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Distinguishing and Matching-Aware Unsupervised
Point Cloud Completion

Haihong Xiao , Yuqiong Li , Wenxiong Kang , Member, IEEE, and Qiuxia Wu , Member, IEEE

Abstract— Real-scanned point clouds are often incomplete due
to occlusion, light reflection and limitations of sensor resolution,
which impedes the related progress of downstream tasks, e.g.,
shape classification and object detection. Although there has
been impressive research progress on the point cloud completion
topic, they rely on the premise of extensive paired training
data. However, collecting complete point clouds in some specified
scenarios is labor-intensive and even impractical. To mitigate this
problem, we propose DMNet, a distinguishing and matching-
aware unsupervised point cloud completion network. Our work
belongs to the group of unsupervised completion methods
but goes beyond previous studies. Firstly, we propose a
distinguishing-aware feature extractor to learn discriminable
semantic information for different instances, simultaneously
enhancing the robust invariant representation under noise
disturbances. Secondly, we design a hierarchy-aware hyperbolic
decoder to recover the complete geometry of point clouds, which
not only can capture the implicit hierarchical relationships in
data but also has an explicit extended nature. Finally, we develop
a matching-aware refiner to eliminate noise points via aligning the
topology structure of the input and predicted partial point clouds.
Extensive experiments on MVP, Completion3D and KITTI
datasets prove the effectiveness of our method, which performs
favorably over state-of-the-art methods both quantitatively and
qualitatively.

Index Terms— Deep learning, point cloud completion, 3D
vision.
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I. INTRODUCTION

LATELY, point cloud completion has emerged as a hot
topic in 3D vision, attracting extensive attention from

academia and industry. Inferring the complete geometric
shape from a partial input benefits a wide range of point
cloud synthesis tasks such as autonomous driving [1], virtual
reality [2] and metaverse [3].

Different from regular image data, point clouds are
disordered and irregular. Hence, it is infeasible to directly
transfer the image processing methods to point clouds. Thanks
to the research advances in point cloud processing [4],
[5], [6], [7], [8], [9], [10], recent efforts [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21] achieve point
cloud completion by following the encoder-decoder paradigm.
Despite the remarkable progress of these methods, they rely
on the premise of extensive paired partial-complete training
data. However, collecting enough complete point clouds in
a specified scenario is labor-intensive and even impractical
because of occlusion, which becomes a major roadblock in
the point cloud completion area.

To overcome this limitation, unsupervised point cloud
completion methods have been explored, which no longer
require paired training data. Zhang et al. [22] proposed
shapeInversion, which introduces Generative Adversarial
Network (GAN) inversion to shape completion. However,
this method requires an additional pre-trained generative
model, which leads to lower applicability in more realistic
situations. In addition, the inverse optimization process is
unstable and time-consuming. Admittedly, we acknowledge
their contributions. For example, the degradation function
proposed in shapeInversion is efficient and enlightens our
work. Wen et al. [23] proposed a cycle completion
network, named Cycle4Completion, to learn the geometric
correspondence between complete shapes and incomplete
shapes from both directions. But the bidirectional cycle
network needs to be modeled separately, which poses a
great challenge to the training process. Cai et al. [24] argue
that point clouds with different occlusion ratios share a
uniform latent space, which encodes partial and complete
point clouds in a joint space. Nonetheless, the decoder
proposed in this method is relatively simple, which hardly
recovers the geometric details of complex shapes. Meanwhile,
the underlying shared mechanism may lead to a poor
distinction for different completed point clouds. Summarising
the above work, we find that an ideal unsupervised point cloud
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completion network should simultaneously meet the following
requirements:

1) the additional pre-trained generative models are not
required

2) the completed point clouds have geometric details
3) the different instances are distinguishable

Regrettably, existing unsupervised methods almost fail to
satisfy the above goals.

In this paper, we propose an unsupervised completion net-
work, named DMNet, to address above mentioned problems.
It is universally acknowledged that predicting fine-grained
structural information is critical for point cloud completion.
Existing point cloud generators can roughly be categorized
as the folding decoder [12], [25], tree-like decoder [14], [17]
and hierarchical decoder [16], [26]. Albeit effective, they do
not consider the implicit semantic hierarchical relationship in
data. The implicit hierarchical relationship can be described
as a subordinative relationship between the object and the
car, table, chair, etc., or the relationship between the chair
and the chair legs, chair back, chair arms, chair seat, etc.
Our key insight is that the subordination in data is critical
to the point cloud completion task, which is under explored
by existing methods. Inspired by hyperbolic geometry
[27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37],
we design a hierarchy-aware hyperbolic decoder to recover
complete geometric shapes by combining the inherent
hierarchical relationships in hyperbolic embeddings with the
extended benefits shown by the hierarchical decoder. To the
best of our knowledge, we are the first mover to apply
the hyperbolic geometry into the point cloud completion
domain.

Further, while previous works employ the point cloud
discriminator [16], [18], [26], [38] to encourage the predicted
point clouds to be realistic, they do not use the neighborhood
relations of different instances to learn discriminative features.
The distinguishability of different instances can be further
translated into their corresponding features via contrastive
learning [39], which means that they are discriminable in
the embedding space. In addition, compared to an additional
discriminator, contrast learning only needs to add a small
network to the existing feature extraction network for the
purpose of the distinguishability. Hence, we propose a
distinguishing-aware feature extractor to learn discriminable
semantic information for different instances, simultaneously
enhancing the robust invariant representation under noise
disturbances.

Last but not the least, we argue that existing unsupervised
completion methods [22], [23], [24] that only rely on Chamfer
Distance (CD) or Earth’s Movement Distance (EMD) as
loss function are insufficient and may incur noisy points
and mismatched topology structures due to the unbounded
value range of loss functions [40] and inadequate supervised
information. To alleviate this problem, we make full use
of the input data and develop a matching-aware refiner to
align the input point clouds with the predicted partial point
clouds by introducing edge relationships between nodes.
Experimental results flesh out this intuition and achieve
noticeable improvements.

To summarize, our contributions are four-fold as below.
• We propose a distinguishing-aware feature extractor to

learn discriminable semantic information for different
instances, simultaneously enhancing the robust invariant
representation under noise disturbances.

• We are the first to design a hierarchy-aware hyperbolic
decoder to generate complete geometric point clouds,
which not only can capture the implicit hierarchical
relationships in data but also has an explicit extended
nature.

• We develop a matching-aware refiner to eliminate noise
points by aligning the topology structure of the input
point clouds and predicted partial point clouds.

• We conduct extensive experiments on MVP, Comple-
tion3D and KITTI datasets to verify the effectiveness of
our new method.

II. RELATED WORK

A. Contrastive Learning

Contrastive learning is a powerful scheme for self-
supervised discriminative representation learning, whose core
idea is to draw the positive sample distance while repulsing
the negative sample distance away.

Contrastive learning has recently shown great success in
the images [39], [41], videos [42], [43] and multimodal
domain [44], [45]. However, few works have been done
for 3D understanding. The seminal work, PointContrast [46]
introduces a unified contrastive learning framework to learn
the point-level invariant representation from different views.
Moreover, they also proposed the PointInforNCE loss as
an alternative option for the InfoNCE [39]. Inspired by
this, Liu et al. [47] proposed P4Contrst, a multimodal
representation learning method for RGB-D scans, whose
core idea is to train the network using hard negatives with
disturbed correspondences between RGB and 3D points within
the same RGB-D observation, as well as between different
observations. Unlike the P4Contrst, CrossPoint [48] first
formulates the intra-modal instance discrimination to learn
perspective-invariant representations. Second, they introduce
a cross-modal auxiliary comparison target across point clouds
and images to learn discriminative features. Different from the
above methods, Fu et al. [49] utilize knowledge distillation
and contrastive learning to learn global information and the
relationship between global shape and local structures.

For the point cloud completion task, we argue that most
methods share an encoder-decoder paradigm, which may
hide the risk of insufficient distinguishability for completed
results. Although the distinguishability of the completed
results between different classes is obvious, different instances
within the same class face difficult discrimination in potential
space. Inspired by contrastive learning, we introduce a
distinguishing-aware feature extractor to learn discriminable
semantic information for different instances.

B. Hyperbolic Space

Hyperbolic space is a homogeneous space with a constant
negative curvature, which can be modeled in five isometric
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models: the Poincaré ball model, the Klein model, the Lorentz
model, the Poincaré half-space model and the hemisphere
model [50]. Although they exhibit different characteristics,
they are mathematically equivalent.

In the past few years, hyperbolic space has achieved
remarkable success in natural language processing [30],
[31], visual images [32], [33], [34], [35] and biomedicines
[36], [37] due to its inherent hierarchical superiority. Existing
hyperbolic schemes can be divided into two categories,
hyperbolic deep neural networks [27], [28], [29], [51],
[52] and hyperbolic embeddings [30], [31], [32], [33],
[34], [35], [36], [37]. Representative works in the former
include hyperbolic neural networks [27], hyperbolic graph
convolutional neural networks [28] and hyperbolic graph
attention networks [29]. The latter prefers to learn embeddings
in hyperbolic space. Inspired by hyperbolic embeddings
in NLP tasks [30], [31], hyperbolic embeddings have
achieved significant benefits in image segmentation, few-
shot learning, action recognition and molecular generation.
Khrulkov et al. [32] claimed that hyperbolic space is
appropriate for learning embeddings of images compared to
the Euclidean and Spherical embeddings. Atigh et al. [33]
proposed a semantic image segmentation scheme from a
hyperbolic perspective. Compared to the previously fixed
curvature hyper-parameter, Gao et al. [34] proposed to learn
a task-aware curved embedding space. Namely, they use
the meta-learning framework to generate suitable curvatures
automatically. Additionally, Suris et al. [35] proposed
to use the hyperbolic geometry to predict a hierarchical
representation from the unlabeled video. They think that
despite the uncertain future, parts of it are predictable. Qu and
Zhou [36] proposed a hyperbolic model for a molecular
generation. Recently, Hsu et al. [37] proposed a method
for learning the hyperbolic representations of 3D voxel-grid
images that captures the implicit hierarchical structure in
biomedical data in an unsupervised manner.

Inspired by these works, we design a hierarchy-aware
hyperbolic decoder to generate complete geometric point
clouds, which not only can capture the implicit hierarchical
relationships in data but also has an explicit extended nature.

C. Graph Matching

Graph matching refers to establishing pair-wise rela-
tionships between two graphs while considering the node
characteristic and graph structure [53]. Specifically, graph
matching uses an affinity matrix to encode the similarity of
two graphs and then translates it into a Quadratic Assignment
Problem (QAP). But, how do we solve the NP-hard problem?
One feasible solution is to use polynomial extension, such
as the Hungarian Algorithm [54]. Another promising solution
is to use the learning-based Sinkhorn Algorithm [55], which
is designated to enforce doubly-stochastic regulation on any
non-negative square matrix.

In recent years, graph matching has been widely studied
in keypoint matching [56], [57], object detection [58],
and point cloud registration [59], [60]. Wang et al. [56]
proposed a differentiable deep network pipeline to learn the

affinity for graph matching, including a permutation loss
to explain arbitrary transformations between two graphs.
Sarlin et al. [57] proposed SuperGlue to match two sets of
local features by finding corresponding points and rejecting
non-matching points, which essentially solves an optimal
transport problem. Li et al. [58] proposed a domain adaptive
object detection method. They use graph nodes to learn a
semantic-aware node affinity and then leverage graph edges
as quadratic constraints to optimize the graph matching
permutation, which achieves perfect performance. Yew and
Lee [59] and Fu et al. [60] achieve robust iterative registration
of point clouds using the Sinkhorn network layer, which
also has good results in partial point cloud registration. Our
framework is inspired by graph matching, but our goal is to
eliminate noise points by aligning the topology structure of
the input point clouds and predicted partial point clouds.

D. Point Cloud Completion

Traditional point cloud completion algorithms have been
comprehensively reviewed in [13]. Recently, learning-based
methods have been proposed, which can be classified into
supervised and unsupervised methods depending on whether
requiring paired partial-complete data during the training
phase.

1) Supervised Methods: Achlioptas et al. [11] explore point
clouds representation learning and generation. PCN [13] is
a pioneering work that utilizes a fully-connected decoder
and a folding-based decoder [12] to predict complete point
clouds. Fueled by this, many excellent methods [14], [15],
[16], [17], [18], [19], [20], [21], [25], [61], [62] spring up,
pursuing higher completion quality. TopNet [14] represents a
tree decoder for generating structured point clouds. To recover
local details, several efforts [16], [18], [19], [21], [61] follow
the coarse-to-fine strategy to refine their completion results.
PF-Net [16] uses a pyramid decoder to predict the missing
parts. CRN [18] presents a cascaded refinement network
to predict complete point clouds. MSN [19] introduces a
two-stage completion strategy to complete the partial point
cloud. Tan et al. [61] proposed a projected generative
adversarial network (PGAN) for point cloud completion.
Pan et al. [21] proposed a variational framework, achieving
great improvements in local details. Besides the local details,
the introduction of additional information is also of vital.
ViPC [62] introduces a view-guided method that takes the
missing structured information from an additional image.
Recently, following the tendency in the vision community,
some empirically powerful architectures have been proposed.
PointTr [25] introduces the transformer to the point cloud
completion task for the first time, specifically proposing
a geometry-aware transformer block to better leverage the
inductive bias about 3D geometric structures of point
clouds. Lyu et al. [63] proposed a novel point diffusion-
refinement paradigm for point cloud completion. Although
the generation process of denoising diffusion probabilistic
models (DDPM) is slow, it has great potential to be
applied in other conditional point cloud generation tasks.
Xu et al. [64] proposed a point cloud completion framework
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by a Pretrain-Prompt-Predict paradigm, namely CP3, which
can achieve robust generation and discriminative refinement
via the Incompletion-Of-Incompletion (IOI) pretext task and
semantic-guided predicting. Regrettably, category semantic
guidance is global and can not take into account local nuances,
so it’s difficult to distinguish different instances within the
same category. Admittedly, taking semantic information as
guidance to adaptively modulate point cloud representation
for discriminative recovery is groundbreaking and will inspire
subsequent research. Unlike their work, ours not only increases
the robustness of point cloud completion but also improves the
distinguishability of the different instances with the help of the
contrast learning. In addition, we achieve further geometric
optimization by means of the matching-aware refiner.
These methods, despite their gratifying results, have mainly
relied on the premise of extensive paired partial-complete
training data. Nevertheless, Collecting enough complete point
clouds in specified scenarios is labor-intensive and even
impractical.

2) Unsupervised Methods: Pcl2Pcl [65] designed a GAN
to translate between two different latent spaces to perform
unpaired shape completion. ShapeInversion [22] introduces
GAN Inversion to shape completion for the first time.
Cycle4Completion [23] introduces a cycle transformation
framework completion network to establish the bidirectional
geometric correspondence between the complete and incom-
plete shapes. Cai et al. [24] argue that point clouds with
different occlusion ratios share a uniform latent space, which
encodes partial and complete point clouds in a joint space
equipped with different occlusion degrees. Although the above
methods have achieved competitive results, there is still ample
room for improvement in the geometric details. Moreover,
some of the unsupervised methods need additional pre-trained
generative models, which to some extent brings limitations in
realistic situations.

III. METHOD

Our goal is to produce complete and fine-grained point
clouds from partial input in an unsupervised fashion.
Specifically, given a partial point cloud Pin , we aim to learn
a model 8 to infer the complete geometrical shape P f .
We expect our method to fulfill three requirements: (1) the
different completed point clouds are distinguishable, (2) the
completed point clouds preserve the geometric details, and
(3) generated and input point clouds have the topological
consistency. To achieve these, we propose a novel point
cloud completion framework, named DMNet, which is shown
in Fig. 1. The pipeline includes three parts: distinguishing-
aware feature extractor, hierarchy-aware hyperbolic decoder
and matching-aware refiner. First, the distinguishing-aware
feature extractor embeds Pin into a discriminable shape code
fg . second, the hierarchy-aware hyperbolic decoder exploits
the shape code fg to generate the complete geometric point
cloud Pc. Third, DMNet adopts a matching-aware refiner
to further refine the coarse point Pc and outputs a fine-
grained completed point cloud P f with improved structural
optimization.

A. Distinguishing-Aware Feature Extractor

Motivated by recent contrastive learning developments
in visual representation learning [41], [42], we propose
a distinguishing-aware feature extractor to learn distinct
semantic information for different instances, simultaneously
enhancing the robust invariant representation under noise
disturbances. In the following, we describe the details of the
distinguishing-aware feature extractor.

Given a partial point cloud Pin , we get augmented point
clouds P ′

in by utilizing the jittering and cropping operations [4]
as follows.

P ′

in = Aug( j i t ter (Pin, (s, c)) , crop (Pin, (v, r))) (1)

where s and c denote the hyper-parameters of the j i t ter (·)
function. v and r represent the random view and cropping
ratio respectively.

Considering simplicity and efficiency, we choose the
PointNet-based Combined Multi-Layer perceptron [19] as the
backbone of our feature extractor, which contains both low-
level and high-level feature information. Therefore, the global
feature vectors fg and f ′

g can be obtained through the shared
feature extractor Ep. Then, we obtain the projection vectors
Zi and Z ′

i by using the projection head P, which is a non-
linear projection function p(·) with a two-layer MLP. Finally,
we build such a loss function that maximizing the similarity
between Zi and Z ′

i while minimizing the similarity between
all other projection vectors in the mini-batch. Inspired by the
NT-Xent loss proposed in [39], our loss function is defined as
follows.

Lc = −

∑
i

log
exp

(
zi · z′

i/τ
)

∑
j ̸=i

exp
(
zi · z j/τ

)
+

∑
j

exp
(

zi · z′

j/τ
) (2)

where τ denotes the temperature parameter. · denotes the
calculation of cosine similarity.

B. Hierarchy-Aware Hyperbolic Decoder

Inspired by the HNN [12] and PFNet [13], we design
a hierarchy-aware hyperbolic decoder to predict complete
geometric point clouds, which not only can capture the implicit
hierarchical relationships in data but also has an explicit
extended nature. The explicit extension is easy to understand
and similar to Euclidean space’s extension. The implicit
hierarchy proposed in our paper focus more on the semantic
subordination, which can be described as the relation between
the object and the car, table, chair, etc., or the relation between
the chair and the chair legs, chair back, chair arms, chair seat,
etc., as shown in Fig. 2. The hyperbolic space can naturally
capture the implicit non-Euclidean hierarchy. In addition,
we choose the widely studied and adopted Poincaré ball
model to build the embeddings, which is defined as Hn

c ={
x ∈ Rn

: c∥x∥
2 < 1, c ≥ 0

}
endowed with the Riemannian

metric gH(x). The hyper-parameter c demotes the curvature.
Before introducing our approach, we briefly introduce a
few basic operations on the Poincaré ball to facilitate our
understanding.
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Fig. 1. The overall pipeline of our proposed method. Taking a partial point cloud Pin as input, the distinguishing-aware feature extractor learns discriminable
semantic information and outputs a global feature vector fg . Then, the hierarchy-aware hyperbolic decoder generates a complete geometric point cloud Pc in
the stage I. Finally, the matching-aware refiner further improves the quality of Pc and get a clean and fine-grained point cloud P f in the stage II.

Fig. 2. The chair parts can naturally be organized into implicit hierarchies.
Here, we use the Poincaré ball model to represent such relations. Note that,
the different parts may have the same hierarchy, such as the chair and plane.
Best viewed in colors.

Möbius addition: the Möbius addition ⊕ for x and y in
model Hn

c is defined as

x ⊕c y :=

(
1 + 2c⟨x, y⟩ + c∥y∥

2) x +
(
1 − c∥x∥

2) y
1 + 2c⟨x, y⟩ + c2∥x∥2∥y∥2 (3)

Möbius scalar multiplication: the Möbius scalar multipli-
cation ⊗ in model Hn is defined as

r ⊗c x =

{
(1/

√
c) tanh

(
r artanh(

√
c∥x∥)

) x
∥x∥

x ∈ Hn
c

0 x = 0
(4)

where r denotes a scalar factor.
Exponential map: the Exponential map is a function from

Rn to Hn
c , which is defined as

Expc
x (v) = x ⊕c

(
tanh

(
√

c
λc

x∥v∥

2

)
v

√
c∥v∥

)
(5)

where λc
x denotes the conformal factor.

Logarithmic map: the Logarithmic map is the inverse
operation of the exponential map, which is defined as

Logc
x (y) =

2
√

cλc
x

tanh−1 (√
c ∥−x ⊕c y∥

) −x ⊕c y
∥−x ⊕c y∥

(6)

First, we map the Euclidean feature fg to the Poinćare
ball model Hn

c to obtain hg by using the exponential function
Expc

x (·). Secondly, we get three semantic feature layers hi (i
= 1, 2, 3) by passing hg to perform non-linear transformation
in hyperbolic space.

h1 = T anh
(
HLiner1

(
hg

))
h2 = T anh (HLiner2 (h1))

h3 = T anh (HLiner3 (h2))

(7)

Notably, there are some researchers [51] who argue that the
operation on the manifold itself is a non-linear transformation,
so they do not use the activation function. Unlike them, we use
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the T anh activation function after the hyperbolic linear layer.
In the experiment, we find that we can get more effective
result with T anh than that without using it. Then, we use
the different semantic feature layer hi to predict point clouds
Pi (i = 1, 2, 3) of different resolutions through the “expand”,
“add” and “reshape” operations in hyperbolic space.

P1 = PM
(
RS

(
HLiner′1 (h3)

))
P2 = PM

(
RS

(
HLiner′2 (h2)

)
+ RS (P1)

)
P3 = PM

(
RS

(
HLiner′3 (h1)

)
+ RS (P2)

) (8)

where the HLiner′i , RS and “+” denote the “expand” function,
“reshape” function and “add” operation in hyperbolic space,
respectively. PM represents the Poincaré mean function, which
renders the results more stable.

By the simple design, we explicitly achieve extended
functionality. Finally, we project the final predicted P3 back
to the Euclidean space to get a coarse completed point cloud
Pc via the logarithmic function Logc

x (·). It’s worth noting
that we only use simple and efficient non-linear and linear
transformations for point clouds generation in hyperbolic
embeddings, which perfectly fits the irregular characteristic of
point clouds. In addition, we use the k-mask [22] degradation
function to convert the Pc to a degenerate partial point
cloud Pmc, such that we can not only precisely perform self-
supervision between the corresponding regions of Pin and
Pmc, but also eliminate noise points by aligning the topology
structure of the input point clouds and predicted partial point
clouds, as described in the following subsection.

C. Matching-Aware Refiner

Although hierarchy-aware hyperbolic decode can predict
complete geometric point clouds, there are two shortcomings:
1) there are noisy points in the predicted point cloud.
2) generated and input point clouds do not have the same
structural topologies, such as the round seat and square seat of
chairs. Inspired by the deep graph matching [53], we note that
Sinkhorn networks may be used not only to learn permutations,
but also to learn matchings between objects of two sets of the
same size [66]. Therefore, after generating a completed point
cloud Pc, we additionally develop a matching-aware refiner to
refine it to acquire a final point cloud P f .

First, we use the siamese feature extractor Eg to extract
comprehensive features fin and fmc from the input point cloud
Pin and masked point cloud Pmc. Note that, Eg differs from
the feature extractor Ep proposed in the previous subsection as
follows: 1) Eg extracts both point features f p and edge features
fe by using EdgeConv layers [16] and MLP, respectively.
2) Eg does not use the max-pooling operation. Notably,
before performing graph matching, we use the self-attention
unit [67] to enhance feature integration. For example, given
comprehensive feature characteristics fin ∈ RN×C , where N ,
C stands for the number of points and channels, we feed fin
into two MLP respectively and generate the corresponding
feature maps A ∈ RN×C and B ∈ RN×C . Then the attention

matrix W is calculated as follows.

W j,i =
exp

(
B j · AT

i
)

N∑
i, j=1

exp
(
B j · AT

i
) (9)

where W j,i denotes the attention score modeling the impact of
the ith local descriptor to the jth local descriptor. Immediately,
we use another MLP to get a new feature map C ∈ RN×C .
Then, we multiply it with the transpose of W and add it to fin
to obtain enhanced descriptions f ′

in(as shown in equ.(10)).

f ′

in = αW T C + fin (10)

where α denote the scale factor. Similarly, we also obtain
the enhanced feature descriptions f ′

mc of Pmc. Secondly,
we compute the affinity matrix M using f ′

in and f ′
mc as

follows.

Mx,y = ( f ′

inx
)T Z( f ′

mcy
) (11)

where Z denotes the learnable parameter. Next, we get
the non-negative doubly-stochastic matrix S by taking row-
normalization and column-normalization alternatively and
iteratively. Specifically, it is implemented through three
steps: instance normalization, sinkorm layer and exponential
mapping(as shown in equ.(12)).

Sx,y = Exp
(
Sinkormn

(
InsN

(
Mx,y

)))
(12)

where n denotes the number of iterations. Sinkhorn operation
is fully differentiable, which can be efficiently implemented
with the help of PyTorch’s automatic differentiation [68].
Then, we use the cross-graph interaction module to enhance
the mutual node features, which is similar to the intra-graph
feature aggregation. With adjacency matrix replaced by S,
and features are aggregated from the other graph. Again,
we combine the interactive graph features and use MLP to
generate a fine-grained completed point cloud P f . Finally,
we use the k-mask degradation function to predicate a fine-
grained partial point cloud Pm f . It is worth noting that
although the masking process is consistent with the stage I,
the predicted point clouds in the stage II are more fine-grained
and accurate compared to the predicted point clouds in the first
stage.

IV. LOSS FUNCTION

Our proposed DMNet is trained end-to-end and the training
loss consists of three parts: contrastive loss, reconstruction
loss and matching loss. The contrastive loss mainly enhances
the distinguishability for different instances within the
same category, as well as different categories. Unlike the
reconstruction loss proposed in the supervised methods, our
reconstruction loss consists of two items: 1) minimize the
difference between the predicted partial point clouds and
the input point clouds. 2) minimize the difference between
the completed point clouds and the input point clouds. The
matching loss mainly eliminates the outliers and aligns the
topology structure between the predicted partial point clouds
and the input point clouds.
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A. Contrastive Loss

In our training stage, we use the contrastive loss to learn
discriminative semantic information for different instances,
which is defined as in equ.(2).

B. Reconstruction Loss

To evaluate the similarity between two point clouds,
we adopt Chamfer distance (CD) over Earth mover’s distance
(EMD) for its O(N log N ) complexity. In addition, the
completed point clouds and input point clouds contain a
different number of points, thus making EMD infeasible.
We use the CD-P variant [22] in our experiments during the
training stage.

LP1,P2 =
1
P1

∑
a∈P1

min
b∈P2

∥a − b∥
2
2 (13)

LP2,P1 =
1
P2

∑
b∈P2

min
a∈P1

∥a − b∥
2
2 (14)

LC D−P (P1, P2) =

(√
LP1,P2 +

√
LP2,P1

)
/2 (15)

where a and b represent the point in point cloud P1 and P2,
respectively.

Therefore, the two-stage reconstruction loss can be
formulated as follows.

Lrec = λr1LC D−P (Pm f , Pin) + λr2LC D−P (P f , Pin)

+λr3LC D−P (Pmc, Pin) + λr4LC D−P (Pc, Pin) (16)

where λr1, λr2, λr3 and λr4 denote the weighting parameters.

C. Matching Loss

We propose the structure-aware matching loss to remove
outliers from the predicted point clouds and further achieve
a fine-grained consistent distribution. The matching loss is
defined as follows.

Lmatch = −
1

|Hmt |

∑
x,y∈Hmt

α(1 − Sx,y)
γ logSx,y (17)

where α and γ are hyper-parameters. Hmt is the set of
matches, which the distance between two point clouds of Pin
and Pmc is less than a threshold.

D. Overall Loss

In summary, the overall loss function for training DMNet
is defined as follows.

L = λcLc + λrLrec + λmLmatch (18)

where λc, λr and λm are the parameters to balance the three
terms.

V. EXPERIMENTS

In the experiments, we use three benchmark point cloud
completion datasets for evaluating our proposed method:
MVP [21], Completion3D [14] and KITTI (Car) [13].
First, we briefly introduce the above-mentioned datasets and
evaluation metrics in our experiments. Then, we compare
the performance of our approach with previous state-of-
the-art methods. Furthermore, we analyze the effects of
various components of our network and parameter settings by
conducting ablation studies.

A. Datasets

1) The MVP Dataset: The MVP dataset is a multi-view
partial (MVP) point cloud dataset, which contains over
100,000 pairs of partial and complete point clouds. Due to
its large-scale and high-quality characteristics, it is also used
in the 2021 ICCV Challenge on Completion and Registration.
It consists of 16 shape categories for training and testing.
26 random virtual camera poses make it easier to simulate
self-occlusion. The resolution we use in our experiments is
2048.

2) The Completion3D Dataset: The Completion3D dataset
is a subset of the shapenet dataset, which is widely used in
point cloud completion and contains eight common objects:
Airplane, Cabinet, Chair, Car, Couch, Lamp, Table and
Watercraft. Incomplete point clouds are obtained by back-
projecting the 2.5D depth map from a random viewpoint. The
training set contains 28794 pairs of complete point clouds and
incomplete point clouds. The test set contains 1184 pairs of
complete and incomplete point clouds.

3) The KITTI Dataset: The KITTI dataset is a standard
dataset for autonomous driving [69]. We use the processed
data from the 2011_09_26_drive_0009 LiDAR sequence.
Specifically, we employ the cars extracted from each frame
according to the ground truth object bounding boxes, following
the rule of PCN [13]. Compared to the Completion3D and
Shapenet-Part, the point clouds in the KITTI are more sparse
and have lower resolution. A total of 2401 partial point clouds
for testing.

B. Evaluation Metrics

We choose the Chamfer Distance (CD) [13], Density-aware
Chamfer Distance (DCD) [40] and F1-Score [21] to evaluate
the performance of different point cloud completion methods
in our experiments.

C D (P, G) =
1
P

∑
p∈P

min
g∈G

∥p − g∥
2
2 +

1
G

∑
g∈G

min
p∈P

∥p − g∥
2
2

(19)

where p and g denote points that belong to predicted point
clouds P and ground truth G, respectively.

DC D (P, G) =
1
2

 1
|P|

∑
p∈P

(
1 −

1
n ĝ

e−β∥p−ĝ∥2

)

+
1

|G|

∑
g∈G

(
1 −

1
n p̂

e−β∥g− p̂∥2

) (20)
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Fig. 3. Qualitative completion results on the MVP dataset by different methods. DMNet can generate better complete point clouds than the other unsupervised
methods and even outperforms the supervised method PCN in some objects, such as the motorbike. Best viewed in colors.

where ĝ = ming∈G ∥p − g∥2, p̂ = minp∈P ∥g − p∥2, and β

denotes a temperature scalar.

P(d) =
1
P

∑
p∈P

[
min
g∈G

∥g − p∥ < d
]

(21)

G(d) =
1
G

∑
g∈G

[
min
p∈P

∥g − p∥ < d
]

(22)

F1-Score(d) =
2P(d)G(d)

P(d) + G(d)
(23)

where P(d) and G(d) denote the precision and recall at a
given threshold d , respectively.

C. Implementation Details

We train our model on two NVIDIA RTX 3090 GPUs with
a minibatch size of 24. We adopt an Adam optimizer with
b1 = 0 and b2 = 0.99 and set the initial learning rate to
0.0001. We train our model for 100 epochs. The learning rate
is decayed by 0.7 after around every 20 epochs and clipped by
10−6. In the hyperbolic space, we set the curvature c to a fixed
value of 0.1. In the contrastive loss, we set the temperature
τ to 0.1. In the Sinkorm layer, we set the iteration n to 10.
The hyper-parameters α and γ in the matching loss are set
to 0.25 and 2. The hyper-parameters of λc, λr and λm in the
overall loss are set to 0.01, 1 and 0.1, respectively. The hyper-
parameters of λr1, λr2 and λr3 in the reconstruction loss are
set to 10, 0.5 and 1, respectively. The hyper-parameter λr4 are
set as [0.1, 0.5, 1.0, 10.0] at epochs [1], [5], [15], [30].

TABLE I
COMPLETION COMPARISON ON MVP IN TERMS OF CD (LOWER IS

BETTER), DCD (LOWER IS BETTER) AND F1-SCORE (HIGHER
IS BETTER), WHERE CD IS SCALED 104 . THE BOLD AND
UNDERLINED VALUES ARE THE BEST AND THE SECOND

BEST VALUES, RESPECTIVELY

D. Point Cloud Completion

1) Results on MVP Dataset: We compare MDNet with
nine previous top-performance approaches [13], [14], [18],
[19], [20], [21], [22], [23], [65], including six supervised and
three unsupervised methods, which have published results on
the 2021 ICCV Challenge on Completion and Registration.
We use CD, DCD and F1-score as evaluation metrics.
Quantitative results are shown in Table I, from which we
can find out our DMNet surpass the second best method
ShapeInversion in both CD, DCD and F1-score, with a
relative improvement of 0.34, 0.022 and 1.4%, respectively.
In addition, our method even outperforms some supervised
methods, such as TopNet and PCN.
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Fig. 4. Qualitative completion results on the Completion3D dataset by different methods. DMNet can achieve more accurate completion under severe
occlusion compared with the other unsupervised methods. In addition, we note that our method even recovers better fine-grained shape details than the
supervised method TopNet on the chair and watercraft. Best viewed in colors.

TABLE II

COMPLETION COMPARISON ON COMPLETION3D IN TERMS OF CD × 104 (LOWER IS BETTER), THE BOLD AND
UNDERLINED VALUES ARE THE BEST AND THE SECOND BEST VALUES, RESPECTIVELY

We also show the results of the visual comparison.
As illustrated in Fig. 3, our approach makes fewer noises
while recovering more clear geometric structures than other
unsupervised methods. Specifically, we can clearly observe
that the Cycle4Completion and ShapeInversion can not
recover the geometric structure of the table legs and
only generate scattered points. However, our approach
can effectively avoid this problem and generate complete
shapes, including the local details. Moreover, our method
visually surpasses the supervised method PCN, such as
the motorbike and gun. Meanwhile, we note that there
is still a gap between our approach and some of the
competitive supervised methods, which further motivates us
to explore more possibilities of unsupervised point cloud
completion.

2) Results on Completion3D Dataset: The Completion3D
dataset is widely used and evaluated in point cloud completion.
We select thirteen open-source works: AtlasNet [70], Fold-
Net [12], PCN [13], TopNet [14], SA-Net [71], MSN [19],
CRNet [18], ECG [20], PMP-Net [72], VRCNet [21],
Pcl2Pcl [65], Cycle4Completion [23] and ShapeInversion [22]
as our competitors, which includes ten competitive supervised
methods and three top-performance unsupervised methods.
In our experiments, we reproduce the experimental results
using the published codes of the competitors. Table II shows
the qualitative completion results, from which we can find
that the MDNet outperforms other unsupervised methods by
a large margin and is comparable to the partial supervised
methods. Encouragingly, the gains of the cabinet, chair, couch,
and table are more pronounced than the second best method
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Fig. 5. Qualitative completion results on the KITTI dataset by different
methods. DMNet can predict more accurate shapes with less noise than other
unsupervised methods. Best viewed in colors.

ShapeInversion (in terms of average CD), with relative gains
of 27%, 18%, 35% and 11%, respectively.

To intuitively compare the completion results, we also
present the qualitative results, as shown in Fig. 4. The results
indicate that DMNet can generate more refined details while
having fewer noisy points. In addition, the advantage of our
method can be further proved by the case of the chair, which
shows that the MDNet tends to predict a round shape of the
chair seat.

3) Results on KITTI Dataset: To evaluate the generalization
ability of our method on real scans, we follow [13] to
employ the cars from the KITTI for point cloud completion.
For a fair comparison, we use the pre-trained model on
the completion3D dataset for testing without fine-tuning.
We compare our DMNet with three other unsupervised
methods: Pcl2Pcl, Cycle4completion and ShapeInversion.
Since there is no real complete point cloud, we follow [22]
to use the Unidirectional Chamfer Distance (UCD) for
evaluation. Quantitative results are shown in Table III. Our
method has a relative improvement of 0.46 (in terms of average
UCD × 104) compared to the ShapeInversion. The visual
comparison is shown in Fig. 5, from which we can find that
our method can predict more accurate shapes with less noise
than other unsupervised methods even under sparse conditions.

E. Applying to Shape Classification

We further demonstrate the advantages of our approach on
the point cloud classification task. Specifically, we first get

TABLE III
COMPLETION COMPARISON ON KITTI IN TERMS

OF UCD × 104 (LOWER IS BETTER)

Fig. 6. Comparison of point cloud classification on the Completion3D
dataset. Better viewed in color.

a pre-trained classifier by training the classical PointNet [4]
network using the ground truth of the training set in the
Completion3D dataset. Next, we use the pre-trained classifier
to classify the validation set’s partial input, completed point
clouds and ground truth. Therein, the completed point clouds
are provided by the Cycle4completion [23], ShapeInversion
[22] and our method, respectively. We declare that the pre-
trained classifier should perform better when the input is
similar to the ground truth. Fig.6 shows that the different
completion strategies are beneficial for the shape recognition
task, contributing to 26%, 28% and 31% improvement,
respectively. Obviously, the classification accuracy assisted
by our method is superior to others. Admittedly, compared
with the accuracy of the ground truth, there is still room for
improvement, which means that the completion quality is still
insufficient.

F. Ablation Study

In this section, we systematically analyze the effectiveness
of each component in our DMNet and parameter settings with
a series of experiments. Firstly, we compare the complete
results’ distinguishability in the embedding space without and
with contrast learning, separately. Secondly, we analyze the
advantages of hyperbolic embeddings over primitive Euclidean
space. Next, we show the potential when equipped with the
matching-aware refiner module. Finally, we study the settings
of the model parameter. All the experiments are conducted on
the completion3D dataset unless otherwise stated.

1) Effect of Contrast Learning: We set the PointNet-based
CMLP encoder [16] and hierarchical decoder [16] as the
initial network model. Similar to ShapeInversion [22], we also
employ the degradation function to obtain the partial point
clouds. Notably, the hierarchical decoder only predicts the
final point clouds, which is intended to be consistent with our

Authorized licensed use limited to: National Science Library CAS. Downloaded on April 12,2024 at 07:08:55 UTC from IEEE Xplore.  Restrictions apply. 



5170 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 9, SEPTEMBER 2023

TABLE IV
ABLATION STUDY OF THE FRAMEWORK COMPONENTS.
RESULTS IN TERMS OF CD × 104(LOWER IS BETTER)

Fig. 7. Visualize the feature space distribution of completed results on the
Completion3D dataset by T-SNE. The first row shows the results without
contrastive learning. The second row shows the results with contrastive
learning. Best viewed in colors.

network settings. After that, we replace the vanilla encoder
with the Distinguishing-aware Feature Extractor(DFE), which
cleverly uses contrast learning to learn the discriminable
semantic information for different instances. Table IV shows
that our design is effective, obtaining a relative improvement
of 1.11 (in terms of average CD × 104). In addition, we also
visualize the corresponding features of completed results
by t-distributed stochastic neighbor embedding(t-SNE) [73].
As illustrated in Fig. 7, the different categories are often
confused (e.g. cabinet and couch) while the different instances
within the same category tend to cluster together (e.g. cabinet)
when not using contrastive learning. But, we see a more
discrete distribution within the same category when using
contrastive learning.

2) Effect of Hyperbolic Embedding: We improve the
performance of point cloud completion using the hyperbolic
embedding in training, which is not adopted in previous meth-
ods. We use the Hierarchy-aware Hyperbolic Decoder(HHD)
to replace the vanilla decoder. Table IV demonstrates that the
gains from hyperbolic embeddings are significant, obtaining
a relative improvement of 3.06 (in terms of average CD ×

104). We also visualize the results of the Euclidean hierarchical
decoder and Hierarchy-aware hyperbolic decoder at different
epochs, respectively. As illustrated in Fig. 8, we find two
exciting phenomena: 1) the structure of the airplane in
euclidean space is discrete. However, hyperbolic embeddings
can better retain structural information. 2) The airplane using
hyperbolic embeddings has the visual perception of “hollow”
lines (the green dashed boxes in Fig. 8), which we believe is
brought by the hyperbolic embedding itself.

Fig. 8. Visualize the completed results of the Euclidean hierarchical decoder
and hierarchy-aware hyperbolic decoder at different epochs, respectively.

Fig. 9. Visualize results of the ablation studies on the matching-aware refiner
module.

3) Effect of Matching-Aware Refiner: We add the Matching-
aware Refiner (MR) module to the initial network and
demonstrate its necessity. Table IV shows that the MR is
effective, obtaining a relative improvement of 1.48 (in terms of
average CD × 104). Fig. 9 confirms that the completed results
have fewer noisy points when using MR. Besides, we find
that the “hollow” lines caused by the hyperbolic embedding
disappear when combined with MR.

4) Effect of Model Parameter Setting: We study the settings
of model parameters. We first vary the number of iterations in
the silkworm layer for computing the average chamfer distance
of the completed results. As shown in Table. V(top), the
completion quality consistently improves with more iterations
and gets saturated after about ten iterations. To better balance
completion quality and speed, we select n =10 in our
experiments unless otherwise noted. We then investigate
the impact of curvature c in hyperbolic space. Specifically,
we evaluate our network when the c is set as a fixed parameter
or a learnable parameter. As shown in Table. V(bottom), the
best results are obtained when we set c as 0.1. In addition,
we find that the results are very worse when we treat c as a
learnable parameter, demonstrating the necessity of the fixed
curvature.

5) Effect of Training Setting: We investigate the effec-
tiveness of the Poincaré mean function and Tanh activation
function in the hierarchy-aware hyperbolic decoder module.
As shown in Table. VI, without using the Poincaré mean
function has a larger CD value than using it, which means the
Poincaré mean function can slightly improve the performance.
Notably, the smaller the CD, the better the result. Moreover,
the experimental results also show that it is necessary to use
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TABLE V
EFFECT OF MODEL PARAMETER SETTING. RESULTS

IN TERMS OF CD × 104(LOWER IS BETTER)

TABLE VI
EFFECT OF TRAINING SETTINGS. RESULTS IN

TERMS OF CD × 104(LOWER IS BETTER)

TABLE VII
EFFECT OF THE RECONSTRUCTION LOSS WITH DIFFERENT COMBINA-

TIONS. RESULTS IN TERMS OF CD × 104(LOWER IS BETTER)

the T anh activation function in hyperbolic space, achieving
an improvement of 0.35.

6) Effect of Reconstruction Loss Setting: In order to further
evaluate the performance of DMNet on reconstruction loss
settings, we evaluate DMNet using the reconstruction loss with
different combinations. As shown in Table. VII, we observe
that the experimental results could be further improved by
using the supervision between the partial input and generated
complete point cloud. We obtain a relative improvement of
0.48 and 0.67 (in terms of average CD × 104) when adding
the {Pc,Pin} and {P f , Pin}, respectively. The best completion
result is achieved when using all combination items with
different weight ratios, achieving a relative improvement
of 1.12.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose a new unsupervised point
cloud completion network, DMNet, to infer the complete
geometric shape from a partial input. We begin with learning
discriminable semantic information for different instances
with contrastive learning. Then we introduce a hierarchy-
aware hyperbolic decoder to recover the complete geometry
of point clouds from a hyperbolic perspective. To boost the
performance, we also introduce a matching-aware refiner to get
clean and complete point clouds. Taking advantage of those,
the proposed DMNet achieves state-of-the-art performance
on MVP, Completion3D and KITTI datasets. Extensive
qualitative comparisons have demonstrated the superiority of
our framework in terms of point cloud completeness and
geometry. Besides, we validate the properties of the different

modules through necessary ablation studies and visualizations,
which further prove the effectiveness of our approach.

Although our proposed method has achieved satisfactory
results, we note that there is still a gap between our
approach and some of the competitive supervised methods.
This result motivates us to improve our method and explore
more possibilities for pursuing higher completion quality
in the future. We argue that the quality of point cloud
completion can be further improved from the following
three aspects: 1)Explore sophisticated and interpretable
hyperbolic embeddings. Although we introduce a hyperbolic
embedding scheme to recover the complete geometry of point
clouds and find that this strategy is effective, the applicability
of the hyperbolic embedding for large scenarios possessing
complicated structures or relations is yet to be verified.
In addition, our analyses do not yet uncover how hyperbolic
embeddings cause the data itself to appear the implicit
hierarchical distribution. So, extensive experimental setups and
visualizations are needed to explain their benefits. 2)Build
deep ties between semantic information and geometrical
structures. Introducing additional semantic information to
guide the point cloud completion task is critical to pursuing
more accurate results. For example, if we know that the
number of missing legs for the chair is four instead of three,
we will be able to acquire an unprecedented level of robustness
to distributional shifts of data. 3)Create a high-quality real
dataset. Unlike images, which can be easily captured and
downloaded, collecting a large, high-quality and real dataset of
point clouds is by no means an easy task. However, it is critical
to enabling our method to be more robust because existing
point cloud completion datasets, such as the Completion3D
and MVP, have small numbers of synthetic CAD models.
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