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Most conventional numerical models employ partial differential equations (PDEs) to describe seepage flow problems and use
weighted residual and finite difference solution techniques to solve the PDEs. These PDEs are established in view of a spatial
point, which mathematically stems from the infinitesimal concept. An alternative approach to such problems is developed. It
applies an energy approach, i.e., the Lagrange’s equations, to the representation of the seepage flow system, instead of directly
resorting to the PDEs. The Lagrange’s functional is established on a representative volume element (RVE) by integrating the
energy of the RVE. Following a Lagrange formulation, the variation of the functional is conducted with regard to appropriate
generalized coordinates. Then the resulting integral equations are considered with the description from the Lagrangian frame
into the Eulerian frame for an improved accuracy. Afterwards, the equations are numerically discretized with a cell-centered
finite volume method. Finally, two seepage front estimation schemes are presented—one scheme is implemented by local mesh
refinement and the other scheme by seepage front movement. The resulting model is a true energy formulation, developed with-
out reference to the partial differential momentum equations. Numerical examples are demonstrated and show that the model
generates physically sound results.
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1. Introduction

Darcy’s law fundamentally describes the phenomenon of a
fluid flowing through a porous medium. It was initially es-
tablished by Henry Darcy in 1856 based on the results of
experiments on the flow of water through beds of sand [1]:

Q = kA
(h1 − h2)

L
, (1)

where Q is the volumetric discharge; k is the hydraulic
conductivity; A stands for the seepage area; L stands
for the seepage length; h1 and h2 are water potentials.

*Corresponding authors. E-mail addresses: shli@imech.ac.cn (Shi-Hai Li);
fengchun@imech.ac.cn (Chun Feng)
Executive Editor: Xueming Shao

In 1986, Whitaker [2] analyzed Stokes flow problems using
the method of volume averaging and derived spatial devia-
tions of pressure and velocity in Stokes equations, theoreti-
cally leading to Darcy’s law.

Darcy’s law plays a critical role in various engineering sce-
narios. In hydrogeology, it is to flow water through a per-
meable aquifer [3]. In petroleum engineering, it is to de-
scribe oil, gas, and water flows through reservoirs [4]. In
hydraulic engineering, it is to analyze dam stability under
seepage flow conditions [5]. In underground storage engi-
neering, it is to prevent oil leakage from water-sealed cav-
erns [6]. In ocean engineering, it is to control seawater in-
trusion in coastal aquifers [7]. In mining engineering, it is to
understand the mechanism of coal-gas outbursts [8]. More
applications can be found in the editorial review paper [9].
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Darcy’s law indicates that fluid flow in porous media be-
haves linearly. In fact, non-linear flow behaviors also ex-
ist in porous media, as indicated by Majid Hassanizadeh
and Leijnse [10], Liu and Masliyah [11], Zhou et al. [12],
and Tao et al. [13]. Especially in the process of hy-
draulic fracturing of low-permeability shales, non-linear
flows cannot be ignored [14]. Therefore, non-linear seep-
age laws such as Forchheimer equation [15] were estab-
lished to describe such phenomena. Darcy’s law or other
non-linear law with the conservation of mass equation forms
the basic partial differential equations (PDEs) for seepage
problems.

Conventional numerical models employ the PDEs to de-
scribe seepage flows and use weighted residual and finite dif-
ference solution techniques to solve the seepage problems.
For example, at early days, Zienkiewicz et al. [16] applied
finite element method (FEM) to steady-state seepage analy-
sis; Jeppson [17] employed finite difference method (FDM)
to solve free-surface flow through nonhomogeneous porous
media; Neuman and Witherspoon [18] used FEM to analyze
steady seepage problems with a free surface; Neuman [19]
developed a Galerkin-type FEM to solve transient seepage
problems in saturated-unsaturated porous media. More re-
cently, Das et al. [20] compared different FDM algorithms
used in numerical simulation of two-dimensional single-
phase saturated porous media flows; Zheng et al. [21] pre-
sented a variational inequality formulation in FEM for seep-
age problems with free surfaces; Chávez-Negrete et al. [22]
proposed a generalized FDM to solve the Richards’ equa-
tion; Sharma et al. [23] developed a moving-mesh type
FEM for the computation of transient unconfined seepage
flow through porous media. Moreover, some novel numer-
ical methods have been developed for seepage flow analy-
sis, such as finite volume method (FVM) [24-26], numer-
ical manifold method (NMM) [27-30], meshfree method
[31, 32], FE-meshfree method [33], virtual element method
(VEM) [34] and so forth. The abbreviations are listed in
Appendix A.

The above numerical models are established on the basis
of PDEs, by means of spatial point description of physical
laws. An alternative energy approach, i.e., the Lagrange or
Hamilton equation approach [35, 36], is presented in this pa-
per to the representation of a seepage flow system, instead
of directly resorting to the PDEs. The Lagrange or Hamil-
ton equation approach has been successfully applied to many
fields, such as viscous compressible fluid dynamics [37, 38],
impact dynamics with perforation and fragmentation [39],
thermofluid dynamics [40], reacting thermofluid dynamics
[41], and so forth. As for continuum mechanics problems,
Liang et al. [42] recently gave an excellent review on the ap-
plications of the Lagrange-Hamilton approach to such prob-

lems. Nonetheless, to our best knowledge, the application
of this approach to seepage flow problems has been seldom
reported.

In this paper, we present a novel numerical model for tran-
sient seepage flow analysis based on the Lagrange equation
approach [35, 36]. The model is established on a repre-
sentative volume element (RVE) instead of being differen-
tially described at a spatial point. The variation of the La-
grangian on the RVE results in a set of integral equations
for the seepage flow system. Then the equations are for-
mulated from the Lagrangian frame into the Eulerian frame
for an improved accuracy. Afterwards, the equations are
numerically discretized with a cell-centered finite volume
method (CCFVM) [43, 44]. Finally, two seepage front es-
timation schemes are introduced into the model for a better
flux approximation. The model is termed the Lagrangian-
Eulerian (LE) model due to its mixed LE description
nature.

The presented LE model is a true energy formulation,
developed without reference to partial differential momen-
tum equations. The LE model is capable of dealing with
both linear and non-linear flows provided a suitable seep-
age law is introduced into the Lagrangian. The LE model
obtains more accurate pressure gradients, flow rates and
fluxes since it considers seepage front estimation. Thus,
the fluid leak-off in hydraulic fracturing can be simulated
more accurately, compared with the conventional numeri-
cal models, which directly resort to the discretization of the
PDEs.

The paper is organized as follows. In Sect. 2, we elaborate
the establishment of the Lagrangian of a seepage flow system
and the variation of the Lagrangian through the canonical La-
grange’s equations. In Sect. 3, we transform the integrated
seepage equations from the Lagrangian frame into the Eule-
rian frame. After transformation, a CCFVM is used to dis-
cretize the mixed Lagrangian-Eulerian seepage equations in
Sect. 4. In Sect. 5, two seepage front estimation schemes
are introduced—the LER scheme and the LEM scheme. Af-
terwards, two examples in Sects. 6 and 7 are demonstrated
to show the advantages of the proposed LE model. Finally,
conclusions are drawn in Sect. 8 regarding the proposed LE
model.

2. Lagrange’s equations for seepage flow sys-
tem

2.1 Geometric representation of the RVE

A porous medium consists of two phases—one is the solid
matrix and the other is the fluid in pores, as illustrated in
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Figure 1 Geometric representation of the RVE for a porous medium.

Fig. 1. Both phases can be viewed as a continuous medium
and their percentages are n and (1 − n), respectively. The
percentage of the fluid phase n is also termed porosity. The
space that the solid phase occupies is denoted as Ωs whereas
the space that the fluid phase occupies is denoted as Ωf . The
total space of the porous medium is denoted as Ω. From a
mixture point of view [45], we can assume that the following
constituent equations hold
Ω = Ωs + Ωf ,

Ωs = (1 − n)Ω,

Ωf = nΩ.

(2)

Under the assumption of Eq. (2), the energy integration on
Ωs orΩf can be transformed into the energy integration on Ω.

2.2 Lagrange’s energy functional (Lagrangian)

The energy of solid matrix in a porous medium consists of
the following terms:

(1) Kinetic energy of solid matrix;
(2) Strain energy of solid matrix;
(3) Work done by fluid pressure on solid matrix;
(4) Work done by body force on solid matrix;
(5) Work done by traction force on solid matrix.
Thus, the integral form of the Lagrange’s energy func-

tional for solid matrix (Lagrangian of the solid phase) Ls can
be expressed as

Ls =

∫
Ω

1
2

(1 − n)ρsv2
s dV −

∫
Ω

1
2
σs : εs dV

+

∫
Ω

1
2

(1 − n)pf i : εs dV

+

∫
Ω

(1 − n)ρsg · us dV +
∫
∂Ω

us · σ̄s · n dS , (3)

where the first term is the kinetic energy of solid matrix in
terms of solid density ρs and solid velocity vs; the second
term is the strain energy of solid matrix in terms of solid

stress tensor σs and solid strain tensor εs; the third term is
the work done by fluid pressure pf on solid matrix with i the
third-order identity tensor; the fourth term is the work done
by body force bs = ρsg along displacement us, with g the
gravitational acceleration; and the last term is the work done
by traction force σ̄s on the solid boundary ∂Ω with a unit
outer normal vector n.

The energy of fluid in pores in a porous medium consists
of the following terms:

(1) Kinetic energy of fluid in pores;
(2) Strain energy of fluid in pores;
(3) Work done by body force on fluid in pores;
(4) Work done by boundary pressure on fluid in pores.
Thus, the integral form of the Lagrange’s energy func-

tional for fluid in pores (Lagrangian of the fluid phase) Lf

can be expressed as

Lf =

∫
Ω

1
2

nρfv2
f dV +

∫
Ω

1
2

npf i : εf dV

+

∫
Ω

nρfg · uf dV −
∫
∂Ω

uf · (npf i) · n dS , (4)

where the first term is the kinetic energy of fluid in pores in
terms of fluid density ρf and fluid velocity vf ; the second term
is the strain energy of fluid in pores in terms of fluid pressure
pf and the spatial derivatives of fluid displacements εf ; the
third term is the work done by body force bf = ρfg on fluid
in pores along displacement uf ; and the last term is the work
done by boundary pressure on fluid in pores.

Besides, the right-hand side (RHS) in Lagrange’s equa-
tions should be specified. The RHS of solid matrix and the
RHS of fluid in pores in Lagrange’s equations can be respec-
tively written as

fs =

∫
Ω

n2ρfg
k

(vf − vs) dV −
∫
Ω

pf∇n dV, (5)

ff = −fs = −
∫
Ω

n2ρfg
k

(vf − vs) dV +
∫
Ω

pf∇n dV, (6)



L.-X. Wang, et al. Acta Mech. Sin., Vol. 39, 323022 (2023) 323022-4

where g is the value of the gravitational acceleration and k
is the hydraulic conductivity. The non-conservative forces in
Eqs. (5) and (6) are the frictional forces between fluid and
solid, and the buoyancy term is caused by porosity gradients
[46].

2.3 Canonical Lagrange’s equations

The canonical Lagrange’s equation reads [36]
d
dt
∂L
∂q̇
− ∂L
∂q
− f = 0, (7)

where L is the well-known Lagrangian (i.e., the Lagrange’s
energy functional); q is the generalized coordinate; q̇ is the
temporal derivative of the generalized coordinate; f is the
generalized non-conservative force.

Here we take us as the generalized coordinates for solid
matrix. Therefore, the canonical Lagrange’s equations for
solid matrix can be written as
d
dt
∂Ls

∂vs
− ∂Ls

∂us
− fs = 0. (8)

By inserting Eqs. (3) and (5) into the canonical Lagrange’s
equation (8), we can obtain the integral form of the governing
equations for solid deformation under generalized coordinate
system:

d
dt

∫
Ω

(1 − n)ρsvs dV −
∫
Ω

∇ · σs dV

+

∫
Ω

(1 − n)∇pf dV −
∫
Ω

(1 − n)ρsg dV

−
∫
Ω

n2ρfg
k

(vf − vs) dV = 0. (9)

Then we take uf as the generalized coordinates for fluid in
pores. Thus the canonical Lagrange’s equations for fluid in
pores can be written as

d
dt
∂Lf

∂vf
− ∂Lf

∂uf
− ff = 0. (10)

By inserting Eqs. (4) and (6) into the canonical Lagrange’s
equation (10), we can obtain the integral form of the govern-
ing equations for seepage flow under generalized coordinate
system

d
dt

∫
Ω

nρfvf dV +
∫
Ω

n∇pf dV −
∫
Ω

nρfg dV

+

∫
Ω

n2ρfg
k

(vf − vs) dV = 0. (11)

Equation (11) is the seepage flow equations derived from the

canonical Lagrange’s equations. Note that it is formulated in
a Lagrangian frame. By contrast, the conventional governing
equations for seepage flow, i.e., the Darcy’s law, read

V = − k
ρfg

(∇pf − ρfg)

= − K
µ

(∇pf − ρfg)

= − κ (∇pf − ρfg) , (12)

where K is the permeability, µ is the dynamic viscosity, and
κ is the permeability coefficient. Note that different parame-
ter systems [(k, ρf , g) or (K, µ) or κ] are preferred in different
fields. We present the detailed comparisons among different
parameter systems of seepage flow in Appendix B.

By comparing Eqs. (11) and (12), we can learn that the
seepage flow equation (11) derived from the canonical La-
grange’s equation is in an integral form and that it considers
the inertial term d

dt

∫
Ω

nρfvf dV . Darcy’s law is generally valid
when the flow is laminar, i.e., the Reynolds’ number Re ≤ 1
[47]. This implies a small seepage velocity, and thus the in-
ertia term has been neglected. If we ignore this term in Eq.
(11) and denote the seepage velocity as

V = n(vf − vs), (13)

Eq. (11) can degenerate into Eq. (12).
Remark 1. In the Lagrangian-Eulerian model to be pre-
sented, the fluid velocity at the seepage front may be large
(see Sect. 5.1). Thus, the Reynolds’ number Re ≡ ρfvfd/µ
could exceed 1. In this case, the large seepage velocity may
cause significant inertia effect.

3. Mixed Lagrangian-Eulerian description

Assume that the solid velocity vs is very small, so this term
in Eq. (11) can be neglected. No longer considering the solid
effect, we can omit for simplicity in the remainder of this
paper all the subscripts “f” in the fluid equations. Consider
the integration of the inertial term in Eq. (11) on a RVE Ω
as illustrated in Fig. 2. We also assume that the porosity n
changes little. Therefore, we just consider the derivative of
ρv from time (t−∆t) to time t. Based on the variable limit in-
tegral formula, the derivative of the integration can be trans-
formed into:

d
dt

∫
Ω

ρv dV =
∫
Ω

d
dt

(ρv) dV +
d
dt

∫
∆Ω

ρv dV, (14)

where Ω and ∆Ω are shown in Fig. 2 and they can be ex-
pressed as

Ω = Ω1 + Ω2, ∆Ω = Ω3 − Ω1. (15)
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Figure 2 Volume change of a RVE after time increment ∆t.

Equation (14) shows that the rate of change in momentum
consists of the local rate of change in momentum and the
boundary rate of change in momentum. The boundary rate
of change in momentum in two dimensions can be written as

d
dt

∫
∆Ω

ρv dV =
d
dt

∫ x1

x0

dx
∫ yu

1=xu
1(x,t)

yd
1=xd

1(x,t)
ρv dy

+
d
dt

∫ x1

x0

dx
∫ yu

2=xu
2(x,t)

yd
2=xd

2(x,t)
ρv dy

+
d
dt

∫ y1

y0

dy
∫ xu

1=yu
1(y,t)

xd
1=yd

1(x,t)
ρv dx

+
d
dt

∫ y1

y0

dy
∫ xu

2=yu
2(y,t)

xd
2=yd

2(y,t)
ρv dx, (16)

where the limits on the integration stands for the edges Γi in
Fig. 2, which can be expressed in details as
Γ1 = [x0, x1] × [yd

1, y
u
1],

Γ2 = [y0, y1] × [xd
1, x

u
1],

Γ3 = [x0, x1] × [yd
2, y

u
2],

Γ4 = [y0, y1] × [xd
2, x

u
2].

(17)

Without loss of generality, consider the first term in Eq.
(16). According to the integral mean value theorem, we have

d
dt

∫ x1

x0

dx
∫ xu

1(x,t)

xd
1(x,t)

ρvdy =
∫ x1

x0

 d
dt

∫ xu
1(x,t)

xd
1(x,t)

ρvdy
dx

≈
∫ x1

x0

ρv
∣∣∣∣∣
y=

xu
1+xd

1
2

d
dt

(
xu

1 − xd
1

)
dx, (18)

where d
dt (xu

1 − xd
1) denotes the rate of change of displacement

on the boundary. Consider the time period from (t − ∆t) to t,
and this term can be written as
d
dt

(
xu

1 − xd
1

)
= vt − vt−∆t. (19)

Similarly, we can get a general formula expressed in the form
of a vector, which can be written as

d
dt

∫
∆Ω

ρv dV =
∫
∂Ω(t)

ρv
[(

vt − vt−∆t
)
· n

]
dS . (20)

By inserting Eq. (20) into Eq. (11) and ignoring the veloc-
ity of solid, we obtain∫
Ω

d
dt

(nρv) dV +
∫
Ω

n∇p dV −
∫
Ω

nρg dV

+

∫
Ω

n2ρg
k

v dV =
∫
∂Ω(t)

ρv(∆vt · n) dS , (21)

where we denote ∆vt = vt − vt−∆t for simplicity.
Equation (21) is the so-called integrated seepage equations

in a mixed Lagrangian-Eulerian frame or the LE model. It
is different from the seepage equation in a fully Lagrangian
frame:

d
dt

(nρv) + n∇p − nρg +
n2ρg

k
v = 0. (22)

Equation (22) does not consider the surface integration
term

∫
∂Ω(t) ρv(∆vt · n) dS on a varying boundary ∂Ω(t) caused

by numerical discretization on a representative volume ele-
ment. This term may play an important role in stabilization
of non-linear effects.

4. Discretization with cell-centered FVM

4.1 Distribution of velocity and pressure variables

As illustrated in Fig. 3, the nodal distribution of velocity and
pressure shows that the pressure variables lie in the center of
a cell and the velocity variables lie in the center of a face (in
3D) or the mid-point of an edge (in 2D). The solid and hollow
boxes are both pressure variables, and the solid and hollow
circles are both velocity variables. The solid boxes stand for
the inner pressure variables and the hollow boxes stand for
the boundary pressure variables. The solid circles are inner
velocity variables and the hollow circles are boundary veloc-
ity variables.

4.2 Cell-centered finite volume method

By using the Euler’s forward scheme, Eq. (21) can be dis-
cretized in the temporal domain as∫
Ω

(
nρ
∆vt

∆t
+ n∇pt+∆t − nρg +

n2ρg
k

vt+∆t
)
dV
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Figure 3 Distribution of velocity (v) and pressure (p) variables in cell-centered finite volumes.

=

∫
∂Ω(t)

ρvt(∆vt · n) dS . (23)

Taking a finite volume cell as the integration volume, Eq.
(23) can be numerically discretized in the spatial domain as(

nρ
∆vt

∆t
+ n∇pt+∆t − nρg +

n2ρg
k

vt+∆t
)

VC

=
∑

F

ρvt
F

(
∆vt

F · nFS F

)
, (24)

where VC is the volume of the cell, F denotes the face of the
cell and ∆vt

F stands for the velocity difference between the
last two time steps on face F.

From Eq. (24), we can obtain

vt+∆t = − k
ng

(
∇pt+∆t

ρ
− g

)
− k

ng

(
∆vt

∆t

)
− k

ng

∑
F

[
vt

F

(
∆vt

F · nF

) S F

VC

]
. (25)

For any common face F of two adjacent finite volume cells
Ωi and Ω j, the face velocity can be expressed as

vt+∆t
F = − k

ng

∇pt+∆t
C

ρ
− g

 − k
ng

(
∆vt

F

∆t

)
− k

ng

∑
F

[
vt

F

(
∆vt

F · nF

) S F

VC

]
, (26)

where ∇pC denotes the pressure gradient across the two ad-
jacent cells.

If we denote the LE seepage velocity as Vt+∆t
F = nvt+∆t

F ,
Eq. (26) can be formulated into

Vt+∆t
F =− k

g

∇pt+∆t
C

ρ
− g

︸               ︷︷               ︸
V1

− k
g

(
∆vt

F

∆t

)
︸      ︷︷      ︸

V2

− k
g

∑
F

[
vt

F

(
∆vt

F · nF

) S F

VC

]
︸                            ︷︷                            ︸

V3

. (27)

The velocity in Eq. (27) consists of three terms: V1, V2,
and V3, which denote the Darcy’s seepage velocity, the in-
ertia seepage velocity and the discretization velocity, respec-
tively.

The fluid conservation equation for seepage flow can be
written as
n
Kf

dp
dt
+ ∇ · V = 0, (28)

where Kf is bulk modulus of the fluid.
Discretizing the above equation (28) on the temporal do-

main with the Euler’s forward scheme, we obtain

pt+∆t − pt = −Kf

n

(
∇ · Vt

)
∆t. (29)

Integrating Eq. (29) over a cell Ωi, we get∫
Ωi

(
pt+∆t − pt

)
dV = −Kf∆t

n

∫
Ωi

(
∇ · Vt

)
dV. (30)

According to the Gauss divergence theorem, the volume
integration on the RHS can be transformed into a surface in-
tegration:∫
Ωi

(
∇ · Vt

)
dV =

∮
∂Ωi

(Vt · n) dS

=

∮
∂Ωi

(Vt
1 · n + Vt

2 · n + Vt
3 · n) dS . (31)

Based on the cell-centered FVM [43, 44], the first term on
the RHS of Eq. (31) can be formulated as

qt
i,1 =

∮
∂Ωi

(Vt
1 · n) dS =

∑
j
Ti j(pt

i − pt
j), (32)

where qt
i,1 is the inflow rate of cellΩi from adjacent cells (Ω j)

and Ti j is the transmissibility between the adjacent cells Ωi

and Ω j. The formulation of Eq. (32) is detailed in Appendix
C.

The second and third terms on the RHS of Eq. (31) can be
respectively given by

qt
i,2 =

∮
∂Ωi

(Vt
2 · n) dS =

∑
Fi

(
Vt

2,Fi
· nFi S Fi

)
, (33)
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qt
i,3 =

∮
∂Ωi

(Vt
3 · n) dS =

∑
Fi

(
Vt

3,Fi
· nFi S Fi

)
, (34)

where Fi stands for the face of cell Ωi.
Plugging Eqs. (32)-(34) into Eq. (30), we can obtain the

pressure update

pt+∆t
i − pt

i = −
Kf∆t
nVi

(
qt

i,1 + qt
i,2 + qt

i,3

)
, (35)

where Vi denotes the volume of Ωi.

4.3 Stability condition

It should be mentioned that the explicit time integration
scheme restricts the time step ∆t below a critical value ∆tcrit

to meet the stability condition [48, 49]:

r =
α∆t
h2

min

<
1
2
, (36)

where r is the stability ratio; hmin is the minimum mesh size;
α is a composite parameter similar to the diffusion coeffi-
cient:

α =
KKf

µn
. (37)

Thus, we can obtain from Eqs. (36) and (37) the admissi-
ble time step:

∆t < ∆tcrit =
h2

min

2α
=
µnh2

min

2KKf
. (38)

5. Seepage front estimation

5.1 Estimation equations

In conventional seepage flow (CSF) model, the seepage front
is assumed to reach the element boundary x = L immedi-
ately, as shown in Fig. 4. Under this assumption, the seepage
velocity and fluid flux can be respectively calculated as

vCSF = −
K
µ

∂P
∂x
=

K
µ

∆P
L/2
, (39)

QCSF = A · vCSF · ∆t, (40)

where ∆P is the pressure difference; A is the flow area; ∆t is
the flow duration. Here we can take the flow duration as the
time step, which can be estimated by Eq. (38).

The computed pressure gradient in Eq. (39) is smaller than
the real one and hence the computed fluid flux is not physi-
cally reliable. To tackle this issue, we propose the LE model,

Figure 4 Estimation for seepage front.

which dynamically estimates the seepage front for a better
accuracy.

Instead of presetting the location of the seepage front, the
LE model estimates the seepage front at an unknown coordi-
nate ∆x, as shown in Fig. 4. In this way, the pressure gradi-
ents ∆P = P1 − Px can be captured more accurately. Thus,
the seepage velocity can be obtained from a more reliable
pressure gradient:

vLE = −
K
µ

∂P
∂x
=

K
µ

∆P
∆x/2

=
K
µ

∆P
(vLE · ∆t) /2

. (41)

Solving Eq. (41) gives the seepage velocity:

vLE =

√
2K
µ

∆P
∆t
. (42)

Based on Eq. (42), the seepage front ∆x and the fluid flux
QLE can be respectively obtained:

∆x = vLE · ∆t =

√
2K · ∆P · ∆t

µ
, (43)

QLE = A · ∆x = A

√
2K · ∆P · ∆t

µ
. (44)

We take the following set of parameters as an example for
a rough estimation:

K = 10−17 m2, µ = 10−3 Pa·s, Kf = 2.2 × 109 Pa,

n = 0.22, A = 1 m2, L = 1 m, ∆P = 5 × 107 Pa.

The critical time step is given by Eq. (38):

∆tcrit =
10−3 × 0.22 × 12

2 × 10−17 × 2.2 × 109 s = 5000 s.

For several admissible ∆t < ∆tcrit, we calculate the seepage
velocities of the CSF and LE models based on Eqs. (39) and
(42), respectively. The comparison between the seepage ve-
locities is illustrated in Fig. 5. As can be seen that vLE > vCSF

for all admissible ∆t. After the same flow duration ∆t, the
fluid flux is also QLE > QCSF. Now, we present the case
∆t = 1 s to show how to compute the seepage velocities and
fluid fluxes of the two models.

Based on the CSF model, the seepage velocity (39) and
fluid flux (40) are, respectively

vCSF =
10−17

10−3 ×
5 × 107

1/2
m/s = 10−6 m/s,
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QCSF = 1 × 10−6 × 1 m3 = 10−6 m3.

Based on the proposed LE model, the seepage velocity
(42) and fluid flux (44) are, respectively

vLE =

√
2 × 10−17

10−3 × 5 × 107

1
m/s = 10−3 m/s,

QLE = 1 ×

√
2 × 10−17 × (5 × 107) × 1

10−3 m3 = 10−3 m3.

From Fig. 5 and the above calculated results, it can be seen
that the seepage velocities and fluid fluxes calculated by the
two models differ greatly. The seepage velocity and fluid flux
calculated by the LE model can be several orders of magni-
tude larger than that calculated by the CSF model for admis-
sible flow duration ∆t < ∆tcrit.

5.2 Estimation schemes

Based on the estimation equations for seepage front in Sect.
5.1, two estimation schemes are proposed. One scheme is the
proposed LE model with local mesh refinement, termed the
LER estimation method. The other scheme is the proposed
LE model with seepage front movement, termed the LEM
estimation method.

5.2.1 LER estimation scheme

The first seepage front estimation scheme is the LER model.
In this model, the element with an initial element size of L is
locally refined along the fluid flow direction, as shown in Fig.
6. After mesh refinement, the element has a smaller size of
∆x. The local refinement virtually divides the single element

Time

Figure 5 Flow velocity comparison between the LE model and the CSF
model.

into N small elements:

N =
[ L
∆x

]
, (45)

where ∆x is also the initial seepage front, which can be esti-
mated by Eq. (43).

The pressure gradients are calculated on the locally re-
fined element, so the accuracy of the pressure gradients can
be much enhanced. This will calculate more accurate ve-
locities and fluxes for the seepage flow system. It is also
worth mentioning that the local refinement is performed
based on the location of seepage front, which makes physical
sense.

5.2.2 LEM estimation scheme

The second seepage front estimation scheme is the LEM
method. In this model, the seepage front is tracked and
moved along the fluid flow direction, as shown in Fig. 7. The
seepage front ∆x is estimated by Eq. (43) and updated by the
following equation at the end of each time step:

∆xt+∆t = ∆xt + vt∆t, (46)

where ∆xt and ∆xt+∆t are the estimated seepage front loca-
tions at time t and t + ∆t, respectively; vt is the velocity of
seepage front at time t; ∆t is the time step.

The pressure gradients are calculated from the latest seep-
age front, which ensures the accuracy of the pressure gra-
dients. Similar to the LER model, accurate velocities and
fluxes can be obtained by the LEM model as well.

Figure 6 The first seepage front estimation scheme—LER method by local
mesh refinement.

Figure 7 The second seepage front estimation scheme—LEM method by
seepage front movement.
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Remark 2. The local mesh refinement and the seepage front
movement schemes can help capture the details of the seep-
age flow. Therefore, the proposed LE model can calculate
more accurate pressure gradients and hence gives a more ac-
curate flux approximation.

5.3 Implementation procedures

Based on the key equations (42), (43), (31), (35), (27) and
(45) or (46), we present the implementation procedures of
the CCFVM for the proposed LE seepage flow model:

(1) Initialize the LE pressure field (Pt) by the given initial
conditions: P(x, t = 0 s) = P0(x).

(2) Compute the initial LE seepage velocity (Vt) by Eq.
(42) and its increment (∆Vt).

(3) Estimate the initial LE seepage front (xt) based on Eq.
(43).

(4) Calculate the LE seepage velocity gradient field (∇·Vt)
according to Eq. (31).

(5) Calculate the LE pressure field at next time step (Pt+∆t)
according to Eq. (35).

(6) Calculate the LE seepage velocity field at next time
step (Vt+∆t) based on Eq. (27).

(7) Alter the mesh information (xt+∆t) by Eq. (45) (LER
scheme), or update the LE seepage front (∆xt+∆t) by Eq. (46)
(LEM scheme).

(8) Return to Step 3 and advance the time step (t + ∆t).

6. Numerical example with the LER scheme

6.1 Problem description

The numerical model used for the validation of the LER
scheme for seepage flow analysis is illustrated in Fig. 8. The
model, which has a dimension of 5 m × 2 m × 2 m, is fixed
at z = 5 m with an inlet pressure boundary Pin = 50 MPa
and fixed at z = 0 m with an outlet pressure boundary
Pout = 0 MPa, respectively. The parameters used for the nu-
merical simulation are tabulated in Table 1. The simulation

Table 1 Material parameters used in the numerical simulation

Medium Parameter Symbol Value

Shale
Permeability K (mD) 0.01

Porosity n 0.05

Water

Bulk modulus Kf (GPa) 1.0

Dynamic viscosity µ (mPa·s) 1.0

Density ρ (kg/m3) 1000

time is set to 1 h with an appropriate time step ∆t = 1 s and
thus the total number of time steps is 3600.

6.2 Simulation results

The numerical simulations are conducted with two different
models—one is the proposed LER model; the other is the
conventional seepage flow (CSF) model. The pressure con-
tours at t = 1 h using these two different models are shown
in Fig. 9. The figure shows that the results obtained from
the two models are quite different from each other, which in-
dicates that the proposed model must have considered some
extra effects that have a significant influence on the transient
seepage process. On the one hand, the LER model gives
more accurate estimation of pressure gradients through lo-
cal mesh refinement. Hence, the model helps capture more
details of the seepage flow in a local manner. On the other
hand, the local seepage front estimation could calculate large
seepage velocity, which may cause significant inertia effect.
The LE model considers such effect by introducing an iner-
tia term. The above two effects make the LE seepage model
distinguished from the conventional one. Considering these
effects makes the new model more physically sound than the
conventional one.

Then we plot the seepage flow rates q =
∫

v dA obtained
from the two models in Fig. 10. We learn from the figure that
the flow rate calculated by the LER model is much higher
than that by the CSF model at the initial time. The flow rate
by the LER model decreases rapidly after less than t = 100 s.
After about t = 500 s the flow rate obtained from the LER
model nearly coincides with that from the CSF model.

Further we integrate the flow rates q over time domain

Figure 8 Model setup for the validation of the LER scheme.
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Figure 9 Pressure (unit: Pa) contours at t = 1 h using two different models: (a) LER; (b) CSF.

and obtain the flow fluxes Q =
∫

q dt as shown in Fig.
11. The figure shows that the flux calculated by the LER
model is higher than that by the CSF model. In the fig-
ure, DIFF = LER − CSF, means the flux difference between
the LER model and the CSF model. DIFF increases at first
and decreases slowly afterwards and it achieves a maximum
value of 3.2 L at about t = 600 s. The specific DIFF per unit
seepage area is 0.80 L/m2, which means that the leak-off ob-
tained from the LER model is larger than that from the CSF
model. The difference of infiltration thicknesses between the
two models is 0.80 mm and it cannot be ignored. The esti-
mation for seepage front by the LE model is of critical im-
portance, which leads to larger pressure gradient and thus
larger flow rate and leak-off. In contrast, the traditional seep-
age flow model obtains smaller pressure gradient and thus
smaller flow rate and smaller leak-off.

The pressures at the point (1 m, 1 m, 4 m) obtained from
the two models are monitored and illustrated in Fig. 12. The
figure shows that the pressures obtained from the two seepage
flow models undergo different processes. The pressure ob-
tained from the LER model is smaller at first than that from
the CSF model. Then the pressures from the two models
meet at a certain point of about t = 1100 s. After that point,
the pressure from the LER model exceeds that from the CSF
model. The rates of pressure over time are also different be-
tween the two models. The LER model gives a smaller rate
at first and then a larger one. The rates from the two models
tend to be the same at the end of the simulation.

The steady-state pressures obtained from the two mod-
els are shown in Fig. 13. The pressures are located at
(1 m, 1 m, z), where z ranges from 0 m to 5 m. We learn from
the figure that the steady-state pressures using the two mod-
els agree well with each other. The apparent reason is that

Figure 10 Comparison on flow rate between the LER and CSF models.

Figure 11 Comparison on flow flux between the LER and CSF models.
DIFF = LER − CSF.

the inertia term tends to be 0 when the pressure field slowly
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Figure 12 Comparison on pressure at the point (1 m, 1 m, 4 m) between
the LER and CSF models.

Figure 13 Comparison on steady-state pressure between the LER and CSF
models.

gets steady. In this case, the LER model degenerates into the
CSF model.

7. Numerical example with the LEM scheme

7.1 Problem description

The numerical model used for the validation of the LEM
scheme for seepage flow analysis is illustrated in Fig. 14. The
model, which is a cube with size a = 1 m, is fixed at z = 1 m
with an inlet pressure boundary Pin = 50 MPa, and fixed at
z = 0 m with an outlet pressure boundary Pout = 0 MPa,
respectively. The parameters used for this numerical inves-
tigation are the same as that in Sect. 6.1, which are shown
in Table 1. The simulation time is set to 100 h with a time
step of ∆t = 0.1 s and thus the total number of time steps is
3600000.

Figure 14 Model setup for the validation of the LEM scheme.

7.2 Simulation results

In the LEM model, the seepage front moves with time, which
is highly demonstrated in Fig. 15. The initial seepage front is
set to z = 0.99 m, which nearly coincides with the top side of
the cube. When fluid flows from the top side to the bottom
side, the seepage front descends slowly. This phenomenon is
well captured by the proposed LEM model. The advantage
of the proposed Lagrangian-Eulerian model is that it gives a
more physically sound flow process. We also plot the curve
of seepage front coordinate versus time in Fig. 16. The figure
shows that the seepage front almost descends linearly, which
indicates the capability of the presented Lagrangian-Eulerian
model for seepage flow analysis.

The flow rates q =
∫

v dA obtained from the LEM and CSF
models are compared in Fig. 17. The figure shows that the
flow rate calculated by the LEM model is much higher than
that by the CSF model near t = 0 s. Then the flow rate by the
LER model decreases rapidly. After less than t = 50 s, the
flow rates by the two models nearly coincide with each other.
The proposed LEM model well captures the initial large flow
rate, which is not observed in the CSF model. When the seep-
age time is long enough, the two models generate almost the
same flow rates.

Further we integrate the flow rates q over time domain and
obtain the fluxes Q =

∫
q dt as shown in Fig. 18. The fig-

ure indicates that the flux obtained from the LEM model
is higher than that from the CSF model. In the figure,
DIFF = LEM − CSF, means the flux difference between the
LEM and CSF models. DIFF increases at first and decreases
slowly afterwards and it achieves a maximum value of 0.23 L
at about t = 40 s. The difference of infiltration thicknesses
between the two models is 0.23 mm and it cannot be ignored.
Compared with the LER estimation scheme, the LEM esti-
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Figure 15 Pressure (unit: Pa) contours considering seepage front movement with the LEM model at different time: (a) t = 0 h; (b) t = 10 h; (c) t = 50 h; (d)
t = 100 h.

mation scheme is straightforward to implement and efficient
to use. The LEM estimation scheme is of critical importance
to calculate real leak-off. The proposed Lagrangian-Eulerian
model considers a large pressure gradient near the fracture
wall while the traditional seepage flow model does not.

7.3 Evaluation of scale effects

The LEM model employs a seepage front movement scheme,
which makes the model insensitive to mesh size. In contrast,
the CSF model has strong dependence on mesh size. In order
to demonstrate the scale effects of both the LEM and CSF
models, we focus on the influence of time step ∆t in the
LEM model and the influence of mesh size ∆h in the CSF
model. The parameters are shown in Table 2, with four cases
considered—two LEM cases and two CSF cases. In the LEM
cases (LEM 0.10 and LEM 0.05), a constant mesh size of

Table 2 Numerical cases for the evaluation of scale effects

Scale Model Symbol Value Case

Time LEM ∆t (s)
0.10 LEM 0.10

0.05 LEM 0.05

Space CSF ∆h (m)
1.00 CSF 1.00

0.50 CSF 0.50

h

Figure 16 Seepage front movement: coordinate z versus time t.

∆h = 1.00 m is assumed, whereas a constant time step
of ∆t = 0.10 s is used in the CSF cases (CSF 1.00 and
CSF 0.50).

The flow rates in four different cases are compared in Fig.
19. The figure shows that the flow rates in both LEM cases
are larger than those in both CSF cases at initial time. After-
wards, all the flow rates tend to be close to each other, except
the flow rate in case CSF 0.50, which is a little larger. This is
because the three cases use the same mesh size ∆h = 1.00 m
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Figure 17 Comparison on flow rate between the LEM and CSF models.

Figure 18 Comparison on flow flux between the LEM and CSF models.
DIFF = LEM − CSF.

other than the case CSF 0.50 uses a smaller mesh size ∆h =
0.50 m. The flow rates in the LEM cases are very close to
each other, but that is not true for the CSF cases. The flow
rate in CSF 0.50 can be twice as much as that in CSF 1.00.
This means that the LEM model has little scale effect (no de-
pendency on temporal scale) while the CSF model has much
scale effect (dependency on spatial scale).

The flow fluxes in all the four cases, which are integrated
from the flow rates over time domain, are compared in Fig.
20. The figure indicates that the LEM model has almost no
dependency on time step but the CSF model has strong de-
pendency on mesh size. The fluxes in LEM cases keep in
good consistency with each other, but it is not true for the
fluxes in CSF cases. We also know from the figure that the
fluxes in four different cases are close to each other when
seepage time is long enough. The fluxes in both models tend
to agree well with each other, when fluid flow in the porous
medium gets steady.

Figure 19 Comparison on flow rate among the four cases with the LEM
and CSF models.

Figure 20 Comparison on flow flux among the four cases with the LEM
and CSF models.

7.4 Comparison between LEM and LER schemes

We use the same numerical model, as presented in Sect. 7.1,
to compare the proposed two LE schemes. The seepage flow
rates obtained from the LEM and LER schemes are depicted
in Fig. 21, which shows some similarities between the two
schemes. At initial time, both the two schemes give very
large flow rates. Afterwards, the flow rates drop down soon
till about t = 40 s. After t = 450 s, the two schemes present
almost the same flow rates, which indicates the consistency
of the two schemes. The difference between the two schemes
lies in the rate of change in the seepage flow rate at the time
interval 20 s ≤ t ≤ 200 s. Since different seepage front esti-
mation schemes are used, this difference is quite reasonable.

The flow fluxes by the two schemes are integrated from the
flow rates in the temporal domain. A detailed comparison be-
tween the two schemes on flow flux is presented in Fig. 22.
The two schemes share similar trends in the increase of flow
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Figure 21 Comparison on flow rate between the LEM and LER models.

Figure 22 Comparison on flow flux between the LEM and LER models.
“R-M” denotes the flux difference between the LER and LEM models.

flux. The different flow rates, though little, produce a narrow
gap between the flow fluxes of the two LE schemes.

8. Conclusions

Most conventional numerical models employ PDEs to de-
scribe a seepage flow system and use weighted residual and
finite difference solution techniques to solve the PDEs. These
PDEs are established in view of a spatial point, which math-
ematically stems from the infinitesimal concept. We develop
an alternative approach based on the energy approach, i.e.,
the Lagrange’s equations, to the representation of the seep-
age flow system.

The Lagrange’s functional (Lagrangian) is established on
an RVE by integrating the energy on the RVE. Follow-
ing a Lagrange equation formulation, the variation of the
Lagrangian results in a set of integral equations, which
are described in a mixed Lagrangian-Eulerian frame (LE
model). The equations are numerically discretized with a

cell-centered FVM. Two seepage front estimation schemes—
the LER and LEM schemes, are introduced. The resulting
model is a true energy formulation, developed without ref-
erence to the partial differential momentum equations. Two
examples using the LER and LEM schemes are demonstrated
to validate the proposed LE model.

The example using LER seepage front estimation scheme
shows that:

(1) The flow rate using LER is high at initial time and de-
creases rapidly. At last the flow rate using LER is close to
that using CSF.

(2) Integrated from flow rate over time domain, the flux
using LER is much larger than that using CSF. The flux dif-
ference between the two models cannot be ignored (the max-
imum difference can reach 0.80 L per unit seepage area).

(3) The results using both models are close when seepage
time is long enough. The steady-state pressure fields using
both models agree well with each other.

The example with LEM seepage front estimation scheme
shows that:

(1) The flow rate using LEM is high at initial time and it
decreases rapidly. At last the flow rate using LEM is close to
that using CSF.

(2) Integrated from flow rate over time domain, the flux
using LEM is larger than that using CSF. The flux difference
between the two models cannot be ignored (the maximum
difference can reach 0.23 L per unit seepage area).

(3) The proposed model with LEM seepage front estima-
tion has almost no scale effect, whereas the CSF model is
quite dependent on the mesh size scale. Besides, the leak-off
using LEM is close to that using CSF when seepage time is
long enough. Therefore, both models present the same steady
state of seepage flow.

The comparison between the LEM and LER schemes in-
dicates that:

(1) The comparison on flow rates shows some similarities
between the two LE schemes. The flow rates are large at ini-
tial time, drop down soon and tends to be a stable value after
a long period.

(2) The difference of flow rates by the two schemes, though
little, produces a narrow gap between the flow fluxes of the
two schemes.

In hydraulic fracturing, the fracture area can be very
huge, and thus the leak-off simulated from the proposed
Lagrangian-Eulerian model can be much larger than the CSF
model. The LE results are more physically sound according
to the monitored leak-off data. Therefore, the proposed LE
model (LER and LEM) is more capable of dealing with leak-
off problems in hydraulic fracturing. Besides, the model has
no dependency on spatial scale, which shows its tremendous
advantages.
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On-going work is to couple the proposed seepage
flow model with the stress field modeled by continuous-
discontinuous element method (CDEM) [50-52] for a wider
range of geotechnical applications, such as hydraulic frac-
turing simulation [53-55]. The proposed LE seepage flow
model can also be combined with other novel numerical
models, such as numerical manifold method (NMM) [56-58],
extended finite element method (XFEM) [59-62], cracking
elements method [63-65], peridynamics model (PD) [66,67],
and scaled-boundary finite element method (SBFEM) [68].

Appendix A. Abbreviations

The following abbreviations are used in this paper:
PDE Partial differential equation

RVE Representative volume element

FEM Finite element method

FDM Finite difference method

FVM Finite volume method

NMM Numerical manifold method

VEM Virtual element method

XFEM eXtended FEM

PD Peridynamics model

SBFEM Scaled-boundary FEM

CCFVM Cell-centered FVM

CSF Conventional seepage flow model

LHS Left-hand side

RHS Right-hand side

LE Lagrangian-Eulerian model

LER LE with local mesh refinement

LEM LE with seepage front movement

DIFF flux difference between two models

Appendix B. Seepage flow parameter systems

Different parameter systems of seepage flow are used in dif-
ferent fields. For example, in hydraulic engineering, hy-
draulic conductivity is preferred as the measure of how well a
porous medium allows water to flow through it. However, in
petroleum engineering, permeability is used as the measure
of the ease with which a fluid can move through a porous
medium. In order to understand the parameter systems of
seepage flow in different fields, we tabulate them in Table
B1.

Appendix C. Formulation of CCFVM

We neglect the body force for simplicity during the formula-
tion. The Darcy’s velocity term in Eq. (27) can be written
as

vD = −
k
ρg
∇p = −K

µ
∇p = −κ∇p. (C1)

Now we formulate the cell-centered FVM [43, 44]. The
flow velocities along line segments CiCo and CoC j can be
respectively written as

vio = −κi∇pio = −κi
po − pi

Di
(−di), (C2)

vo j = −κ j∇po j = −κ j
p j − po

D j
d j. (C3)

The flux rate across the interface ∂Ωi j can be computed
from the following integral:

qi j = qio =

∫
∂Ωi j

vio · (−ni) dS = Aκi
pi − po

Di
(di · ni), (C4)

qi j = qo j =

∫
∂Ωi j

vo j · n j dS = Aκ j
po − p j

D j
(d j · n j), (C5)

where A is the area of the interface between the two adjacent
cells, κi is the permeability coefficient of cell Ωi, Di is the
distance between the cell center and the interface center, ni

is the unit vector normal to the interface and di is the unit
vector along CoCi. Detailed definitions of these symbols are
shown in Fig. C1.

We can get (pi po) and (po p j) from Eqs. (C4) and (C5),
respectively. Adding the two terms gives

pi − p j =

[
Di

Aκi(di · ni)
+

D j

Aκ j(d j · n j)

]
qi j. (C6)

d

d
n

n

d d

n n

Figure C1 Geometry representation of two adjacent cells (Ωi and Ω j) in
two dimensions: (a) unstructured mesh; (b) structured mesh. The solid dot
indicates the cell center and the hollow dot indicates the interface center.
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Table B1 Comparison among different parameter systems of seepage flow

Field Hydraulics Petroleum Geomechanics

Terminology Hydraulic conductivity Density Gravity Permeability Dynamic viscosity Permeability coefficient

Symbol k ρf g K µ κ

Dimension [LT−1] [ML−3] [LT−2] [L2] [ML−1T−1] [M−1L3T]

SI unit m/s kg/m3 m/s2 m2 Pa·s m2/(Pa·s)

Conversion k/(ρfg) = K/µ = κ

By denoting

αi =
Aκi
Di

(di · ni) , α j =
Aκ j

D j
(d j · n j) (C7)

and

Ti j =
αiα j

αi + α j
, (C8)

Eq. (C6) can be simplified as

qi j = Ti j(pi − p j), (C9)

where Ti j represents the transmissibility between cell Ωi and
cell Ω j.

Summing up all the flux rates from adjacent cells (Ω j) by
Eq. (C9) at time t, we can formulate Eq. (32) as follows:

qt
i,1 =

∑
j
qt

i j =
∑

j
Ti j(pt

i − pt
j). (C10)
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混混混合合合拉拉拉格格格朗朗朗日日日-欧欧欧拉拉拉描描描述述述的的的多多多孔孔孔介介介质质质渗渗渗流流流拉拉拉格格格朗朗朗日日日方方方程程程
王理想,李世海,冯春

摘要 传统数值模型大多使用偏微分方程来描述渗流问题,并使用加权余量和有限差分技术来求解该方程. 这类方程建立在空间点

的角度之上,在数学上源于无穷小的概念. 本文发展了一种求解渗流问题的能量方法,将拉格朗日方程应用于渗流系统的描述,而非直

接采用偏微分方程进行描述. 通过对代表性体积单元的能量进行积分而建立拉格朗日泛函,并采用合理的广义坐标对该泛函进行变分

得到系统控制方程. 将所得到的积分方程,由拉格朗日描述转化为欧拉描述,以此提高计算精度.然后,使用中心型有限体积法对控制

方程进行数值离散.最后,给出了两种渗流前缘评估方案：一种方案通过网格局部细化实现,另一种方案利用渗流前缘移动实现. 本文

所提出的模型是一个建立在能量观点上的模型,而非建立在偏微分动量方程基础之上. 数值算例表明,该模型可给出物理上合理的计

算结果.
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