
Comput. Methods Appl. Mech. Engrg. 417 (2023) 116419

S

e
f
t
d
r
a
o
a
o

h
R
A
0

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

A novel approach to compute the spatial gradients of enriching
functions in the X-FEM with a hybrid representation of cracks
Chuanqi Liu ∗, Yujie Wei
tate Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100090, China

A R T I C L E I N F O

Keywords:
X-FEM
Level sets
Hybrid representation
WENO

A B S T R A C T

The eXtended Finite Element Method (X-FEM) is a versatile technique to model discontinuities
by enriching the trial functions with a prior solution. In the X-FEM, a crack can be explicitly
represented by a set of triangles or implicit signed distances, i.e., level set functions, of the
points of interest from the crack surface and the crack front. In the explicit representations, it is
crucial to accurately evaluate surface normal, conormal, and tangent vectors along crack fronts
for computations of the gradients of the enriching functions. The solution is very sensitive to
these directional vectors, especially for non-planar 3D cracks. We here propose a novel approach
to compute these gradients without evaluating the directional vectors. Level set functions are
first set up in a hexahedral grid independent of the background mesh in the X-FEM. We can thus
implement the Weight Essentially Non-Oscillatory (WENO) scheme to compute the gradients of
level sets. The gradients of the enriching functions at any integration point can therefore be
computed by interpolations and chain rules. We compare the implementation procedures of the
explicit representation and the proposed hybrid representation in detail. A three-dimensional
lens crack problem is studied to demonstrate the accuracy of the proposed method, especially
for coarse meshes.

1. Introduction

The accurate modeling of three-dimensional cracks in finite bodies has been studied for decades. This can be achieved by either
mbedding strong discontinuity in the interpolated displacement field or via a smeared crack approach where a continuous indicator
unction is used to approximate the sharp discontinuity [1]. The X-FEM and the Generalized Finite Element Method (GFEM) belong
o the first strategy. These two methods are synonymous [2] and both rely on the partition-of-unity enrichment to enrich the
isplacement field [3]. This advance leads to the modeling of arbitrary discontinuities independent of the mesh without requiring
emeshing [4]. The essence of the X-FEM is to extend the space of approximation functions with typical functions obtained from
nalytical solutions for displacements at crack tips. Computing the element stiffness matrix requires calculating the spatial gradients
f these enrichment functions. Typically, crack front coordinate systems are used to transform the spatial gradients between local
nd global systems. Thus, computing the directional vectors at crack fronts appears significant, and it depends on the representation
f the cracks. Generally, there are three approaches for representing three-dimensional cracks.

1. Explicit approaches: the crack front and the crack surface are represented explicitly as a mesh [5–9]. For a three-dimensional
crack, the surface is typically represented by a polygon partitioned into triangles, so the crack front consists of line segments.
With this technique, the crack surface is explicitly meshed separately from the volume mesh. Therefore, the size of the
elements in the volume mesh does not affect the accuracy of the crack surface representation, nor does the facet size in the
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explicit crack surface mesh affect the discretized problem size [10]. Furthermore, the explicit triangular facet representation
of the crack surface can preserve special features like kinking and twisting throughout crack growth simulation, and the
resulting update of the crack description is straightforward and can be done exactly [8]. However, coupling the purely explicit
crack description with the X-FEM is not readily available, particularly because intersecting the crack and model meshes is
challenging [11].

2. Implicit approaches: the level set method (LSM) was proposed as an alternative crack representation [6,8,12–14]. The
principle of the method is to represent an interface by a zero value of a level set function that gives the signed distance
from points to a surface. Since a crack is an inner boundary that does not separate the domain into two regions, a single
level set function is not enough to represent a crack and thus an extension of the LSM is commonly used. Consequently,
at least two orthogonal level set functions are necessary to represent a crack - one for the crack surface extension, and
another orthogonal to the extended surface to locate the crack front [6]. Three level sets can also be used to represent the
crack geometry [15]. Level sets address the key X-FEM issue of ‘‘where and how to enrich’’, and simplify implementation.
Then, realizing a propagation step requires a model for the update of the level-set function. Such models are rather less
intuitive as they often introduce virtual velocity fields and solve Hamilton–Jacobi equations [16,17]. The zero level set must
not be updated behind fronts, since cracked points remain cracked. Updating is error-prone, with increments potentially
misrepresented [14].

3. Hybrid (explicit–implicit) approaches: the surface is represented by level set nodal values, but evolution is performed
explicitly, avoiding solving the evolution equation [11,18–20]. This combines representations, utilizing the strengths of each
and covering weaknesses. The explicit localized crack description prevents the implicit representation from creating spurious
surfaces. The implicit representation provides local coordinates and easily identifies cut elements [10].

Computing the directional vectors at crack fronts is different for different approaches. For explicit representations, since the surface
explicitly presented by facets is 𝐶0, it is non-trivial to compute the base vectors at crack front vertices. For a specific vertex,
using the average normal of the facets sharing it may lead to inaccurate estimates, especially for coarse meshes or near geometric
singularities [21]. Jiao [22] proposed an eigenvalue analysis of the offset quadric and used it for improved normal computations.
A detailed procedure to accurately evaluate the surface normal, conormal and tangent vectors along crack fronts in explicit crack
surface representations based on the Face Offsetting Method (FOM) is in [23]. For implicit and hybrid representations, directional
vectors can be computed by taking gradients of level sets [7]. When applying the X-FEM for curved cracks, a paradox arises from the
mismatch between how we compute the spatial gradients and how we define the enriching functions. Specifically, the enrichments
follow an asymptotic field derived for straight cracks using polar (𝑟, 𝜃) coordinates. To match the actual curved geometry, 𝜃 must
account for curvature rather than just local Cartesian coordinates. However, we still calculate the spatial gradients based on those
Cartesian coordinates tied to the crack tip. This disconnect between the Cartesian gradients and polar enrichments creates an
implementation challenge unique to the X-FEM for curved cracks. We here introduce an independent hexahedral grid defining level
sets and compute the gradients of these level sets based on the Weight Essentially Non-Oscillatory (WENO) scheme [24] to directly
compute the gradients of the enriching functions, abandoning the transformations between local and global coordinates. This is
beneficial for modeling non-planar cracks. Other issues of implementing the X-FEM are also reviewed as follows for completeness.
Stress Intensity Factors (SIFs) are fundamentally important parameters for linear fracture mechanics problems. There are several
approaches for the extraction of SIFs from numerical approximations of the solution. Extraction methods based on energy release
rate concepts include J-integral [25], the Interaction Integral Method (IIM) [26], the Contour Integral Method (CIM) [27], and the
Cutoff Function Method (CFM) [28]. These methods are accurate since theoretically they converge at the same rate as the strain
energy [29]. Another class of extraction methods is based on the asymptotic expansion of the elasticity solution in the neighborhood
of a crack. This includes the Displacement Correlation Method (DCM) [30] and the stress correlation method [31]. These methods
recently have been adopted to extract SIFs from X-FEM solutions [32,33]. The accuracy and convergence of the X-FEM has also
been improved by techniques, such as high-order elements [34–36], global–local enrichments [37], high-order singular enriching
functions [38,39], etc. In this work, we focus on the representation of cracks and take full advantage of level sets to alleviate
the difficulties of computing base vectors for the transformations of global–local coordinates. Therefore, we only implement linear
elements with low-order singularity enriching functions and use the DCM to compute SIFs for simplicity. Section 2 briefly reviews
the algorithm of the X-FEM. Section 3 presents the proposed algorithm to compute the gradients. Section 4 gives the details of the
implementation. Section 5 demonstrates the results. Section 6 concludes the paper with remarks. The code is primarily developed
using the deal.II finite element libraries [40,41]; the facets related algorithms are implemented by the Computational Geometry
Algorithms Library (CGAL) [42,43]; and we adopt the open-source code ‘‘Level Set Method Library (LSMLIB)’’ to conduct level set
operations [44].

2. X-FEM framework for modeling three-dimensional non-planar cracks based on level sets

We first review the basic concepts and formulas in Linear Elastic Fracture Mechanics (LEFM) for clarity. We then give
the approximation of displacements in the X-FEM. The definition of level set and its application to represent cracks are also
briefly reviewed. Finally, we point out the modifications for computing radial coordinates of three-dimensional non-planar
cracks.
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Fig. 1. Local coordinate systems at a crack front vertex. The unit vector �̂� is defined in the tangential direction along the local crack front curvature. The unit
vector �̂� is defined normal to the local crack surface. The unit vector �̂� is defined orthogonal to the plane containing �̂� and �̂�.

2.1. Reviews of linear elastic fracture mechanics

As shown in Fig. 1, we define a local Cartesian coordinate system at a crack front vertex. The unit vector along the 𝑧-axis is
denoted as �̂� and is defined in the tangential direction to the local crack front curvature. The unit vector along the 𝑦-axis is denoted
as �̂� and is defined in the normal direction to the local crack surface. The unit vector along the 𝑥-axis is denoted as �̂� and is defined
orthogonal to the plane of 𝑦− 𝑧. As a convention, we also define a polar coordinate system in the plane of 𝑥− 𝑦. The above surface
of the crack thus can be represented as 𝜃 = 𝜋, and below surface as 𝜃 = −𝜋. In the case of a homogeneous and isotropic material,
the analytical expressions for the displacement at any point 𝒙(𝑟, 𝜃) in the vicinity of the crack tip are given by Anderson [45]:

𝑢𝑥(𝑟, 𝜃) =
𝐾I
2𝜇

√

𝑟
2𝜋

cos 𝜃
2
(𝜅 − cos 𝜃) +

𝐾II
2𝜇

√

𝑟
2𝜋

sin 𝜃
2
(2 + 𝜅 + cos 𝜃) , (1a)

𝑢𝑦(𝑟, 𝜃) =
𝐾I
2𝜇

√

𝑟
2𝜋

sin 𝜃
2
(𝜅 − cos 𝜃) +

𝐾II
2𝜇

√

𝑟
2𝜋

cos 𝜃
2
(2 − 𝜅 − cos 𝜃) , (1b)

𝑢𝑧(𝑟, 𝜃) =
2𝐾III
𝜇

√

𝑟
2𝜋

sin 𝜃
2
, (1c)

where 𝐾𝑖 (𝑖 = 𝐼, 𝐼𝐼, 𝐼𝐼𝐼) represents the SIFs for three fracture modes, 𝜇 is the shear modulus, 𝜅 = 3 − 4𝜈, and 𝜈 is the Poisson’s
ratio. Note that we stay under the assumption of plane strain along the direction tangent to the crack front as the basis for the
displacement field. This hypothesis is valid everywhere along the crack front except in the region very close to the skin of the body,
as discussed in [46].

2.2. Displacement approximation in the X-FEM

The X-FEM provides a simple and efficient treatment of cracks where the element topologies do not conform to the crack
geometry. Some elements are split by the crack and others contain the crack tips. Nodes whose support is bisected by a crack
are collected in cr , while nodes whose support contains the tips are grouped in tip. The crack is represented in the X-FEM by
enriching the standard displacement approximation, as follows Sukumar et al. [5]:

𝒖ℎ(𝒙) =
∑

𝐼∈
𝑁𝐼 (𝐱)𝒖𝐼 +

∑

𝐽∈cr

�̃�𝐽 (𝒙)
[

𝐻(𝒙) −𝐻
(

𝒙𝐽
)]

𝒂𝐽 +
∑

𝐾∈tip

�̃�𝐾 (𝒙)
4
∑

𝛼=1

[

𝐵𝛼(𝒙) − 𝐵𝛼
(

𝒙𝐾
)]

𝒃𝛼𝐾 , (2)

where 𝑁𝐼 (𝐱) and �̃�𝐽 (𝒙) are finite element shape functions, while 𝒖𝐼 , 𝒂𝐽 , and 𝒃𝛼𝐾 are the displacement and enrichment nodal
variables, respectively. We here adopt the same shape functions for 𝑁𝐼 (𝐱) and �̃�𝐽 (𝒙), although they can be different. 𝐻(𝒙) is the

odified Heaviside function which takes on the value +1 above the crack and −1 below the crack, and 𝐵𝛼 is a basis spanning the
symptotic field near the crack tip:

[

𝐵1, 𝐵2, 𝐵3, 𝐵4
]

=
[

√

𝑟 sin 𝜃
2
,
√

𝑟 cos 𝜃
2
,
√

𝑟 sin 𝜃
2
sin 𝜃,

√

𝑟 cos 𝜃
2
sin 𝜃

]

. (3)

Note that the enrichment basis functions differ from the formulas for the asymptotic displacement field near the crack tip shown
in (1a)–(1c). However, the open-source X-FEM library OpenXFEM++ employs the exact displacement formulas as enrichment
functions [47]. It should be pointed out that they are essentially equivalent after transformations.
3
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Fig. 2. The geometry of a lens-shaped crack and the coordinate system defined at crack front, and the level sets 𝜙 and 𝜓 .

2.3. Level set and its application to represent a crack

A level set 𝜙(𝒙) is expressed in the Eulerian coordinates to implicitly represent boundary surfaces. For an extended surface cut
the domain, we define 𝜙(𝒙) at a spatial point 𝒙 as:

𝜙(𝒙) = sign (𝒏 ⋅ (𝒙 − �̄�)) min
�̄�∈𝛤 ext

𝑐
‖𝒙 − �̄�‖, (4)

where 𝒏 is the outward normal to the extended crack surface 𝛤 ext
𝑐 . Since the crack surface 𝛤𝑐 is a bounded surface with a crack

front, it is also necessary to represent the crack front geometry. Similarly, we define another level set function 𝜓(𝒙). The zero level
set of 𝜓 is the surface that passes through the crack front and is orthogonal to the crack surface level set 𝜙(𝒙) = 0 everywhere along
he crack front. 𝜓 is calculated as:

𝜓 = sign×
√

𝑟2 − 𝜙2, (5)

where sign is positive if the point 𝒙 is in the same direction as the unit vector �̂�, or negative if in the opposite direction. 𝑟 represents
the shortest distance of the point 𝒙 to the crack front. The intersection of the surfaces 𝜙(𝒙) = 0 and 𝜓(𝒙) = 0 defines the crack front
geometrically. We define the sign of 𝜓 such that the region satisfying 𝜙(𝒙) = 0 and 𝜓(𝒙) < 0 corresponds to the crack surface 𝛤𝑐 .
In practical, the crack is discretized using 𝐶0 continuous triangles. The extension direction is defined as �̂� = �̂� × �̂�, where �̂� and �̂�
re tangent and normal unit vectors at the crack front, as shown in Fig. 1. There exist schemes like FOM [23] to compute �̂� and �̂�

at the front. However, the level set construction is not sensitive to the exact values. For simplicity, we adopt the averaging scheme
from [48] to approximate �̂� and �̂�.

𝒕 =
∑

𝑖 𝒕𝑖𝑙𝑖
∑

𝑖 𝑙𝑖
, �̂� = 𝒕

‖𝒕‖
, 𝒏 =

∑

𝑗 𝒏𝑗𝑎𝑗
∑

𝑖 𝑎𝑗
, �̂� = 𝒏

‖𝒏‖
, (6)

where 𝑙𝑖 is the length of 𝑖th edge connected to the vertex, and 𝑎𝑗 is the area of the triangles connected to the vertex. The resulting
intersection points and the original nodes on the crack front are triangulated to generate the extended crack surface. The computation
of level set 𝜙 is straightforward using the shortest signed distance to a series of triangles, and the level set 𝜓 is computed using the
shortest signed-distance to a set of line segments (composing the crack front) and 𝜙. As mentioned before, we utilize the CGAL to
alculate the shortest distance to a set of triangles and line segments based on AABB trees [49]. Fig. 2 shows level sets defined on
hexahedral grid for a lens-shaped crack.

.4. Modifications for three-dimensional curved cracks

It is noteworthy that the asymptotic displacement field is derived for straight cracks using polar coordinates (𝑟, 𝜃) within a plane.
e reiterate that the above surface of the crack should be represented as 𝜃 = 𝜋, and below surface as 𝜃 = −𝜋. This means that the
coordinate must be defined so that the discontinuity from the displacement field matches the actual curved crack geometry. For

urved cracks, computing 𝜃 from a local Cartesian coordinate system at the tip, as shown in Fig. 1, would introduce a mismatch
etween the enrichment discontinuity and the true discontinuity from the curvature. Such inconsistency may severely reduce the
ccuracy and convergence of the X-FEM. The determination of the plane must also be done carefully for three-dimensional problems.
o account for the curvature of curved cracks, we require to rely on level sets even for explicit representations. Based on the level
et functions 𝜙 and 𝜓 defined in Eqs. (4) and (5), the polar coordinates (𝑟, 𝜃) can be computed as:

𝑟(𝒙) =
√

𝜙2(𝒙) + 𝜓2(𝒙), 𝜃 = atan2(𝜙, 𝜓), (7)

where atan2 returns the principal value of the arc tangent of 𝜙∕𝜓 taking into account the sign of both arguments to determine
the quadrant. Fig. 3 compares the computed 𝜃∕𝜋 using different methods for a lens-shaped crack within a cube. This allows us to
account for the curvature of the crack.
4
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Fig. 3. Comparison of 𝜃∕𝜋 computed using different methods for a lens-shaped crack within a cube: (a) determined directly from local Cartesian coordinates at
the crack tip, and (b) the modified approach accounting for crack curvature based on level set functions.

3. New spatial gradients computation algorithm and comparison to common approach

Previously, after determining (𝑟, 𝜃), local Cartesian systems at each point along the curved crack front were constructed to
transform to the global coordinate system. However, for points sharing the same closest position on the front, the local systems
can vary point-to-point, which is non-physical. To address this, we introduce using the chain rule to directly compute the gradients
of enriching functions, eliminating the need to compute local base vectors at the crack front. In this section, we first outline two
approaches for computing the gradients of enriching functions. We then review the scheme for computing base vectors in explicit
crack representations and describe our proposed model in detail.

3.1. Spatial gradients of enriching functions

When generating the stiffness matrix, it is necessary to compute the gradients of the enriching functions. The formula of the
stiffness matrix in the X-FEM can be found in [5]. Using the chain rule, the gradients of singular functions along 𝑖th axis are

𝐵𝛼,𝑖 =
𝜕𝐵𝛼
𝜕𝑟

⋅
𝜕𝑟
𝜕𝑥𝑖

+
𝜕𝐵𝛼
𝜕𝜃

⋅
𝜕𝜃
𝜕𝑥𝑖

, 𝛼 = 1, 2, 3, 4, 𝑖 = 1, 2, 3, (8)

here 𝑥𝑖 is the global coordinates. Considering (8), we can compute 𝜕𝐵𝛼∕𝜕𝑟 and 𝜕𝐵𝛼∕𝜕𝜃 as shown in Appendix A. To compute 𝜕𝑟∕𝜕𝑥𝑖
nd 𝜕𝜃∕𝜕𝑥𝑖, we have two options.

1. computation based on transforming between the global and local coordinate systems. It follows

𝜕𝑟
𝜕𝑥𝑖

= 𝜕𝑟
𝜕𝑋𝑗

𝜕𝑋𝑗

𝜕𝑥𝑖
, 𝜕𝜃

𝜕𝑥𝑖
= 𝜕𝜃
𝜕𝑋𝑗

𝜕𝑋𝑗

𝜕𝑥𝑖
, (9)

where the Einstein summation convention is adopted for the repeated 𝑗, 𝑋𝑗 is the local Cartesian coordinates as shown in
Fig. 1, and 𝜕𝑋𝑗∕𝜕𝑥𝑖 is the Jacobian matrix. We have:

𝜕𝑟
𝜕𝑋1

= cos 𝜃, 𝜕𝑟
𝜕𝑋2

= sin 𝜃, 𝜕𝑟
𝜕𝑋3

= 0, (10)

𝜕𝜃
𝜕𝑋1

= −sin 𝜃
𝑟
, 𝜕𝜃

𝜕𝑋2
= cos 𝜃

𝑟
, 𝜕𝜃

𝜕𝑋3
= 0. (11)

Considering that

⎡

⎢

⎢

⎣

𝑋1
𝑋2
𝑋3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑜1 𝑜2 𝑜3
𝑛1 𝑛2 𝑛3
𝑡1 𝑡2 𝑡3

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑥1
𝑥2
𝑥3

⎤

⎥

⎥

⎦

⇒
𝜕𝑋𝑖
𝜕𝑥𝑗

=
⎡

⎢

⎢

⎣

𝑜1 𝑜2 𝑜3
𝑛1 𝑛2 𝑛3
𝑡1 𝑡2 𝑡3

⎤

⎥

⎥

⎦

, (12)

we can see that the base vectors are significant for the accuracy of this scheme.
2. computation based on the spatial gradients of level sets. Since (𝑟, 𝜃) are computed via 𝜙 and 𝜓 as shown in (7), we further

have:
𝜕𝑟
𝜕𝑥𝑖

= 𝜕𝑟
𝜕𝜙

⋅
𝜕𝜙
𝜕𝑥𝑖

+ 𝜕𝑟
𝜕𝜓

⋅
𝜕𝜓
𝜕𝑥𝑖

, 𝜕𝜃
𝜕𝑥𝑖

= 𝜕𝜃
𝜕𝜙

⋅
𝜕𝜙
𝜕𝑥𝑖

+ 𝜕𝜃
𝜕𝜓

⋅
𝜕𝜓
𝜕𝑥𝑖

, (13)

where
𝜕𝑟
𝜕𝜙

=
𝜙

√

𝜓2 + 𝜙2
, 𝜕𝑟

𝜕𝜓
=

𝜓
√

𝜓2 + 𝜙2
, 𝜕𝜃

𝜕𝜙
=

𝜓
𝜓2 + 𝜙2

, 𝜕𝜃
𝜕𝜓

= −
𝜙

𝜓2 + 𝜙2
. (14)

We thus only need to compute the spatial gradients of level sets.
5
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Fig. 4. Definition of 𝜃 for a curved crack and the base vectors for the given point 𝒑.

In the following, we separately describe the computation of base vectors at the crack front for scheme 1 and spatial gradients of
level sets for scheme 2.

3.2. Computation of base vectors at the crack front

For a given point 𝐩, we first compute the closest point 𝐪 on the crack fronts, and the closest point 𝐐 on the crack surface. Once
the location of 𝐪 is determined, we can compute the corresponding Cartesian coordinate system as shown in Fig. 1. The relative
osition of 𝐩 and the 𝑦−𝑧 plane can be determined by comparing the area of the triangle 𝐩𝐪𝐐 to a prescribed tiny value. If the area
s smaller (the point 𝒒 coincides with the point 𝑸), which means the point 𝐩 is in the positive half-space of the plane 𝑦−𝑧 as shown
n Fig. 4(a), 𝜃 is simply the angle between 𝐪𝐩 and �̂�. Otherwise, the polar coordinates (𝑟, 𝜃) are constructed within the plane, i.e. 𝑥–𝑦
lane, determined by 𝐩𝐪𝐐, as shown in Fig. 4(b). Note that 𝜃 is computed via (7). Once 𝜃 is determined, we can reconstruct a local
artesian system with three unit vectors, �̂�′, �̂�′, and �̂�′. This system is used for the computation of the gradients of 𝑟 and 𝜃. For the

case shown in Fig. 4(a), the coordinate system does not change. However, for the case shown in Fig. 4(b), the �̂�′ is determined by
the normal vector of the triangle 𝐩𝐪𝐐. We then require to rotate the vector 𝐩𝐪 along the axis directed by �̂�′ with −𝜃 to compute �̂�′.
The rotation matrix for such a 3D rotation is:

𝑅(�̂�, 𝜃) =
⎛

⎜

⎜

⎝

cos 𝜃 + 𝑡21(1 − cos 𝜃) 𝑡1𝑡2(1 − cos 𝜃) − 𝑡3 sin 𝜃 𝑡1𝑡3(1 − cos 𝜃) + 𝑡2 sin 𝜃
𝑡1𝑡2(1 − cos 𝜃) + 𝑡3 sin 𝜃 cos 𝜃 + 𝑛22(1 − cos 𝜃) 𝑡2𝑡3(1 − cos 𝜃) − 𝑡1 sin 𝜃
𝑡1𝑡3(1 − cos 𝜃) − 𝑡2 sin 𝜃 𝑡2𝑡3(1 − cos 𝜃) + 𝑡1 sin 𝜃 cos 𝜃 + 𝑡23(1 − cos 𝜃)

⎞

⎟

⎟

⎠

, (15)

where �̂�′ = (𝑡1, 𝑡2, 𝑡3). The �̂�′ can be computed as: �̂�′ = �̂�′ × �̂�′. We therefore can compute the gradients of enriching functions via
(9)–(12).

3.3. Gradients of level sets computed by the finite-difference method for a hexahedral grid

As shown in (13), we can directly compute the gradients of enriching functions without calculating the base vectors if we know
the gradients of level sets. For the hybrid representation, people normally compute level sets at nodes of the same body mesh
resulting that the accuracy of the crack surface representation is mesh dependent [7]. Obviously, we thus can compute the gradients
of level sets using the gradients of nodal shape functions. However, this accuracy is highly dependent on the order of the element
and the cell size of the grid. To improve accuracy, we introduce an independent hexahedral grid defined of level sets and compute
the gradients of level sets based on the finite difference method, e.g. the WENO scheme [24] to discretize the spatial gradients to
fifth-order accuracy. As shown in Fig. 5, the studied domain is discretized into blue cells. It is required to the compute the gradients
of enriching functions at the integration point, e.g. the blue circle in the figure. Instead of defining level sets on the same grid for
the physical domain, we define level sets on a separate spatial domain discretized by the red hexahedral cells. Note that the spatial
domain defined with level sets does not need to coincide with the physical domain and only needs to be set at the vicinity of the
front of the crack. Relying on the regular grid defined with level sets, we can compute the gradients of level sets at nodes of the
grid with high accuracy. We here adopt the WENO scheme and review the algorithm briefly for completeness. More details can be
found in [50]. The backward difference approximation to the derivative is defined as:

(𝐷−𝜙)𝑖 =
𝜙𝑖 − 𝜙𝑖−1

𝛥𝑥
, (16)

where 𝛥𝑥 is the mesh spacing. Defining 𝑣1 = 𝐷−𝜙𝑖−2, 𝑣2 = 𝐷−𝜙𝑖−1, 𝑣3 = 𝐷−𝜙𝑖, 𝑣4 = 𝐷−𝜙𝑖+1, and 𝑣5 = 𝐷−𝜙𝑖+2 allows us to write

𝜙1 =
𝑣1 −

7𝑣2 +
11𝑣3 , 𝜙2 = −

𝑣2 +
5𝑣3 +

𝑣4 , 𝜙3 =
𝑣3 +

5𝑣4 −
𝑣5 , (17)
,𝑥 3 6 6 ,𝑥 6 6 3 ,𝑥 3 6 6

6
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Fig. 5. Dual-meshes for the hybrid representation.

as the three potential ENO approximation to 𝜙−
𝑥 . The WENO approximation of (𝜙−

,𝑥)𝑖 is a convex combination of the approximation
iven by

𝜙,𝑥 = 𝜔1𝜙
1
,𝑥 + 𝜔2𝜙

2
,𝑥 + 𝜔3𝜙

3
,𝑥, (18)

here the 0 ≤ 𝜔𝑘 ≤ 1 are the weights with 𝜔1+𝜔2+𝜔3 = 1. The key observation for obtaining high-order accuracy in smooth regions
s that weights of 𝜔1 = 0.1, 𝜔2 = 0.6 and 𝜔3 = 0.3 give the optimal fifth-order accurate approximation to 𝜙,𝑥. These optimal weights
re derived rigorously in [24,50]. As noted in the original text, the detailed derivations can be found in these references. We adopt
hese optimal weight values and use the same WENO scheme for the gradients of both 𝜙,𝑖 and 𝜓,𝑖. Note that the integration points for
he X-FEM enrichment do not coincide with the nodes of the regular hexahedral grid. We first compute the gradients of the level sets
t the nodes using the WENO scheme described previously. To obtain the gradients at the integration points, we interpolate from
he nodal values using the shape functions of the enriched X-FEM element. The open-source LSMLIB code in C++ [44] facilitates
etting up the level sets and operations on them, so this process is not too cumbersome.

. Implementation details

In this section, we first describe the implementing procedure as shown in Algorithm 1. The implementation platforms adopted
n this work are given for convenience. The integration schemes concentrating on the partitioning are then compared. We lastly
llustrate the computation of SIFs.

Algorithm 1 Algorithm to compute the spatial gradients of enriching functions
Require: Triangles  representing a crack
nsure: Spatial gradients of enriching functions for a given integration points 𝑝, i.e. 𝐵𝛼,𝑖(𝒙𝑝).
Define a structured grid 
Extend  to cut the domain  for determining the sign of level sets.
for each vertex 𝑣 in  do

Compute the shortest signed distance of 𝑣 to  , i.e. 𝜙(𝒙𝑣), according to (4).
Compute the shortest distance of 𝑣 to the bound of  , i.e. 𝑟.
Compute the second level set determining the position of the crack front, i.e. 𝜓(𝒙𝑣), according to (5).

Compute the fields of spatial gradients of the level sets, i.e. 𝜙,𝑖(𝒙) and 𝜓,𝑖(𝒙), in a manner of (18).
Obtain the spatial gradients of level sets at the quadrature point using interpolation, 𝜙,𝑖(𝒙𝒑) =

∑

𝐼 𝑁𝐼 (𝒙𝑝)𝜙,𝑖(𝒙𝑰 ) and 𝜓,𝑖(𝒙𝒑) =
∑

𝐼 𝑁𝐼 (𝒙𝑝)𝜓,𝑖(𝒙𝑰 ).
Compute 𝜕𝑟∕𝜕𝑥𝑖 and 𝜕𝜃∕𝜕𝑥𝑖 by using the chain rule according to (13).
Compute the spatial gradients of enriching functions 𝐵𝛼,𝑖(𝒙𝑝) according to (8).

4.1. Implementation platforms

The main platform to implement the X-FEM is deal.II [40,41]. This library provides the discretization for the study domain,
andler of degrees of freedom (DOFs), and versatile linear solvers. Since deal.II is cell-based, we require using ‘‘hp::FECollection’’ to
7
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Fig. 6. Comparison of sub-cells partitioned by the crack: (A) hybrid representation, and (B) explicit representation and local zoom.

collect different types of ‘‘FESystem’’ composed by vectors of ‘‘FiniteElement’’. For the element enriched by the singular functions,
the vector contains 5 ‘‘FE_Q’’, for the element enriched by the heaviside function contains 2 ‘‘FE_Q’’, and for the unenriched element,
the vector only contains 1 ‘‘FE_Q’’. It should noted that the lengths of these vectors must maintain the same in deal.II and we employ
‘‘FE_Nothing’’ for this purpose. In contrast, the number and type of enriching functions are node-based. Therefore, we need to set a
vector containing this information for each node. The ‘‘constraints’’ class is employed to constrain the extra DOFs of over-enriched
nodes belonging to enriched elements. Other implementation details are straightforward in deal.II. The crack is composed by a series
of triangles, and we here adopt the CGAL library [43]. We can redesign our own vertex, border, facet, and items, publicly derived
from ‘‘HalfedgeDS_vertex_max_base_with_id’’, ‘‘HalfedgeDS_face_max_base_with_id’’, and ‘‘Polyhedron_items_with_id_3’’, respectively,
to contain more information, such as normal vectors. The facets for the crack can thus be stored using ‘‘Polyhedron_3’’. The
shortest distance searching is conducted based on the ‘‘AABB_tree’’, and the extension of the crack surface can be done by
‘‘Polyhedron_incremental_builder_3’’. The library for level set is LSMLIB [44]. The level set values are stored in ‘‘LSM_DataArrays’’,
and the background grid is specified by a ‘‘Grid’’ class initialized by ‘‘createGridSetDx’’. LSMLIB provides various functions to
compute the spatial gradients of level sets, such as ‘‘LSM3D_HJ_WENO5’’, ‘‘LSM3D_CENTRAL_GRAD_ORDER2’’, and more. Users
can easily implement these functions.

4.2. Partitioning for elements fully or partly cut by the crack

Integration schemes for elements fully or partly cut by the crack have been widely studied since the development of X-FEM.
Although some integration schemes without element-partitioning have been proposed in recent years [51–53], the integration
scheme based on element-partitioning remains straightforward. For the hybrid representation, the fully-cut element is partitioned
into tetrahedra only according to 𝜙. The partly-cut element is first partitioned into tetrahedra according to 𝜙, and the tetrahedra

ay be further partitioned into sub-tetrahedra according to 𝜓 . We set the quadrature points at the centers of the tetrahedra.
he partitioning is implemented using open-source code provided by Sukumar [54]. Two representative elements partitioned into
etrahedra for the hybrid representation are illustrated in Fig. 6(A). Note that with this approach, the crack surface is assumed
o be planar within each element and the triangulation of the crack surface cannot be considered. For the explicit representation,
GAL provides powerful tools to determine whether a cube is cut by a set of triangles and to partition the element. The function

‘number_ of_intersected_primitives’’ is designed to determine the number of the intersected elements in an ‘‘AABB_tree’’. Since the
order is composed by line segments stored in an ‘‘AABB_tree’’ and the crack surface composed of facets is also stored in another

‘AABB_tree’’, we can readily determine whether a specific cell is by fully or partly cut by the crack. More conveniently, ‘‘clip’’ and
‘corefine_ and _compute_difference’’ are functions in the ‘‘Polygon_mesh_processing’’ namespace. Using these two functions, we can
artition the fully-cut element into two parts according to the triangulation of the crack. Thus, we can obtain the set of tetrahedra
f each part, and set quadrature points for each tetrahedron. Fig. 6(B) shows the tetrahedra, and the zoom subfigure clearly shows
hat the cutting surface considers the triangulation of the crack.

.3. Computation of SIFs

Calculating mixed-mode stress intensity factors point-wise along a general 3-D curved crack front with a non-planar crack surface
equires a robust numerical method. A domain integral method, such as the interaction integral method (IIM) [55], is gaining
opularity due to its general applicability to a wide variety of crack problems. In the IIM, auxiliary fields are introduced and
uperposed on top of the actual fields from the solution to the boundary value problem. Through suitable definitions of the auxiliary
ields, the IIM can be related to the mixed-mode stress intensity factors. However, an accurate computation requires considering
he discrepancies between the crack surface (actual fields) and the planar surface (auxiliary fields) determined by the crack front,
hich complicates the derivations and calculations [56]. Since the computation of SIFs is not the focus of this work, we adopt the
8
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simplest scheme, i.e. DCM, to calculate SIFs. Using the crack front coordinate system defined in Fig. 1 at a fixed value of 𝑧, the
jump in the 𝑖−th component of the displacement field across the crack surface is calculated as:

[[𝑢𝑖(𝑟)]] = 𝑢𝑖(𝑟, 𝜋) − 𝑢𝑖(𝑟,−𝜋) 𝑖 = 1, 2, 3. (19)

he Mode I, II, and III SIFs can then be approximated according to the theoretical solution of the displacement (1a)–(1c)

𝐾∗
𝐼 (𝑟) =

√

2𝜋
𝑟

𝐺
𝜅 + 1

[[𝑢2(𝑟)]], 𝐾∗
𝐼𝐼 (𝑟) =

√

2𝜋
𝑟

𝐺
𝜅 + 1

[[𝑢1(𝑟)]], 𝐾∗
𝐼𝐼𝐼 (𝑟) =

√

2𝜋
𝑟
𝐺
4
[[𝑢3(𝑟)]]. (20)

To increase the order of accuracy of (20), we give three different radius 𝑟𝑎 > 𝑟𝑏 > 𝑟𝑐 to extrapolate the SIFs [57] according to

𝐾𝑖 =
𝐾∗
𝑖
(

𝑟𝑎
)

𝑐1 +𝐾∗
𝑖
(

𝑟𝑏
)

𝑐2 +𝐾∗
𝑖
(

𝑟𝑐
)

𝑐3
𝑐1 + 𝑐2 + 𝑐3

, 𝑖 = I, II, III, (21)

ith

𝑐1 = 𝑟𝑏𝑟
2
𝑐 − 𝑟

2
𝑏𝑟𝑐 , 𝑐2 = 𝑟𝑐𝑟

2
𝑎 − 𝑟

2
𝑐 𝑟𝑎, 𝑐3 = 𝑟𝑎𝑟

2
𝑏 − 𝑟

2
𝑎𝑟𝑏. (22)

n this work, these three points are uniformly spaced at a distance of 𝛥𝑟, that is, 𝛥𝑟 = 𝑟𝑎−𝑟𝑏 = 𝑟𝑏−𝑟𝑐 . Note that if the crack surface is
non-planar in the 𝑥 direction, we require ensuring that the sampling points are on the crack surface. A simple fix for this, presented
in [21], to compute the orthogonal projection of the extraction points onto the curved crack surface. The process is normal, only
modifying 𝑟𝑎, 𝑟𝑏, and 𝑟𝑐 according to the projected points on the crack surface. It should be pointed out that the accuracy of DCM
depends on the locations of monitoring points in our applications. Since we aim to compare the gradients computed by different
methods, the dependence of SIFs on the 𝛥𝑟 and 𝑟𝑎 may confuse the comparison if we take SIFs as criteria. We alleviate this issue by
comparing statistic values. More details will be given in the next section.

5. Numerical examples

In this section, we first compare the gradients computed by different schemes at specific spatial points to demonstrate the errors of
the method requiring directional vectors. We then present numerical simulations of two boundary value problems to further analyze
the accuracy of the different methods: one example involves a planar crack geometry and the other involves a non-planar crack. Both
examples have analytical solutions available for validation of the implementation. The planar crack example involves an inclined
elliptical crack. We use this example to demonstrate the consistence between the proposed model and the model computing the
transformation matrix specifically for planar cracks. The non-planar example involves a spherical cap crack geometry. We employ
this example to compare the accuracy of the different methods for modeling non-planar cracks. Note that although the grid of
the X-FEM can be tetrahedra as shown in Fig. 5, we here still use hexahedra to discretize the physical domain for convenient
implementations in deal.II. Again, the grid for the level set is independent with the meshes for the physical domain, allowing
different cell sizes.

5.1. Comparison of different schemes to compute the spatial gradients of enriching functions

In this example, we do not solve a boundary value problem, and just quantitatively compare the spatial gradients of enriching
functions (as shown in (8)) computed by different methods. As shown in Fig. 7, we here consider four points with different relative
positions to a lens. The lens has a radius of 0.2, the angle between the rotating radial axis and 𝑧-axis is 𝜋∕4, and the origin is at
(0, 0, 0.2). We use the triangle 𝐩𝐪𝐐 (defined in Fig. 4) to characterize the relative positions of the interested points. Note that the
fourth point 𝐩4 is in the situation as shown in Fig. 4(a), where the closest point at the front of the crack 𝐪 coincides with the closest
point on the crack surface 𝐐. The triangle therefore shrinks to a line segment in this case. Table 1 compares the gradients of the
first two enriching functions computed via different methods. ‘‘Explicit’’ refers to the method based on the transformation matrix,
and ‘‘Dual’’ refers to the method based on the gradients of level sets. The first two points are along on the 𝑧-axis, therefore 𝐵𝛼,𝑥
and 𝐵𝛼,𝑦 should theoretically be zeros. We can see that the proposed method reaches this theoretical value with high accuracy, but
the method based on the base vectors is relatively inaccurate since there are always closest points on the surface and front of the
crack affecting the gradient computations. Except for this extreme situation, the gradients are also discrepant for 𝐩3. Due to the
curvature, we believe that the proposed method is more accurate than the method based on the transformation matrix. When the
point is in the out-forward half space of 𝑦− 𝑧 plane, i.e. 𝐩4, the discrepancies become much smaller, meaning the method based on
the transformation matrix is more suitable for this situation. We may conclude that the proposed method is more accurate than the
method using the transformation matrix for cases where the curvature of the crack plays an important role, such as when a coarse
grid embeds a non-planar crack. To some extent, we can improve the accuracy of the X-FEM to describe non-planar cracks for a
given number of unknowns using the proposed method.

5.2. Inclined elliptical crack

An elliptical crack embedded diagonally in a cubic domain is studied in this section, which is widely employed for validations [21,
58]. As shown in Fig. 8(a), the domain with length 𝐿 = 0.5 is loaded by a unity tensile traction 𝜎 = 1.0 on two opposite faces of
the domain. The dimensions of the semi-major and semi-minor axis of the crack are taken as 𝑎 = 0.1 and 𝑏 = 0.05, respectively,
9
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Fig. 7. Four specific spatial positions.

Table 1
Comparison of gradients of enriching functions using different schemes.

p1 p2 p3 p4
Explicit Dual Explicit Dual Explicit Dual Explicit Dual

𝐵1,𝑥 −1.27865 −1.69e−15 0.88370 8.76e−16 −0.04908 0.00065 −0.07424 0.01811
𝐵1,𝑦 −0.02221 −1.69e−15 0.15239 8.76e−16 0.13413 −0.04466 −0.10917 −0.10177
𝐵1,𝑧 −0.11444 −0.20487 0.61053 0.59333 1.13155 0.97779 0.89819 0.90212
𝐵2,𝑥 −0.11351 −1.13e−16 0.60165 2.19e−16 −0.05603 0.00075 −0.05863 0.01446
𝐵2,𝑦 −0.01520 −1.13e−16 0.10375 2.19e−16 1.13095 0.92704 0.89990 0.90212
𝐵2,𝑧 1.29780 1.47882 −0.89674 −0.96987 −0.13648 −0.30391 0.10453 0.10178

as shown in Fig. 8(b). The angle of inclination of the crack with respect to the horizontal plane is taken as 𝛾 = 𝜋∕4. The material
properties adopted in this problem are 𝐸 = 1.0 × 103 and 𝜈 = 0.3. The stress intensity factors 𝐾 ref

𝐼 , 𝐾 ref
𝐼𝐼 and 𝐾 ref

𝐼𝐼𝐼 for an inclined
lliptical crack in an infinite domain are used as reference values. They are given by Tada et al. [59]:

𝐾 ref
I =

(

𝜎 sin2 𝛾
)
√

𝜋𝑏
𝐸 (𝜅)

{

sin2 𝜃 +
( 𝑏
𝑐

)2
cos2 𝜃

}1∕4
, (23)

𝐾 ref
II = −

(𝜎 sin 𝛾 cos 𝛾)
√

𝜋𝑏𝜅2
{

sin2 𝜃 +
(

𝑏
𝑎

)2
cos2 𝜃

}1∕4

{

𝜅′

𝐵
cos𝜔 cos 𝜃 + 1

𝐶
sin𝜔 sin 𝜃

}

, (24)

𝐾 ref
III =

(𝜎 sin 𝛾 cos 𝛾)
√

𝜋𝑏 (1 − 𝜈) 𝜅2
{

sin2 𝜃 +
(

𝑏
𝑎

)2
cos2 𝜃

}1∕4

{

1
𝐵

cos𝜔 sin 𝜃 − 𝜅′

𝐶
sin𝜔 cos 𝜃

}

, (25)

where 𝐵, 𝐶 are defined as

𝐵 =
(

𝜅2 − 𝜈
)

𝐸(𝜅) + 𝜈𝜅′2𝐾(𝜅), 𝐶 =
(

𝜅2 + 𝜈𝜅′2
)

𝐸(𝜅) − 𝜈𝜅′2𝐾(𝜅), (26)

with 𝐸(𝜅) and 𝐾(𝜅) defined as

𝐾(𝑘) = ∫

𝜋
2

0

𝑑𝜑
√

1 − 𝑘2 sin2 𝜑
, 𝐸(𝑘) = ∫

𝜋
2

0

√

1 − 𝑘2 sin2 𝜑𝑑𝜑, (27)

here 𝜅2 = 1 − 𝜅′2, 𝜅′ = 𝑏∕𝑎, and 𝜃 is the parametric angle of a point on the crack front. In this problem, 𝛾 = 𝜋∕4 and 𝜔 = 0. For
he spatial discretization, we employ a structured grid with a uniform cell size of ℎxfem = 0.025 as the background meshes of the

X-FEM, and a uniform grid with cell size of ℎls = 0.0266667 for the level set. The region within a distance of 1.5ℎxfem from the crack
front is enriched with singularity functions.

Fig. 9(a) shows a vertically cut half of the deformed body amplified with 500 times. We set 𝑟𝑎 = 0.002 and 𝛥𝑟 = 0.003 as shown
in (22) to compute SIFs. Figs. 9(b), 9(c) and 9(d) compare the SIFs computed by different schemes. We can see that the accuracies
of the explicit and the novel hybrid representations are almost identical. This is expected since computing gradients of enriching
functions using the transformation matrix and gradients of level sets give identical results for planar cracks.

5.3. Lens-shaped crack

Since the spherical-cap crack problem is the only one non-planar crack for which the boundary-value problem can be solved
exactly [60], we consider this case here. As shown in Fig. 10, a lens-shaped crack embedded in a cubic domain. The geometric
parameters of the lens-shaped crack are 𝑅 = 0.2 and 𝛼 = 𝜋∕4, and the edge length of the cube is 𝐿 = 2. The material properties used
are 𝐸 = 1.0 × 103 and 𝜈 = 0.22.
10
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Fig. 8. Numerical model and the geometry of an elliptical crack.

Fig. 9. Deformed body (amplified by 500 times) and comparisons of SIFs (Ref: analytical solution, Explicit: crack represented by an explicit scheme, and Dual:
the dual meshes approach).
11
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Fig. 10. Numerical model and the geometry of a lens crack.

5.3.1. Comparisons of SIFs computed by the DCM
When the domain subjected to a hydrostatic tensile stress, i.e. 𝜎 = 1, the fairly involved analytical solution for the lens crack

as derived by Martynenko and Ulitko [61]. The stress intensity factors are given by:

𝐾 ref
I =

𝜑(𝛼)
2

√

𝑅𝜋
sin 𝛼

and 𝐾 ref
II = 𝜓(𝛼)

√

𝑅𝜋
sin 𝛼

, (28)

here 𝜑(𝛼) and 𝜓(𝛼) are solutions to the boundary value problem of a spherical notch, which can be expressed as:

𝜑(𝛼) = 𝛿 sin 𝛼
2
+ 𝑏 sin 3𝛼

2
+ 𝑐 sinh 𝛾𝛼 cos 𝛼

𝑚
+ 𝑑 cosh 𝛾𝛼 sin 𝛼

𝑚
, (29)

𝜓(𝛼) = 2𝑏
3

cos 3𝛼
2

− 1
6
(𝑐𝜂 + 2𝑑𝛾) sinh 𝛾𝛼 sin 𝛼

𝑚
− 1

6
(2𝑐𝛾 − 𝜂𝑑) cosh 𝛾𝛼 cos 𝛼

𝑚
, (30)

in which 𝑚 is the reciprocal of Poisson’s ratio and the constants 𝛿, 𝛾, and 𝜂 are defined as

𝛿 = 3𝜎
2𝜋

𝑚
𝑚 + 1

, 𝛾 =
√

3
4
− 1
𝑚2
, 𝜂 = 3 + 2

𝑚
. (31)

The remaining constants 𝑏, 𝑐, and 𝑑 are determined from a solution of the following equation system:

⎡

⎢

⎢

⎣

𝑎11 −𝑎12 −𝑎13
𝑎21 −𝑎22 −𝑎23
𝑎31 −𝑎32 −𝑎33

⎤

⎥

⎥

⎦

⎛

⎜

⎜

⎝

𝑏
𝑐
𝑑

⎞

⎟

⎟

⎠

= −𝛿

⎧

⎪

⎨

⎪

⎩

𝑏11
𝑏22
0

⎫

⎪

⎬

⎪

⎭

(32)

in which the coefficients 𝑎𝑖𝑗 and 𝑏𝑖𝑗 are given in Appendix. In this case, the absolute values of analytical solutions are 𝐾 ref
I = 0.377235,

𝐾 ref
II = 0.104089, and 𝐾 ref

III = 0. We first set ℎxfem∕𝐿 = 0.03125 and ℎls∕𝐿 = 0.05 for the spatial discretization. We also set 𝑟𝑎 = 0.01414
and 𝛥𝑎 = 0.05656 shown in (22) to compute SIFs. Fig. 11 shows comparisons of SIFs computed by different methods and the analytical
olutions. Note the 𝑥-axis denoted as 𝜃 is defined as the radial angle of the points along the crack front in the horizontal plane.

We can see that the computed SIFs from both methods fluctuate around the reference solutions. Given a fixed singularly-enriched
region, the curvature plays an important role for coarse meshes. We therefore employ coarse meshes to discretize the domain to
examine the improvement of the proposed method. As shown in Fig. 12, two representative cell sizes are demonstrated by the
relative positions of the cells cut by the crack front and the crack itself.

We now compare SIFs for different approaches. Since the SIFs computed by the DCM method are practically path dependent.
We here first separately compute 𝑘I with 𝑟𝑎 = 0.0002828 + 𝑖ℎcr and 𝛥𝑎 = 0.0002828 + 𝑗ℎcr (𝑖, 𝑗 = 1, 2,… , 10) and take the average
𝑘I to eliminate the issue of path-dependence. Fig. 13 shows the relative error 𝑒𝑘 = |

|

|

𝑘I − 𝑘refI
|

|

|

∕𝑘refI with different mesh sizes for the
different methods. We can see that the proposed method is more accurate than the method based on the transformation matrix for
coarse meshes, but for a few specific mesh sizes, the results are worse. The reason is that the computation of SIFs by using the DCM
is not accurate even when we use some averaging schemes. The interaction integral method (IIM) considering the discrepancies of
the crack surface (actual fields) and the planar surface (auxiliary fields), may be a better choice, as shown in [55]. However, the
derivations and implementations of the IIM for a curved crack are too complicated, which may distract from the focus of this work.
To conduct a fair comparison, we employ the analytical solution for the displacement jump along the lens.

5.3.2. Comparisons of displacement jump
Martin [60] revisited the spherical-cap crack and given the analytical crack-opening displacement for uniaxial tension at infinity

in the 𝑧-direction as:
[

𝑢𝑟(𝜃)
]

= 𝑐 ∫

𝛼 𝜑(𝑡)
√

d𝑡, 0 ≤ 𝜃 < 𝛼, (33)

𝜃 2 cos 𝜃 − 2 cos 𝑡

12
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Fig. 11. SIFs for a lens crack (Subscripts I and II represent the 𝐾𝐼 and 𝐾𝐼𝐼 , respectively. Ref: analytical solution, Explicit: crack represented by an explicit
scheme, and Dual: the dual meshes approach.).

Fig. 12. Cells cut by the crack front.

Fig. 13. Relative errors for different mesh sizes. (𝑒𝑘 =
|

|

|

𝑘I − 𝑘refI
|

|

|

∕𝑘refI ).
13
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a

T

w

[

𝑢𝜃(𝜃)
]

= −𝑐
2 sin 𝜃 ∫

𝛼

𝜃

𝜓(𝑡) sin 𝑡
√

2 cos 𝜃 − 2 cos 𝑡
d𝑡, 0 ≤ 𝜃 < 𝛼, (34)

where the spherical cap is represented by 𝑟 = 𝑐, 0 ≤ 𝜃 < 𝛼 and 0 ≤ 𝜙 < 2𝜋. In this case, 𝑐 ≡ 0.2, 𝛼 ≡ 𝜋∕4. The expressions for 𝜑(𝑡)
nd 𝜓(𝑡) are:

𝜑(𝑡) = 𝜂𝜑1(𝑡) + (1 − 𝑣)−1
{

𝜓0ℎ0(𝑡) +𝑀1ℎ1(𝑡) +𝑀2ℎ2(𝑡)
}

, (35)

𝜓(𝑡) = 𝜂𝜓1(𝑡) + (1 − 𝑣)−1
{

𝜓0𝓁0(𝑡) +𝑀1𝓁1(𝑡) +𝑀2𝓁2(𝑡)
}

, (36)

where 𝜂 = −4(1 − 𝑣)𝑝0∕(𝜋𝜇), 𝑣 is Poisson’s ratio (𝑣 ≡ 0.22), 𝑝0 is the tension along 𝑧-direction (𝑝0 ≡ 1), 𝜇 is the shear modulus
(𝜇 = 𝐸

2(1+𝑣) = 409.836) as 𝐸 = 1 × 103, and functions are listed as follows:

𝜑1(𝑡) = 2𝐴1 sin
( 1
2
𝑡
)

+ 2
3
𝐵1 sin

( 3
2
𝑡
)

+ 2
5
𝐶1 sin

( 5
2
𝑡
)

+ 𝑣−1𝐷1 cosh 𝛾𝑡 sin 𝑣𝑡 + 𝛾−1𝐸1 sinh 𝛾𝑡 cos 𝑣𝑡,

𝜓1(𝑡) = 𝐵3 cos
( 3
2
𝑡
)

+ 𝐶3 cos
(5
2
𝑡
)

+𝐷3 cosh 𝛾𝑡 cos 𝑣𝑡 + (𝛾𝑣)−1𝐸3 sinh 𝛾𝑡 sin 𝑣𝑡,

ℎ0(𝑡) = −1
8

{

sin
( 3
2
𝑡
)

+ (3 − 4𝑣) cosh 𝛾𝑡 sin 𝑣𝑡 + 1
2
𝛾−1

(

1 + 6𝑣 − 8𝑣2
)

sinh 𝛾𝑡 cos 𝑣𝑡
}

,

ℎ1(𝑡) = − 1
32

{

(3 + 8𝑣) sin
( 3
2
𝑡
)

+ (13 − 24𝑣) cosh 𝛾𝑡 sin 𝑣𝑡 + 1
2
𝛾−1

(

51 − 14𝑣 − 48𝑣2
)

sinh 𝛾𝑡 cos 𝑣𝑡
}

,

ℎ2(𝑡) =
1
2
𝛿2

{

sin
( 3
2
𝑡
)

− cosh 𝛾𝑡 sin 𝑣𝑡 + 1
2
𝛾−1(1 − 2𝑣) sinh 𝛾𝑡 cos 𝑣𝑡

}

,

𝓁0(𝑡) =
1
3

{

cos
( 3
2
𝑡
)

+ (2 − 3𝑣) cosh 𝛾𝑡 cos 𝑣𝑡 − 1
2
𝛾−1

(

3 + 2𝑣 − 6𝑣2
)

sinh 𝛾𝑡 sin 𝑣𝑡
}

,

𝓁1(𝑡) =
1
12

{

(3 + 8𝑣)
(

cos
( 3
2
𝑡
)

− cosh 𝛾𝑡 cos 𝑣𝑡
)

− 1
2
𝛾−1

(

48 − 3𝑣 − 56𝑣2
)

sinh 𝛾𝑡 sin 𝑣𝑡
}

,

𝓁2(𝑡) = −4
3
𝛿2

{

cos
( 3
2
𝑡
)

− cosh 𝛾𝑡 cos 𝑣𝑡 + 1
2
(𝑣∕𝛾) sinh 𝛾𝑡 sin 𝑣𝑡

}

,

where

𝐴1 =
1

16(1 + 𝑣)
, 𝐵1 =

−3
16(1 − 𝑣)

, 𝐶1 =
25

4(7 − 5𝑣)
, 𝐷1 =

−𝑣
(

3 + 5𝑣 − 10𝑣2
)

4
(

1 − 𝑣2
)

(7 − 5𝑣)
,

𝐸1 =
13 − 25𝑣 − 6𝑣2 + 20𝑣3

8
(

1 − 𝑣2
)

(7 − 5𝑣)
, 𝐵3 = −16

9
𝐵1, 𝐶3 = −24

25
𝐶1, 𝐷3 =

11 − 13𝑣
3(1 − 𝑣)(7 − 5𝑣)

,

𝐸3 =
𝑣(1 − 2𝑣)(15 − 17𝑣)
6(1 − 𝑣)(7 − 5𝑣)

, 𝛾 = 1
2

√

3 − 4𝑣2, 𝛿2 =
3
16

(1 − 8𝑣).

he coefficients of 𝑀1, 𝑀2 and 𝜓0 are the solution of the following linear system:
3
∑

𝑗=1
𝐴𝑖𝑗𝑥𝑗 = 𝑐𝑖, 𝑖 = 1, 2, 3,

here 𝑥1 =𝑀1, 𝑥2 =𝑀2, 𝑥3 = 𝜓0 and

𝑐1 = (1 − 𝑣)𝜂 ∫ 𝜑1 d𝑡, 𝑐2 = (1 − 𝑣)𝜂 ∫
(

𝜑1 cos 𝑡 + 𝜓1 sin 𝑡
)

d𝑡, 𝑐3 = −(1 − 𝑣)𝜂 ∫ 𝜓1 cos
1
2
𝑡 d𝑡,

𝐴11 = 1 − 𝑣 − ∫ ℎ1 d𝑡, 𝐴12 = −∫ ℎ2 d𝑡, 𝐴13 = −∫ ℎ0 d𝑡,

𝐴21 = −∫
(

ℎ1 cos 𝑡 + 𝓁1 sin 𝑡
)

d𝑡, 𝐴22 = 1 − 𝑣 − ∫
(

ℎ2 cos 𝑡 + 𝓁2 sin 𝑡
)

d𝑡,

𝐴23 = −∫
(

ℎ0 cos 𝑡 + 𝓁0 sin 𝑡
)

d𝑡,

𝐴31 = ∫ 𝓁1 cos
(1
2
𝑡
)

d𝑡, 𝐴32 = ∫ 𝓁2 cos
( 1
2
𝑡
)

d𝑡, 𝐴33 = ∫ 𝓁0 cos
(1
2
𝑡
)

d𝑡,

and all the integrals are over the range 0 ≤ 𝑡 ≤ 𝛼. We thus can compute the analytical solutions of
[

𝑢𝑟(𝜃)
]

and
[

𝑢𝜃(𝜃)
]

. Fig. 14
compares the displacement jumps for different methods at various mesh sizes. We can see that the proposed method (labeled as
‘‘hybrid’’) is more accurate than the method requiring transposition matrix (labeled as ‘‘explicit’’) both for

[

𝑢𝑟(𝜃)
]

and
[

𝑢𝜃(𝜃)
]

.

6. Conclusion

Using the X-FEM to model non-planar discontinuities confronts challenges to compute gradients of enriching functions since
the transformations matrix connecting the global and local coordinate systems are sensitive to the normal, conormal, and tangent
vectors along crack fronts. In this work, we proposed a novel hybrid representation by setting level sets to an independent grid with

hexahedra meshes. The gradients of level sets are computed by the finite difference method and then interpolated to the integration

14
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Fig. 14. Comparisons of the displacement jump for different numerical solutions (explicit and hybrid) and analytical solutions (subscripts with ref).

oints of the X-FEM to compute the gradients of enriching functions abandoning computing the local coordinate systems at the
ronts of the cracks. It is found that the proposed method are identical to the explicit representation for planar cracks, but exhibit
ore accurate for the non-planar cracks, especially for coarse meshes. In this work, we consider embedded cracks in isotropic
omogeneous materials. For interface cracks and cracks in anisotropic media, they can be modeled by using different enriching
unctions in the framework of the X-FEM. These enriching functions are also functions of 𝑟 and 𝜃, therefore the gradients of these
unctions can be computed by the chain rule and gradients of level sets in the same manner. It should be pointed out that the
roposed method is based on level sets reproducing the explicit cracks. For some cases where the level set function may be an

‘over-smoothed’’ approximation to the crack geometry, e.g. the de facto ‘‘zigzag’’ feature of fatigue crack geometry, the explicit
epresentation requiring the transformation matrix is still the best choice, while refining the crack tips is necessary to alleviate
rrors. As the future work, we may extend our model to consider multiple cracks.
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Appendix A. Gradients of enriching functions

𝜕𝐵1
𝜕𝑟

= 1
2
√

𝑟
sin 𝜃

2
,

𝜕𝐵1
𝜕𝜃

=

√

𝑟
2

cos 𝜃
2

(A.1)

𝜕𝐵2
𝜕𝑟

= 1
2
√

𝑟
cos 𝜃

2
,

𝜕𝐵2
𝜕𝜃

= −

√

𝑟
2

sin 𝜃
2

(A.2)

𝜕𝐵3
𝜕𝑟

= 1
2
√

𝑟
sin 𝜃

2
sin 𝜃,

𝜕𝐵3
𝜕𝜃

=

√

𝑟
2

cos 𝜃
2
sin 𝜃 +

√

𝑟 sin 𝜃
2
cos 𝜃 (A.3)

𝜕𝐵4
𝜕𝑟

= 1
2
√

𝑟
cos 𝜃

2
sin 𝜃,

𝜕𝐵4
𝜕𝜃

= −

√

𝑟
2

sin 𝜃
2
sin 𝜃 +

√

𝑟 cos 𝜃
2
cos 𝜃 (A.4)

Appendix B. Coefficients in the reference solutions of lens crack

The definitions of the coefficients 𝑎𝑖𝑗 and 𝑏𝑖𝑗 occurring in (32) are listed as follows.

𝑎11 =
1
3

(

11 cos 𝛼2 − cos 5𝛼
2

)

𝑎12 = sin 𝛼
(

𝜅 sinh 𝛾𝛼 cos 𝛼
𝑚 + 𝜌 cosh 𝛾𝛼 sin 𝛼

𝑚

)

+ cos 𝛼
(

𝜇 cosh 𝛾𝛼 cos 𝛼
𝑚 − 𝛽 sinh 𝛾𝛼 sin 𝛼

𝑚

)

𝑎13 = sin 𝛼
(

𝜅 cosh 𝛾𝛼 sin 𝛼
𝑚 − 𝜌 sinh 𝛾𝛼 cos 𝛼

𝑚

)

+ cos 𝛼
(

𝜇 sinh 𝛾𝛼 sin 𝛼
𝑚 + 𝛽 cosh 𝛾𝛼 cos 𝛼

𝑚

)

𝑎21 = cos 3𝛼
2

𝑎22 = 2
(

𝛾 cosh 𝛾𝛼 cos 𝛼
𝑚 + 1

𝑚 sinh 𝛾𝛼 sin 𝛼
𝑚

)

𝑎23 = 2
(

𝛾 sinh 𝛾𝛼 sin 𝛼
𝑚 − 1

𝑚 cosh 𝛾𝛼 cos 𝛼
𝑚

)

𝑎31 =
1
3 (1 + cos 𝛼) sin 𝛼

𝑎32 =
𝑚

4(𝑚−1) cos
𝛼
2

[(

1 − 2
𝑚

)

sinh 𝛾𝛼 cos 𝛼
𝑚 + 2𝛾 cosh 𝛾𝛼 sin 𝛼

𝑚

]

+ 𝑚
4(𝑚−1)

2
3 sin

𝛼
2

[(

1 − 4
𝑚

)

𝛾 cosh 𝛾𝛼 cos 𝛼
𝑚 +

(

3
2 + 1

𝑚 − 4
𝑚2

)

sinh 𝛾𝛼 sin 𝛼
𝑚

]

𝑎33 =
𝑚

4(𝑚−1) cos
𝛼
2

[(

1 − 2
𝑚

)

cosh 𝛾𝛼 sin 𝛼
𝑚 − 2𝛾 sinh 𝛾𝛼 cos 𝛼

𝑚

]

+ 𝑚
4(𝑚−1)

2
3 sin

𝛼
2

[(

1 − 4
𝑚

)

𝛾 sinh 𝛾𝛼 sin 𝛼
𝑚 −

(

3
2 + 1

𝑚 − 4
𝑚2

)

cosh 𝛾𝛼 cos 𝛼
𝑚

]

𝑏11 =
1
3 cos

3𝛼
2 − cos 𝛼2

𝑏22 = 3 cos 𝛼2
𝛽 = 4

3
6𝑚2+𝑚−8
𝑚(7𝑚−8)

𝜇 = −4
3

𝑚−8
7𝑚−8 𝛾

𝜌 = 8𝑚
7𝑚−8 𝛾

𝜅 = 8(𝑚−1)
7𝑚−8

(B.1)

References

[1] Mian Xiao, Chuanqi Liu, WaiChing Sun, DP-MPM: Domain partitioning material point method for evolving multi-body thermal–mechanical contacts during
dynamic fracture and fragmentation, Comput. Methods Appl. Mech. Engrg. 385 (2021) 114063.

[2] Ted Belytschko, Robert Gracie, Giulio Ventura, A review of extended/generalized finite element methods for material modeling, Modelling Simul. Mater.
Sci. Eng. 17 (4) (2009) 043001.

[3] Jens M. Melenk, Ivo Babuška, The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Engrg. 139 (1–4)
(1996) 289–314.

[4] Nicolas Moës, John Dolbow, Ted Belytschko, A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg. 46 (1)
(1999) 131–150.

[5] Natarajan Sukumar, Nicolas Moës, Brian Moran, Ted Belytschko, Extended finite element method for three-dimensional crack modelling, Internat. J. Numer.
Methods Engrg. 48 (11) (2000) 1549–1570.

[6] M. Stolarska, David L. Chopp, Nicolas Moës, Ted Belytschko, Modelling crack growth by level sets in the extended finite element method, Internat. J.
Numer. Methods Engrg. 51 (8) (2001) 943–960.

[7] J.P. Pereira, C. Armando Duarte, Xiangmin Jiao, Three-dimensional crack growth with hp-generalized finite element and face offsetting methods, Comput.
Mech. 46 (3) (2010) 431–453.
16

http://refhub.elsevier.com/S0045-7825(23)00543-1/sb1
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb1
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb1
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb2
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb2
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb2
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb3
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb3
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb3
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb4
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb4
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb4
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb5
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb5
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb5
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb6
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb6
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb6
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb7
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb7
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb7


C. Liu and Y. Wei Comput. Methods Appl. Mech. Engrg. 417 (2023) 116419
[8] J. Garzon, P. O’Hara, Carlos Armando Duarte, William G. Buttlar, Improvements of explicit crack surface representation and update within the generalized
finite element method with application to three-dimensional crack coalescence, Internat. J. Numer. Methods Engrg. 97 (4) (2014) 231–273.

[9] Guizhong Xiao, Longfei Wen, Rong Tian, Arbitrary 3D crack propagation with Improved XFEM: Accurate and efficient crack geometries, Comput. Methods
Appl. Mech. Engrg. 377 (2021) 113659.

[10] Konstantinos Agathos, Giulio Ventura, Eleni Chatzi, Stéphane P.A. Bordas, Stable 3D XFEM/vector level sets for non-planar 3D crack propagation and
comparison of enrichment schemes, Internat. J. Numer. Methods Engrg. 113 (2) (2018) 252–276.

[11] Thomas-Peter Fries, Malak Baydoun, Crack propagation with the extended finite element method and a hybrid explicit-implicit crack description, Internat.
J. Numer. Methods Engrg. 89 (12) (2012) 1527–1558.

[12] Anthony Gravouil, Nicolas Moës, Ted Belytschko, Non-planar 3D crack growth by the extended finite element and level sets—Part II: Level set update,
Internat. J. Numer. Methods Engrg. 53 (11) (2002) 2569–2586.

[13] Marc Duflot, A study of the representation of cracks with level sets, Internat. J. Numer. Methods Engrg. 70 (11) (2007) 1261–1302.
[14] Daniele Colombo, An implicit geometrical approach to level sets update for 3D non planar X-FEM crack propagation, Comput. Methods Appl. Mech. Engrg.

237 (2012) 39–50.
[15] M. Baydoun, T.P. Fries, Crack propagation criteria in three dimensions using the XFEM and an explicit-implicit crack description, Int. J. Fract. 178 (1)

(2012) 51–70.
[16] James Albert Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision,

and Materials Science, Vol. 3, Cambridge University Press, 1999.
[17] Stanley Osher, Ronald P. Fedkiw, Level set methods: an overview and some recent results, J. Comput. Phys. 169 (2) (2001) 463–502.
[18] Alireza Sadeghirad, David L. Chopp, Xiang Ren, Eugene Fang, Jim Lua, A novel hybrid approach for level set characterization and tracking of non-planar

3D cracks in the extended finite element method, Eng. Fract. Mech. 160 (2016) 1–14.
[19] Rong Tian, Longfei Wen, Lixiang Wang, Three-dimensional improved XFEM (IXFEM) for static crack problems, Comput. Methods Appl. Mech. Engrg. 343

(2019) 339–367.
[20] A.G. Sanchez-Rivadeneira, N. Shauer, B. Mazurowski, C.A. Duarte, A Stable Generalized/eXtended p-hierarchical FEM for three-dimensional linear elastic

fracture mechanics, Comput. Methods Appl. Mech. Engrg. (ISSN: 0045-7825) 364 (2020) 112970, http://dx.doi.org/10.1016/j.cma.2020.112970, URL
https://www.sciencedirect.com/science/article/pii/S0045782520301535.

[21] P. Gupta, Carlos Armando Duarte, A. Dhankhar, Accuracy and robustness of stress intensity factor extraction methods for the generalized/eXtended Finite
Element Method, Eng. Fract. Mech. 179 (2017) 120–153.

[22] Xiangmin Jiao, Face offsetting: A unified approach for explicit moving interfaces, J. Comput. Phys. 220 (2) (2007) 612–625.
[23] J.P. Pereira, C.A. Duarte, X. Jiao, D. Guoy, Generalized finite element method enrichment functions for curved singularities in 3D fracture mechanics

problems, Comput. Mech. 44 (1) (2009) 73–92.
[24] Guang-Shan Jiang, Danping Peng, Weighted ENO schemes for Hamilton–Jacobi equations, SIAM J. Sci. Comput. 21 (6) (2000) 2126–2143.
[25] James R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks, 1968.
[26] Brian Moran, C.F. Shih, Crack tip and associated domain integrals from momentum and energy balance, Eng. Fract. Mech. 27 (6) (1987) 615–642.
[27] M. Stern, E.B. Becker, R.S. Dunham, A contour integral computation of mixed-mode stress intensity factors, Int. J. Fract. 12 (3) (1976) 359–368.
[28] Barna A. Szabo, I. Babuška, Computation of the amplitude of stress singular terms for cracks and reentrant corners, in: Fracture Mechanics: Nineteenth

Symposium, ASTM International, 1988.
[29] Ivo Babuška, Anthony Miller, The post-processing approach in the finite element method—Part 2: The calculation of stress intensity factors, Internat. J.

Numer. Methods Engrg. 20 (6) (1984) 1111–1129.
[30] Leslie Banks-Sills, Itai Hershkovitz, Paul A. Wawrzynek, Rami Eliasi, Anthony R. Ingraffea, Methods for calculating stress intensity factors in anisotropic

materials: Part I—z=0 is a symmetric plane, Eng. Fract. Mech. 72 (15) (2005) 2328–2358.
[31] Morteza Nejati, Adriana Paluszny, Robert W. Zimmerman, On the use of quarter-point tetrahedral finite elements in linear elastic fracture mechanics, Eng.

Fract. Mech. 144 (2015) 194–221.
[32] P. Gupta, Carlos Armando Duarte, Coupled hydromechanical-fracture simulations of nonplanar three-dimensional hydraulic fracture propagation, Int. J.

Numer. Anal. Methods Geomech. 42 (1) (2018) 143–180.
[33] Markus Schätzer, Thomas-Peter Fries, Stress intensity factors through crack opening displacements in the XFEM, in: Advances in Discretization Methods,

Springer, 2016, pp. 143–164.
[34] F.L. Stazi, Elisa Budyn, Jack Chessa, Ted Belytschko, An extended finite element method with higher-order elements for curved cracks, Comput. Mech. 31

(1) (2003) 38–48.
[35] J.P. Pereira, C.A. Duarte, D. Guoy, X. Jiao, hp-Generalized FEM and crack surface representation for non-planar 3-D cracks, Internat. J. Numer. Methods

Engrg. 77 (5) (2009) 601–633.
[36] A.G. Sanchez-Rivadeneira, N. Shauer, B. Mazurowski, C.A. Duarte, A stable generalized/extended p-hierarchical FEM for three-dimensional linear elastic

fracture mechanics, Comput. Methods Appl. Mech. Engrg. 364 (2020) 112970.
[37] Varun Gupta, Dae-Jin Kim, C. Armando Duarte, Analysis and improvements of global–local enrichments for the generalized finite element method, Comput.

Methods Appl. Mech. Engrg. 245 (2012) 47–62.
[38] Konstantinos Agathos, Eleni Chatzi, Stéphane P.A. Bordas, Stable 3D extended finite elements with higher order enrichment for accurate non planar

fracture, Comput. Methods Appl. Mech. Engrg. 306 (2016) 19–46.
[39] Yongxiang Wang, Haim Waisman, Isaac Harari, Direct evaluation of stress intensity factors for curved cracks using Irwin’s integral and XFEM with

high-order enrichment functions, Internat. J. Numer. Methods Engrg. 112 (7) (2017) 629–654.
[40] Daniel Arndt, Wolfgang Bangerth, Denis Davydov, Timo Heister, Luca Heltai, Martin Kronbichler, Matthias Maier, Jean-Paul Pelteret, Bruno Turcksin,

David Wells, The deal. II finite element library: Design, features, and insights, Comput. Math. Appl. 81 (2021) 407–422.
[41] Daniel Arndt, Wolfgang Bangerth, Bruno Blais, Marc Fehling, Rene Gassmöller, Timo Heister, Luca Heltai, Uwe Köcher, Martin Kronbichler, Matthias Maier,

et al., The deal. II library, version 9.3, J. Numer. Math. 29 (3) (2021) 171–186.
[42] The CGAL Project, CGAL User and Reference Manual, 5.4 ed., CGAL Editorial Board, 2022, URL https://doc.cgal.org/5.4/Manual/packages.html.
[43] Michael Hemmer, Algebraic foundations, in: CGAL User and Reference Manual, 5.4 ed., CGAL Editorial Board, 2022, URL https://doc.cgal.org/5.4/Manual/

packages.html#PkgAlgebraicFoundations.
[44] Kevin T. Chu, M. Prodanović, Level Set Method Library (LSMLIB), Tech. Rep., 2009.
[45] Ted L. Anderson, Fracture Mechanics: Fundamentals and Applications, CRC Press, 2017.
[46] Sylvie Pommier, Anthony Gravouil, Nicolas Moes, Alain Combescure, Extended Finite Element Method for Crack Propagation, John Wiley & Sons, 2013.
[47] Stéphane Bordas, Phu Vinh Nguyen, Cyrille Dunant, Amor Guidoum, Hung Nguyen-Dang, An extended finite element library, Internat. J. Numer. Methods

Engrg. 71 (6) (2007) 703–732.
[48] Xiang Ren, Xuefei Guan, Three dimensional crack propagation through mesh-based explicit representation for arbitrarily shaped cracks using the extended

finite element method, Eng. Fract. Mech. 177 (2017) 218–238.
[49] Pierre Alliez, Stéphane Tayeb, Camille Wormser, 3D fast intersection and distance computation, in: CGAL User and Reference Manual, 5.4 ed., CGAL

Editorial Board, 2022, URL https://doc.cgal.org/5.4/Manual/packages.html#PkgAABBTree.
[50] Stanley Osher, Ronald P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Vol. 1, Springer, New York, 2005.
17

http://refhub.elsevier.com/S0045-7825(23)00543-1/sb8
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb8
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb8
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb9
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb9
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb9
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb10
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb10
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb10
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb11
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb11
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb11
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb12
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb12
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb12
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb13
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb14
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb14
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb14
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb15
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb15
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb15
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb16
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb16
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb16
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb17
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb18
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb18
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb18
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb19
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb19
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb19
http://dx.doi.org/10.1016/j.cma.2020.112970
https://www.sciencedirect.com/science/article/pii/S0045782520301535
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb21
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb21
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb21
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb22
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb23
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb23
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb23
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb24
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb25
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb26
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb27
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb28
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb28
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb28
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb29
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb29
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb29
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb30
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb30
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb30
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb31
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb31
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb31
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb32
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb32
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb32
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb33
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb33
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb33
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb34
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb34
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb34
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb35
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb35
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb35
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb36
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb36
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb36
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb37
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb37
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb37
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb38
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb38
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb38
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb39
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb39
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb39
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb40
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb40
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb40
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb41
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb41
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb41
https://doc.cgal.org/5.4/Manual/packages.html
https://doc.cgal.org/5.4/Manual/packages.html#PkgAlgebraicFoundations
https://doc.cgal.org/5.4/Manual/packages.html#PkgAlgebraicFoundations
https://doc.cgal.org/5.4/Manual/packages.html#PkgAlgebraicFoundations
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb44
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb45
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb46
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb47
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb47
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb47
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb48
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb48
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb48
https://doc.cgal.org/5.4/Manual/packages.html#PkgAABBTree
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb50


C. Liu and Y. Wei Comput. Methods Appl. Mech. Engrg. 417 (2023) 116419
[51] Kyoungsoo Park, Jeronymo P. Pereira, C. Armando Duarte, Glaucio H. Paulino, Integration of singular enrichment functions in the generalized/extended
finite element method for three-dimensional problems, Internat. J. Numer. Methods Engrg. 78 (10) (2009) 1220–1257.

[52] Eric B. Chin, Jean-Bernard Lasserre, Natarajan Sukumar, Modeling crack discontinuities without element-partitioning in the extended finite element method,
Internat. J. Numer. Methods Engrg. 110 (11) (2017) 1021–1048.

[53] Chuanqi Liu, Jean H. Prévost, N. Sukumar, Modeling piecewise planar fault discontinuities without element-partitioning in 3D reservoir-geomechanical
models, Int. J. Numer. Anal. Methods Geomech. 43 (2) (2019) 530–543.

[54] N. Sukumar, Extended finite element method, 2022, Website. http://dilbert.engr.ucdavis.edu/~suku/xfem/.
[55] M. Gosz, B. Moran, An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three

dimensions, Eng. Fract. Mech. 69 (3) (2002) 299–319.
[56] Daniel Bremberg, Jonas Faleskog, A numerical procedure for interaction integrals developed for curved cracks of general shape in 3-D, Int. J. Solids Struct.

62 (2015) 144–157.
[57] Fang Shi, Jishan Liu, A fully coupled hydromechanical XFEM model for the simulation of 3D non-planar fluid-driven fracture propagation, Comput.

Geotech. 132 (2021) 103971.
[58] B. Mazurowski, A.G. Sanchez-Rivadeneira, N. Shauer, C.A. Duarte, High-order stable generalized/extended finite element approximations for accurate stress

intensity factors, Eng. Fract. Mech. 241 (2021) 107308.
[59] Hiroshi Tada, Paul C. Paris, George R. Irwin, The stress analysis of cracks, in: Handbook, Vol. 34, Del Research Corporation, 1973.
[60] P.A. Martin, The spherical-cap crack revisited, Int. J. Solids Struct. 38 (26–27) (2001) 4759–4776.
[61] M.A. Martynenko, A.F. Ulitko, Stress state near the vertex of a spherical notch in an unbounded elastic medium, Sov. Appl. Mech. 14 (9) (1978) 911–918.
18

http://refhub.elsevier.com/S0045-7825(23)00543-1/sb51
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb51
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb51
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb52
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb52
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb52
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb53
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb53
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb53
http://dilbert.engr.ucdavis.edu/~suku/xfem/
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb55
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb55
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb55
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb56
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb56
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb56
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb57
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb57
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb57
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb58
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb58
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb58
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb59
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb60
http://refhub.elsevier.com/S0045-7825(23)00543-1/sb61

	A novel approach to compute the spatial gradients of enriching functions in the X-FEM with a hybrid representation of cracks
	Introduction
	X-FEM framework for modeling three-dimensional non-planar cracks based on level sets
	Reviews of linear elastic fracture mechanics
	Displacement approximation in the X-FEM
	Level set and its application to represent a crack
	Modifications for three-dimensional curved cracks

	New spatial gradients computation algorithm and comparison to common approach
	Spatial gradients of enriching functions
	Computation of base vectors at the crack front
	Gradients of level sets computed by the finite-difference method for a hexahedral grid

	Implementation details
	Implementation platforms
	Partitioning for elements fully or partly cut by the crack
	Computation of SIFs

	Numerical examples
	Comparison of different schemes to compute the spatial gradients of enriching functions
	Inclined elliptical crack
	Lens-shaped crack
	Comparisons of SIFs computed by the DCM
	Comparisons of displacement jump


	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Gradients of enriching functions
	Appendix B. Coefficients in the reference solutions of lens crack
	References


