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Road damage detection is very important for road safety and timely repair. Te previous detection methods mainly rely on
humans or large machines, which are costly and inefcient. Existing algorithms are computationally expensive and difcult to
arrange in edge detection devices. To solve this problem, we propose a lightweight and efcient road damage detection algorithm
LE-YOLOv5 based on YOLOv5. We propose a global shufe attention module to improve the shortcomings of the SE attention
module in MobileNetV3, which in turn builds a better backbone feature extraction network. It greatly reduces the parameters and
GFLOPS of the model while increasing the computational speed. To construct a simple and efcient neck network, a lightweight
hybrid convolution is introduced into the neck network to replace the standard convolution. Meanwhile, we introduce the
lightweight coordinate attention module into the cross-stage partial network module that was designed using the one-time
aggregation method. Specifcally, we propose a parameter-free attentional feature fusion (PAFF) module, which signifcantly
enhances the model’s ability to capture contextual information at a long distance by guiding and enhancing correlation learning
between the channel direction and spatial direction without introducing additional parameters.Te K-means clustering algorithm
is used to make the anchor boxes more suitable for the dataset. Finally, we use a label smoothing algorithm to improve the
generalization ability of the model. Te experimental results show that the LE-YOLOv5 proposed in this document can stably and
efectively detect road damage. Compared to YOLOv5s, LE-YOLOv5 reduces the parameters by 52.6% and reduces the GFLOPS
by 57.0%. However, notably, the mean average precision (mAP) of our model improves by 5.3%. Tis means that LE-YOLOv5 is
much more lightweight while still providing excellent performance. We set up visualization experiments for multialgorithm
comparative detection in a variety of complex road environments. Te experimental results show that LE-YOLOv5 exhibits
excellent robustness and reliability in complex road environments.

1. Introduction

Road construction has long been a very important part of
infrastructure development. Whether it is a regular road,
highway, or airport pavement, damage such as cracks and
depressions can occur after a long period of service. Tis
damage can be accelerated when afected by rain and snow,
further damaging the road. Tere is no doubt that for
motorists, pavement damage creates uncertainty and many
unsafe factors. At the same time, pavement damage largely

increases the cost of operating and maintaining in-
frastructure. Detecting pavement damage in a timely
manner can efectively maintain trafc safety and provide
the basis for subsequent pavement rehabilitation and care.
Terefore, rapid pavement damage detection has a very wide
range of engineering applications.

In recent years, hardware has been gradually upgraded
and iterated, deep learning has developed rapidly, deep
learning-based target detection has also been developed, and
convolutional neural networks are widely used in tasks such
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as image classifcation, object detection, and semantic seg-
mentation [1]. Current deep learning-based target detection
is mainly divided into two categories. Te frst category is
based on candidate region target detection, including
region-based convolutional neural networks (R-CNN) [2],
spatial pyramid pooling in deep convolutional networks
(SPP-NET) [3], region-based fully convolutional networks
(R-FCN) [4], and mask region-based convolutional neural
networks (mask R-CNN) [5].Tese algorithms have obvious
advantages and disadvantages. Each of them can meet high
accuracy requirements, but the detection speed is slow and
the real-time performance is poor. Consequently, it is dif-
fcult to apply it to scenes that require high detection speed.
Te second category is regression-based target detection,
including the you only look once (YOLO) [6, 7] series, single
shot MultiBox detector (SSD) [8], and RetinaNet [9]. Tese
algorithms are slightly less accurate than the frst category
but have a very fast detection speed.

Te application of deep learning-based target detection
in road damage detection has also evolved, with Arya et al.
[10] proposing RDD-2020 in 2020, a large-scale road
damage dataset with over 26,620 images from multiple
countries, and the IEEE 2020 Global Big Data Challenge
applying RDD-2020. Various road damage detection models
were proposed by scholars from various countries in the
competition. Maeda et al. [11] proposed using progressive
growth of generative adversarial networks (PG-GANs) [12]
and Poisson blending methods to generate real road damage
images as new training data to improve the accuracy of
pothole detection. Hedge et al. [13] proposed an improved
model based on YOLOv5x using test-time data augmenta-
tion (TTA) [14], ensemble prediction, and ensemble models
to achieve the title of the IEEE 2020 Global Big Data
Challenge. Although the abovementioned studies have made
some contributions to the road damage detection task, they
all share a common problem. Te competition does not
require the detection speed and only uses accuracy as the
judging criterion, which leads to a large number of model
parameters in the abovementioned studies, resulting in
a high computational cost. Tus, these algorithms are not
applicable to some lightweight edge computing devices.
Terefore, many scholars have also conducted research in
the direction of lightweight detection, and Shim et al. [15]
proposed a detection model with feature extraction through
hierarchical neural networks and training prediction using
multiloss function weighted soft voting in 2021, which
achieved good results on their dataset. Wan et al. [16]
proposed a lightweight LRDD-YOLOv5 in 2022 by replacing
the backbone network as well as the loss function to achieve
further lightweighting on top of YOLOv5s. Te above-
mentioned research study provides a reference for light-
weight road damage detection models, but there is still room
for further optimization of the lightweight degree and de-
tection accuracy of the models.

In this paper, we propose a lightweight and efcient road
damage detection algorithm LE-YOLOv5 based on
YOLOv5. In addition, it reduces the number of model
parameters and improves the average accuracy. Overall, our
study has four main contributions:

(1) In this paper, we propose the global shufe attention
module (GSAM), which focuses on global feature
information while using channel shufing instead of
convolution to enhance interchannel feature in-
formation exchange. It is used to fll the defects of the
SE-block in MobileNetV3 to construct a new
backbone feature extraction network for the LE-
YOLOv5 algorithm.

(2) We analyze the faws of the C3 module in YOLOv5 for
the detection task in this article. Te lightweight co-
ordinate attentionmodule is introduced into the cross-
stage partial network to design the VCACSP module.

(3) We propose a parameter-free attentional feature
fusion (PAFF) module, which improves the utili-
zation of information from multilateral features and
further improves the accuracy without introducing
additional parameters.

(4) We analyze the RDD-2022 dataset and introduce the
K-means clustering algorithm to recalculate the
initial anchor boxes and use the label smoothing
algorithm to enhance the generalizability of
the model.

Te remainder of this study is organized as follows: in
Section 2, we analyze the limitations of the YOLOv5 algorithm
and briefy describe the product improvement perspective of
this paper. In Section 3, the lightweight and efcient road
damage detection algorithm LE-YOLOv5 is introduced and
expanded into four parts for a detailed description. Section 4
shows the results of the ablation experiments and comparative
analysis. In Section 5, we show visualization results and
a comparative analysis of detection in a variety of complex
road environments. Finally, Section 6 presents a summary of
our study and an outlook for the future.

2. Deficiencies and Improvement Ideas of
YOLOv5

Currently, the demand for target detection is increasing, and the
application scenarios are becoming more diverse. Terefore,
reducing the number of model parameters and computational
cost so that the model can be applied to more lightweight edge
computing devices is of great practical value for the engineering
application and development of target detection.

YOLO is an end-to-end single-stage target detection
model that has evolved over the years. YOLOv5, based on the
PyTorch framework, stands out for its excellent inference
speed and structural scalability, as shown in Figure 1.
However, it still has some problems. Its detection accuracy for
targets of diferent scales is not sufciently stable, especially in
the detection of small targets that are prone to error detection
and omission detection situations. Te large number of
convolutional and pooling layers results in a computationally
intensive algorithm that is difcult to apply to lightweight
edge detection devices. At the same time, the lack of ability to
capture and fuse features leaves room for further improve-
ment in its detection accuracy. In this paper, we focus on the
backbone feature extraction network and the feature fusion
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module to make the algorithm perform better in coping with
multiscale targets and long-range contextual information and
improve its detection accuracy. To have a wider range of
applications in lightweight detection, we have lightweighted
the algorithm from multiple perspectives while ensuring the
accuracy of the algorithm.

3. LE-YOLOv5

Wemainly improve the YOLOv5 backbone network and the
neck network to build a lightweight and better performance
detection model. Te architecture of LE-YOLOv5 is shown
in Figure 2. We will describe our improvements in more
detail later in this section.

3.1. Improving the MobileNetV3 Network with Global Shufe
AttentionModule. Techaracteristics of less computation and
faster computation make lightweight networks have a wider

range of applications. MobileNet [17] can be considered one of
the leaders. In 2019, Howard et al. proposed the MobileNetV3
[18] network, which inherits the deep separable convolution of
the V1 version and the inverse residual structure with the linear
bottleneck of the V2 [19] version.MobileNetV3 parameters are
obtained by network architecture searching (NAS) [20], with
excellent performance and speed.

However, the SE attention mechanism in MobileNetV3
is still defcient. It focuses only on channel feature in-
formation and ignores spatial feature information. However,
the spatial attention mechanism is equally important and is
seen as an adaptive screening process for key spatial areas
[21]. Te combination of channel attention and spatial at-
tention can yield more comprehensive and reliable attention
information for more rational guidance on computational
resource allocation [22]. Furthermore, the SE attention
module only considers attention in the channel dimension
and cannot capture attention in the spatial dimension [23],
which is detrimental to the learning ability of the network.
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Figure 1: YOLOv5 network architecture.
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Terefore, it is crucial to rationalize how to combine the
channel attention mechanism with the spatial attention
mechanism. We do not want to have too much computation
in the attention module, and we also need to avoid the
attention mechanism that focuses too much on local fea-
tures. For this purpose, we propose a global shufe attention
module (GSAM). Te module focuses on both channel and
spatial attention. Unlike traditional hybrid attention, it uses
parallel channel and spatial attention mechanisms to ac-
celerate computational efciency and improve performance.
Moreover, we use channel shufing to avoid the compu-
tational efort brought by convolutional layers while en-
hancing the information exchange between channels. Its
schematic structure is shown in Figure 3.

For the given input feature map F ∈ RH×W×C, we
compute spatial and channel attention independently as
parallel branches. Elementwise multiplication is performed
after resizing both Ms(F) ∈ RH×W and Mc(F) ∈ RC ob-
tained from RH×W×C. Ten, we obtain a 3D attention map by
channel shufing. Te GSAM attention map
M(F) ∈ RH×W×C can be computed as follows:

M(F) � S(Ms(F)⊗Mc(F)), (1)

where ⊗ represents elementwise multiplication and S( )

represents channel shufing. Finally, the GSAM attention
map is multiplied element by element with the input tensor
F ∈ RH×W×C to obtain the output tensor F′∈ RH×W×C. Its
calculation can be expressed as follows:
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Figure 2: LE-YOLOv5 network architecture.
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F′ � σ(M(F) ⊗F), (2)

where σ is a sigmoid function.
As shown in Figure 4, in the channel attention module,

we use both average pooling and maximum pooling. It
preserves the overall information of the image and reduces
the impact of spatial details while still focusing on the most
important information. After feeding the two descriptors
into the shared multilayer perceptron (MLP) network, the
channel attention Mc(F) is obtained by elementwise
summation and activation functions. It is computed as
follows:

Mc(F) � σ(MLP(AvgPool(F)) + MLP(MaxPool(F))),

(3)

where σ is a sigmoid function.
As shown in Figure 5, spatial attention similarly conveys

the idea of bothmaximum and average pooling. Considering
that spatial attention involves diferent directions, we use
concatenation to stitch them together. Ten, the spatial
attention Ms(F) is obtained by convolutional and activation
functions. It is computed as follows:

Ms(F) � σ(f([AvgPool(F),MLP(MaxPool(F))])), (4)

where σ is a sigmoid function, [, ] denotes a concatenation
operation, and f denotes a convolutional operation.

We improve MobileNetV3 with the proposed GSAM to
get a better backbone feature extraction network. It con-
currently focuses on global and local features, which im-
prove the feature capturing and learning ability of the
backbone network.

3.2. Hybrid Convolution and Cross-Stage Partial Network of
Coordinate Attention. Li et al. [25] designed the GSConv
module based on depthwise separable convolution com-
bined with the channel shufe operation in ShufeNet [26].
Te structure of the GSConv module is shown in Figure 6.
Branch learning of features applies the idea of di-
mensionality enhancement followed by dimensionality re-
duction. Finally, information exchange between channels is
carried out by concatenation and shufing.

Compared to the backbone network, in the neck net-
work, the feature maps fnally output by the backbone
network are smaller in size and have more channels, the
feature transformation and circulation are softer, and the
semantic information of the features is better retained.
Terefore, LE-YOLOv5 arranges the GSConv module in the
neck network to reduce the number of calculations. Te
feature map input to the GSConv module is frst passed
through a standard convolution with a step size and con-
volutional kernel size of 1 to reshape the number of channels
into half the number of output channels. Te resulting
feature map is fed into a depthwise separable convolution
(DWConv) with convolutional kernel size 5 and step size 1.
Te output feature map is then concatenated with the
standard convolutional output. Finally, the feature map
from the previous step is subjected to channel shufing
operation to get the fnal output feature maps.

Module C3 in the former neck network is an important
learning module. However, it is computationally intensive
and insensitive to small targets.Te research study in [27] has
shown that attention mechanisms can help networks improve
their ability to learn about small targets. Meanwhile, the study
in [25] has shown that the network responds better to at-
tention after deploying the GSConv module. Terefore, we
designed the VCACSP module by introducing the coordinate
attention module into VoV-GSCSP1, which reduces the
computational efort while enhancing the sensitivity to small
targets through attention guidance. Te VCACSP means
visual coordinate attention cross-stage partial network. Its
structure is schematically shown in Figure 7.

Te structure of the lightweight coordinate attention
module is shown in Figure 8. It frst divides channel attention
into two one-dimensional feature encodings along the width
and height of the featuremap, aggregating features along their
respective spatial directions, with the following equation:

Zc �
1

H × W


H

i�1


W

j�1
xc(i, j). (5)

Specifcally, for the upper-level input features, the fea-
tures are encoded along the height and width with pooling
kernels of size (H, 1) and (1,W) with the following respective
formulas:
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Figure 3: Te structure of the global shufe attention module.
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Z
h
c (h) �

1
W


0≤i≤W

xc(h, i),

Z
w
c (w) �

1
H


0≤j≤W

xc(j, w).

(6)

Te encoded feature map in both width and height
directions is stitched together and fed into the convolutional
module with a shared convolutional kernel 1 × 1 for di-
mensionality reduction to the initial C/r, where r is used to
control the reduction rate, and then the batch normalized
feature map F1 is fed into the activation function of the
sigmoid [28] to obtain the feature map f, which is given in
the following equation:

f � δ F1 Z
h
c , Z

w
c   , (7)
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where the function [, ] is the concatenation operation along
the spatial dimension, δ is the nonlinear activation, and f is
the intermediate feature mapping that encodes the spatial
information in the horizontal and vertical directions. Sub-
sequently, by decomposing and reshaping, we obtain the
following gh and gw, which are expressed by equations (8)
and (9).

g
h

� σ Fh f
h

  , (8)

g
w

� σ Fw f
w

( ( , (9)

where fh and fw denote tensors decomposed along the
space and Fh and Fw denote the reshaped tensors. Finally,
the fnal feature map with attention weights in the width and
height directions is obtained by multiplying and weighting
the original feature map with the following equation:

yc(i, j) � xc(i, j) × g
h
c (i) × g

w
c (j). (10)

Trough rationalization and construction, LE-
YOLOv5’s neck network is lightweight while eliminating
the shortcomings of insensitivity to small targets.

3.3. Parameter-Free Attention Feature Fusion Module.
Feature fusion has always been a very important part of
target recognition networks, and common feature fusion
structures include feature pyramid network (FPN) [29] and
path aggregation network (PANet), for instance, segmen-
tation [30]. In the backbone network, the input image is
continuously downsampled as the network deepens, and in
this process, since the pixels occupied by small targets in the
input image are much smaller than those of large targets, the
feature information of large targets is more easily retained
and that of small targets is easily lost in the downsampling
process of the backbone network. To solve this problem,
a combined neck structure of the FPN and PANet is
designed in YOLOv5. However, the feature fusion part still
has more rooms for improvement in terms of the combined
performance of inference speed and accuracy.

Te neck structure of the YOLOv5 combined FPN and
PANet is adapted to its underlying backbone network. After
we replace the backbone network with improved

MobileNetV3, the available features with more channel sizes
are contained in the same detection layer. At the same time,
from the perspective of lightweight, we do not want to
introduce additional parameters in the feature fusion part, so
we propose a parameter-free attention feature fusion (PAFF)
module, and the schematic diagram of the PAFF module is
shown as Figure 9.

Te PAFF module is mainly divided into two parts:
multilateral feature splicing in the front end and a param-
eter-free attention module in the back end. First, after
replacing the backbone network, more available features of
the channel size are included in the same level features, so in
the feature splicing part, we use add-edge processing to add
the feature splicing part originally from the FPN layer and
PANet part to the features extracted from the corresponding
backbone network at the same level to obtain a feature block
with a richer channel scale. It contains the feature in-
formation from the three sides of the backbone network,
FPN layer, and PANet part, which greatly improves the
feature information utilization between the backbone net-
work and the neck network.Te three-side feature splicing is
as follows, where F is the spliced midsegment feature map,
Ff is the feature map from the FPN layer, Fp is the feature
map from the PANet part, Fb is the feature map from the
backbone network at the same detection layer, and [, ]means
concatenating the feature map.

F � [Ff, Fp, Fb. (11)

At the same time, after obtaining richer feature blocks
on the channel scale, it is especially important to flter out
the feature information we want the network to notice
among the rich feature information. To solve such
problems, various types of attention mechanisms have
also been proposed by numerous scholars. However, from
the perspective of lightweighting, we would like to solve
this problem without adding additional parameters, so we
introduce the parameter-free attention feature fusion
module.

A feature map F ∈ RH×W×C is frst decomposed into
channel attention Ac ∈ R1×1×C and spatial attention
As ∈ RH×W×1, where spatial attention is obtained by aver-
aging the pooling of spatial features along the channel
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Figure 9: Te structure of the PAFF module. Te grayscale diferences in the fgure represent diferent attention weights.
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direction, and the mean value of each spatial element
xH×W ∈ RC can be calculated as follows:

As xH×W(  �
1
C



C

i�1
xH×W(i). (12)

By averaging along the channels, the dimensionality is
reduced, and a spatial feature weight map is generated,
where each element represents the average across channels.
As a result, high-activation spatial regions are emphasized,
while low-activation regions are suppressed, thus high-
lighting locations with detected features.

While channel attention is obtained by averaging the
pooling of channel features along the two spatial directions
of width and height, the average value of each channel el-
ement yc ∈ RH×W can be calculated as follows:

Ac yc(  �
1

H × W


H

i�1


W

j�1
yc(i, j). (13)

Ten, the expansion of the dimensionality reduction
direction is carried out, and the corresponding elements of
the two expanded feature block matrices are multiplied to
obtain the fnal output feature block H × W × C with ad-
ditional weights for each feature unit 1 × 1 × 1. Te overall
process can be summarized as follows, where ⊗ means
elementwise multiplication [31].

Fo � σ As ⊗Ac( ⊗F. (14)

By improving the efciency of feature utilization, the
PAFF module signifcantly improves the model’s ability to
learn features. At the same time, the PAFF module signif-
icantly enhances the model’s ability to capture contextual
information [32] at a distance by guiding and enhancing
correlation learning between the channel direction and
spatial direction.

3.4. K-Means Clustering and Label Smoothing. In the target
detection training process, our model needs to learn the
location and size of the target along with the target category.
Te target instances of the same category have similar aspect
ratios. Terefore, we can prepare several anchor boxes with
higher probability ratios as benchmarks, which greatly reduce
the difculty of model learning and improve the stability of
training. Te anchor of the YOLOv5 model is obtained from
the COCO [33] dataset, the category and aspect ratio of the
target in diferent datasets vary greatly, and the design of the
initial anchor boxmust be carried out according to the dataset
corresponding to the target detection task. Terefore, we use
the K-means clustering algorithm [34–36] to cluster the
training set by analyzing the shape and aspect ratio of the four
classes of damage in the dataset to obtain the a priori anchor
box in this experimental dataset.

Te initial anchor boxes of YOLOv5 are [10, 13, 16, 23,
30, 33], [30, 61, 62, 45, 59, 119], and [116, 90, 156, 198, 373,
326]. For the RDD-2022 dataset used in this experiment, we
use the K-means clustering algorithm to cluster the dataset,
and the initial anchor boxes obtained are [13, 13, 53, 25, 31,

68], [71, 62, 166, 29, 67, 143], and [152, 85, 160, 186, 374,
202]. Te size of the anchor boxes fts well with the dataset
containing mostly narrow cracks. Training the model on this
basis efectively reduces inference frame loss and improves
detection accuracy.

For multiclassifcation problems, it is often necessary to
transform the vector into a unique heat vector, i.e., the
probability of considering the target should be 1 and the
probability of the nontarget should be 0. Te traditional
expression of the unique heat vector yi should be expressed
as follows:

yi �
1, i � target,

0, i≠ target.
 (15)

Two problems arise when ftting the true probability
function of the unique heat vector: the frst is that the
generalization ability of the model cannot be guaranteed and
the second is that the full probability and zero probability
result in the widest possible gap between the category to
which they belong and the other categories, which are
difcult to ft by the bounded gradient.

Label smoothing [37, 38] is an efective regularization
method in the feld of deep learning that aims to prevent
models from predicting labels too confdently during
training, improve the network overftting problem during
training, and improve the generalization ability of models
[39]. We can consider the existence of incorrect labels in the
dataset and assign them probabilities so that we can obtain
a new label vector Yi by expressing it as follows:

Yi �

1 − ε, i � target,

ε
K

, i≠ target,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(16)

where K is the total number of categories and ε is a smaller
adjustment parameter. In this experiment, we have per-
formed many analyses on the dataset since transverse cracks
and longitudinal cracks account for most of the four cate-
gories of damage. At the same time, transverse and longi-
tudinal cracks are two separate classifcations, and we do not
want the model to rely on the labels too much during the
training process. Based on the research study in [40] and
group experiments, we set the adjustment parameter ε to 0.1,
which can yield good results in solving the road damage
from this experiment. Te group experimental data are
shown in Table 1.

4. Experiments and Discussion

Te experimental environment is the Windows operating
system, the model algorithm is implemented by the PyTorch
deep learning framework, the graphics card is NVIDIA
GeForce RTX 3060, the running memory of the graphics
card is 12GB, the CPU is Intel i5-12400F, and the memory is
32GB. Te initial input image size is set to 640× 640, the
model training period (epoch) is set to 100 epochs, and the
batch size is set to 32. Te initial learning rate is set to 0.02,
the loop learning rate is set to 0.12, and the learning rate
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momentum is set to the default value of 0.937. Te weight
decay parameter, warmup epochs, and warmup momentum
are set to default values of 5 × 10− 4, 3, and 0.8, respectively.
Te SGD is used as the optimization function, cosine
annealing is used for training, and the data enhancement is
set in the same way as the original YOLOv5s model.

4.1. Dataset for the Experiment. Te dataset used for the
experiments in this paper is the open-source road damage
dataset RDD-2022 [41], which includes 47,420 road images
from six countries: Japan, India, the Czech Republic, Nor-
way, the United States, and China. Tere are more than
55,000 road damage labels in the images, and the images in
the dataset contain a variety of views, such as unmanned
aerial vehicle (UAV) views and vehicle handheld cameras,
which is benefcial for enhancing the generalization capa-
bility of the model for better application in real-world
conditions. Various types of road damage are included in
the dataset, and we focus on four types of road damage,
namely, transverse crack D00, longitudinal crack D10, grid
crack D20, and pothole D40, which are the main types of
road damage, and their specifc shapes are shown in Fig-
ure 10. Other forms of road damage in the dataset, as well as
background images, are not included in the detection targets
of this experiment, so it is necessary to process the images
and labels in the dataset to identify the images and labels
corresponding to the detection targets that are not included
in this experiment. After analysis and processing, a total of
23,767 images contain detection targets of interest for this
experiment. After processing the dataset, we divide the
dataset according to the ratio 1 : 9, in which the training set
has 21,392 and the validation set has 2,375, and we add 1% of
the background images in the training set as in the COCO
dataset to make the composition of the dataset more rea-
sonable. Te number of labels for four types of road im-
pairments in the training and validation sets is shown in
Figure 11.

4.2. Evaluation Parameters. Evaluation of the algorithm is
considered in two main parts: computational cost and ac-
curacy. Here, the computational cost is mainly characterized
by the number of parameters (Params) and giga foating-
point operations per second (GFLOPS). Usually, smaller
Params and GFLOPS indicate that the model requires less
computational cost and less performance from the hard-
ware. Te accuracy is mainly characterized by the following
parameters: precision, recall, average precision (AP), mean
average precision (mAP), and F1 score. Each evaluation
parameter is specifcally calculated as follows:

Precision �
tp

tp + fp
,

Recall �
tp

tp + fn
,

F1 �
2 × Precision × Recall
Precision + Recall

,

AP � 
1

0
P(R)dR,

mAP �


K
i�1APi

K
,

(17)

where tp represents the number of positive samples correctly
detected, fp represents the number of samples that are
detected as positive but are actually negative, fn represents
the number of positive samples incorrectly detected as
negative samples, and K is the total number of categories of
detected targets.

Frames per second (FPS) is also a highly regarded
evaluation metric in practical engineering applications.
Especially for lightweight detection tasks, it is crucial to be
able to perform the detection in real time. FPS is calculated
from the detection response time and rounded to the nearest
whole number.

(a) (b) (c) (d)

Figure 10: Examples of types of damage: (a) transverse crack, (b) longitudinal crack, (c) grid crack, and (d) pothole.

Table 1: Experiments on label smoothing parameters.

ε 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
ΔmAP (%) 0.00 −0.13 0.22 0.31 0.24 0. 2 0.40 0.41 0.17 −0.27
Te bold values in the table mean the largest increase in mAP in the grouped experiments.
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FPS �
1
T

,

T � Tpre + Tinf + Tnms,
(18)

where Tpre denotes the image preprocessing time, Tinf
denotes the inference time, and Tnms denotes the
postprocessing time.

4.3. Ablation Experiments. To evaluate the efectiveness of
our optimization of the various parts of the model, we design
stepwise ablation experiments for our improvements.

First, we design ablation experiments for the back-
bone network. Te ablation model that uses improved
MobileNetV3 as the backbone network is named
YOLOv5s-impV3, and we use YOLOv5s-impV3 as the
baseline in all subsequent experiments. Te experimental
data are shown in Table 2. From the results, it is clear that
the parameters and GFLOPS of the model are signif-
cantly lower after replacing the backbone network, while
mAP is also increased. Notably, this means that we have
made the model lighter and the performance has been
improved.

Second, we design ablation experiments optimized for
the neck network. Te ablation part includes the GSConv
module and the VCACSP module, where the corresponding
ablation models are named Baseline-GSConv and Baseline-
GSConv-VCACSP, respectively, and the ablation experi-
ment data are shown in Table 3. Our results demonstrated
that applying the GSConv module and VCACSP module
simultaneously further reduces the model parameters and
results in a more substantial increase to the mAP. As dis-
cussed, the results of the ablation experiment confrm that
our constructed neck network is more efcient and
lightweight.

Similarly, to evaluate the parameter-free attention fea-
ture fusion (PAFF) module that we proposed, we also design
an ablation experiment. Considering that the main purpose
of the PAFF module is to improve the efciency of utilizing
the features of the same detection layer in the new backbone
network, we still perform the ablation experiment on the
basis of the baseline, and the ablation model is named
Baseline-PAFF. Te data of the ablation experiment are
shown in Table 4. Without introducing additional para-
metric quantities, the mAP gains 1.3%. Improving the
utilization of existing features is defnitely a lighter and more
efcient way than increasing the number of features and
expanding the feld of perception.

Overall, the stepwise ablation experiment is performed
for all modules and algorithm optimization, and the ex-
perimental data are shown in Table 5. LE-YOLOv5 is im-
proved on the basis of YOLOv5, so YOLOv5s is used as the
baseline model in this part of the ablation experiments.
Cases 1–8 are the models obtained by diferent combinations
of module optimization. Our LE-YOLOv5 is the fnal model
applying all the modules and algorithmic optimizations we
have designed. Compared to the baseline, LE-YOLOv5 has
signifcantly improved the overall performance.

In recent years, there have also been many representative
and innovative algorithms in the feld of target detection. To
better compare the optimization efects of each part and
evaluate the performance of our LE-YOLOv5 in the road
damage detection task, we selected some representative
algorithms. Te specifc experimental data are shown in
Table 6.

To provide a more comprehensive assessment of the
performance of LE-YOLOv5, the scope of our experiments
included the baseline model and variants of YOLOv5. We
also conducted experiments on faster R-CNN, SSD, DETR
[42], and YOLOv7-tiny [43]. Among them, the faster
R-CNN is the classical and more widely used two-stage
detection algorithm. SSD and DETR are also classical
single-stage target detection algorithms that have been
used in recent years. YOLOv7 has been proposed in 2022
and is also recognized as a more advanced target detection
algorithm in recent years. YOLOv7-tiny is the lightweight
version of YOLOv7 proposed by its authors. YOLOv5l
broadens the depth and width of the network based on
YOLOv5s. Tis improves the performance of the algo-
rithm but builds on a huge amount of computation.
Comparisons between LE-YOLOv5 and some classical
algorithms, and more advanced algorithms in recent
years, are included in the comparison experiments.
Meanwhile, the aim of this paper is to realize lightweight
and efcient detection. In addition to the large compu-
tation algorithm, supplementing our comparison exper-
iments with a lightweight detection algorithm such as LE-
YOLOv5 can make our algorithm more convincing. Tus
comparison experiments also include a comparison of the
performance of the large-computing model and the
lightweight model.

From the experimental results in Table 6, it is easy to see
that LE-YOLOv5 has a huge advantage in terms of pa-
rameters and GFLOPS, and it is ranked frst for precision. In
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Figure 11:Te number of labels for four types of road impairments
in the training and validation sets.
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terms of recall, F1-score, and mAP, YOLOv5l has some
advantages. However, as can be understood from its large
parameters and GFLOPS, its advantages are based on a huge
amount of computation. In comparison, LE-YOLOv5 has an
outstanding lightweight advantage while not lagging behind
in these three indicators. In terms of mAP, DETR, YOLOv7-
tiny, and faster R-CNN lag behind signifcantly. Considering
the transformer structure used in DETR, it requires a huge
amount of training. Terefore, its mAP is predictably low at
100 epochs. However, the low training cost is also one of the
advantages of LE-YOLOv5. YOLOv7-tiny is the closest
lightweight model to LE-YOLOv5 parametric quantities,
and its accuracy has a signifcant gap compared to LE-
YOLOv5. However, it is still considered to be an excellent
lightweight detection algorithm in recent years by virtue of
its fastest detection speed. SSD is relatively close to LE-
YOLOv5 in terms of mAP, but it has a large amount of
computation and low FPS. Generally, by default in engi-
neering applications, an FPS of 30 and above can be con-
sidered to meet the real-time detection requirements. In this
regard, YOLOv7-tiny and YOLOv5s have obvious advan-
tages. But with an FPS of 71, the LE-YOLOv5 performs real-
time inspection tasks perfectly just as well.

In terms of the combined evaluation metrics, LE-
YOLOv5 has a huge advantage in both parameters and
GFLOPS, while the rest of the evaluation metrics are both
ranked in the top two of all algorithms. It has no signifcant
shortcomings in terms of overall performance, with an
excellent balance of light weight and efciency.

For a more visual and comprehensive comparison of
multiple algorithms, we plot a schematic comparison of the
comprehensive performance of the seven algorithms, as
shown in Figure 12. Note that the purpose of the schematic
diagram is to visualize the combined performance of the
individual algorithms. Terefore, the values in the charts are
processed with consistent conversions. Te real data can be
viewed in Table 6.

5. Visual Comparison of Detection Results in
Complex Road Conditions

To better visualize the performance advantages of our LE-
YOLOv5 in road damage detection, we compare LE-
YOLOv5 with six other algorithms in multiple cases. Te
true location and class of the damage are labeled in the image
according to the image’s label as the true value. Te images

Table 2: Backbone network ablation experiment.

Models Params (M) GFLOPS Precision (%) Recall (%) mAP0.5 (%) F1-score (%)
YOLOv5s 7.20 16.5 57.5 50.5 51.6 53.8
YOLOv5s-impV3 4.37 9.9 57.2 52.1 52.0 54.4

Table 3: Neck network ablation experiment.

Models Params (M) GFLOPS Precision (%) Recall (%) mAP0.5 (%) F1-score (%)
Baseline 4.37 9.9 57.2 52.1 52.0 54.4
Baseline-GSConv 4.03 9.3 58.6 51.7 52.3 54.9
Baseline-GSConv-VCACSP 3.38 6.9 59.6 52.5 53.6 55.8

Table 4: Te parameter-free feature fusion module ablation experiment.

Models Params (M) GFLOPS Precision (%) Recall (%) mAP0.5 (%) F1-score (%)
Baseline 4.37 9.9 57.2 52.1 52.0 54.4
Baseline-PAFF 4.37 9.9 58.5 52.9 53.3 55.5

Table 5: Stepwise ablation experiment.

Models Backbone Modules Algorithms
Params (M) mAP0.5 (%)

ImpV3 GSConv VCACSP PAFF K-means Label smoothing
Baseline 7.20 51.6
Case 1 ✓ 4.37 52.0
Case 2 ✓ ✓ 4.03 52.3
Case 3 ✓ ✓ 3.72 52.1
Case 4 ✓ ✓ 4.37 53.3
Case 5 ✓ ✓ ✓ 3.38 53.6
Case 6 ✓ ✓ ✓ 4.03 54.6
Case 7 ✓ ✓ ✓ 3.72 54.1
Case 8 ✓ ✓ ✓ ✓ 3.41 56.0
LE-YOLOv5 ✓ ✓ ✓ ✓ ✓ ✓ 3.41 56.9
✓ means the modules or algorithms are used.
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are detected with LE-YOLOv5 and each of the other fve
algorithms, showing the location of the detection frame, the
damage category, and probability. Note that for a more
intuitive comparison, we have harmonized the display of the
detection results of YOLOv7-tiny faster R-CNN, SSD, and
DETR with the YOLOv5 algorithm.

Generally, the specifc conditions of roads are complex
and varied, so the robustness of the model is particularly
important. Algorithms that maintain good performance in
complex road environments have better prospects for
practical engineering applications. In this experiment, we
select fve diferent cases and we analyze the comparative
experiments for each of the fve settings in the following
sections.

Correctly detecting long-distance crack damage is more
difcult than detecting ordinary crack damage. As shown in
Figure 13, the precision of LE-YOLOv5 is more prominent
when the detection regions of all algorithms are basically the
same. YOLOv7-tiny and YOLOv5s, which are also light-
weight models, have a signifcant gap in the accuracy level

with LE-YOLOv5. Tis implies that our optimization results
in a signifcant improvement in the ability of the algorithm
to capture contextual information over long distances.

As shown in Figure 14, we use an image containing grid
cracks and potholes of diferent sizes for the detection ex-
periments. Compared with the ground truth, we fnd that
only LE-YOLOv5 and YOLOv7-tiny correctly detect all
damages. Te other detection algorithms show omissions
and incorrect detections. However, a careful comparison of
the detection results of LE-YOLOv5 and YOLOv7-tiny
shows that LE-YOLOv5 has a great advantage in the level
of accuracy. Tis indicates that LE-YOLOv5 can fully ac-
complish detection in complex environments containing
both types of damage.

Te infuence of weather factors on the detection should
also be considered in road damage detection. For example,
shadows of roadside plants and buildings can appear on the
road surface in a strongly illuminated environment.
Terefore, we use images containing transverse cracks across
the shadows for detection experiments. As shown in Fig-
ure 15, among the seven detection algorithms, only LE-
YOLOv5 detects the correct area of transverse cracks. Te
other detection algorithms are severely afected by shadows
and only detect transverse cracks in bright areas. Our results
demonstrate that LE-YOLOv5 is highly resistant to the
shadows of pavement in strong lighting environments.

As shown in Figure 16, the foggy environment with
reduced light and reduced visibility poses a challenge for
road damage detection.Te efect of partial trafc white lines
on crack-type damage is further amplifed in the foggy
environment. Tis is a major challenge to the feature ac-
quisition capability and learning ability of the prediction
algorithm. In this detection experiment, only LE-YOLOv5
among the seven detection algorithms successfully detects
longitudinal cracks covered by trafc white lines. Our results
show that LE-YOLOv5 maintains high reliability and ac-
curacy in a low-light environment.

Some of the smaller potholes in the pavement are often
difcult to observe, which seriously impacts trafc safety.
Terefore, we conduct detection experiments using images
containing damage to a single small target pothole. As
shown in Figure 17, the performance of the detection region
and the confdence level of LE-YOLOv5 are excellent
compared to the ground truth. Compared to the other six
detection algorithms, the confdence of LE-YOLOv5 is
substantially ahead. It is easy to observe from the results of

Params

GFLOPs

YOLOv5l
YOLOv7-tiny

DETRLE-YOLOv5

SSD
YOLOv5s

Faster R-CNN

mAP_0.5

FPS

F1-score Recall

Precision

Figure 12: Comprehensive performance comparison diagram of
multiple algorithms. Higher values indicate better performance.

Table 6: Multiple algorithms’ comparison.

Models Params (M) GFLOPS Precision (%) Recall (%) F1-score (%) FPS mAP0.5 (%)
YOLOv5l 46.5 109.1 61.6 55.3 58.3 42 57. 
Faster R-CNN-ResNet50 41.48 94.3 57.0 52.2 54.5 9 50.3
DETR-ResNet50 36.74 100.9 48.7 38.3 42.8 36 39.7
SSD-VGG16 26.79 60.9 61.7 49.8 55.1 15 53.2
YOLOv5s 7.20 16.5 57.5 50.5 53.8 102 51.6
YOLOv7-tiny 6.02 13.2 51.4 52.3 51.8 111 49.1
LE-YOLOv5 3. 1 7.0 63.9 53.2 58.1 71 56.9
Te best results for each column in the table are bolded.Te FPSs of all the abovementioned models are calculated on the basis of an input image resolution of
640 pixels× 640 pixels.
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this experiment that LE-YOLOv5 also has very high re-
liability for the detection of a single small target.

As in the discussion above, we conducted comparative
experiments with six algorithms in a variety of complex
environments. In all experiments, LE-YOLOv5 demon-
strates a very high level of accuracy and excellent robustness

at the lowest computational cost. Comparative experiments
with other algorithms highlight the efectiveness of each
improvement in this paper. Te proposed GSAM module
plays a good guiding role in the process of e-learning. Te
feature extraction ability and positioning accuracy of the
overall algorithm are signifcantly improved. In addition, the

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 13: Visual comparison of long-distance transverse crack detection results: (a) ground truth, (b) LE-YOLOv5, (c) YOLOv5s,
(d) YOLOv5l, (e) YOLOv7-tiny, (f ) DETR, (g) SSD, and (h) faster R-CNN.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 14: Visual comparison of detection results for complex pavements with multiple grid cracks and potholes coexisting: (a) ground
truth, (b) LE-YOLOv5, (c) YOLOv5s, (d) YOLOv5l, (e) YOLOv7-tiny, (f ) DETR, (g) SSD, and (h) faster R-CNN.
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proposed PAFF module plays an important role in the
feature fusion process. It improves the context feature as-
sociation capability of the algorithm and improves the

utilization efciency of features at diferent levels in the
network. Tese improvements make LE-YOLOv5 light-
weight, robust, and efcient.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 15: Visual comparison of crack damage across the shadow: (a) ground truth, (b) LE-YOLOv5, (c) YOLOv5s, (d) YOLOv5l,
(e) YOLOv7-tiny, (f ) DETR, (g) SSD, and (h) faster R-CNN.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 16: Visual comparison of the detection results of cracks covered by white lines in foggy weather: (a) ground truth, (b) LE-YOLOv5,
(c) YOLOv5s, (d) YOLOv5l, (e) YOLOv7-tiny, (f ) DETR, (g) SSD, and (h) faster R-CNN.
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6. Conclusion

Based on the analysis of existing road damage detection
methods, we propose a lightweight and efcient road
damage detection algorithm LE-YOLOv5 to solve the
problem of the high computational cost and insufcient
accuracy of existing algorithms. We use the RDD-2022
dataset to train the model to detect various types of complex
road damage. In terms of network structure optimization,
above all, we propose a global shufe attention module
(GSAM) to improve MobileNetV3, thus designing a better
backbone feature extraction network. Ten, we use the
GSConv module to replace the standard convolutional
module in the neck network, thus signifcantly reducing the
model parameters and GFLOPS. We introduce lightweight
coordinate attention to design the VCACSP module and
improve the network’s ability to learn the spatial in-
formation of the feature map. To signifcantly enhance the
model’s ability to capture contextual information at a long
distance without introducing additional parameters, we
propose a parameter-free attentional feature fusion (PAFF)
module. It further improves the learning ability of the
network on the channel information and spatial information
of the feature map without introducing additional param-
eters, which further improves the model performance. Fi-
nally, we use the K-means clustering algorithm to optimize
the initial anchor boxes and the label smoothing algorithm
to improve the generalization ability of the model. Te
experimental phase is divided into two main parts: the
stepwise ablation experiment and the multimodel com-
parison experiment. Ablation experiments show that,
compared to YOLOv5s, our LE-YOLOv5 reduces the model

size by 52.7% and improves the mAP by 5.3%, which means
that the model performance has been further improved
while the model is lighter. Compared to large computational
volume models, we have a clear volume advantage without
losing accuracy. And compared to the excellent lightweight
models YOLOv7-tiny and YOLOv5s in recent years, we have
a signifcant accuracy advantage based on a much lower
parameter count. In addition, it is easy to see in the detection
visualization comparison results that our LE-YOLOv5 has
better robustness and reliability and can cope with various
complex road environments excellently. Our study provides
an important reference value for lightweight road damage
detection algorithms, ofering the possibility of deploying
road damage detection algorithms on more lightweight edge
computing devices.

Tere are several possible directions to extend this work
in the future. Regarding the improvement of the general-
izability of the model, the dataset still has the possibility of
expansion and optimization. We can improve the method of
data collection as much as possible while further increasing
the amount of data on pothole-type damage in the dataset.
Ten, the development of hardware and technology has
made it possible to move from optimization of modules to
optimization of the network structure. Finally, it is worth
considering how to further expand the application of target
detection, both from the perspective of lightweight and
postprocessing of target detection.

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 17: Visual comparison of a detection result of a single small target pothole: (a) ground truth, (b) LE-YOLOv5, (c) YOLOv5s,
(d) YOLOv5l, (e) YOLOv7-tiny, (f ) DETR, (g) SSD, and (h) faster R-CNN.
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