 16), as shown in figure 30. The two families of curves overlap precisely,
confirming the accuracy of our NPSE calculations.

Appendix D. Validation of the SIA for a wavy base flow

In order to verify our SIA code, we repeat the cases of Ng & Erlebacher (1992) for
the subharmonic resonance regime and Xu et al. (2020) for the fundamental resonance
regime. In each case, the physical model is an adiabatic flat-plate boundary layer with
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Figure 30. Comparison of NPSE results by different orders of the Fourier-series truncation. Solid lines:
(Me, Ne) = (8, 16); circles: (Me, Ne) = (16, 32).
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0.01
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Ng & Erlebacher (1992)

ε = 0.02

ε = 0.06

ε = 0.03
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Present

Xu et al. (2020)

ε = 0.2

ε =0.4

β

ωi

β
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Figure 31. Temporal growth rates of the SIA for the subharmonic (a) and fundamental (b) resonance regimes,
where the reference data are plotted by the open circles.

M = 4.5 and Rd = 10 000 and Te = 61.11K, where Rd is the Reynolds number based on
the displacement thickness of the local boundary layer. The base flow is a superposition
of the Blasius similarity solution and a saturated 2-D Mack second mode (αr = 2.52)
with different amplitude ε. In each calculation, we choose (Mw, Nw) = (3, 6), which is
confirmed to be sufficiently accurate as compared with the refined curves in figure 31(a),
for which (Mw, Nw) = (6, 12). Our numerical results agree perfectly with those in Ng &
Erlebacher (1992) and Xu et al. (2020).
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